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Asymmetry-induced delocalization transition in the integrable non-Hermitian spin chain
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The emergence of quasiparticles is a universal property in integrable systems. String-type quasiparticles,
which are characterized by the string solutions of Bethe equations, play fundamental roles in the analysis of
their physics. Through an investigation of the Bethe equations in the asymmetric simple exclusion process, we
reveal the existence of string solutions in the presence of non-Hermiticity resulting from asymmetrical hopping.
Because of the non-Hermiticity, the string solutions exhibit exotic properties such as the complexification
of the center of string solutions and the delocalization of Bethe quantum numbers. In addition, we find the
picture of string-type quasiparticles collapses in the strong-asymmetry regime. The collapse of string solutions
characterizes the transition of eigenstates from bound states to scattering states.
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I. INTRODUCTION

Non-Hermitian physics has attracted attention as a promis-
ing approach for investigating general principles in nonequi-
librium systems [1,2]. Since non-Hermiticity effectively
describes nonequilibrium phenomena, such as asymmetric
hopping and dissipation of particles, non-Hermitian Hamil-
tonians appear in various situations describing systems out of
equilibrium, including self-driven particle systems [3–5] and
open quantum systems [6–8]. Quantum integrable systems
play crucial roles in understanding interacting many-body
systems [9]. Although examples of integrable non-Hermitian
systems have been found [3–7], the theoretical understanding
for their analysis is less advanced than that for Hermitian
systems.

Integrable systems are usually analyzed in terms of
quasiparticles. For example, the Heisenberg spin chain is un-
derstood through quasiparticles characterized by the string
solutions, which are specific solutions for the Bethe equa-
tions widely observed among integrable systems [10]. String-
type quasiparticles, which are closely related to solitons in
classical integrable systems [11–14], allows understanding the
physics of integrable systems such as anomalous transport
[15,16]. Moreover, through the so-called string hypothesis,
they enable us to use the powerful analytical frameworks of in-
tegrable systems, including the thermodynamic Bethe ansatz
(TBA) [10,17–20] and the generalized hydrodynamics (GHD)
[21–25]. Therefore, understanding the quasiparticle picture in
integrable non-Hermitian systems is the key to establishing
cornerstones for analyzing them.
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In this paper we elucidate the string-type quasiparticle
picture in the presence of non-Hermiticity caused by asym-
metric hopping and present the mechanism of delocalization
transition based on this picture. We consider the asymmet-
ric simple exclusion process (ASEP), which is an integrable
non-Hermitian spin chain describing asymmetric random
walks of self-driven particles with hardcore interactions [3–5,
26–40]. The ASEP provides an excellent field for investi-
gating nonequilibrium physics, such as the KPZ universality
class [41,42] and the boundary-induced phase transition [5],
and has a wide range of applications including traffic flow
[43,44] and biophysics [45,46]. Although the ASEP is exactly
analyzable by the Bethe ansatz [4,27–40], the understanding
of the properties of eigenstates is still developing because of
the complexity of the Bethe equations [4,27–34]. Our main
result is to show that the Bethe roots can be understood in
terms of the string solutions. Because of the non-Hermiticity
induced by asymmetric hopping, the string solutions exhibit
intriguing properties, such as the complexification of the cen-
ter of string solutions and the delocalization of Bethe quantum
numbers. One of the most notable phenomena is that the pic-
ture of the string solutions collapses in the strong-asymmetry
regime. We reveal that the collapse of strings characterizes the
transition of eigenstates from bound states to scattering states.

This paper is organized as follows. In Sec. II we introduce
the ASEP. The Hamiltonian is exactly diagonalized by the
Bethe ansatz. In Sec. III we reveal that the Bethe equations of
the ASEP have string solutions. Through the analysis of
the Bethe-Takahashi equations, which are the reduced Bethe
equations in terms of strings, we discuss the property of the
center of string solutions. In Sec. IV we show that the string
solutions of the ASEP exhibit exotic properties, such as the
collapse of strings and the delocalization of Bethe quantum
numbers, because of the non-Hermiticity. In Sec. V we discuss
the properties of the eigenstates corresponding to string solu-
tions and clarify that the collapse of strings characterizes the
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FIG. 1. Asymmetric simple exclusion process with periodic
boundary conditions.

delocalization transition. Finally, we summarize our results in
Sec. VI.

II. MODEL

The ASEP is a continuous-time Markov process in a one-
dimensional lattice defined by the following rule [3–5]. Each
particle moves to the nearest right (left) site with the hopping
rate p (q). Because of the hardcore interactions, each site con-
tains only a single particle at most. Without loss of generality,
we can set p + q = 1 and p � q. The schematic drawing of
the ASEP is shown in Fig. 1. When q = 0, particles move in
only one direction. In this case the model is called the totally
asymmetric simple exclusion process (TASEP).

The time evolution of the ASEP is described by the
imaginary-time Schrödinger equation

d

dt
|P(t )〉 = H|P(t )〉, (1)

where |P(t )〉 is the stochastic state vector of a system at time
t . The Hamiltonian H with L sites is given by

H =
L∑

j=1

[
pS+

j S−
j+1 + qS−

j S+
j+1 + Sz

jS
z
j+1 − 1

4

]
, (2)

where Sx,y,z are half of the Pauli matrices, and S± := Sx ± iSy

are the ladder operators. Here we consider periodic bound-
ary conditions. When hopping rates are symmetric (p = q),
the Hamiltonian (2) is equivalent to that of the Heisenberg
spin-1/2 chain. The asymmetry of hopping rates, which drives
current, makes the Hamiltonian non-Hermitian.

The Hamiltonian (2) is exactly diagonalized through the
Bethe ansatz [4]. Thus we obtain the corresponding eigen-
states if we identify the solutions of the Bethe equations

zL
j =

N∏
�=1

p − z j + qz�z j

p − z� + qz�z j
for j = 1, 2, . . . , N, (3)

where N is the number of particles. The total momentum K
and the energy eigenvalue E are described in terms of the
Bethe roots {z j} as

K = −i
N∑

j=1

log z j, (4)

E = q
N∑

j=1

z j + p
N∑

j=1

1

z j
− N. (5)

Because of the difficulty of solving the Bethe equations (3),
many efforts have been made to clarify the distribution of the
Bethe roots [4,27–34].

III. STRING SOLUTIONS

A. Variable transformation

Here we reveal that the Bethe equations (3) have the string
solutions. First, we introduce new variables {λ j} as

z j = 1

α

sin ζ
(
λ j + i

2

)
sin ζ

(
λ j − i

2

) , (6)

where we define α and ζ as

α :=
√

q/p, ζ := − log α. (7)

The parameter α characterizes the non-Hermiticity of the
ASEP. When α = 1, the Hamiltonian (2) becomes Hermitian.
Then the Bethe equations (3) are written as[

1

α

sin ζ
(
λ j + i

2

)
sin ζ

(
λ j − i

2

)
]L

=
N∏

� �= j

sin ζ (λ j − λ� + i)

sin ζ (λ j − λ� − i)

for j = 1, 2, . . . , N. (8)

These equations are similar to the well-known Bethe equa-
tions of the Heisenberg XXZ spin-1/2 chain. The difference
is the parameter α. As we will show in the next part, Eq. (8)
enable us to formulate string solutions. Note that we cannot
define the transformation (6) in the case of the TASEP (q =
0). Therefore it is difficult to formulate string solutions in this
case. In the following we consider q �= 0.

Here we introduce the Bethe quantum numbers, which
allow the classification of eigenstates. Since the Bethe equa-
tions (8) have many solutions, it is useful to express them in
logarithmic form. We introduce functions θn(λ) (n ∈ N) as

θn(λ) :=

⎧⎪⎨
⎪⎩

2 tan−1
[
coth

( nζ

2

)
tan ζλ

]+ 2π
⌊Re(ζλ)

π
+ 1

2

⌋
for α �= 1

2 tan−1
[

2λ
n

]
for α = 1,

(9)

where �x� is the floor function defined as �x� := max{n ∈
Z|n � x}. By taking the logarithm of the Bethe equations (8),
we obtain

θ1(λ j ) = 2π

L
Ij + 1

L

N∑
� �= j

θ2(λ j − λ�) + i log α

for j = 1, 2, . . . , N, (10)
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where {I j} are called the Bethe quantum numbers, which are
integers when L − N is odd and half-integers when L − N
is even. Through a set of Bethe quantum numbers, we can
characterize the eigenstates of the Hamiltonian.

In the new variables {λ j}, the total momentum (4) and the
energy eigenvalue (5) are expressed as

K =
N∑

j=1

[π − θ1(λ j ) + i log α]

= Nπ − 2π

L

N∑
j=1

I j, (11)

E = −1

2
tanh ζ

N∑
j=1

a1(λ j )

=
⎧⎨
⎩

−∑N
j=1

� tanh2 ζ

�−cos 2ζλ j
for α �= 1

−∑N
j=1

2
4λ2

j+1
for α = 1,

(12)

where we introduce � := cosh ζ and functions an(λ) (n ∈ N),

an(λ) : = d

dλ
θn(λ)

=
{

2 sinh nζ

cosh nζ−cos 2ζλ
for α �= 1

4n
4λ2+n2 for α = 1.

(13)

B. Formulation of string solutions

The new Bethe equations (8) allow the formulation of the
string solutions. We denote a Bethe root as λ = a + ib (a, b ∈
R). The |LHS|1/L (left-hand side) of Eqs. (8) is classified into
three types according to the relation between the real and
imaginary parts of the Bethe root as follows (see Appendix A):

∣∣∣∣∣ 1

α

sin ζ
(
λ + i

2

)
sin ζ

(
λ − i

2

)
∣∣∣∣∣
⎧⎨
⎩

> 1 for b > c1(a)
= 1 for b = c1(a)
< 1 for b < c1(a),

(14)

where we introduce functions cn(x) (n ∈ N) as

cn(x) = 1

2ζ
log

cos 2ζx

cosh nζ
. (15)

By considering the L → ∞ limit with fixed N , we obtain the
string solutions. We assume the Bethe root λ j = a j + ib j with
b j > c1(a j ). From Eq. (14), the |LHS| of Eq. (8) diverges in
the L → ∞ limit. From the consistency of the Bethe equa-
tions (8), the denominator of the right-hand side (RHS) should
go to 0 in this limit. This implies that there exists an integer �

(1 � � � N, � �= j) such that λ� = λ j − i in L → ∞. Thus if
the Bethe root λ j with b j > c1(a j ) exists, another Bethe root
exists at the position displaced from λ j by −i. Similarly, the
Bethe root λ j with b j < c1(a j ) generates another Bethe root
at the position displaced from λ j by i. From this discussion
we obtain a series of Bethe roots:

λ
n, j
A = λn

A + i

2
(n + 1 − 2 j) + δ

n, j
A

for j = 1, 2, . . . , n. (16)

These roots are called n-string solutions. A is the index of the
string, n is the length of the string, δ

n, j
A is the deviation that

vanishes when L → ∞, and λn
A is called string center.

The difference from the standard string solutions is that
the string center λn

A is no longer necessarily real. The string
center in the Heisenberg spin chain is restricted to real be-
cause of the self-conjugacy of the Bethe roots [47]. Since the
non-Hermiticity violates the self-conjugacy, the string center
is allowed to have an imaginary part (see Appendix B).

C. Bethe-Takahashi equations

The complexification of the string centers seems to make
the analysis difficult due to the increased degrees of freedom.
However, the string centers of the ASEP have specific re-
lations between the real and imaginary parts. Therefore the
degree of freedom of the position of string centers remains one
in the complex plane. The relations are obtained by analyzing
the Bethe-Takahashi equations, which are the reduced Bethe
equations in terms of strings.

By considering Bethe roots on a string as a quasiparticle,
we derive the equations for the string centers. To derive the
Bethe-Takahashi equations, we express all Bethe roots by the
string solutions (16). That is, N Bethe roots are partitioned as∑N

n=1 nNn = N , where Nn is the number of n strings. Then the
Bethe equations (8) on an n string are written as

[
1

α

sin ζ
(
λ

n, j
A + i

2

)
sin ζ

(
λ

n, j
A − i

2

)
]L

=
∏

(m,B)
�=(n,A)

m∏
k=1

sin ζ
(
λ

n, j
A − λm,k

B + i
)

sin ζ
(
λ

n, j
A − λm.k

B − i
)

×
n∏

j′ �= j

sin ζ
(
λ

n, j
A − λ

n, j′
A + i

)
sin ζ

(
λ

n, j
A − λ

n. j′
A − i

)
for j = 1, 2, . . . , n. (17)

We reduce the Bethe equations on an n string (17) by multi-
plying them as follows:

n∏
j=1

[
1

α

sin ζ
(
λ

n, j
A + i

2

)
sin ζ

(
λ

n, j
A − i

2

)
]L

=
n∏

j=1

⎡
⎢⎢⎣ ∏

(m,B)
�=(n,A)

m∏
k=1

sin ζ
(
λ

n, j
A − λm,k

B + i
)

sin ζ
(
λ

n, j
A − λm.k

B − i
)

×
n∏

j′ �= j

sin ζ
(
λ

n, j
A − λ

n, j′
A + i

)
sin ζ

(
λ

n, j
A − λ

n. j′
A − i

)
⎤
⎦. (18)

Since the second term of the RHS in Eq. (18) satisfies

n∏
j=1

n∏
j′ �= j

sin ζ
(
λ

n, j
A − λ

n, j′
A + i

)
sin ζ

(
λ

n, j
A − λ

n. j′
A − i

) = 1, (19)
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Eq. (18) is given by

n∏
j=1

[
1

α

sin ζ
(
λ

n, j
A + i

2

)
sin ζ

(
λ

n, j
A − i

2

)
]L

=
n∏

j=1

∏
(m,B)
�=(n,A)

m∏
k=1

sin ζ
(
λ

n, j
A − λm,k

B + i
)

sin ζ
(
λ

n, j
A − λm.k

B − i
) . (20)

Here we assume that the deviations of the string solutions (16)
vanish, that is δ

n, j
A → 0. By taking the product over j and k in

Eq. (20), we obtain the Bethe-Takahashi equations,[
1

αn

sin ζ
(
λn

A + i
2 n
)

sin ζ
(
λn

A − i
2 n
)
]L

=
∏

(m,B)
�=(n,A)

Φnm
(
λn

A − λm
B

)
, (21)

where

Φnm(λ) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sin ζ (λ+ i
2 |n−m|)

sin ζ (λ− i
2 |n−m|)

[
sin ζ [λ+ i

2 (|n−m|+2)]

sin ζ [λ− i
2 (|n−m|+2)]

]2

· · ·
[

sin ζ [λ+ i
2 (n+m−2)]

sin ζ [λ− i
2 (n+m−2)]

]2 sin ζ [λ+ i
2 (n+m)]

sin ζ [λ− i
2 (n+m)]

for n �= m[
sin ζ (λ+i)
sin ζ (λ−i)

]2
· · ·
[

sin ζ [λ+i(n−1)]
sin ζ [λ−i(n−1)]

]2
sin ζ (λ+in)
sin ζ (λ−in)

for n = m.

(22)

In logarithmic form, the Bethe-Takahashi equations are writ-
ten as

θn(λn
A) = 2π

L
In
A + 1

L

∑
(m,B)
�=(n,A)

�nm
(
λn

A − λm
B

)+ in log α, (23)

where

�nm(λ) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

θ|n−m|(λ) + 2θ|n−m|+2(λ)+
· · · + 2θn+m−2(λ) + θn+m(λ) for n �= m

2θ2(λ) + 2θ4(λ) · · · + 2θ2n−2(λ) + θ2n(λ)

for n = m,

(24)

and {In
A} are called the Bethe-Takahashi quantum numbers,

which are integers when L − Nn is odd and half-integers when
L − Nn are even.

The Bethe-Takahashi equations describe the distribution of
the string centers. The total momentum K (11) and the energy
eigenvalue E (12) are described in terms of string centers
{λn

A} as

K =
∑
n,A

[
π − θn

(
λn

A

)+ in log α
]
, (25)

E = −1

2
tanh ζ

∑
n,A

an
(
λn

A

)
. (26)

D. Property of string centers

Through the analysis of the Bethe-Takahashi
equations (21), we derive the relation between the real
and imaginary parts of the string centers. We denote a

string center as λn
A = an

A + ibn
A (an

A, bn
A ∈ R). The |LHS|1/L of

Eq. (21) is classified into three types according to the relation
between the real and imaginary parts of the string center (see
Appendix A):

∣∣∣∣∣ 1

αn

sin ζ
(
λ + i

2 n
)

sin ζ
(
λ − i

2 n
)
∣∣∣∣∣
⎧⎪⎪⎨
⎪⎪⎩

> 1 for bn
A > cn

(
an

A

)
= 1 for bn

A = cn
(
an

A

)
< 1 for bn

A < cn
(
an

A

)
.

(27)

As discussed in the derivation of the string solutions (16),
we assume the string center λn

A that satisfies bn
A > cn(an

A)
[bn

A < cn(an
A)]. From Eq. (27), the |LHS| of Eq. (21) diverges

(goes to 0) in the L → ∞ limit. From the consistency of the
Bethe-Takahashi equations (21), the denominator (numerator)
of the RHS should go to 0 in this limit. This implies that if
the string center λn

A with bn
A > cn(an

A) [bn
A < cn(an

A)] exists, an-
other string center λm

B = λn
A − i

2� (λm
B = λn

A + i
2�) also exists

in the L → ∞ limit, where � = |n − m|, |n − m| + 2, . . . , or
n + m. However, this contradicts the definition of the string
center, which is a representative point of a line parallel to the
imaginary axis. Therefore the string centers have to satisfy the
relation

bn
A = cn

(
an

A

)
. (28)

Thus the centers of the n-string solutions are distributed on
the curve (15) in the complex plane. Since bn

A is real, an
A is

restricted to − π
4ζ

< an
A < π

4ζ
. As a result, the string solutions

are expressed by a real number an
A (− π

4ζ
< an

A < π
4ζ

) as

λ
n, j
A = an

A + i

[
n + 1 − 2 j

2
+ cn

(
an

A

)]+ δ
n, j
A

for j = 1, 2, . . . , n. (29)

IV. NUMERICAL SOLUTIONS

A. Collapse of strings

To confirm the validity of the string solutions, we numeri-
cally solve the Bethe equations of the ASEP (8). Although the
string solutions are derived in the L → ∞ limit, we can find
them even in finite systems. We show the numerical results
of the two-string solutions for different hopping rates p in
Fig. 2. We confirm that the string solutions with complex
string centers exist except for the strong-asymmetry regime.

Figure 2(a) shows the distribution of the two-string solu-
tions. The Bethe roots are distributed approximately i apart
on a line parallel to the imaginary axis except for the p = 0.99
case. In the symmetric case (p = 0.5), the distribution of the
Bethe roots is symmetric about the real axis, and the string
centers are real numbers because of the self-conjugacy. When
the hopping rate is asymmetric p > 0.5, the string centers are
complexified and satisfy the relation b2

A = c2(a2
A).

Conversely, in the strong-asymmetry regime, we cannot
find the string solutions. Figure 2(b) shows the transition of
the two-string solutions as the asymmetry p is increased. The
detailed data, which were computed with 1000 digits preci-
sion, are shown in Table I. When the asymmetry becomes
large (p = 0.9, 0.95), the difference between the Bethe roots
is less than i, and the string center does not satisfy b2

A =
c2(a2

A). Thus the picture of the string solutions collapsed in
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FIG. 2. Two-string solutions of the ASEP for L = 64 and N = 2. (a) Distribution of the two-string solutions. (b) An example of the collapse
of the two-string. Blue dots show Bethe roots, red dots show string centers, and green curves show the relation between the real and imaginary
parts of string centers [b2

A = c2(a2
A)].

TABLE I. Two-string solutions of the ASEP for L = 64 and N = 2.

Hopping rate Bethe roots Energy eigenvalue Bethe quantum numbers
p λ E {I1, I2}
0.5 1.87069731525 + 0.500319967464i −0.222194559412 { 53

2 , 55
2 }

1.87069731525 − 0.500319967464i
0.55 1.76812968949 + 0.0795280421456i −0.224459345125 − 0.0831603910095i { 53

2 , 55
2 }

1.76832342063 − 0.919784365696i
0.6 1.53829697086 − 0.211511190590i −0.231075006693 − 0.166256197063i { 51

2 , 57
2 }

1.53781580701 − 1.21232109213i
0.65 1.29242215650 − 0.376127957552i −0.242257295822 − 0.249544049466i { 51

2 , 57
2 }

1.29348654688 − 1.37496941921i
0.7 1.07594641928 − 0.458376716696i −0.257696964573 − 0.332315028223i { 49

2 , 59
2 }

1.07361003425 − 1.46011069148i
0.75 0.893248724590 − 0.502127184661i −0.277788874400 − 0.416702538326i { 49

2 , 59
2 }

0.899574034235 − 1.49745694729i
0.8 0.741344336499 − 0.514773125989i −0.302111990569 − 0.496520192138i { 47

2 , 61
2 }

0.726735163156 − 1.52132494979i
0.85 0.614067763985 − 0.530731832807i −0.322574664876 − 0.585454599078i { 47

2 , 61
2 }

0.616101481608 − 1.47435909774i
0.9 0.502576797710 − 0.549017214203i −0.329804572647 − 0.685161545310i { 47

2 , 61
2 }

0.548395317443 − 1.32562771882i
0.95 0.389334138196 − 0.552279568789i −0.330820590099 − 0.779273420786i { 47

2 , 61
2 }

0.432117780940 − 1.13705859096i
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this regime. The cause of the collapse of strings is explained
as follows. As discussed before, the Bethe equations of the
TASEP do not have string solutions. Therefore strings col-
lapse in the TASEP limit (p → 1). In the numerical results,
the strings collapse near the TASEP (p < 1). This is due
to the finite-size effect. String solutions are derived in the
L → ∞ limit. Since we consider finite systems in the numer-
ical calculations, the collapse of strings occurs at p < 1. We
numerically observed that as L increases, strings are not prone
to collapse. In the L → ∞ limit, the collapse of strings occurs
only in the TASEP (p = 1).

B. Delocalization of Bethe quantum numbers

In addition to the collapse of strings, we also find the
intriguing phenomenon about the Bethe quantum numbers. In
the Heisenberg spin chain, the Bethe quantum numbers of the
string solutions tend to be localized [48]. The Bethe quan-
tum numbers of a two-string solution in two-body systems
{I1, I2} (I1 � I2) generally satisfy

|I1 − I2| � 1. (30)

The string solutions with |I1 − I2| = 1 are called wide strings,
whereas those with |I1 − I2| = 0 are called narrow strings.

However, the numerical solutions in Table I show that the
Bethe quantum numbers of the string solutions in the ASEP
might become |I1 − I2| > 1. In the weak-asymmetry regime,
the difference between the Bethe quantum numbers is |I1 −
I2| = 1. As the asymmetry increases, the difference becomes
large. For example, when the hopping rate is p = 0.6, the dif-
ference is |I1 − I2| = 3. Thus the delocalized Bethe quantum
numbers are allowed in the presence of the non-Hermiticity.

V. DELOCALIZATION TRANSITION

Here we elucidate the properties of eigenstates based on the
string-type quasiparticle picture through the analysis of the
two-body problem. In the case of the Heisenberg spin chain
(p = q), the Bethe equations have two types of solutions: Real
solutions (one-string solutions), which correspond to scatter-
ing states, and complex solutions (n-string solutions (n � 2)),
which correspond to bound states [49].

The difference between real and complex solutions appears
in the spectra of the Hamiltonian. Figure 3 shows the dis-
persion relation of the Heisenberg spin chain for L = 32 and
N = 2 [49]. For comparison, we also show the dispersion rela-
tion of the free magnons. The distribution of the spectra of real
solutions is similar to that of the free magnons. The difference
between the spectra of real solutions and those of the free
magnons is due to the effect of interactions. Conversely, the
distribution of the spectra of complex solutions is completely
different from those of real solutions and the free magnons. In
this sense, complex solutions form the eigenstates where the
effect of interactions is prominent.

Similarly, the difference in the spectra between one-string
and two-string solutions was also observed in the ASEP.
Figure 4 shows the complex spectra of the ASEP for different
hopping rates p. We find two types of complex spectra of the
ASEP, except near p = 1. One type of spectra is regularly
distributed inside the large ellipse. The other is distributed

FIG. 3. Dispersion relations of the Heisenberg spin chain and the
free magnons for L = 32 and N = 2. Blue dots show the spectra of
real solutions, red dots show the spectra of complex solutions, and
green crosses show the spectra of free magnons.

on the small ellipse. We call the former type I and the latter
type II.

The type-II spectra correspond to the two-string solutions.
From Eqs. (26) and (29), the energy eigenvalues of the two-
string solutions with the assumption that the deviations vanish
(δn, j

A → 0) are analytically expressed by the real part of the
string center x (− π

4ζ
< x < π

4ζ
) as

E (x) = 8 cosh 2ζ sinh2 ζ cos2 2ζx

cos 4ζx − cosh 4ζ
(1 + i tan 2ζx). (31)

This describes an ellipse in a complex plane. Figure 4 shows
that the ellipse of Eq. (31) coincides with the distribution of
type-II spectra except in p = 0.99. Conversely, the spectra do
not distribute on the ellipse of the two-string solutions (31)

FIG. 4. Complex spectra of the ASEP for L = 64 and N = 2.
Blue dots show the spectra obtained by numerical diagonalization,
and red curves show the spectra of two-string solutions [Eq. (31)].
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FIG. 5. Weight distributions of the eigenstates corresponding to
(a) the complex solution (bound state) and (b) the real solution
(scattering state) against the distance between particles in the Heisen-
berg spin chain.

near the TASEP where the strings collapse [Fig. 4 (p = 0.99)].
Generally, as the asymmetry increases the ellipse of type-
II spectra becomes larger. Near p = 1 the ellipse of type-II
spectra blends into the distribution of type-I spectra and be-
comes hard to distinguish. The indistinguishability of type-I
and type-II spectra corresponds to the collapse of strings.

In the Heisenberg spin chain, complex solutions form
bound states where particles tend to be localized, while real
solutions correspond to scattering states where particles do
not. These properties are understood through the weight dis-
tributions against the distance between particles as shown in
Fig. 5. The weight distribution is calculated as follows. We
express an eigenstate |ψ〉 by the basis vectors |n1, n2〉 :=
S−

n1
S−

n2
|0〉 as |ψ〉 = ∑

1�n1<n2�N ψ (n1, n2)|n1, n2〉, where |0〉 is
the vacuum. The weight distribution is defined as |ψ (�)|2 :=∑

|n1−n2|=� |ψ (n1, n2)|2.
We find that the two-string solutions of the ASEP also form

bound states. Figure 6 shows the weight distributions of the
eigenstates of two-string solutions for different hopping rates
p. The weight distribution increases as the distance between
particles decreases, except near the TASEP. Thus the two-
string solutions of the ASEP form bound states. Conversely,
in the strong-asymmetry regime where the string solutions
collapse, the localization of particles disappears. This indi-
cates that the eigenstate of the string solutions transition from
the bound state to the scattering state through the collapse
of strings. This delocalization transition is qualitatively ex-
plained as follows. In the case of the Heisenberg spin chain,
the effect of interactions in scattering states is smaller than
that in bound states [49]. The interactions of the ASEP are
hardcore interactions. In the case of the TASEP, particles
move in only one direction. The collisions of particles are less
likely to occur in the TASEP than in the ASEP (p �= 1), and
the effect of the interactions is smaller. Therefore the string
solutions collapse in the TASEP, and bound states transition
to scattering states.

VI. CONCLUSION

We have formulated the string solutions of the Bethe
equations in the ASEP and elucidated the delocalization

FIG. 6. Weight distributions of the eigenstates of two-string so-
lutions against the distance between particles in the ASEP for L = 64
and N = 2.

transition induced by the asymmetric hopping based on the
picture of string-type quasiparticles. The perspective of the
asymmetry-induced transition by the collapse of strings would
be applicable to a variety of situations, since the strings are
universal quasiparticles widely observed in quantum inte-
grable systems. Recently, related work was proposed where
quasiparticles under dissipations are discussed in the context
of quantum open systems [50]. Understanding the quasipar-
ticle picture in the general non-Hermitian condition is an
important challenge for the future.

Integrable systems have celebrated analytical frameworks
such as the TBA [10,17–20] and the GHD [21–25]. These
frameworks are not restricted to standard quantum systems.
They are also applicable to classical integrable systems
[51,52] and integrable cellular automata [53,54], since the
underlying quasiparticle picture is common in integrable sys-
tems. By extending these methods to non-Hermitian systems,
we aim to establish analytical frameworks for nonequilibrium
systems, including stochastic processes and open quantum
systems. The results of this work are expected to contribute
to the realization of this goal.
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APPENDIX A: PROOF OF THE CLASSIFICATION
BY THE BETHE ROOTS [EQS. (14) AND (27)]

Here we prove Eqs. (14) and (27), which provide the
classification of the LHS of the Bethe equations (8) and the
Bethe-Takahashi equations (21) in the ASEP. Since Eq. (14)
is a special case of Eq. (27) with n = 1, we consider the proof
of Eq. (27).

When the hopping rates are symmetric (ζ = 0), the ASEP
is equivalent to the Heisenberg spin chain. In this case,
cn(x) = 0 and Eq. (15) is obviously satisfied. In the follow-
ing we consider ζ > 0. We introduce the functions fn(x)
(n ∈ N) as

fn(b) :=
∣∣∣sin ζ

[
a + i

(
b + n

2

)]∣∣∣2−∣∣∣αn sin ζ
[
a + i

(
b − n

2

)]∣∣∣2
= e−ζn sinh nζ (e2ζb cosh ζn − cos 2ζa). (A1)

The sign of fn(b) corresponds to the classification of the LHS
of Eq. (27). When fn(b) > 0 (<0), the LHS of Eq. (27) is
larger (smaller) than 1. From Eq. (A1), fn(b) is a monoton-
ically increasing function for ζ > 0. The unique solution of
f (cn) = 0 is given by

cn = 1

2ζ
log

cos 2ζa

cosh nζ
. (A2)

Therefore fn(b) < 0 for b < cn and fn(b) > 0 for b > cn.
These results lead to Eq. (27).

APPENDIX B: COMPLEXIFICATION
OF STRING CENTERS

Here we elucidate the violation of the self-conjugacy of
the Bethe roots, which allows the string centers of the ASEP
to become complex. The Bethe equations of the Heisenberg
spin chain, which correspond to Eq. (8) for the symmetric case
(p = q), are given by(

λ j + i
2

λ j − i
2

)L

=
N∏

� �= j

λ j − λ� + i

λ j − λ� − i

for j = 1, 2, . . . , N. (B1)

If {λ j} is a solution of the Bethe equations (B1), its complex
conjugate {λ j} is also a solution. The self-conjugacy of the
Bethe roots indicates

{λ j} = {λ j}. (B2)

Since the Bethe equations of the Heisenberg spin chain ex-
hibit this property [47], the distribution of the Bethe roots
is symmetric about the real axis, and the string centers
become real.

On the other hand, the Bethe equations of the ASEP
(p �= q) do not have this property. The complex conjugate of
Eqs. (8) are given by(

α
sin ζ (λ j + i

2 )

sin ζ
(
λ j − i

2

)
)L

=
N∏

� �= j

sin ζ
(
λ j − λ� + i

)
sin ζ (λ j − λ� − i)

for j = 1, 2, . . . , N. (B3)

Thus {λ j}, which is a complex conjugate of the Bethe roots,
is not a solution to the Bethe equations due to the asymmetry
α. In this case, {λ j} is a solution to the Bethe equations where
the asymmetry is reversed, α → α−1. Because of the violation
of the self-conjugacy, the distribution of the Bethe roots is not
symmetric about the real axis. Therefore the string centers of
the ASEP are complexified.
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