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Gravitational lensing and tunneling of mechanical waves in synthetic curved spacetime
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Black holes are considered among the most fascinating objects that exist in our universe since in the classical
formalism nothing, not even light, can escape from their vicinity due to gravity. The gravitational potential causes
the light to bend toward the hole, which is known as gravitational lensing. Here, we present a synthetic realization
of this phenomenon in a laboratory-scale two-dimensional network of mechanical circuits, based on analogous
condensed matter formalism of Weyl semimetals with inhomogeneous nodal tilt profiles. Some of the underlying
network couplings turn out as unstable and nonreciprocal and are implemented by embedded active feedback
interactions in an overall stabilized structure. We demonstrate the lensing by propagating mechanical wave
packets through the network with a programed funnel-like potential, achieving wave bending toward the circle
center. We then demonstrate the versatility of our platform by reprogramming it to mimic quantum tunneling of
particles through the event horizon, known as Hawking radiation, achieving an exceptional correspondence to
the original mass loss rate within the hole. The network couplings and the potential can be further reprogrammed
to realize other curvatures and associated relativistic phenomena.
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I. INTRODUCTION

In our universe, the existence of black holes [1] is theo-
retically predicted by Einstein’s theory of general relativity
through the spacetime singularity in the Schwarzschild metric
[2]. This metric determines the curvature of spacetime geom-
etry for which gravity is the outcome. In classical gravity, the
event horizon is thought of as a boundary between the black
hole and the visible universe. Any object that crosses this
boundary is dragged at the speed of light toward the center
and ultimately becomes invisible. The resulting propagation
of relativistic light in the curved spacetime around the hole
is characterized by deflection or lensing inward due to the
gravitational potential.

Recently, a condensed matter analogue of the space-
time curvature has been obtained through Weyl semimetals
(WSMs) that are characterized by the Hamiltonian HWSM =
(Vt + v f σ ) · k with a spatially varying tilt profile Vt (r) [3–8].
Here, r and k are, respectively, the spatial coordinate and the
momentum in three dimensions, spanned by Pauli matrices
σ . The analogue was drawn pictorially by mapping Weyl
cones into spacetime geodesics (light cones), obtained from
the Painlevé [9], Gullstrand [10], Lemaître [11] coordinate
system:

ds2 = c2dt2 − [dr − V (r)dt]2, (1)
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in which the spatial profile V (r) incorporates the gravity infor-
mation, and the event horizon is denoted by the radius where
V (r) equals the speed of light c. In the WSM equivalence,
the tilt Vt (r) and Fermi velocity v f are respectively mapped
to V (r) and c in Eq. (1), yielding the horizon along r that
satisfies Vt (r) = v f . The resulting system can be represented
by the quantum Bloch Hamiltonian [12,13]:

H (k) =
∑
j=x,y

t j (σ j − Vjσ0) sin k ja

+ tzσz(2 − cos kxa − cos kya), (2)

where tx, ty indicate the spin-orbit coupling strength, tz is the
nearest-neighbor hopping parameter, Vx,Vy are the x, y projec-
tions of the tilting potential Vt (r), and a is the lattice constant.
This mapping between two entirely different fields, relativistic
physics and quantum condensed matter, is also valid for other
high-energy phenomena, such as Klein tunneling in graphene
[14], transport in solids, and chiral anomaly in WSM [15].
However, laboratory imitation of high-energy effects, even
via the condensed matter analogy [16,17], is not immediate.
Here, we present a framework for constructing an experimen-
tally ready purely classical model, consisting of a network
of active mechanical circuits [18–23], which realizes, based
on the WSM formalism, a synthetic curved spacetime and
the associated gravitational lensing. In addition, our platform
realizes another aspect of the black hole, which is Hawking
radiation, also known as horizon tunneling. The latter stems
from the astonishing discovery that, in the quantum realm, the
phenomenon of completely black is not entirely true.

Rather, it was shown that a black hole radiates [24–26],
and this radiation exists as fluctuation of quantum fields near
the horizon with temperature TH , famously known as the
Hawking temperature. Equivalently, Hawking radiation can
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FIG. 1. The mechanical circuit network imitating curved spacetime. (a) The network schematic with a black hole of radius rs. P1,2,3 indicate
representative locations outside the hole, on the horizon and inside the hole. (b)–(d) The unit cell with the target closed-loop couplings +tz,
−tz, itx , ty, −ty, iVx (x, y), and iVy(x, y), depicted in separate panels for clarity. Below the panels are plotted the forces that each element exerts
on the masses, as implied by the Hamiltonian in Eq. (2). δ indicates the nearest-neighbor mass, u is displacement, and v is velocity.

be visualized as semiclassical tunneling of particles through
the event horizon [27,28] by considering the following sce-
nario: A pair of positive and negative energy particles is
created either just inside the horizon, where a positive energy
particle tunnels outward, or just outside the event horizon,
where a negative energy particle tunnels inward. Tunneling
of a particle with energy E is compensated by an equivalent
mass loss within the black hole for which the emission rate is
given by

�H ≈ exp

(
− h̄E

KBTH

)
. (3)

Remarkably, Hawking temperature is proportional to
the gravitational field strength g as KBTH = h̄g/2πc =
h̄c3/8πGM, where KB is the Boltzmann constant, h̄ is the
Planck constant, and G stands for the universal gravitational
constant. Here, TH is inversely proportional to the black hole
mass M, and for a small black hole (solar mass) currently
present in our universe, TH is of the order of ≈10−6 K [29]. As
this value is six orders of magnitude smaller than the cosmic
microwave background, it is overshadowed, thus remaining
undetected. This motivated a search for event horizon ana-
logues, based on wave propagation in counterflowing fluids
and associated ideas in photonics and Bose-Einstein conden-
sates [30–39]. In the proposed mechanical circuit platform,
we realize horizon tunneling based on the same WSM for-
malism as for gravitational lensing, solely by reprogramming
the artificial potential in Eq. (2). Our model relies on the me-
chanical wave packet tunneling through a synthetic horizon,
which makes it completely distinct from the pair production
mechanism [27,28].

II. GRAVITATIONAL LENSING ANALOGUE

The platform is illustrated in Fig. 1(a). This is a two-
dimensional square network with the black hole represented
by a circle of radius rs. This network needs to realize a syn-
thetic curved spacetime, and thus, its dynamical matrix needs
to fully retrieve the quantum Hamiltonian in Eq. (2). The unit
cell of the network, as depicted in Figs. 1(b)–1(d), consists of
masses at two sites, A (black squares) and B (gray squares),

with a single degree of freedom per site, e.g., vibrating out-
of-plane with a displacement u and velocity v. Following
Eq. (2), the masses are directly coupled by tz (blue bars),
−tz (red bars), iVx(x, y) (yellow bars), and iVy(x, y) (orange
bars) and are cross-coupled by itx (gray bars), ty (green bars),
and −ty (violet bars). For the circle perimeter to represent the
horizon, the quantum potential Vt (r), and thus the correspond-
ing couplings in the network, needs to equal v f (or 1 in a
normalized formulation) at the perimeter r = rs [12,13]. To
support the lensing phenomenon, the potential strength also
needs to increase toward the circle origin r = 0. A specific
expression is set at the model validation stage.

The nature of each coupling is illustrated below the panels
with the subscript δ indicating the nearest connected mass.
The +tz coupling is reciprocal and stable and can be realized
by a linear spring. The −tz coupling is reciprocal but is inher-
ently unstable due to the negative sign, equivalent to a spring
that expands when stretched. The complex-valued couplings
itx, iVx(x, y), and iVy(x, y) relate to the mass velocities, as the
Fourier transform of v = u̇ equals i�u. These couplings, as
well as ±ty, lack a restoring force and have an opposite sign
at each end, being thus both nonreciprocal and unstable (but
the total system is Hermitian).

As all the couplings except +tz cannot be implemented
by passive elements, we implement them in our network
using an active feedback mechanism [40–50]. This mech-
anism is embedded in a stable host network consisting of
the +tz couplings only, shown by the blue bars in the
schematic in Figs. 2(a) and 2(b). An active controller gener-
ates commands for external forces f A, f B at each unit cell,
operating in a real-time closed loop. These forces are respon-
sible for creating the couplings −tz, itx, ±ty, iVx(x, y), and
iVy(x, y) as well as to stabilize the overall system. In the
{m, n} A/B sites, Figs. 2(a) and 2(b), the action of f A/B is
based on velocity measurements of the {m ± 1, n} and {m, n ±
1} A/B sites and of the {m ± 1, n} B/A sites, respectively
indicated by the yellow, orange, and gray arrows, as well
as displacement measurements of the {m, n ± 1} B/A sites,
indicated by the green/violet arrows. The action of f B alone
is also based on displacement measurements of the {m ±
1, n} and {m, n ± 1} B sites, indicated by the red arrows. In
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FIG. 2. Control mechanism implementation scheme. (a) and
(b) The actuation (black) and measurement (color) signals at the
{m, n} unit cell for the A and B sites, respectively.

addition, the action of f A/B is based on displacement mea-
surements of {m, n} A/B sites (not indicated in the figure). The
measured signals are fed back in real time into the electronic
controller, the gains of which are programed into the matrix
C. The algorithm is given by

[
f A

f B

]
= −C

[
u

v

]
, C = 1

2

[
CA

u CA
v

CB
u CB

v

]
,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

CA
u = [−β 0 0 0 − ty ty 0 0]

CB
u = [0 ty − ty − (β + 8tz ) 2tz 2tz 2tz 2tz]

CA
v = [Vx − Vx Vy − Vy − tx tx 0 0]

CB
v = [−tx tx 0 0 Vx − Vx Vy − Vy],

(4)

where uA/B = [ uA/B
m,n uA/B

m,n+1 uA/B
m,n−1 uB

m+1,n uB
m−1,n ]

and vA/B = [ v
A/B
m+1,n v

A/B
m−1,n v

A/B
m,n+1 v

A/B
m,n−1 ] consti-

tute the measurement signals u = [ uA uB ]′ and v =
[ vA vB ]′ for the {m, n} unit cell, Vx/y = Vx/y(xm,n, ym,n)
is the potential, and β = −8tz guarantees the overall system
stability.

FIG. 3. Synthetic curved spacetime validation in momentum and
real space. (a) The potential Vt (r). (b)–(d) The classical frequency
spectrum corresponding to outside the hole, on the horizon, and
inside the hole locations, indicated by the points P1, P2, and P3 in
Fig. 1(a) and respectively evolving from nontilted, critically tilted,
and overtilted cones. (e) Time domain wave packet propagation
across the network, plotted at increasing time instances (1,2,3) and
featuring the expected bending toward the black hole (white circle).

Next, we demonstrate that the closed-loop system resulting
from Eq. (4) fully satisfies the properties of curved spacetime,
both in momentum and in real space. Due to the velocity
terms, in momentum space, we obtain a quadratic eigenvalue
problem (see Appendix A for details). The potential is se-
lected in the funnel form Vt (r) = γ /r, Fig. 3(a), where γ > 0
is analogous to the black hole mass [12]. The estimation of
grid size in Fig. 1(a) is contingent upon the parameter γ . If
Vt (r) decays faster while crossing the horizon, the grid size is
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FIG. 4. Artificial Hawking horizon tunneling. (a) Schematic of the Weyl semimetal (WSM) along the principle path. The spatially varying
tilt (gold cones) represents the interface between the black hole (overtilted cones) and flat space (zero-tilted cones). The transition occurs at
the critical tilt, which represents the event horizon. (b) The relevant portion of the mechanical network of Fig. 1. (c) Fourier transform of the
initial wave packet in flat space. (d) and (e) Time evolution of a Gaussian wave packet across the artificial horizon (green lines) of length
N0 = 400 and side sizes NL, NR = 800, tilt rate γt = 0.1, lattice constant a = 1, and coupling strength tx, tz = 1. At time T0, the wave packet is
launched at position x0 = 1600. (d) The response (absolute value) before tunneling at T0 (white) and T1 = 198 (cyan). (e) The response after
tunneling at T2 = 1174 (white) and T3 = 1845 (cyan). (f) Fourier transform of the time domain response at T3. (g) Variation with ω of the
original high-energy emission rate �H (black), the classical equivalence for the analytical quantum transmission probability in the condensed
matter formalism �s (gray), the numerically calculated quantum decay rate χq (green), and the numerically calculated classical decay rate χc

(orange) for γt = 0.1.

expected to be smaller than the scenario where Vt (r) decays
at a slower rate. In Figs. 3(b)–3(d), we plot the classical
frequency spectrum (zoom-in) for three representative loca-
tions across the spacetime, which are outside the hole, on the
horizon, and inside the hole, as respectively indicated by P1,
P2, and P3 on top of the sketch of Fig. 1(a). As expected, out-
side the hole, the spectrum is nontilted but becomes critically
tilted at the horizon and overtilted inside the hole. We then
numerically simulate the time domain evolution of a wave
packet, as depicted in Fig. 3(e) for three time instances. The
wave packet, which is launched far from the black hole (white
circle), propagates across the network in a curved trajectory,
indicating the expected bending toward the hole center.

III. HAWKING TUNNELING ANALOGUE

To demonstrate the versatility of our network, we re-
program the controller in Eq. (4) to support the horizon
tunneling phenomenon. Unlike lensing, for tunneling, a one-
dimensional interface of gradually tilted dispersion cones is
sufficient, as illustrated in Fig. 4(a). The cones range from
zero-tilted to overtilted, respectively standing for flat space

and the black hole. The critically tilted cone represents the
event horizon. We thus reprogram the controller to switch off
the couplings in the y direction, Fig. 4(b), and to generate
the potential Vt (x) = −(1 + tanh γt x). Here, γt determines the
rate of change of Vt (x) across the horizon, which is directly
mapped to the gravitational field strength g through γt = g/c.
This potential defines the interface −L � x � L by satisfying
tanh(L) ≈ 1. Outside the interface, i.e., at x < −L and x > L,
Vt (x) takes the constant end values 0 and 2, respectively. Here,
x = 0 is the critical tilt point indicating the artificial event
horizon.

We validate the tunneling analogue by launching a Bloch-
mode-modulated Gaussian wave packet from the overtilted
region of the Fourier transform depicted in Fig. 4(c) and
simulating its time evolution as it tunnels through the artificial
horizon to the flat space region, as depicted in Figs. 4(d) and
4(e). The Fourier transform of the transmitted wave packet,
as predicted by energy conservation, is depicted in Fig. 4(f).
Both momenta are indicated by a blue circle on top of the
corresponding dispersion band in the insets (see Appendix B
for details). Then defining ω as the difference between the ini-
tial wave packet frequency and the classical spectrum crossing
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point, we rewrite Eq. (3) as �H = exp(−2πE/γt ), which is
the limit of the analytical quantum transmission probability
�s = 1/[1 + exp(2πE/γt )] [51,52], and consider the classi-
cal equivalence ω = E . We then define the numerical decay
rate for the quantum χq and the classical χc models, with
�f

m and � in
m as the squared amplitudes of the final and ini-

tial wave packets, obtained from time domain simulations
via χq/c = ∑NL

m |�f
m|2/∑NR

m |� in
m |2. The dependence of �H

(black), �s (gray), χq (green), and χc (orange) on ω is depicted
in Fig. 4(g). Remarkably, we observe that, as a function of
ω, χc closely follows the profile of χq, �s, and �H . This
validates our system as a classical analogue of Hawking
phenomena.

IV. CONCLUSIONS

To conclude, we proposed a purely classical realization of
artificial curved spacetime, based on WSM formalism. Our
model features a two-dimensional network of mass elements,
the collective dynamics of which is equivalent to WSM with
inhomogeneous potential and the associated varying disper-
sion tilt. The resulting mechanical circuits required unstable
and nonreciprocal couplings, which were created in real time
using embedded active feedback controller. Despite the in-
stability of the individual couplings, the control algorithm
managed to stabilize the overall network. The wide oper-
ational bandwidth of the feedback loop electrical circuitry,
typically at the order of megahertz, ensures that the latency
of the mechanical system excitation, typically at the order of
Hertz, is negligible.

Our model produced the required space-dependent tilt
strength for gravitational analogues in a bulk material, thus
offering enhanced experimental freedom compared with elec-
tronic WSM [53–55]. Using dynamical simulations, we
demonstrated bending of mechanical wave packets toward
an artificial black hole in the network center, manifesting
the gravitational lensing phenomenon. By reprogramming the
controller gains, we mimicked horizon tunneling on the same
platform. The attenuation rate of a tunneled wave packet
matched well with the transmission probability of the quan-
tum system as well as the emission rate of the original black
hole. The reprogrammable nature of our platform enables to
test, e.g., the effect of black holes of different sizes on lensing
and tunneling, and on other high-energy phenomena related to
curved spacetime.

ACKNOWLEDGMENTS

The authors are grateful to Steven Cummer, John Smith,
Martin Wegener, Romain Fleury, Badreddine Assouar, Bog-
dan Popa, Jensen Li, Vincenzo Vitelli, and Chen Shen for
insightful discussions. A special thanks goes to Daniel Sab-
sovich for important comments at the beginning of this
project.

APPENDIX A: GRAVITATIONAL LENSING
ANALOGUE—DERIVATION DETAILS

Here, we give the derivation details of the synthetic gravi-
tational lensing results in Fig. 3. The open-loop equations of

FIG. 5. Control loop details. The host structure features +tz cou-
plings only and control forces fmA and fmB (black arrows) applied
to the masses. The forces are based on the measured velocities vm

and displacements um at adjacent sites, processed by corresponding
controller gains, depicted by red, gray, and yellow arrows, which
respectively create the couplings −tz, itx , and iVt (x) in real time.

motion for the {m, n} unit cell are given by

üA/B
m,n = 1

2 tz
( − 4uA/B

m,n + uA/B
m+1,n + uA/B

m−1,n + uA/B
m,n+1 + uA/B

m,n−1

)
+ f A/B

m,n . (A1)

With the control algorithm defined by Eq. (4), the closed-loop
classical dynamics, for which the time domain simulation in
Fig. 3(e) was carried out, takes the form:

üA/B
m,n = ± 1

2 tz
( − 4uA/B

m,n + uA/B
m+1,n + uA/B

m−1,n

+ uA/B
m,n+1 + uA/B

m,n−1

) − 4tzu
A/B
m,n

+ 1
2 tx

(−v
B/A
m+1,n + v

B/A
m−1,n

)
± 1

2 ty
(−uB/A

m,n+1 + uB/A
m,n−1

)
+ 1

2Vx
(−v

A/B
m+1,n + v

A/B
m−1,n

)
+ 1

2Vy
(−v

A/B
m,n+1 + v

A/B
m,n−1

)
. (A2)

The frequency domain plots of the closed-loop dispersion
relation in Figs. 3(a)–3(d) were obtained by substituting the
solution uA/B

m,n (t ) = uA/B
k exp[i(�t − k · r)] in Eq. (A2), and

given by

�2σ0 + ([txσx + Vxσ0] sin kxa + Vyσ0 sin kya)�

+ tyσy sin kya − tz(2 − cos kxa − cos kya)σz

− 4tzσ0 = 0. (A3)

APPENDIX B: HAWKING RADIATION
ANALOGUE—DERIVATION DETAILS

Here, we give the derivation details of the synthetic horizon
tunneling results in Fig. 4. The relevant portion of the control
scheme is depicted in Fig. 5. The dynamical equations of
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FIG. 6. Top: Energy dispersion of the quantum Weyl semimetal (WSM) Hamiltonian in Eq. (2) along the horizon as a function of tilt
strength. Bottom: The corresponding classical frequency dispersion obtained from Eq. (B5).

motion at the unit cell in the open loop read

üA/B
m = 1

2 tz
(−2uA/B

m + uA/B
m+1 + uA/B

m−1

) + f A/B
m . (B1)

The control law is defined by(
f A
m

f B
m

)
= −C

(
um

vm

)
, (B2)

with measured displacement um =
( uA

m uB
m−1 uB

m uB
m+1 )′ and velocity vm =

( vA
m+1 vA

m−1 vB
m+1 vB

m−1 )′ signals, and the controller
matrix

C = 1

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2β 0

0 2tz

0 2(β + 2tz )

0 2tz

Vt (xm) t̂z

−Vt (xm) −t̂z

t̂z Vt (xm)

−t̂z −Vt (xm)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

′

, (B3)

where β = 2tz. The closed-loop classical dynamics, for which
the time domain simulation of Figs. 4(c) and 4(d) was ob-
tained, takes the form:

üA/B
m = ± 1

2 tz
(−2uA/B

m + uA/B
m+1 + uA/B

m−1

) − βuA/B
m

+ 1
2 tx

(−v
A/B
m+1 + v

A/B
m−1

)
+ 1

2Vt (xm)
(−v

B/A
m+1 + v

B/A
m−1

)
. (B4)

Now we give the derivation details of the spectrum equiva-
lence between the quantum and the classical horizon tunneling
models, with the latter appearing in the inset of Figs. 4(e) and
4(f) for Vt = 0 and Vt = −2, respectively. Substituting a plane
wave of frequency � for the displacement in the closed-loop
system in Eq. (B4), uA/B

m (t ) = uA/B
k exp[i(�t − kx)], we obtain

the quadratic eigenvalue problem:

�2σ0 + [txσx + Vtσ0] sin ka� − tz(1 − cos ka)σz

− 2tzσ0 = 0. (B5)

The solution of Eq. (B5) gives the frequency spectrum of our
classical mechanical model, which we compare in Fig. 6 with
the corresponding energy spectrum of the quantum Hamilto-
nian in Eq. (2). Both spectra are plotted for the entire range
of the interface, from zero-tilt Vt = 0 to the overtilt Vt = −2,
through the critical tilt Vt = −1. In the classical spectrum,
the stability correction β introduced by our control algorithm
shifts the crossing point to a finite positive frequency. Remark-
ably, despite the profound difference between the quantum
first-order and the classical second-order dynamics, the shape
of both dispersion curves evolves in a similar way from a
linear and near-even dispersion at the zero tilt to the nonlinear
and near-odd dispersion at the overtilt.

The details of the tunneling rate validation, depicted by
the orange curve ξc in Fig. 4(g) are given next. We excite
the initial displacements and velocities of the masses with the
Gaussian wave packet:

�m = cos(kixm) exp

[
(x − xi )2

4δ2

]
φα

ki
, (B6)

in the overtilted region Vt = −2. The system hosts a two-band
model with α = 1, 2 shown respectively by red and black in
Fig. 6, and φα

ki
represents the eigenvector associated with the

frequency band �α . The product of the eigenvector with the
initial Gaussian envelope captures the required initial state at
momentum ki. The initial wave packet velocity in the out-
of-plane direction is determined by the time derivative of the
displacement �̇m to ensure unidirectional propagation through
the interface.

Here, we detail the calculation of Fourier transformation,
which describes the momentum space distribution of the real-
space wave packet �m, depicted in Figs. 4(e) and 4(f), and
the corresponding group velocity calculation. The Fourier
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(a) (b)

FIG. 7. Group velocity calculation (black, red curves) obtained
analytically from the dispersion diagrams of the (a) Vt = −2 and
(b) Vt = 0 regions, and numerically (blue dots) from the time
domain simulations in these regions, respectively given by vg =
−230/198 ≈ −1.2 and vg = −333/671 ≈ −0.5 units, coinciding
with the predicted value.

transformation is defined as

�kl = 1√
N

∑
m

exp(iklxm)�m, (B7)

where N is the total system size. The group velocity is calcu-
lated using vg = dω/dk. In Figs. 7(a) and 7(b), we show the
variation of vg for both the frequency band in the Vt = −2 and
Vt = 0 regions. For a particular eigenfrequency ω = 1.4274,
respective group velocities in both the Vt = −2 and Vt = 0
regions are pointed by the blue circles.

Finally, we present the dynamical simulation details of
the quantum WSM system χq, plotted by the green curve in
Fig. 4(g). An initial quantum wave packet �

q
in is created in the

Vt = −2 region at position x0 with momentum ki:

�q
m = exp(ikixm) exp

[
(x − xi )2

4δ2

]
φα

ki
, (B8)

where φα
ki

represents the eigenvector associated with the en-
ergy band Eα . The time evolution of the wave packet is
governed by solving the Schrödinger equation:

ih̄∂t�
q(t ) = H�q(t ), (B9)

where the Hamiltonian H includes all the real and imagi-
nary valued couplings in real space obtained from Eq. (2).
Equation (B9) is then numerically solved using state space
formulation, producing the green curve χq.

One can also calculate the final wave packet at time t by
using the analytical solution of Eq. (B9), given as

�q(t ) =
∑

ν

|ν〉 〈ν|�q(t = 0)〉 exp

(
− iενt

h̄

)
, (B10)

where |ν〉 represents the νth eigenvector of the Hamilto-
nian H with associated eigenenergy, and the initial condition
〈ν|�q(t = 0)〉 = ∑

j[c
ν
j ]

∗�q
j . Here, cν

j represents the conju-
gate of jth component of the νth eigenvector. Solving for the
final position (site) of the wave packet at time t reads
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