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Arbitrary nonequilibrium steady-state construction with a levitated nanoparticle
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Nonequilibrium thermodynamics provides a general framework for understanding nonequilibrium processes,
particularly in small systems that are typically far from equilibrium and dominated by fluctuations. However,
the experimental investigation of nonequilibrium thermodynamics remains challenging due to the lack of
approaches to precisely manipulate nonequilibrium states and dynamics. Here, by shaping the effective potential
of energy, we propose a general method to construct a nonequilibrium steady state (NESS) with arbitrary energy
distribution. Using a well-designed energy-dependent feedback damping, the dynamics of an optically levitated
nanoparticle in vacuum is manipulated and driven into a NESS with the desired energy distribution. Based on
this approach, a phonon laser state is constructed with an ultra-narrow linewidth of 6.40 µHz. Such an arbitrary
NESS construction method provides an approach to manipulating the dynamics processes of micromechanical
systems and paves the way for the systematic study of nonequilibrium dynamics in interdisciplinary research
fields.
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I. INTRODUCTION

Originating from Maxwell’s demon, a heat engine with
feedback can break the second law of thermodynamics with
the help of its microscopic state information [1,2]. Since the
system can be controllably pushed away from equilibrium,
it is ideally suitable for studying nonequilibrium dynamics.
This is of importance not only in physics but also in the life
and chemical sciences, where fluctuating systems far from
equilibrium are a more common circumstance [3–5]. With
extraordinary abilities to track and manipulate the dynamics
of micro- and nanoparticles, optical tweezers have become
a standard experimental platform for microscopic thermody-
namic research. More recently, optical tweezers and levitation
in vacuum have shown excellent performance in demonstra-
tions of fundamental physics [6–8], macroscopic quantum
mechanics [9–11], precision measurements [12–16], and in
particular, microscopic thermodynamics [17–23]. The ability
to create a NESS and manipulate the strength of environmen-
tal interactions makes it appropriate for detailed studies of
nonequilibrium thermodynamics under the influence of fluc-
tuations [6,21].

However, existing nonequilibrium experimental prepara-
tions are “scheme-to-state” approaches that rely on particular
feedback control schemes to generate specific NESSs that
correspond to the schemes [18,24]. A general design principle
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starting from any desired state remains to be investigated.
Here we introduce a universal approach based on the shap-
ing of the energy effective potential [22] that allows the
construction of an arbitrary NESS with the help of energy-
dependent feedback damping. A variety of NESSs, including
the phonon laser state, can be constructed using this ap-
proach. These customized motion states can be used for the
investigation of nonequilibrium thermodynamics and preci-
sion measurements. Moreover, this prototype scheme can
be further developed for manipulating levitated macroscopic
quantum states [9–11].

II. ARBITRARY NESS CONSTRUCTION

A. Construction principle

Considering an optically levitated nanoparticle in vacuum
with an air damping �0. Without any external interaction,
the steady state of the nanoparticle will be a thermodynamic
equilibrium state. To obtain a NESS, extra channels for the
exchange of energy or material are necessary. A damping
rate �m is used to describe the rate and direction of energy
exchange. Here, we deploy an energy-dependent damping
�m(E ) to try to drive the system into a NESS. In this case,
the particle’s energy dynamics can be manifested as a Marko-
vian stochastic process. Its energy dynamics are similar to an
overdamped Brownian motion. The stochastic dynamic of a
levitated nanoparticle’s mechanical energy E can be described
with a Langevin equation [18] (see also Appendix A for more
details), and we can obtain the energy effective potential,
which is

U (E ) = 1

�0

∫
[�m(E ) + �0]dE . (1)
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FIG. 1. Schematic diagram of the construction of arbitrary
NESSs. (a) Modification of the energy effective potential U (E ) (solid
lines) will change the corresponding energy distribution ρ(E ) (col-
ored areas). (b) Experimental configuration. The energy distribution
of a silica nanoparticle (radius ∼ 75 nm) trapped by a tightly focused
laser beam is modified by the feedback control damping [�m(E )],
which is based on the real-time measurement of the translational
degrees of freedom of the nanoparticle.

Therefore the distribution of E corresponding to Eq. (1) can
be given as a Boltzmann distribution [18,22],

ρ(E ) = 1

Z
exp [−β0U (E )], (2)

where Z = ∫ ∞
0 exp[−β0U (E )]dE , β0 = 1/kBT0, where kB is

the Boltzmann constant, and T0 is the particle’s center-of-mass
motion temperature under thermodynamic equilibrium.

From Eq. (2) we are able to manipulate the feedback damp-
ing as

�m(E ) = −�0

β0

1

ρ(E )

dρ(E )

dE
− �0, (3)

and create a specific NESS with energy distribution ρ(E ) by
deploying this �m(E ) to the system.

B. NESS construction results

In the experiment we verify the feasibility of the con-
struction of an arbitrary NESS of a levitated nanoparticle.
As shown in Fig. 1(b), a silica nanosphere with a diameter
of approximately 150 nm is trapped in vacuum by an optical
potential with a tightly focused, linearly polarized, 1064-nm
laser. We monitor the particle’s real-time position and obtain
its energy E with a custom-programmed field-programmable

gate array (FPGA) board. The energy-dependent damping
�m(E ) can be added to the system by modulating the trap-
ping laser power through the parametric feedback control
protocol [25–27]. By controlling the depth and phase of the
parametric feedback control signal, it is able to generate the
energy-dependent feedback damping rate in an achievable
range [26,27]. Therefore it is possible to obtain the desired
ρ(E ) by deploying the designed �m(E ) (see Appendix B for
details).

Figure 2 shows the NESS construction results with three
different �m(E ). Moreover, a thermal equilibrium state with
�m = 0 is shown in Fig. 2(a) as a comparison.

As shown in Fig. 2(b), �m(E ) with a step function can be
used to lock the oscillation amplitude of the levitated nanopar-
ticle, which has been applied in a high-accuracy position and
mass measurement [26]. When the energy of the oscillator is
lower (higher) than the target energy, a fixed negative (pos-
itive) feedback damping is applied to increase (decrease) the
energy of the oscillator. Such a two-stage step function creates
a V-type U (E ), corresponding to a wedge shape ρ(E ).

We can construct an interesting NESS with a flat-top en-
ergy distribution, which can be used in the simulation of
a free Brownian particle’s diffusion process. From Eq. (3),
a continuous uniform distribution of energy, which means
dρ(E )/dE = 0, requires �m(E ) = −�0. In other words, feed-
back damping is required to accurately offset the air damping
to create the flat top. To fulfill the requirement, a −�0 part is
inserted into a step function �m(E ), as shown in Fig. 2(c).
It can be observed that the oscillator’s energy distribution
is almost uniform in the −�0 part. The slight fluctuation is
caused by the vacuum pressure drift during data collection.

Finally, we attempt to make a double-well potential in
energy, which is significant in bistable state studies such as
Kramers turnover [6] or Landauer’s principle [28]. Similar to
the potential well structure in space, according to Eq. (1) it is
feasible to construct a double well U (E ) with a cubic function
�m(E ), as shown in Fig. 2(d). Because the maximum achiev-
able feedback damping rate in our system is ±2000 Hz, parts
of �m(E ) that exceed the limitation are truncated. The experi-
mental result shows that the oscillator has a twin-peak energy
distribution, and its phase plot has a double-ring pattern.
Incidentally, the cubic function �m(E ) used in double-well
potential construction is compensated with a −�0. Otherwise,
the energy distribution will be asymmetric.

III. PHONON LASER CONSTRUCTION

A. Principle of phonon laser construction

Moreover, the phonon laser is one of the most important
NESS states, which can be utilized as a coherent phonon
source or as an ultrasensitive sensor [24,29–32]. Based on
this NESS construction platform, we can concisely create a
phonon laser state by a well-designed U (E ), which corre-
sponds to U (N ) with N = E/h̄�0, where N is the phonon
number and �0 is the eigenfrequency of the oscillator. The
phonon number distribution of the phonon laser that is well
above the threshold will show a Gaussian distribution, which
corresponds to a quadratic U (N ). Therefore, according to
Eq. (1), a phonon laser can be constructed by deploying a
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FIG. 2. Experiment result of NESS construction under different �m(E ). (a) Thermal equilibrium state as a comparison. (b)–(d) Three types
of NESS constructions result, which is amplitude locking state by a step function �m(E ), flat-top distributed state, and double-well state. (1st
row) �m(E ) deployed for the construction of each state. (2nd row) Energy effective potential U (E ) and the measurement energy distribution
ρ(E ) under �m(E ) from each state. The solid lines are U (E ) according to Eq. (1). The dashed lines are the theoretical expectations of the
energy distribution according to Eq. (2). (3rd row) Part of the trajectories of each state. (4th row) Phase plots of the measured oscillator’s
motion from each state. The air pressure is 10−3 mbar during the data collection. The recording duration is 500 s for (a), (c) and 50 s
for (b), (d).

linear function �m(N ) to the nano-oscillator [24], that is

�m(N ) = γcN − γa, (4)

where γa is the linear gain factor and γc is the nonlinear
cooling factor. The dynamical equation of the phonon number
can be written as (see Appendix C for details)

Ṅ = (γa − �0)N − γcN2 + �0kBT0

h̄�0
+ A, (5)

where A = √
2N�0kBT0/h̄�0dW /dt is the stochastic part and

W is the Wiener process.
According to Eq. (2), the phonon number distribution ful-

fills

ρ(N ) = 1

ZN
exp

{
−β0

(
h̄�0γc

2�0

[
N − (γa − �0)

γc

]2
)}

, (6)

where ZN is the normalization factor. Equation (6) is a Gaus-
sian distribution function which has a mean value of

〈N〉 = (γa − �0)/γc (7)

and variance of

Var(N ) = h̄�0γc

kBT0�0
. (8)

It should be mentioned that since the phonon number N can
only be positive, the actual phonon number distribution ρ(N )
is only the positive half-axis part from Eq. (6).

B. Experiment result

In the experiment we construct different �m(N ) to obtain
phonon lasers with various phonon number distributions. Dur-
ing the experiment we keep γc constant and increase the value
of γa, as shown in Fig. 3(a). It can be see from Fig. 3(b) that
the mean phonon number of the oscillator is increased with the
increasing γa. Meanwhile, the shape of the phonon number
distribution ρ(N ) remains the same. Such an experimental
result can also be obtained from Eqs. (7) and (8), that the 〈N〉
increases linearly with γa and Var(N ) is only related with γc.

033101-3



ZHENG, LIU, CHEN, GUO, AND SUN PHYSICAL REVIEW RESEARCH 5, 033101 (2023)

FIG. 3. Experiment result of phonon laser construction. (a) The
phonon-dependent feedback damping �m(N ) with a fixed γc and an
increasing γa that is deployed on the trapped nanoparticle. (b) The
measured phonon number distribution of the nanoparticle driven by
�m(N ) from (a). The dashed lines are the theoretical expectations
according to Eq. (6). In these figures, γc is a constant with γc = 5.7 ×
10−5 Hz, and the pressure is 10−3 mbar.

FIG. 4. Coherence result of phonon laser. (a) Mean phonon num-
ber 〈N〉 as a function of the gain factor γa. The dashed line follows
Eq. (7). The error bars are smaller than the data mark. (b) Second-
order phonon autocorrelation function at zero delay, g(2)(0), as a
function of the gain factor γa. The solid lines in (a) and (b) are
theoretical expectations based on Eq. (6). (c) g(2)(τ ) with different
γa. the selected point is marked with the same color in (a) and (b).
The error is marked with the color areas. The standard deviation
represented by error bars or areas in (a), (b), and (c) is calculated
from ten measurements. In these figures, γc is a constant with γc =
5.7 × 10−5 Hz, and the pressure is 10−3 mbar.

FIG. 5. Experimental verification of nonlinearity widening.
(a) � fFWHM as a function of σN . 〈N〉 remains constant during the ex-
periment. The solid line is a fitting of Eq. (D19). Error bars represent
the s.d. that are calculated from ten measurements of a 5-s trajectory.
The inset figure is the PSD of the selected data point. The orange
line in the inset is a fitting of the Gaussian function. (b) Comparing
the measured PSD (solid line) with the theoretical PSD (dash line)
of a harmonic free-run phonon laser. The measured PSD is from the
insert figure in (a). The theoretical PSD is calculated from Eq. (D13)
with the experimental conditions.

To study the phonon laser threshold and coherence proper-
ties, the linear gain factor γa is selected as the pump power
coefficient. The threshold property of a laser is verified by
increasing γa from 0 Hz. Figure 4(a) shows that when γa

exceeds a threshold, the mean phonon number 〈N〉 increases
linearly with γa. As shown in Figs. 4(b) and 4(c), as γa

increases from zero to well above the threshold, g(2)(0) de-
creases to 1, which means that the oscillation changes from
a thermal state to a coherent state. It can be noticed that
g(2)(0) does not start from 2 when γa = 0 Hz. This is because
the nonlinear cooling factor γc is a nonzero constant, which
compels the system to deviate from a pure thermal state.

C. Linewidth of phonon laser

The narrowing of linewidth is another important feature of
lasers [24,30]. Utilizing the analysis of the stochastic phase
noise, the full width at half maximum linewidth of a free-run
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FIG. 6. PSD linewidth � fFWHM of phonon laser state as a
function of the mean phonon number with feedback frequency
stabilization. Error bars represent the standard deviations that are
calculated from five trajectories of each data point. The recording
time of each sampling data point ranges from 200 to 2 × 105 s
depending on the linewidth required spectrum resolution. The dashed
line is the theoretical linewidth of a free-run phonon laser from
Eq. (9). The inset figure is the averaged PSD of the selected data point
trajectories. The solid line in the inset is a fitting of the Lorentzian
function. The data are recorded at a pressure of 10−3 mbar. The
corresponding phonon laser parameters are γc = 5 × 10−5 Hz and
γa = 20 to 600 Hz.

phonon laser is supposed to be

� fFWHM = kBT0�0

4π〈N〉h̄�0
. (9)

And the shape of the free-run phonon laser’s power spec-
tral density (PSD) would be a Lorentzian function (see
Appendix D1 for details).

However, the presence of the Duffing nonlinearity in the
optical potential [33–35] causes the oscillator’s frequency
to depend on its amplitude. Consequently, the dispersion of
the phonon number results in a frequency shift that signifi-
cantly broadens the linewidth beyond the theoretical value of
a free-run phonon laser. The experimental verification of the
Duffing nonlinearity-induced width is shown in Fig. 5. That is,
� fFWHM is proportional to the standard deviation of phonon
number σN = √

Var(N ), and the PSD can be fitted with a
Gaussian function, as the phonon number distribution is also a
Gaussian function (see Appendix D2 for details). A narrower
phonon number distribution can mitigate nonlinearity-induced
spectrum widening. However, due to the limitation of control
precision, it is difficult to approach the linewidth of a free-run
phonon laser.

To overcome this challenge, an active feedback frequency
stabilization based on an integral feedback controller is de-
ployed. The duration of each oscillation cycle is compared
with the period corresponding to the locking frequency. The
frequency error is compensated by modulating the base inten-
sity of the trapping laser. As shown in Fig. 6, under frequency
stabilization, the linewidth of the phonon laser decreases when

the mean phonon number increases. The measured phonon
laser linewidth is much narrower than the theoretical free-run
linewidth, which indicates that the phase noise error intro-
duced by the stochastic and nonlinear process in the phonon
laser is well suppressed by the frequency stabilization. The
narrowest linewidth recorded in the experiment is � fFWHM =
6.40(±1.51) µHz, and the corresponding coherent time is
TC = 46 ± 11 h, which can be further applied in the precision
measurement requiring long-term stabilization like ultraweak
gravity force detection [36].

IV. CONCLUSION

In conclusion, we have introduced an energy-dependent
feedback damping to construct a NESS with an arbitrary en-
ergy distribution of an optically levitated nanoparticle. The
feasibility of this method has been experimentally verified
by demonstrating special steady states that have never been
reported. Moreover, a phonon laser steady state with an ultra-
narrow linewidth is produced by this method.

The energy flow control and state manipulation shown in
this work could be used to reinforce optical levitation as an
excellent platform for microscopic thermodynamic investiga-
tion, including nonequilibrium, stochastic, and information
thermodynamics. The NESS construction makes it possible
for the experimental verification of advanced thermodynamic
ideas such as the finite-time Landauer principle [37], the
Brownian motor [38,39], and the Mpemba effect [40,41].
Moreover, the NESS construction in here can be applied to
any nano-, micromechanical system that can be feedback con-
trolled. Compared with the conventional nonlinearity-based
phonon laser, the phonon laser generation here has less lim-
itation on the properties such as mean phonon number, which
makes it possible to generate a low-phonon-number coherent
state, such as a phonon Fock state. The stabilized phonon
lasers can benefit the development of precision measurements
based on levitated nanosensors [42], such as ultraweak force
detection.
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APPENDIX A: DERIVATION OF U (E ) AND ρ(E )
UNDER �m(E )

This section shows the deviation of ρ(E ) and U (E ) in
the main text from a levitated nanoparticle’s equation of mo-
tion. The derivation process generally refers to the process in
Ref. [18].

Following the steps in Ref. [18], the motion of a trapped
nanoparticle in an independent motion dimension is consid-
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ered. The equation of motion can be written as

q̈(t ) + [�0 + �m(t )]q̇(t ) + �2
0q(t ) = 1

m
Frandom (t ), (A1)

where q is the position of the particle, �0 is the air damping
rate, �m[E (t )] is the feedback damping rate, �0 is the eigen-
frequency of the particle’s oscillation, m is the particle’s mass,
Frandom (t ) = √

2m�0kBT0ξ (t ) is the stochastic force from the
environment (air molecule collisions), T0 is the center-of-mass
(COM) temperature, and ξ (t ) = dW (t )/dt , where W is the
Wiener process.

Rewriting Eq. (A1) into a stochastic differential equa-
tion (SDE), we have

dq = p

m
dt , (A2)

d p = [−m�2
0q − �0 p − �m(t )p

]
dt +

√
2m�0kBT0dW ,

(A3)

where p is the particle’s momentum.
Consider the dynamics in the particle’s energy E . To avoid

multiplicative noise, the dynamics of energy are described in
ε such that ε = √

E . Neglecting all terms that higher the order
of (dt )3/2, we have

dε =
(

∂ε

∂q

)
dq +

(
∂ε

∂ p

)
d p + 1

2

(
∂2ε

∂ p2

)
(d p)2. (A4)

With

E (q, p) = 1

2
m�2

0q2 + p2

2m
(A5)

and Eqs. (A2) and (A3), Eq. (A4) can be obtained as

dε = m�2
0

q

2ε
dq + 1

2ε

p

m
d p + 1

2

(
1

2mε
− 1

4ε3

p2

m2

)
(d p)2

= 1

2ε

p2

m
[−�0 + �m(ε)]dt + 1

2ε

p

m

√
2m�0kBT0dW

+ 1

2ε

(
1 − p2

2mε2

)
�0kBT0(dW )2. (A6)

Next we use quasistatic approximations. The coherence
time of the levitated oscillator in high vacuum is much longer
than its oscillation period. In one period the energy can be
considered as a constant, and the velocity can be approxi-
mated as a sine function. We focus on the energy varying in
one oscillation period, τ = 2π/�0, which is

�ε =
∫ τ

0
dε = −�0

2

∫ τ

0

p2

mε
dt − 1

2

∫ τ

0

�m(ε)p2

mε
dt

+
√

2m�0kBT0

∫ τ

0

p

2mε
dW

+�0kBT0

∫ τ

0

1

2ε

(
1 − p2

2mε2

)
(dW )2, (A7)

and we have [18]

�ε =
(

− (�0 + �m)ε

2
+ �0kBT0

4ε

)
τ +

√
�0kBT0

2
W (τ ).

(A8)

Rewriting Eq. (A8) into a differentiated form, we have

dε = 1

ν
f (ε)dt +

√
2kBT0

ν
dW , (A9)

where ν = 4/�0 and

f (ε) = −2ε

(
�0 + �m(ε)

�0

)
+ kBT0

ε
. (A10)

Equation (A9) is a Langevin equation. We can obtain the en-
ergy properties of the nanoparticle from the general properties
of a Langevin equation.

The energy effective potential is

Uε (ε) = −
∫

f (ε)dε

= ε2 + 2

�0

∫
ε�m(ε)dε − kBT0 ln ε. (A11)

The energy distribution follows the Maxwell-Boltzmann dis-
tribution, which is

ρ(ε) = 1

Zε

exp [−β0Uε (ε)]

= 1

Zε

ε exp

{
−β0

(
ε2 + 2

�0

∫
ε�m(ε)dε

)}
, (A12)

where β0 = 1/(kBT0), Zε is the partition function.
Change the variable in the distribution Eq. (A12) from ε to

E . We have Eq. (2) in the main text, that is,

ρ(E ) = 1

Z
exp

{
−β0

�0

∫
[�m(E ) + �0]dE

}
. (A13)

Imitate the relation that ρ(ε) = 1
Zε

exp[−β0Uε (ε)]. We can
have the effective potential for the energy that is

U (E ) = 1

�0

∫
[�m(E ) + �0]dE , (A14)

which is also Eq. (1) in the main text.
We should note that U (E ) can be utilized to obtain the sta-

tistical properties of energy E , such as the distribution or mean
value. However, the dynamic properties such as diffusion are
better to be investigated using ε and Uε (ε), as the Langevin
equation Eq. (A9) can only be obtained with variable ε.

APPENDIX B: EXPERIMENTAL SETUP

The detailed schematic of the experiment setup is shown in
Fig. 7.

1. Device structure

A CW 1064-nm laser (Coherent Mephisto 2000) is used as
the trapping laser. Its intensity is modulated by an acoustic-
optic modulator (AOM). After the beam expand lens set,
the laser beam with a diameter of approximately 4.5 mm is
guided into an objective (N.A. = 0.9, Nikon CFI LU Plan
Fluor EPI 100X) inside a vacuum chamber. The laser intensity
before the objective is measured to be 250 mW. The trapping
laser is focused by the objective to form the optical potential
for particle trapping. After the objective, an aspheric lens
(N.A. = 0.55, Thorlabs C230TME-1064) collects the forward
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FIG. 7. Experimental configuration illustration.

scattering light and sends it to the particle position detection
unit, which consists of three sets of homemade balanced pho-
todetectors, to monitor the trapped particle’s three motional
degrees (set as X, Y, Z-axis) of freedom. A Dove prism is used
to rotate the forward scattering light by 90◦ for the convention
of Y-axis motion detection. The position signals are sent to a
field-programmable gate array (FPGA) board to generate the
feedback signal.

2. FPGA program structure

The position voltage signals from balanced photodetectors
are processed by an FMC card, which has four channels of
16-bit ADC and two channels of 14-bit DAC. The digitized
position signals are transferred to the FPGA core (Xilinx Vir-
tex UltraScale+ XCVU3P) to generate the feedback control
signal.

We focus on the nonequilibrium steady state (NESS) con-
trol signal generation of Y-axis motion. First, the position
signal is processed by a Kalman filter to eliminate the out-
band noise. Then the signal is sent to three modules. One is
used to generate a normalized cooling signal. One is used to
calculate the energy of the oscillator for �m generation. And

the last one is used to lock the oscillator’s frequency. The
details of cooling signal generation are described in Ref. [27].

Next we discuss the process of �m generation. As the
energy of a harmonic oscillator is proportional to the square of
the amplitude, the energy calculation is accomplished by av-
eraging the square of the position displacement of every data
point in one oscillation cycle. A “sign flip detector” monitors
the timing when the position signal’s sign flips from negative
to positive. When the sign flip event occurs, the “sign flip
detector” sends a trigger signal to refresh the output data of
the “squared signal accumulator” and the “oscillation period
timer” and clear the two modules’ counter. The output data
of the two modules are divided to obtain the variable that is
proportional to the energy.

Then the calculated energy E is sent to a lookup table. The
map of �m(E ) is stored in the lookup table. We can obtain the
feedback damping �m(E ) that corresponds to the measured
E . �m(E ) multiplies the normalized cooling signal, and the
parametric feedback control signal of the NESS is prepared
finally.

However, this energy calculation introduces an additional
feedback delay time of one oscillation period. In most situ-
ations the slow variation of the particle’s energy in vacuum
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eliminates the effects of energy calculation delay. However, if
the energy variation is too fast, the energy calculation delay’s
influence is observable. For example, the slight mismatch
between the theoretical energy distribution and the measured
distribution in Fig. 2(d) in the main text is because the feed-
back control cannot perfectly catch up with the switching
events that the particle jumps between the two wells as the
energy dramatically changes during well switching.

The NESS control signal is added with the cooling signals
of the x and z axis and output through a DAC channel. The
amplitude of the DAC output signal is reduced by 100 times
with an amplifier to increase the control precision of the
feedback damping. The output signal is added up with a dc
bias voltage, which makes the AOM work in the linear regime
and is sent to the rf driver of the AOM.

The motion of the x and z axis is cooled to about 10 K to
minimize nonlinear coupling between different axes. It should
be noted that the COM motion temperature of the above two
axes should not be cooled too low; otherwise, the y-axis signal
with higher amplitude will sneak into the feedback cooling
loop of the x and z axis due to the cross-talk of position
signals. This will introduce an unexpected cooling damping
to the y-axis motion, thereby undermining the accuracy of the
feedback damping �m(E ) applied to the y-axis motion.

The feedback frequency stabilization of a phonon laser is
achieved by modulating the dc bias. As the oscillator’s fre-
quency is proportional to the square root of the laser intensity,
the oscillator’s frequency can be modulated by adjusting the
dc bias of the AOM.

A simple integral controller is utilized to lock the oscilla-
tion frequency. The output of the “oscillation period timer” is
compared with the target period. The difference is multiplied
by a gain factor and added to the current dc bias. The addition
result is looped back to the dc bias variable and becomes the
new dc bias. The refresh loop of the dc bias is also triggered
by the “sign flip detector.”

The position signal processed in the FPGA is also trans-
ferred to a computer for data processing. Therefore, the ADC
for data collection and the FPGA modules are driven by the
same clock, which is necessary for ultra-narrow-linewidth
phonon laser experiments.

3. Data processing for the energy and phase plot

The particle’s position can be obtained from the calibrated
photodetector signal. To obtain the particle’s energy and phase
plot, we also need to get the velocity of the particle. To obtain
the velocity, we use the finite-difference method.

The detailed process is shown as follows. First, the raw
position data is processed with a bandpass filter to eliminate
out-band noise. And we have the position data xi with i = 1 ∼
N , and the sampling interval of the position data is �t . Then a
cubic spline interpolation is used to double the sampling rate,
so that x′

2i−1 = xi is the measured position data and x′
2i is the

interpolated position data. And we have

v′
j−1 = x′

2 j − x′
2( j−1)

�t
, (B1)

with j = 2 ∼ N .
v′

j−1 is smaller than the true velocity due to the truncation
error in the finite-difference approximation. To compensate

this error, v′
j−1 has to be multiplied by a factor c. For a sine

function with frequency f0, we have

c = π f0�t

sin(π f0�t )
. (B2)

The particle’s velocity is v j−1 = cv′
j−1, where the particle’s

eigenfrequency is used to be f0 for the calculation of c.
The phase trajectory of the particle is (x j , v j−1). The

phase plot is the distribution of the phase trajectory on the
phase plane. The purpose of using interpolated data to calcu-
late the velocity is to make the velocity samples match the
phase of the position samples. Otherwise, the obtained phase
plot would be skewed.

The particle’s energy can be calculated with

Ej−1 = 1
2 mv2

j−1 + 1
2 m�2

0x2
j , (B3)

where m is the mass of the particle, and �0 is the eigen angular
frequency of the particle’s oscillation.

APPENDIX C: DERIVATION OF THE PHONON LASER’S
DYNAMICAL EQUATION

This section shows the deviation of the phonon laser’s
dynamical equation, which is Eq. (5) in the main text. We now
rewrite Eq. (A9) into

dε = μdt + σdW , (C1)

where μ = −ε[�0 + �m(ε)]/2 + �0kBT0/4ε, and σ =√
�0kBT0/2.
According to its lemma and E = ε2, we have

E =
(

μ
∂E

∂ε
+ σ 2

2

∂2E

∂ε2

)
dt + σ

∂E

∂ε
dW

= (2εμ + σ 2)dt + 2σεdW

= (−E [�0 + �m(E )] + �0kBT0)dt +
√

2E�0kBT0dW.

(C2)

Replace energy E with phonon number (N )h̄�0 and set the
feedback damping �m to the phonon laser control damping,
which is �m(N ) = γcN − γa. Equation (C2) can be written as

dN = (−N[�0 + �m(N )] + �0kBT0

h̄�0
)dt +

√
2N�0kBT0

h̄�0
dW .

(C3)
We have the phonon laser’s dynamical equation, which is

Ṅ = (γa − �0)N − γcN2 + �0kBT0

h̄�0
+

√
2N�0kBT0

h̄�0

dW

dt
.

(C4)

APPENDIX D: DISCUSSION OF THE PHONON
LASER SPECTRUM

1. Derivation of a free-run phonon laser linewidth

For a coherent oscillator, its spectrum linewidth is mainly
dependent on the oscillator’s phase noise. To simplify the pro-
cess to obtain the phonon laser’s linewidth, we only consider
the influence of the phase noise.
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For a harmonic oscillator at time t0, its position and veloc-
ity can be written as

x0 = A0 sin (�0t0 + ϕ0)

v0 = A0�0 cos (�0t0 + ϕ0). (D1)

Assuming at t = t0 + dt the oscillator obtains a stochastic
impulse that changes its velocity to v0 + dv, amplitude to
A0 + dA, phase to ϕ0 + dϕ, and x0 unchanged, we then have

x0 = (A0 + dA) sin (�0t0 + ϕ0 + dϕ)

v0 + dv = (A0 + dA)�0 cos (�0t0 + ϕ0 + dϕ). (D2)

Expand out the trigonometric functions in Eq. (D2) and
substitute Eq. (D1) into it. We have

x0 =
(

1 + dA

A0

)(
x0 cos dϕ + v0

�0
sin dϕ

)

v0 + dv =
(

1 + dA

A0

)
(v0 cos dϕ − �0x0 sin dϕ). (D3)

Make a first-order approximation to trigonometric func-
tions in Eq. (D3) and ignore dAdϕ. We can solve Eq. (D3)
to obtain

dϕ = − �0x0

v2
0 + �2

0x2
0

dv

= − 1

�0A0
sin (�0t0 + ϕ0)dv. (D4)

As the stochastic force that induces the impulse can
be written as Frandom (t ) = √

2m�0kBT0ξ (t ), and dv =

Frandom (t )dt/m, dϕ can be written as

dϕ = − 1

�0A0

√
2kBT �0

m
sin (�0t + ϕ)dW . (D5)

Integrate the phase varying �ϕ in one oscillation period τ0 =
2π/�0. We have

�ϕ = − 1

�0A0

√
2kBT �0

m

∫ τ0

0
sin (�0t + ϕ)dW

= 1

�0A0

√
2kBT �0

m

√
1

2
W (τ0). (D6)

As the coherent time of the oscillator is much longer than
τ0, using quasistatic approximations and rewriting Eq. (D6)
into a differentiated form, we have

dϕ = 1

�0A0

√
kBT �0

m
dW . (D7)

Next we focus on the oscillator trajectory autocorrelation.
For a phonon laser, ignoring the amplitude fluctuation, its
trajectory can be written as

x(t ) = A0 · sin[�0t + ϕ(t )]. (D8)

Its autocorrelation can be written as

Rxx(τ ) = lim
T →∞

1

T

∫ T/2

−T/2
x(t + τ )x(t )dt . (D9)

Try to solve the Eq. (D9). We have

Rxx(τ ) = A2
0

2
lim

T →∞
1

T

∫ T/2

−T/2
{cos[�0τ + ϕ(t + τ ) − ϕ(t )]dt − cos[2�0t + �0τ + ϕ(t + τ ) + ϕ(t )]dt}

= A2
0

2
lim

T →∞
1

T

∫ T/2

−T/2
cos[�0τ + ϕ(t + τ ) − ϕ(t )]dt

= A2
0

2
cos(�0τ ) lim

T →∞
1

T

∫ T/2

−T/2
cos[ϕ(t + τ ) − ϕ(t )]dt − A2

0

2
sin(�0τ ) lim

T →∞
1

T

∫ T/2

−T/2
sin[ϕ(t + τ ) − ϕ(t )]dt . (D10)

According to Eq. (D7),

Rxx(τ ) = A2
0

2
cos(�0τ ) lim

T →∞
1

T

∫ T/2

−T/2
cos

[
1

�0A0

√
kBT �0

m
W (τ )

]
dt − A2

0

2
sin(�0τ ) lim

T →∞
1

T

∫ T/2

−T/2
sin

[
1

�0A0

√
kBT �0

m
W (τ )

]
dt

= A2
0

2
cos(�0τ )exp(−Dt ), (D11)

where D = kBT0�0/(2m�2
0A2

0) is the diffusion coefficient.
With the mean phonon number 〈N〉, we have A0 =√

2〈N〉h̄/(m�0) and D = kBT0�0/(4〈N〉h̄�0).
To obtain the power spectrum density (PSD), the Wiener-

Khinchin theorem is used in the Fourier transform of the
autocorrelation Rxx. We have

S(ω) = A2
0D

(
D2 + �2

0 + ω2
)

(D2 + ω2)2 + 2(D2 − ω2)�2
0 + �4

0

. (D12)

Using two approximation conditions, which are �0 
 D and
ω � �0, Eq. (D12) can be simplified to

S(ω) = A2
0

2

D

D2 + (ω − �0)2
. (D13)

Equation (D13) is a Lorentzian function. It has a linewidth
that reads

�ωFWHM = 2D = kBT0�0

2〈N〉h̄�0
, (D14)

033101-9



ZHENG, LIU, CHEN, GUO, AND SUN PHYSICAL REVIEW RESEARCH 5, 033101 (2023)

FIG. 8. Simulation of the free-run phonon laser spectrum. The
blue line is the PSD of a simulated free-run phonon trajectory. The
solid line is the theoretical PSD according to Eq. (D13). The dashed
line is a Lorentz fitting of the simulation PSD. DT is the theoretical
diffusion coefficient. DF is the fitted diffusion coefficient. The simu-
lation condition is γc = 5 × 10−5 Hz, γa = 505 Hz, �0 = 5 Hz, and
T0 = 298 K. The length of the simulation time is 500 s.

or

� fFWHM = 2D

2π
= kBT0�0

4π〈N〉h̄�0
. (D15)

The simulation result of the free-run phonon laser spectrum
is shown in Fig. 8. The simulated PSD well matches the
theoretical PSD in Eq. (D13).

2. Duffing nonlinearity-induced linewidth widening

However, due to the Duffing nonlinearity, it is difficult to
experimentally obtain a free-run phonon laser with a PSD in

Eq. (D13). As the optical potential along the trapping position
is a Gaussian distribution, when the oscillator’s amplitude is
large, the oscillator’s restoring force is in a Duffing nonlin-
ear form, which is F = k(x + ξx3), where ξ = −2/w2 and
w is the 1/e2 beam intensity radius at the trapping point.
One of the effects of the nonlinearity is that there will be a
frequency shift with different oscillation amplitudes, which is
�� = − 3

4 A2
0�0/w

2. Rewriting the frequency shift in phonon
number form yields

�� = − 3h̄N

2mw2
. (D16)

According to the phonon number distribution [Eq. (6) in
the main text] of a phonon laser, the nonlinearity-induced
frequency shift also has a distribution, which is

ρ(��) = 1

Z�

exp

{
−β0

(
h̄�0γc

2�0

[
−2mw2

3h̄
��

− (γa − �0)

γc

]2)}
. (D17)

Assume that the base frequency is a single frequency oscil-
lation with a constant amplitude. The height of the spectrum
at �0 + ��′ is proportional to ρ(��′). The nonlinear-
frequency-shift–induced spectrum width can be obtained by
solving the two roots of ρ(��half_max1(2)) = 1/2Z�. And
��FWHM = |��half_max1 − ��half_max2|, which is

��FWHM = 3h̄

mw2

√
(ln 2)

2�0

β0h̄�0γc
. (D18)

Or write with the standard deviation of phonon number σN =√
kBT0�0/h̄�0γc, which is

��FWHM = 3h̄

mw2
σN

√
2 ln 2. (D19)

With the same simulation conditions shown in Fig. 8 and
w = 550 nm, m = 3 × 10−18 kg, we have the nonlinearity-
induced width is ��FWHM = 2π × 187.9 Hz, which is much
larger than the phase-noise-induced width of �ωFWHM =
2DT = 2π × 1.6 Hz.
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