
PHYSICAL REVIEW RESEARCH 5, 033098 (2023)

Strong pinning transition with arbitrary defect potentials
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Dissipation-free current transport in type II superconductors requires vortices, the topological defects of the
superfluid, to be pinned by defects in the underlying material. The pinning capacity of a defect is quantified
by the Labusch parameter κ ∼ fp/ξC̄, measuring the pinning force fp relative to the elasticity C̄ of the vortex
lattice, with ξ denoting the coherence length (or vortex core size) of the superconductor. The critical value κ = 1
separates weak from strong pinning, with a strong defect at κ > 1 able to pin a vortex on its own. So far, this
weak-to-strong pinning transition has been studied for isotropic defect potentials, resulting in a critical exponent
μ = 2 for the onset of the strong pinning force density Fpin ∼ np fp(ξ/a0)2(κ − 1)μ, with np denoting the density
of defects and a0 the intervortex distance. This result is owed to the special rotational symmetry of the defect
producing a finite two-dimensional trapping area Strap ∼ ξ 2 at the strong pinning onset. The behavior changes
dramatically when studying anisotropic defects with no special symmetries: the strong pinning then originates
out of isolated points with length scales growing as ξ (κ − 1)1/2, resulting in a different force exponent μ = 5/2.
The strong pinning onset is characterized by the appearance of unstable areas UR̃ of elliptical shape whose
boundaries mark the locations where vortices jump. The associated locations of asymptotic vortex positions
define areas BR̄ of bistable vortex states and assume the shape of a crescent. The geometries of unstable and
bistable regions are associated with the local differential properties of the Hessian determinant D(R) of the
pinning potential ep(R), specifically, its minima, maxima, and saddle points. Extending our analysis to the case
of a random two-dimensional pinning landscape, a situation describing strong pinning in a thin superconducting
film, we discuss the topological properties of unstable and bistable regions as expressed through the Euler
characteristic, with the latter related to the local differential properties of D(R) through Morse theory.
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I. INTRODUCTION

Vortex pinning by material defects [1] determines the phe-
nomenological properties of all technically relevant (type II)
superconducting materials, e.g., their dissipation-free trans-
port or magnetic response. Similar applies to the pinning of
dislocations in metals [2] or domain walls in magnets [3],
with the commonalities found in the topological defects of the
ordered phase being pinned by defects in the host material:
these topological defects are the vortices [4], dislocations [5],
or domain walls [6,7] appearing within the respective ordered
phases—superconducting, crystalline, or magnetic. The the-
ory describing the pinning of topological defects has been
furthest developed in superconductors, with the strong pinning
paradigm [8,9] having been strongly pushed during the past
decade [10–13]. In its simplest form, it boils down to the
setup involving a single vortex subject to one defect and the
cage potential [14,15] of other vortices. While still exhibit-
ing a remarkable complexity, it produces quantitative results
which benefit the comparison between theoretical predictions
and experimental findings [16]. So far, strong pinning has
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focused on isotropic defects, with the implicit expectation that
more general potential shapes would produce small changes.
This is not the case, as first demonstrated by Buchacek et al.
[17] in their study of correlation effects between defects that
can be mapped to the problem of an elastic string pinned
by an anisotropic pinning potential. In the present work,
we generalize strong pinning theory to defect potentials of
anisotropic shape. We find that this simple generalization has
pronounced (geometric) effects near the onset of strong pin-
ning that even change the growth of the pinning force density
Fpin ∝ (κ − 1)μ with increasing pinning strength κ > 1 in a
qualitative manner, changing the exponent μ from μ = 2 for
isotropic defects [8,10] to μ = 5/2 for general anisotropic
pinning potentials.

The pinning of topological defects poses a complex
problem that has been attacked within two paradigms, weak-
collective and strong pinning. These have been developed in
several stages: originating in the sixties of the last century,
weak (collective) pinning and creep [9] has been further devel-
oped with the discovery of high temperature superconductors
as a subfield of vortex matter physics [18]. Strong pinning of
single defects was originally introduced by Labusch [8] and
by Larkin and Ovchinnikov [9] and has been further devel-
oped recently with several works studying critical currents
[10], current–voltage characteristics [11,19], magnetic field
penetration [12,20,21], and creep [13,21,22]; results on nu-
merical simulations involving strong pins have been reported
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FIG. 1. Sketch of a vortex interacting with a defect located at the
origin of our coordinate system r = (R, z) and producing a pinning
potential ep(R) in the z = 0 plane. The magnetic field B ‖ ez is cho-
sen parallel to the z axis. The pinned vortex is deformed away from
a straight line, approaching the asymptotic position R̄ at z → ±∞
and exhibiting a cusp at z = 0 with the vortex tip located at R̃. The
strong pinning problem is then reduced to two dimensions.

in Refs. [23–25]. The two theories come together at the onset
of strong pinning: an individual defect is qualified as weak
if it is unable to pin a vortex, i.e., a vortex traverses the pin
smoothly. Crossing a strong pin, however, the vortex under-
goes jumps that mathematically originate in bistable distinct
vortex configurations, “free” and “pinned.” Quantitatively, the
onset of strong pinning is given by the Labusch criterion κ =
1, with the Labusch parameter κ ≡ max[−e′′

p]/C̄ ∼ fp/ξC̄,
the dimensionless ratio of the negative curvature e′′

p of the
isotropic pinning potential and the effective elasticity C̄ of the
vortex lattice. Strong pinning appears for κ > 1, i.e., when
the lattice is soft compared to the curvatures in the pinning
landscape.

A first attempt to account for correlations between defects
has been done in Ref. [17], see also Ref. [24]. The analysis
in Ref. [17] takes into account the enhanced pinning force
exerted by pairs of isotropic defects that can be cast in the
form of anisotropic effective pinning centers. Besides shifting
the onset of strong pinning to κ = 1/2 (with κ defined for one
individual defect), the analysis unravelled quite astonishing
(geometric) features that appeared as a consequence of the
symmetry reduction in the pinning potential. In the present
paper, we take a step back and study the transition to strong
pinning for arbitrary anisotropic defect potentials ep(R), with
R a planar coordinate; see Fig. 1. Note that collective effects
of many weak defects can add up to effectively strong pins that
smoothen the transition at κ = 1, thereby turning the strong
pinning transition into a weak-to-strong pinning crossover.

The strong pinning setup studied in this paper is illustrated
in Fig. 1 and naturally reduces to a planar problem where

the defect is described by a two-dimensional potential ep(R)
and the vortex is characterized by its asymptotic and tip posi-
tions R̄ and R̃; the presence of other vortices constituting the
lattice renormalizes the vortex elasticity C̄. The same setup
naturally describes the case of a superconducting thin film,
with R̃ representing the real vortex position when the vortex
subject to the pinning force of the defect, while R̄ plays the
role of the would-be vortex position in the absence of the
defect. In a film, both positions are accessible to experimental
observation, e.g., using the SQUID-on-tip methodology [26]
or Lorentz microscopy [27], R̃ by direct observation, while
R̄ has to be determined indirectly through the position of
neighboring vortices. Note that the effective elasticities C̄ are
different in bulk- and thin-film superconductors, see below in
Sec. II A.

We find that the onset of strong pinning proceeds quite
differently when going from the isotropic defect to the
anisotropic potential of a generic defect without special sym-
metries and further on to a general random pinning landscape.
In the case of an isotropic pin, e.g., produced by a pointlike
defect [11], strong pinning first appears on a circle of finite
radius R̃m ∼ ξ in tip space (or a circle of radius R̄ ∼ ξ in
asymptotic space), with ξ the size of the vortex core, see the
left panel of Fig. 2(a). This is owed to the radial symmetry
of the pinning potential, implying that the Labusch crite-
rion κ = maxR[−e′′

p(R)]C̄ = 1 is satisfied on a circle R = Rm

where the (negative) curvature −e′′
p > 0 is maximal. Increas-

ing the Labusch parameter beyond κ = 1, the circle of radius
R̄m transforms into a ring R̄− < R̄ < R̄+ of finite width with
bistable vortex states, pinned and free.

The onset of strong pinning for an anisotropic defect is
more complex; we consider an illustrative example with a
uniaxial anisotropy aligned with the axes and a steeper po-
tential along x. In this situation, strong pinning as defined
by the criterion κm = 1, with a properly generalized Labusch
parameter κm, appears out of two points (±x̄m, 0) where the
Labusch criterion κm = 1 is met first; see Fig. 2(b), left. In-
creasing κm > 1 beyond unity, two bistable domains spread
around these points and develop two crescent-shaped areas
(with their large extent along ȳ) in asymptotic R̄ space; see
Fig. 2(b), right. Vortices with asymptotic positions within
these crescent-shaped regions experience bistability, while
outside these regions the vortex state is unique. Classifying
the bistable solutions as “free” and “pinned” is not possible,
however, with the situation resembling the one around the
gas–liquid critical point with a smooth crossover (from blue
to white to red) between phases. With κm increasing further,
the cusps of the crescents approach one another. As the arms
of the two crescents touch and merge at a sufficiently large
value of κm, the topology of the bistable area changes: the two
merged crescents now define a ringlike geometry and separate
R̄ space into an inside region where vortices are pinned, an
outside region where vortices are free and the bistable region
with pinned and free states inside the ringlike region. As a re-
sult, the pinning geometry of the isotropic defect is recovered,
though with the perfect ring replaced by a deformed ring with
varying width.

The bistable area is defining the trapping area where vor-
tices get pinned to the defect; this trapping area is one of the
relevant quantities determining the pinning force density Fpin,

033098-2



STRONG PINNING TRANSITION WITH ARBITRARY … PHYSICAL REVIEW RESEARCH 5, 033098 (2023)

−3 0

−3

0

−3 0

−3

0

−3 0

−3

0

−3 0

−3

0

−1 0 2

(a)

(b)

R̃/ξ − R̃m(φ̃)/ξ

ȳ
/
ξ

x̄/ξ

ȳ
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ȳ
/
ξ

x̄/ξ

ȳ
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FIG. 2. Illustration of bistable regions in asymptotic R̄ space for
a vortex pinned by a defect located at the origin. (a) For an isotropic
defect (Lorentzian shape with κ = 1, 1.5), pinning appears at κ = 1
along a ring with radius R̄m, with the red area corresponding to
pinned states and free states colored in blue. With increasing pinning
strength κ , see right panel at κ = 1.5, a bistable region (in magenta)
appears in a ring geometry, with vortices residing inside, R̄ < R̄−,
being pinned and vortices outside, R̄ > R̄+, remaining free. Vortices
with asymptotic positions inside the ring (R̄− < R̄ < R̄+) exhibit
bistable states, pinned and free. The dashed circle R̄0 marks the
crossing of pinned and free branches, see Fig. 4. (b) For a uniaxially
anisotropic defect, see Eq. (92) with ε = 0.3 and largest (negative)
curvature along x, pinning appears in two points (±x̄m, 0) along the x
axis. As the pinning strength increases beyond unity, see right panel,
bistable regions (magenta) develop in a crescent-shape geometry.
Pinned- and freelike states are smoothly connected as indicated by
the crossover of colors (see Sec. III C for the precise description of
coloring in terms of an “order parameter”). As κm further increases,
the cusps of the two crescents merge on the y axis, changing the
topology of the R̄ plane through separation into inner and outer re-
gions (not shown). A ringlike bistable region appears as in panel (a),
with the inner (outer) region corresponding to unique vortex states
that are pinned (free), while vortices residing inside the ring-shaped
domain exhibit bistable states, pinned and free.

the other being the jumps in energy associated with the differ-
ence between the bistable states [8,10], see the discussion in
Secs. II C, II E, and III G below. It is the change in the bistable-
and hence trapping geometry that modifies the exponent μ in
Fpin ∝ (κ − 1)μ, replacing the exponent μ = 2 for isotropic
defects by the new exponent μ = 5/2 for general anisotropic
pinning potentials.

While the existence of bistable regions BR̄ in the space
of asymptotic vortex positions R̄ is an established element
of strong pinning theory by now, in the present paper, we

introduce the new concept of unstable domains UR̃ in tip
space, with the two coordinates R̃ and R̄ representing dual
variables. In tip space R̃, the onset of pinning appears at
isolated points R̃m that grow into ellipses as κ is increased
beyond unity. These ellipses describe unstable areas UR̃ in the
R̃ plane across which vortex tips jump when flipping between
bistable states; they relate to the bistable crescent-shaped
areas BR̄ in asymptotic space through the force balance equa-
tion; the latter determines the vortex shape with elastic and
pinning forces compensating one another. The unstable re-
gions UR̃ in tip space are actually more directly accessible
than the bistable regions BR̄ in asymptotic space and play
an equally central role in the discussion of the strong pinning
landscape.

The simplification introduced by the concept of unstable
domains UR̃ in tip space R̃ is particularly useful when go-
ing from individual defects as described above to a generic
pinning landscape. Here, we focus on a pinning potential
landscape (or short pinscape) confined to the two-dimensional
(2D) R plane at z = 0 as relevant in a superconducting
film. We discuss the evolution of the pinscape with increas-
ing Labusch parameter κm, the emergence and merging of
unstable components in UR̃ as well as its connectedness,
and describe the concomitant topological transitions of UR̃
through the changes in its Euler characteristic.

The discussion below is dominated by three mathematical
tools: for one, it is the Hessian matrix H(R) of the pinning
potential [17,28] ep(R), its eigenvalues λ±(R) and eigenvec-
tors v±(R), its determinant det[H](R) and trace tr[H](R). The
Hessian matrix involves the curvatures Hi j = ∂i∂ jep(R), i, j ∈
{x, y}, of the pinning potential, that in turn are the quantities
determining strong pinning, as can be easily conjectured from
the form of the Labusch parameter κ ∝ −e′′

p for the isotropic
defect. The second tool is a Landau-type expansion of the
total pinning energy near the strong pinning onset around
R̃m at κ (R̃m) ≡ κm = 1 as well as near merging around R̃s

at κ (R̃s) ≡ κs = 1. This Landau-type expansion relates our
strong pinning theory to the theory of thermodynamic first-
order phase transitions. Third, the topological structure of the
unstable domain UR̃ associated with a generic 2D pinning
landscape, i.e., its components and connectedness, is conve-
niently described through its Euler characteristic χ with the
help of Morse theory.

The structure of the paper is as follows: In Sec. II, we
briefly introduce the concepts of strong pinning theory with a
focus on the isotropic defect. The onset of strong pinning by a
defect of planar anisotropic shape is presented in Sec. III. The
discussion of a weakly uniaxial defect in Sec. IV pursues two
goals, (i) the introduction of merger points where individual
unstable or bistable regions merge and change topology, and
(ii) the demonstration how the new results for the anisotropic
defect transform to the old results for the isotropic defect
when the anisotropy vanishes. Section V A is devoted to the
merger points and prepares the ground for the discussion
of the topology of unstable and bistable domains; the latter
is expanded in Sec. VI, where we discuss strong pinning
in a two-dimensional pinning potential of arbitrary shape
as relevant in a superconducting film. Several calculational
details are deferred to Appendices. Furthermore, in Ap-
pendix C, we map the two-dimensional Landau-type theories
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(involving two order parameters) of Secs. III A and V A,
describing onset- and merger points, to effective one-
dimensional Landau theories and rederive previous results
following standard statistical mechanics calculations as they
are performed in the analysis of the critical point in the van
der Waals gas.

II. STRONG PINNING THEORY

We start with a brief introduction to strong pinning theory,
keeping a focus on the transition region at moderate values
of κ > 1. We consider an isotropic defect (Sec. II A) and
determine the unstable and bistable ring domains for this
situation in Sec. II B. We derive the general expression for the
pinning force density Fpin in Sec. II C, determine the relevant
scales of the strong pinning characteristic near the crossover
in Sec. II D, and apply the results to derive the scaling Fpin ∝
(κ − 1)2 for the isotropic defect (Sec. II E). In Sec. II F, we
relate the strong pinning theory for the isotropic defect to
the Landau mean-field description for the Ising model in a
magnetic field.

A. Isotropic defect

The standard strong-pinning setup is described in Fig. 1
and involves vortices interacting with a dilute[19] set of ran-
domly arranged defects of density np, npa0κξ 2 
 1. This
many-body problem can be reduced [10,13,20] to a much
simpler effective problem involving an elastic string with ef-
fective elasticity C̄ that is pinned by a defect potential ep(R)
acting in the origin, as described by the energy function

epin(R̃; R̄) = C̄

2
(R̃ − R̄)2 + ep(R̃), (1)

depending on the tip and asymptotic coordinates R̃ and R̄ of
the vortex, see Fig. 1. The energy (or Hamiltonian) epin(R̃; R̄)
of this setup involves an elastic term and the pinning energy
ep(R) evaluated at the location R̃ of the vortex tip. We denote
the depth of the pinning potential by ep. A specific example
is the pointlike defect that produces an isotropic pinning po-
tential which is determined by the form of the vortex [11] and
assumes a Lorentzian shape

ep(R) = − ep

1 + R2/2ξ 2
, (2)

with R = |R|; in Sec. III below, we will consider pinning
potentials of arbitrary shape ep(R) but assume a small (com-
pared to the coherence length ξ ) extension along z.

The effective elasticity C̄ depends on the dimensionality
of the vortex lattice. “Integrating out” the 3D vortex lattice,
the remaining string or vortex is described by the effective
elasticity

C̄ ≈ ν
εa2

0

λL

√
c66c44(0) ∼ εε0

a0
. (3)

Here, ε0 = (φ0/4πλL )2 is the vortex line energy, λL denotes
the London penetration depth, ε < 1 is the anisotropy pa-
rameter for a uniaxial material [18], and ν is a numerical,
see Refs. [23,25]. For a 2D thin film of thickness d , the
effective elastic constant is C̄ ∼ (ε0d/a2

0)/ ln(l/a0), with the
vortex lattice constant a0 and the effective distance between

C̄(x̃ − x̄+)

C̄(x̃ − x̄−)

x̃p−

x̃p+

x̃f− x̃f+
x̃

fp(x̃)

0 ξ x̄− x̄+

0 x̃m x̄m

x̃

fp(x̃)

κ < 1

C̄(x̃ − x̄m)

FIG. 3. Graphical illustration [13] of the self-consistent solution
of the microscopic force-balance equation Eq. (5) for a Lorentzian
potential with κ = 2.5. The vortex coordinates x̃ and x̄ are expressed
in units of ξ . When moving the asymptotic vortex position x̄ across
the bistable interval [x̄−, x̄+], we obtain three solutions describing
pinned x̃p � ξ , free x̃ f close to x̄, and unstable x̃us states; they define
the corresponding pinned (red), free (blue), and unstable (black dot-
ted) branches. The tip-positions at the edges of the bistable interval
denoted by x̃p+ and x̃ f − denote jump points where the vortex tip turns
unstable, see Eq. (6); they are defined by the condition f ′

p(x̃p+) =
f ′

p(x̃ f −) = C̄ (black solid dots). The associated positions x̃ f + and
x̃p− denote the tip landing points after the jump (open circles); they
are given by the second solution of Eq. (5) at the same asymptotic
position x̄. The open red/blue circles and the cross mark the positions
of metastable minima and the unstable maximum in Fig. 4. The
lower right inset shows the weak-pinning situation at κ < 1, here
implemented with a larger C̄, where the tip solution x̃ is unique for
all x̄.

active defects l = a0/
√

npκξ 2d playing the role of short- and
long-distance cutoffs; see Ref. [29] (in this reference, the
short-scale cutoff a0 in the logarithm was erroneously chosen
as ξ ), hence

C̄ ∼ ε0d

a2
0

1

ln[1/(n2D
p κξ 2)]

, (4)

with n2D
p ≡ npd the 2D defect density and n2D

p κξ 2 
 1 the
condition for a dilute defect density in a thin film.

The most simple pinning geometry is for a vortex that
traverses the defect through its center. Given the rotational
symmetry of the isotropic defect, we choose a vortex that
impacts the defect in a head-on collision from the left with
asymptotic coordinate R̄ = (x̄, 0) and increase x̄ along the x
axis; finite impact parameters ȳ �= 0 will be discussed later.
The geometry then simplifies considerably and involves the
asymptotic vortex position x̄ and the tip position x̃ of the vor-
tex, reducing the problem to a one-dimensional one; the full
geometry of the deformed string can be determined straight-
forwardly [20] once the tip position x̃ has been found. The
latter follows from minimizing Eq. (1) with respect to x̃ at
fixed asymptotic position x̄ and leads to the nonlinear equation

C̄(x̃ − x̄) = −∂xep|x=x̃ = fp(x̃). (5)
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This can be solved graphically, see Fig. 3, and produces either
a single solution or multiple solutions—the appearance of
multiple tip solutions is the signature of strong pinning. The
relevant parameter that distinguishes the two cases is found by
taking the derivative of Eq. (5) with respect to x̄ that leads to

∂x̄ x̃ = 1

1 − f ′
p(x̃)/C̄

, (6)

where prime denotes the derivative, f ′
p(x) = ∂x fp(x) =

−∂2
x ep(x). Strong pinning involves vortex instabilities, i.e.,

jumps in the tip coordinate x̃, that appear when the denomi-
nator in Eq. (6) vanishes; this leads us to the strong pinning
parameter κ first introduced by Labusch [8],

κ = max
x̃

f ′
p(x̃)

C̄
= f ′

p(x̃m)

C̄
, (7)

with x̃m defined as the position of maximal force deriva-
tive f ′

p, i.e., f ′′
p (x̃m) = 0, or maximal negative curvature −e′′

p
of the defect potential. Defining the force scale fp ≡ ep/ξ

and estimating the force derivative or curvature f ′
p = −e′′

p ∼
fp/ξ produces a Labusch parameter κ ∼ ep/C̄ξ 2; for the
Lorentzian potential, we find that f ′

p(x̃m) = ep/4ξ 2 at x̃m =√
2 ξ and hence κ = ep/4C̄ξ 2. We see that strong pinning is

realized for either large pinning energy ep or small effective
elasticity C̄.

As follows from Fig. 3 (inset), for κ < 1 (large C̄) the
solution to Eq. (5) is unique for all values of x̄ and pinning
is weak, while for κ > 1 (small C̄), multiple solutions appear
in the vicinity of x̃m and pinning is strong. These multiple
solutions appear in a finite interval x̄ ∈ [x̄−, x̄+] and we denote
them by x̃ = x̃ f , x̃p, x̃us, see Fig. 3; they are associated with
free (weakly deformed vortex with x̃ f close to x̄), pinned
(strongly deformed vortex with x̃p < ξ ), and unstable vortex
states.

Inserting the solutions x̃(x̄) = x̃ f (x̄), x̃p(x̄), x̃us(x̄) of
Eq. (5) at a given vortex position x̄ back into the pinning
energy epin(x̃; x̄), we find the energies of the corresponding
branches,

ei
pin(x̄) ≡ epin[x̃i(x̄); x̄], i = f , p, us. (8)

The pair ep(x̃) and ei
pin(x̄) of energies in tip and asymptotic

spaces then has its correspondence in the force: associated
with fp(x̃) in tip space are the force branches f i

pin(x̄) in asymp-
totic x̄ space defined as

f i
pin(x̄) = fp[x̃i(x̄)], i = f , p, us. (9)

Using Eq. (5), it turns out that the force fpin can be written as
the total derivative of epin,

fpin(x̄) = −depin[x̃(x̄); x̄]

dx̄
. (10)

The multiple branches ei
pin and f i

pin associated with a strong
pinning situation at κ > 1 are shown in Figs. 4 and 5(b).

B. Unstable and bistable domains UR̃ and BR̄

Next, we identify the unstable (in x̃) and bistable (in x̄)
domains of the pinning landscape that appear as signatures
of strong pinning when κ increases beyond unity. Figure 5(a)

epin

x̄

epin

0

−x̄0

Δefp
pin

−x̄− ξ

Δepf
pin

x̄+

x̃x̃p x̃us x̃f

FIG. 4. Multivalued pinning energy landscape ei
pin(x̄) for a defect

producing a Lorentzian-shaped potential with κ = 2.5; the branches
i = p, f , us correspond to the pinned (red), free (blue), and unstable
(black dotted) vortex states. The bistability extends over the intervals
|x̄| ∈ [x̄−, x̄+] where the different branches coexist; pinned and free
vortex branches cut at the branch crossing point x̄ = x̄0. A vortex
traversing the defect from left to right assumes the free and pinned
states marked with thick colored lines and undergoes jumps �e f p

pin

and �ep f
pin in energy (vertical black solid lines) at the boundaries

−x̄− and x̄+. The asymmetric occupation of states produces a finite
pinning force density Fpin. Inset: Total energy epin(x̃; x̄) versus vortex
tip position x̃ for a fixed vortex position x̄ (vertical dashed line in the
main figure). The points x̃ f , x̃p, and x̃us mark the free, pinned, and
unstable solutions of the force-balance equation (5); they correspond
to local minima and the maximum in epin(x̃; x̄) and are marked with
corresponding symbols in Fig. 3.

shows the force profile fp(x̃) as experienced by the tip coor-
dinate x̃. A vortex passing the defect on a head-on trajectory
from left to right undergoes a forward jump in the tip from
−x̃ f − to −x̃p−; subsequently, the tip follows the pinned branch
until x̃p+ and then returns back to the free state with a forward
jump from x̃p+ to x̃ f +. The jump positions (later indexed by
a subscript “jp”) are determined by the two solutions of the
equation

f ′
p(x)|−x̃ f −,x̃p+ = C̄ (11)

that involves the curvature of the pinning potential ep(x); the
landing positions −x̃p− and x̃ f + (later indexed by a subscript
“lp”), however, are given by the second solution of the force-
balance equation (5) that involves the driving term C̄(x̃ − x̄)
and hence depends on the asymptotic position x̄. Finally, the
positions in asymptotic space x̄ where the vortex tip jumps are
obtained again from the force-balance equation (5),

x̄− = x̃ f − − fp(x̃ f −)/C̄,

x̄+ = x̃p+ − fp(x̃p+)/C̄. (12)

Note that the two pairs of tip jump and landing positions,
x̃p+, x̃ f + and x̃ f −, x̃p− are associated with only two asymp-
totic positions x̄+ and x̄−.

Let us generalize the geometry and consider a vortex mov-
ing parallel to x̄, impacting the defect at a finite distance ȳ.
We then have to extend the above discussion to the entire
z = 0 plane; see Fig. 5. For an isotropic defect, the jump and
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(a)

(c)

(b)

(d)

x̃

x̃p+

−x̃p−

ξ

x̃f+

−x̃f−

x̃

fp

ỹ

x̄
x̄+

−x̄−

x̄

ξ

ξ

fpin

ȳ

R̄−
R̄+

R̄0

FIG. 5. [(a),(b)] Force profiles fp(x̃) and fpin(x̄) in tip and asymp-
totic coordinates for a Lorentzian-shaped potential with κ = 2.5. The
tip of a vortex moving from left to right along the x axis approaches
the defect on the free branch (thick blue line) undergoes a jump
(arrow) from −x̃ f − to −x̃p−, follows the pinned branch (red) until x̃p+
and then jumps back (arrow) to the free (blue) state at x̃ f +. Extending
these jump positions to the (x̃, ỹ) plane, see panel (c), defines jump
(solid) and landing (dashed) circles, with the jump circles enclosing
an unstable domain UR̃ characteristic of strong pinning. The force
profile fpin(x̄) in panel (b) includes free (blue), pinned (red), and
unstable branches (black dotted). (d) Extending the bistable intervals
[−x̄+, −x̄−] and [x̄−, x̄+] to the [x̄, ȳ] plane defines a bistable ring BR̄

(magenta), again a strong pinning characteristic. The dashed circle
of radius R̄0 in (d) marks the branch crossing point. Vortices passing
the defect with a finite impact parameter ȳ �= 0 move on a straight
line in asymptotic space, see panel (d); the associated trajectory in
tip space is nontrivial, see panel (c) and undergoes jumps at pinning
(circle R̃ f −) and depinning (circle R̃p+).

landing points now define jump circles with radii R̃jp given
by R̃ f − = x̃ f − and R̃p+ = x̃p+ [solid circles in Fig. 5(c)] and
landing circles with radii R̃lp given by R̃ f + = x̃ f +, R̃p− = x̃p−
[dashed circles in Fig. 5(c)]. Their combination defines an un-
stable ring R̃p+ < R̃ < R̃ f − in tip space, the unstable domain
UR̃, where tips cannot reside—its existence is a signature of
strong pinning.

Figures 5(b) and 5(d) show the corresponding results in
asymptotic coordinates x̄ and R̄, respectively. The pinning
force fpin(x̄) = fp[x̃(x̄)] shown in (b) is simply an “outward
tilted” version of fp(x̃), with S-shaped overhangs that generate
bistable intervals [−x̄+,−x̄−] and [x̄−, x̄+]. Extending them to
the asymptotic R̄ plane with radii R̄− ≡ x̄− and R̄+ ≡ x̄+, see
Fig. 5(d), we obtain a ring R̄− < R̄ < R̄+ that we denote by
BR̄—again, its appearance in asymptotic space is a signature
of strong pinning.

Both, the size of the unstable- and bistable rings depend on
the Labusch parameter κ; they appear out of circles with radii
R̃ = x̃m and R̄ = x̄m = x̃m − fp(x̃m)/C̄ at κ = 1 and grow in

radius and width when κ increases. The unstable and bistable
domains UR̃ and BR̄ (see Ref. [30]) will exhibit interesting
nontrivial behavior as a function of κ when generalizing the
analysis to defect potentials of arbitrary shape.

1. Alternative strong pinning formulation

An alternative formulation of strong pinning physics is
centered on the local differential properties of the pinning
energy epin(x̃; x̄), i.e., its extremal points in x̃ at different
values of the asymptotic coordinate x̄. We start from Eq. (1)
restricted to one dimension and rearrange terms to arrive at
the expression

epin(x̃; x̄) = eeff (x̃) − C̄x̄ x̃ + C̄x̄2/2, (13)

with the effective pinning energy

eeff (x̃) = ep(x̃) + C̄x̃2/2 (14)

involving both pinning and elastic terms. Equation (13) de-
scribes a particle at position x̃ subject to the potential eeff (x̃)
and the force term f x̃ = −C̄x̄ x̃; see also Ref. [28]. The
potential eeff (x̃) can trap two particle states if there is a pro-
tecting maximum with negative curvature ∂2

x̃ eeff = ∂2
x̃ epin <

0, preventing its escape from the metastable state at forces
f = ±C̄x̄ with x̄ ∈ [x̄+, x̄−]; the maximum in epin at x̃us then
separates two minima in epin defining distinct branches with
different tip coordinates x̃p and x̃ f ; see the inset of Fig. 4.

As the asymptotic position x̄ approaches the boundaries x̄±,
one of the minima joins up with the maximum to define an
inflection point with[

∂2
x̃ eeff

]
x̃jp

= [
∂2

x̃ epin
]

x̃jp
= 0, (15)

that corresponds to the instability condition (11) where the
vortex tip jumps; the persistent second minimum in epin(x̃; x̄)
defines the landing position x̃lp and the condition for a flat in-
flection point [∂x̃epin]x̃jp = 0 defines the associated asymptotic
coordinate ±x̄±.

Finally, strong pinning vanishes at the Labusch point
κ = 1, with the inflection point in eeff (x̃) coalescing with the
second minimum at x̃m, hence[

∂2
x̃ eeff

]
x̃m

= 0 and[
∂3

x̃ eeff
]

x̃m
= [

∂3
x̃ ep

]
x̃m

= 0. (16)

Note the subtle use of epin versus eeff versus ep in the above
discussion; as we go to higher derivatives, first the asymptotic
coordinate x̄ turns irrelevant in the second derivative ∂2

x̃ epin =
∂2

x̃ eeff and then all of the elastic response, i.e., C̄, drops out in
the third derivative [∂3

x̃ epin] = [∂3
x̃ ep].

The above alternative formulation of strong pinning turns
out helpful in several discussions below, e.g., the derivation of
strong pinning characteristics near the transition in Secs. II D
and III A and in the generalization of the instability condition
to an anisotropic defect in Sec. III. Furthermore, it provides
an inspiring link to the Landau theory of phase transitions
discussed below in Sec. II F.

C. Pinning force density Fpin

Next, we determine the pinning force density Fpin at strong
pinning, assuming a random homogeneous distribution of
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pins with a small density np, npa0ξ
2 
 1; see Refs. [13,20].

The derivation of Fpin is conveniently done in asymptotic R̄
coordinates where vortex trajectories follow simple straight
lines. Vortices approach the pin by following the free branch
until its termination, jump to the pinned branch to again
follow this to its termination, and finally jump back to the
free branch. This produces an asymmetric pinned-branch oc-
cupation pc(R̄) that leads to the pinning force density (we
assume vortices approaching the defect along x̄ from the left;
following convention, we include a minus sign)

Fc = −np

∫
d2R̄
a2

0

{
pc(R̄)f p

pin(R̄) + [1 − pc(R̄)]f f
pin(R̄)

}

= −np

∫
d2R̄
a2

0

pc(R̄)
[
∂x�e f p

pin(R̄)
]

ex̄, (17)

with the energy difference �e f p
pin(R̄) = e f

pin(R̄) − ep
pin(R̄) and

ex̄ the unit vector along x̄; the ȳ component of the pinning
force density vanishes due to the antisymmetry in fpin,ȳ. For
the isotropic defect, the jumps �e f p

pin(R̄) in energy appearing
upon changing branches are independent of angle and the
average in Eq. (17) separates in x̄ and ȳ coordinates; note that
the energy jumps are no longer constant for an anisotropic de-
fect and hence such a separation does not occur. Furthermore,
(i) all vortices approaching the defect within the transverse
length |ȳ| < R̄− get pinned, see Fig. 5(d), while those passing
further away follow a smooth (weak pinning) trajectory that
does not undergo jumps and hence do not contribute to the
pinning force, and (ii) all vortices that get pinned contribute
the same mean force 〈 fpin〉 that is most easily evaluated for
a head-on vortex–defect collision on the x̄ axis with pc(x̄) =

(x̄ + x̄−) − 
(x̄ − x̄+),

〈 fpin〉 = −
∫ a0/2

−a0/2

dx̄

a0

[
pc(x̄) f p

pin(x̄) + (1 − pc(x̄)) f f
pin(x̄)

]

= �e f p
pin(−x̄−) + �ep f

pin(x̄+)

a0
, (18)

where we have replaced −�e f p
pin(x̄+) by �ep f

pin(x̄+) > 0.
Hence, the average pinning force 〈 fpin〉 is given by the
jumps in the pinning energy ei

pin(x̄) associated with different
branches i = p, f , see Fig. 4.

Finally, accounting for trajectories with finite impact pa-
rameter |ȳ| < R̄−, we arrive at the result for the pinning force
density Fpin acting on the vortex system,

Fpin = np
2R̄−
a0

〈 fpin〉 = np
2R̄−
a0

�e f p
pin + �ep f

pin

a0
, (19)

where the factor 2R̄−/a0 accounts for the averaging of the pin-
ning force along the y axis. As strong pins act independently, a
consequence of the small defect density np, the pinning force
density is linear in the defect density, Fpin ∝ np. If pinning
is weak, i.e., κ < 1, then we have no jumps, 〈 fpin〉 = 0, and
Fpin|strong = 0. A finite pinning force then only arises from
correlations between pinning defects and scales in density as
[9,10] Fpin|weak ∝ n2

p. This contribution to the pinning force
density Fpin continues beyond κ = 1; hence, while the strong
pinning onset at κ = 1 can be formulated in terms of a

transition, weak pinning goes to strong pinning in a smooth
crossover.

Knowing the pinning force density Fpin, the motion of the
vortex lattice follows from the bulk dynamical equation

ηv = FL(j) − Fpin. (20)

Here, η = BHc2/ρnc2 is the Bardeen-Stephen viscosity [31]
(per unit volume; ρn is the normal state resistivity) and FL =
j × B/c is the Lorentz force density driving the vortex system.
The pinning force density Fpin is directed along v, in our case
along x.

Next, we determine the strong pinning characteristics x̄−,
x̄+, x̃ f ±, x̃p±, �e f p

pin, and �ep f
pin as a function of the Labusch

parameter κ close to the strong pinning transition, i.e., κ � 1.

D. Strong pinning characteristics near the transition

Near the strong pinning transition at κ � 1, we can derive
quantitative results for the strong pinning characteristics by
expanding the pinning energy epin(x̃; x̄) in x̃ at fixed x̄.

We expand epin(x̃; x̄) in x̃ around the point of first instability
x̃m by introducing the relative tip and asymptotic positions
ũ = x̃ − x̃m and ū = x̄ − x̄m and make use of our alternative
strong pinning formulation summarized in Sec. II B 1. At
x̃m and close to κ = 1, we have [∂2

x̃ epin]x̃m = [∂2
x̃ ep]x̃m + C̄ =

C̄(1 − κ ) and [∂3
x̃ epin]x̃m = 0; hence,

epin(x̃; x̄) ≈ C̄

2
(1 − κ ) ũ2 + γ

24
ũ4 − C̄ūũ, (21)

where we have introduced the shape parameter γ = [∂4
x ep]x̃m

describing the quartic term in the expansion and we have
made use of the force balance equation (5) to rewrite fp(x̃m) =
C̄(x̃m − x̄m); furthermore, we have dropped all irrelevant terms
that do not depend on ũ.

We find the jump and landing positions x̃jp and x̃lp ex-
ploiting the differential properties of epin(x̃) at a fixed x̄: As
discussed above, the vortex tip jumps at the boundaries x̄±
of the bistable regime, where epin develops a flat inflection
point at x̃jp with one minimum joining up with the unstable
maximum and the second minimum at the landing position x̃lp

staying isolated. Within our fourth-order expansion the jump
positions at (de)pinning are placed symmetrically with respect
to the onset at x̃m,

x̃p+ = x̃m + ũjp, x̃ f − = x̃m − ũjp, (22)

and imposing the condition [∂2
ũ epin]x̃jp = 0 [that is equivalent

to the jump condition f ′
p[x̃ f −] = f ′

p[x̃p+] = C̄ of Eq. (11), see
also Fig. 3], we find that

ũjp ≈ −
√

2C̄

γ
(κ − 1)1/2. (23)

To find the (symmetric) landing positions, it is convenient
to shift the origin of the expansion to the jump position,
ũ → ũ − ũjp ≡ ũ′, and define the jump distance �ũ,

x̃ f + = x̃p+ + �ũ, x̃p− = x̃ f − − �ũ. (24)
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At the jump position, the linear and quadratic terms in ũ′
vanish, resulting in the expansion (up to an irrelevant constant)

epin(x̃p+ + ũ′; x̄+) ≈ γ

6
ũjpũ′ 3 + γ

24
ũ′ 4 (25)

and similar at x̃ f − and x̄− for a left moving vortex. This
expression is minimal at the landing position x̃ f +, i.e., at
ũ′ = �ũ, [∂ũ′epin]�ũ = 0, and we find the jump distance

�ũ = −3ũjp. (26)

Inserting this result back into Eq. (25), we obtain the jump in
energy �ep f

pin = epin(x̃p+; x̄+) − epin(x̃ f +; x̄+),

�ep f
pin(x̄+) ≈ γ

72
(�ũ)4 ≈ 9C̄2

2γ
(κ − 1)2, (27)

and similar at x̄−. Note that all these results have been
obtained without explicit knowledge of the asymptotic coordi-
nates x̄± where these tip jumps are triggered. The latter follow
from the force equation (5) that corresponds to the condition
[∂x̃epin]x̃jp = 0 for a flat inflection point. Using the expansion
(21) of the pinning energy, we find that

x̄± − x̄m = ∓2

3
ũjp(κ − 1) = ±2

3

√
2C̄

γ
(κ − 1)3/2. (28)

The pair x̄m and x̃m of asymptotic and tip positions depends
on the details of the potential; while x̃m derives solely from
the shape ep(x̃), x̄m as given by Eq. (5) involves C̄ and shifts
∝ (κ − 1). For a Lorentzian potential, we find that

x̃m =
√

2ξ, x̄m = 2
√

2ξ +
√

2ξ (κ − 1). (29)

The shape coefficient is γ = 3ep/4ξ 4 and the Labusch pa-
rameter is given by κ = ep/4C̄ξ 2 (hence C̄2/γ = ep/12κ2),
providing us with the results

ũjp ≈ −ξ [2(κ − 1)/3]1/2 and �ep f
pin ≈ 3

8 ep(κ − 1)2. (30)

E. Pinning force density for the isotropic defect

Using the results of Sec. II D in the expression (19) for the
pinning force density, we find, to leading order in κ − 1,

Fpin = 9np
x̄m

a0

C̄2

γ a0
(κ − 1)2. (31)

The scaling Fpin ∼ np(ξ/a0)2 fp(κ − 1)2 (with C̄ξ 2/ep ∼ 1/κ ,
up to a numerical) uniquely derives from the scaling ∝ (κ −
1)2 of the energy jumps in Eq. (27), as the asymptotic trapping
length x̄− ∼ ξ remains finite as κ → 1 for the isotropic defect;
this will change for the anisotropic defect.

F. Relation to Landau’s theory of phase transitions

The expansion (21) of the pinning energy epin(x̃; x̄) around
the inflection point x̃m of the force takes the same form as the
Landau free energy of a phase transition [10],

f (φ; h) = r0

2
(T/Tc − 1)φ2 + uφ4 − hφ, (32)

with the straightforward transcription ũ ↔ φ, C̄(1 − κ ) ↔
r0(T/Tc − 1), γ /24 ↔ u and the conjugate field C̄ū ↔ h. The
functional (32) describes a one-component order parameter

φ driven by (the dual variable) h, e.g., an Ising model with
magnetization density φ in an external magnetic field h. This
model develops a mean-field transition with a first-order line
in the h–T phase diagram that terminates in a critical point
at T = Tc and h = 0. The translation to strong pinning de-
scribes a strong pinning region at κ > 1 that terminates (upon
decreasing κ) at κ = 1. The ferromagnetic phases with φ =
±√

r0(1 − T/Tc)/4u correspond to pinned and free states sep-
arated by tip jumps �ũ ≈ 3

√
2C̄(κ − 1)/γ , the paramagnetic

phase at T > Tc with φ = 0 translates to the unpinned domain
at κ < 1. The (relative) asymptotic and tip positions ū and ũ
appear as dual variables. The spinodals associated with the
hysteresis in the first-order magnetic transition describe the
disappearance of metastable magnetic phases in Eq. (32) when
∂φ f (φ; h) = ∂2

φ f (φ; h) = 0; they correspond to the termina-
tion of the free and pinned branches at x̄±, the inflection points
appearing in epin(x̃; x̄) at the boundaries of the bistable region
BR̄ as discussed in Sec. II B. When including correlations
between defects, the unpinned phase at κ < 1 transforms into
a weakly pinned phase that continues beyond κ = 1 into the
strongly pinned phase. Including such correlations, the strong-
pinning transition at the onset of strong pinning at κ = 1
transforms into a weak-to-strong pinning crossover.

III. ANISOTROPIC DEFECTS

Let us generalize the above analysis to make it fit for the
ensuing discussion of an arbitrary pinning landscape. Central
to the discussion are the unstable and bistable domains UR̃ and
BR̄ in tip- and asymptotic space. The boundary of the unstable
domain UR̃ in tip space is determined by the jump positions of
the vortex tip. The latter follows from the local differential
properties of epin(R̃; R̄) at fixed asymptotic coordinate R̄,
for the isotropic defect, the appearance of an inflection point
[∂2

x̃ epin(x̃, x̄)] = 0; see Eq. (15). In generalizing this condition
to the anisotropic situation, we have to study the Hessian
matrix of epin(R̃; R̄) defined in Eq. (1),

[Hess[epin(R̃; R̄)|R̄]]i j = C̄δi j + Hi j (R̃), (33)

with

Hi j (R̃) = ∂x̃i∂x̃ j ep(R̃) (34)

the Hessian matrix associated with the defect potential ep(R̃).
The vortex tip jumps when the pinning landscape epin(R̃; R̄)
at fixed R̄ opens up in an unstable direction, i.e., develops
an inflection point; this happens when the lower eigenvalue
λ−(R̃) < 0 of the Hessian matrix Hi j (R̃) matches up with C̄,

λ−(R̃) + C̄ = 0, (35)

and strong pinning appears in the location where this happens
first, say in the point R̃m, implying that the eigenvalue λ−(R̃)
has a minimum at R̃m. Furthermore, the eigenvector v−(R̃m)
associated with the eigenvalue λ−(R̃m) provides the unstable
direction in the pinscape epin(R̃; R̄) along which the vortex tip
escapes.

Defining the reduced curvature function

κ (R̃) ≡ −λ−(R̃)

C̄
, (36)
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we find the generalized Labusch parameter

κm ≡ κ (R̃m), (37)

and the Labusch criterion takes the form

κm = 1. (38)

The latter has to be read as a double condition: (i) find the
location R̃m where the smaller eigenvalue λ−(R̃) is negative
and largest, from which (ii), one obtains the critical elasticity
C̄ where strong pinning sets in.

A useful variant of the strong pinning condition (35) is pro-
vided by the representation of the determinant of the Hessian
matrix,

D(R̃) ≡ det{Hess[epin(R̃; R̄)|R̄]}, (39)

in terms of its eigenvalues λ±(R̃), D(R̃) = [C̄ + λ−(R̃)][C̄ +
λ+(R̃)]; near onset, the second factor C̄ + λ+(R̃) stays pos-
itive and the strong pinning onset appears in the point R̃m

where D(R̃) has a minimum which touches zero for the first
time, i.e., the two conditions ∇D(R̃)|R̃m

= 0 and D(R̃m) = 0
are satisfied simultaneously. The latter conditions make sure
that the minima of λ−(R̃) and D(R̃) line up at R̃m. Note
that the Hessian determinant D(R̃) does not depend on the
asymptotic coordinate R̄ as it involves only second derivatives
of epin(R̃; R̄).

The Labusch criterion defines the situation where jumps of
vortex tips appear for the first time in the isolated point R̃m.
Increasing the pinning strength, e.g., by decreasing the elas-
ticity C̄ for a fixed pinning potential ep(R) (alternatively, the
pinning scale ep could be increased at fixed C̄) the condition
(35) is satisfied on the boundary of a finite domain and we can
define the unstable domain UR̃ through (see also Ref. [30])

UR̃ = {R̃ | λ−(R̃) + C̄ � 0}. (40)

Once the latter has been determined, the bistable domain BR̄
follows straightforwardly from the force balance equation

C̄(R̃ − R̄) = fp(R̃) = fpin(R̄), (41)

i.e., [30]

BR̄ = {R̄ = R̃ − fp(R̃)/C̄ | R̃ ∈ UR̃}. (42)

In a last step, one then evaluates the energy jumps appearing
at the boundary of BR̄ and proper averaging produces the
pinning force density Fpin.

Let us apply the above generalized formulation to the
isotropic situation. Choosing cylindrical coordinates (r, ϕ),
the Hessian matrix Hi j is already diagonal; close to the in-
flection point R̃m, where e′′′

p (R̃m) = 0, the eigenvalues are
λ−(R̃) = e′′

p(R̃) < 0 and λ+(R̃) = e′
p(R̃)/R̃ > 0, producing re-

sults in line with our discussion above.

A. Expansion near strong pinning onset

With our focus on the strong pinning transition near
κ (R̃m) = 1, we can obtain quantitative results using the ex-
pansion of the pinning energy epin(R̃; R̄), Eq. (1), close to R̃m,
cf. Sec. II D. Hence, we construct the Landau-type pinning
energy corresponding to Eq. (32) for the case of an anisotropic
pinning potential, i.e., we generalize Eq. (21) to the two-
dimensional situation.

When generalizing the strong pinning problem to the
anisotropic situation, we are free to define local coordinate
systems (ũ, ṽ) and (ū, v̄) in tip- and asymptotic space centered
at R̃m and R̄m, where the latter is associated with R̃m through
the force balance equation (41) in the original laboratory
system. Furthermore, we fix our axes such that the unsta-
ble direction coincides with the u axis, i.e., the eigenvector
v−(R̃m) associated with λ−(R̃m) points along u; as a result,
the mixed term ∝ ũṽ is absent from the expansion. Keeping
all potentially relevant terms up to fourth order in ũ and ṽ in
the expansion, we then have to deal with an expression of the
form

epin(R̃; R̄) = C̄ + λ−
2

ũ2 + C̄ + λ+
2

ṽ2 − C̄ ūũ − C̄ v̄ṽ

+ a

2
ũṽ2 + a′

2
ũ2ṽ + b′

6
ũ3 + b′′

6
ṽ3 + α

4
ũ2ṽ2

+ β

6
ũ3ṽ + β ′′

6
ũṽ3 + γ

24
ũ4 + γ ′′

24
ṽ4, (43)

with λ± = λ±(R̃m),

R̃ = R̃m + δR̃, δR̃ = (ũ, ṽ),
(44)

R̄ = R̄m + δR̄, δR̄ = (ū, v̄),

and coefficients given by the corresponding derivatives of
ep(R), e.g., a ≡ ∂u∂

2
v ep(R)|R̃m

, . . . , γ ′′ ≡ ∂4
v ep(R)|R̃m

. As we
are going to see, the primed terms in this expansion vanish
due to the condition of a minimal Hessian determinant at the
onset of strong pinning, while double-primed terms will turn
out irrelevant to leading order in the small distortions ũ and ṽ.

The first term in Eq. (43) drives the strong pinning tran-
sition as it changes sign when λ− = −C̄. Making use of the
Labusch parameter κm defined in Eq. (37), we can replace [see
also Eq. (21)]

C̄ + λ− → C̄(1 − κm). (45)

In our further considerations below, the quantity κm − 1 
 1
acts as the small parameter; it assumes the role of the distance
τ = 1 − T/Tc to the critical point in the Landau expansion of
a thermodynamic phase transition.

The second term in Eq. (43) stabilizes the theory along the
v direction as C̄ + λ+ > 0 close to the Labusch point, while
the sign of the cubic term a ũṽ2/2 determines the direction of
the instability along x, i.e., to the right (a > 0) or left (a < 0).
The quartic terms ∝ α, γ > 0 bound the pinning energy at
large distances, while the term ∝ β determines the skew angle
in the shape of the unstable domain UR̃; see below. Finally, we
have used the force balance equation (41) in the derivation of
the driving terms C̄ ūũ and C̄ v̄ṽ.

The parameters in Eq. (43) are constrained by the require-
ment of a minimal determinant D(R̃) at the strong pinning
onset R̃ = R̃m and κm = 1, i.e., its gradient has to vanish,

∇R̃ D(R̃)|R̃m
= 0, (46)

and its Hessian Hess[D(R̃)] has to satisfy the relations

det[Hess[D(R̃)]]|R̃m
> 0, (47)

tr[Hess[D(R̃)]]|R̃m
> 0. (48)
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Making use of the expansion (43), the determinant D(R̃) reads

D(R̃) = {[
∂2

ũ epin
][

∂2
ṽ epin

] − [
∂ũ∂ṽepin

]2}
R̃, (49)

with

∂2
ũ epin = C̄(1−κm) + a′ṽ + b′ũ + αṽ2/2 + βũṽ + γ ũ2/2,

∂2
ṽ epin = C̄ + λ+ + aũ + b′′ṽ + αũ2/2 + β ′′ũṽ + γ ′′ṽ2/2,

∂ũ∂ṽepin = aṽ + a′ũ + αũṽ + βũ2/2 + β ′′ṽ2/2,

and produces the gradient

∇R̃ D(R̃)|R̃m
= (C̄ + λ+)(b′, a′), (50)

hence the primed parameters indeed vanish, a′ = 0 and b′ =
0. The Hessian then takes the form

Hess[D(R̃)]|R̃m
= (C̄ + λ+)

[
γ β

β δ

]
(51)

at the Labusch point κm = 1, where we have introduced the
parameter

δ ≡ α − 2a2

C̄

1

1 + λ+/C̄
. (52)

The stability conditions (47) and (48) translate, respectively,
to

γ δ − β2 > 0 (53)

(implying δ > 0) and

γ + δ > 0. (54)

The Landau-type theory (43) involves the two “order pa-
rameters” ũ and ṽ and is driven by the dual coordinates ū
and v̄. This n = 2 theory involves a soft order parameter ũ
and the stiff ṽ, allowing us to integrate out ṽ and reformulate
the problem as an effective one-dimensional Landau theory
(C6) of the van der Waals kind—the way of solving the strong
pinning problem near onset in this 1D formulation is presented
in Appendix C 1.

B. Unstable domain UR̃

Next, we determine the unstable domain UR̃ in tip space as
defined in Eq. (40). We will find that, up to quadratic order, the
boundary of UR̃ has the shape of an ellipse with the semiaxes
lengths scaling as

√
κm − 1.

1. Jump line JR̃

We find the unstable domain UR̃ by determining its bound-
ary ∂UR̃ with the help of the condition C̄ + λ− = 0 or,
equivalently, the vanishing of the determinant

D(R̃jp) ≡ 0, (55)

where we denote the jump positions by R̃jp and the set of
points R̃jp makes up for the jump line JR̃. The condition
Eq. (55) guarantees the existence of an unstable direction par-
allel to the eigenvector v−(R̃jp) associated with the eigenvalue
λ−(R̃jp) where the energy (43) turns flat, cf. our discussion
in Sec. II B. The edges of the unstable domain UR̃ therefore
correspond to a line of inflection points in epin(R̃; R̄) along
which one of the bistable tip configurations of the force

balance equation (41) coalesces with the unstable solution.
Near the onset of strong pinning, the unstable domain UR̃ is
closely confined around the point R̃m where v−(R̃m) ‖ û. The
unstable direction v−(R̃jp) is therefore approximately homo-
geneous within the unstable domain UR̃ and is parallel to the u
axis. This fact will be of importance later, when determining
the topological properties of the unstable domain UR̃.

Inspection of the condition (55) with D(R̃) given by
Eq. (49) shows that the components of δR̃jp = R̃jp − R̃m scale
as

√
κm − 1: in the product [∂2

ũ epin][∂2
ṽ epin], the first factor

involves the small constant C̄(1 − κm) plus quadratic terms
(as a′ = 0 and b′ = 0), while the second factor comes with
the large constant C̄ + λ+ plus corrections. The leading term
in [∂ũ∂ṽepin] is linear in ṽ with the remaining terms provid-
ing corrections. To leading order, the condition of vanishing
determinant then produces the quadratic form

[γ ũ2 + 2β ũṽ + δ ṽ2]R̃jp
= 2C̄(κm − 1). (56)

With γ and δ positive, this form is associated with an elliptic
geometry of extent ∝ √

κm − 1. For later convenience, we
rewrite Eq. (56) in matrix form

δR̃T
jpMjp δR̃jp = C̄(κm − 1), (57)

with

Mjp =
[
γ /2 β/2

β/2 δ/2

]
(58)

and det Mjp = (γ δ − β2)/4 > 0; see Eq. (53). The jump line
JR̃ can be expressed in the parametric form

ũjp(|ṽ| < ṽc)

= − 1

γ
[βṽ ±

√
2γ C̄(κm − 1) − (γ δ − β2)ṽ2], (59)

with

ṽc =
√

2γ C̄(κm − 1)/(γ δ − β2), (60)

and is shown in Fig. 6 for the example of an anisotropic
potential inspired by the uniaxial defect in Sec. IV with 10%
anisotropy. The associated unstable domain UR̃ assumes a
compact elliptic shape, with the parameter β describing the
ellipse’s skew.

An additional result of the above discussion concerns the
terms that we need to keep in the expansion of the pinning en-
ergy (43): Indeed, dropping corrections amounts to dropping
terms with double-primed coefficients, and we find that the
simplified expansion

epin(R̃; R̄) = C̄

2
(1 − κm) ũ2 + C̄ + λ+

2
ṽ2 + a

2
ũṽ2

+ α

4
ũ2ṽ2 + β

6
ũ3ṽ + γ

24
ũ4 − C̄ ūũ − C̄ v̄ṽ

(61)

produces all of our desired results to leading order.

2. Landing line LR̃

We find the landing positions R̃lp by extending the discus-
sion of the isotropic situation in Sec. II D to two dimensions:
we shift the origin of the expansion (61) to the jump point

033098-10



STRONG PINNING TRANSITION WITH ARBITRARY … PHYSICAL REVIEW RESEARCH 5, 033098 (2023)

−2 −1 0 1

−2

0
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FIG. 6. Jump line JR̃ [solid red/blue, see Eq. (57)] and land-
ing line [dashed red/blue, see Eq. (66)] LR̃ in tip space R̃ (in
units of ξ ), with the ellipse JR̃ representing the edge ∂UR̃ of
the unstable domain UR̃. We choose parameters κm − 1 = 10−2,
with λ− = −0.25 ep/ξ

2, λ+ = 0.05 ep/ξ
2, and a = 0.07 ep/ξ

3, α =
0.1 ep/ξ

4, β = 0, γ = 0.75 ep/ξ
4 inspired by the choice of the uni-

axial defect with 10% anisotropy in Sec. IV; the dotted ellipse shows
the effect of a finite skew parameter β = 0.05 ep/ξ

4 on the jump
ellipse JR̃. Along the edges of UR̃, one of the stable tip configurations
coalesces with the unstable solution of (41) and the total pinning
energy epin(R̃; R̄) develops an inflection line in the tip coordinate
R̃. Crosses correspond to the contact points (70) between the two
ellipses JR̃ and LR̃. Blue and red colors identify different types
of vortex deformations upon jump and landing. Pairs of solid and
open circles connected via long arrows are, respectively, examples of
pairs of jumping- and landing tip positions for vortices approaching
the defect from the left (top) and right (bottom), see Fig. 5(c) for
the isotropic problem’s counterpart. The unstable direction v−(R̃jp ),
shown as short black arrows for different points on the ellipse, always
points in the u direction and are parallel to the tangent vector of the
unstable ellipse at the contact points (70).

R̃jp and find the landing point R̃lp = R̃jp + �R̃ by minimizing
the total energy epin(�R̃) at the landing position. Below, we
use �R̃ both as a variable and as the jump distance to avoid
introducing more coordinates.

We exploit the differential properties of epin at the jump and
landing positions. At landing, epin(R̃jp + �R̃) has a minimum,
hence, the configuration is force free, in particular along ṽ,

∂ṽepin(R̃jp + �R̃) ≈ [∂ṽ∂ũepin]R̃jp
�ũ + [

∂2
ṽ epin

]
R̃jp

�ṽ = 0,

from which we find that �ũ and �ṽ are related via

�ṽ ≈ −
[∂ṽ∂ũepin]R̃jp[

∂2
ṽ epin

]
R̃jp

�ũ. (62)

Here, we have dropped higher-order terms in the expansion,
assuming that the jump is mainly directed along the unstable
u direction—indeed, using the expansion (61), we find that

�ṽ ≈ − aṽjp

C̄ + λ+
�ũ ∝

√
κm − 1 �ũ. (63)

Note that we cannot interchange the roles of ũ and ṽ in this
force analysis, as higher-order terms in the expression for the
force along ũ cannot be dropped.

At the jump position R̃jp, the state is force-free, i.e.,
the derivatives [∂ũepin]R̃jp

and [∂ṽepin]R̃jp
vanish, and the

Hessian determinant vanishes as well. Therefore, the ex-
pansion of epin(R̃jp + �R̃) has no linear terms and the
second order terms [∂2

ũ epin]R̃jp
�ũ2/2 + [∂ũ∂ṽepin]R̃jp

�ũ�ṽ +
[∂2

ṽ epin]R̃jp
�ṽ2/2 combined with Eq. (62) can be ex-

pressed through the Hessian determinant, {[∂2
ũ epin][∂2

ṽ epin] −
[∂ũ∂ṽepin]2}R̃jp

�ũ2/2 = 0, that vanishes as well. Therefore,

the expansion of epin around R̃jp starts at third order in �R̃ ≈
(�ũ, 0) and takes the form (we make use of Eq. (63), dropping
terms ∝ �ṽ and a constant)

epin(R̃jp + �R̃) ≈ 1

6
(γ ũjp + βṽjp )�ũ3 + γ

24
�ũ4. (64)

Minimizing this expression with respect to �ũ (as epin is
minimal at R̃lp), we obtain the result

�ũ ≈ −3(γ ũjp + βṽjp )/γ . (65)

Making use of the quadratic form (57), we can show that
the equation for the landing position R̃lp = R̃jp + �R̃ can be
cast into a similar quadratic form (with δR̃lp measured relative
to R̃m)

δR̃T
lpMlp δR̃lp = C̄(κm − 1), (66)

but with the landing matrix now given by

Mlp = 1

4
Mjp +

[
0 0
0 3

4

(
δ
2 − β2

2γ

)]. (67)

In the following, we will refer to the solutions of Eq. (66)
as the “landing” or “stable” ellipse R̃lp and write the jump
distance in a parametric form involving the shape ũjp(ṽ) in
Eq. (59) of the jumping ellipse,

�ũ(ṽ) = −3[γ ũjp(ṽ) + β ṽ]/γ , (68)

�ṽ(ṽ) = −[a/(C̄ + λ+)] ṽ �ũ(ṽ). (69)

The landing line derived from Eq. (66) is displayed as a
dashed line in Fig. 6. The different topologies associated with
jumps and landing showing up for the isotropic defect in
Fig. 5(c) (two concentric circles) and for the generic onset
in Fig. 6 (two touching ellipses) will be discussed below in
Sec. III E.

Inspecting the matrix equation (66), we can gain several
insights on the landing ellipse LR̃: (i) the matrix Mjp/4 on
the right-hand side of Eq. (67) corresponds to an ellipse with
the same geometry as for JR̃ but double in size, (ii) the re-
maining matrix with vanishing entries in the off-diagonal and
the Mxx elements leaves the size doubling of the stable ellipse
LR̃ at ṽ = 0 unchanged, and (iii) the finite Myy component
exactly counterbalances the doubling along the v direction
encountered in (i), cf. the definition (58) of Mjp, up to a term
proportional to the skew parameter β accounting for devia-
tions of the semiaxis from the v axis. Altogether, the stable
ellipse LR̃ extends with a double width along the u axis and
smoothly overlaps with the unstable ellipse at the two contact
points ṽc,±. The latter are found by imposing the condition
�ũ = �ṽ = 0 in Eqs. (68) and (69); we find them located
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(relative to R̃m) at

δR̃c,± = ±(−β/γ , 1) ṽc, (70)

with the endpoint coordinate ṽc given in Eq. (60), and mark
them with crosses in Fig. 6. As anticipated, the contact points
are off-set with respect to the v axis for a finite skew pa-
rameter β. At these points, the unstable and the stable tip
configurations coincide and the vortex tip undergoes no jump.
Furthermore, the vector tangent to the jump (or landing) el-
lipse is parallel to the u direction at the contact points. To see
that, we consider Eq. (59) and find that

∂ ũ

∂ ṽ

∣∣∣∣
ṽ→±ṽc

≈ ±
⎛
⎝

√
ṽ2

c − 2γ C̄(κm − 1)

γ β − δ2

⎞
⎠

−1

→ ±∞, (71)

hence, the corresponding tangents ∂ũṽ vanish.
The asymptotic positions R̄ where the vortex tips jump and

land belong to the boundary of the bistable region BR̄; for the
isotropic case in Fig. 5(d) these correspond to the circles with
radii R̄− (pinning) and R̄+ (depinning) with jump and landing
radii R̃ f −(R̄−) and R̃p−(R̄−) and R̃p+(R̄+) and R̃ f +(R̄+), re-
spectively, see Fig. 5(c). For the anisotropic defect, we have
only a single jump/landing event at one asymptotic position R̄
that we are going to determine in the next section.

C. Bistable domain BR̄

The set of asymptotic positions R̄ corresponding to the
tip positions R̃jp along the edges of UR̃ forms the boundary
∂BR̄ of the bistable domain BR̄; they are related through
the force-balance equation (41), with every vortex tip po-
sition R̃jp ∈ ∂UR̃ defining an associated asymptotic position
R̄(R̃jp) ∈ ∂BR̄.

At the onset of strong pinning, the bistable domain cor-
responds to the isolated point R̄m, related to R̃m through
Eq. (41). Beyond the Labusch point, BR̄ expands out of
R̄m and its geometry is found by evaluating the force
balance equation (41) at a given tip position R̃jp ∈ ∂UR̃,
R̄(R̃jp) = R̃jp − fp(R̃jp)/C̄ ∈ ∂BR̄. Using the expansion (61)
for epin(R̃; R̄), this force equation can be expressed as
∇Repin(R; R̄)|R̃ = 0, or explicitly (we remind that we mea-
sure R̄ = R̄m + (ū, v̄) relative to R̄m),

C̄ū = C̄(1 − κm)ũ + a

2
ṽ2 + γ

6
ũ3 + β

2
ũ2ṽ + α

2
ũṽ2,

C̄v̄ = (C̄ + λ+)ṽ + a ũṽ + β

6
ũ3 + α

2
ũ2ṽ. (72)

Inserting the results for the jump ellipse JR̃, Eq. (59), into
Eqs. (72), we find the crescent-shape bistable domain BR̄
shown in Fig. 7; let us briefly derive the origin of this shape.

Solving Eq. (72) to leading order, C̄ū(0) ≈ (a/2)ṽ2 and
C̄v̄ (0) ≈ (C̄ + λ+)ṽ, we find the parabolic approximation

ū(0) ≈ a

2C̄

1

(1 + λ+/C̄)2
v̄ (0) 2, (73)

telling that the extent of BR̄ scales as (κm − 1) along ū and
∝ (κm − 1)1/2 along v̄, i.e., we find a flat parabola opening
toward positive ū for a > 0; see Fig. 7.
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√
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√
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ũ/ξ
√
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FIG. 7. (a) Bistable domain BR̄ in asymptotic R̄ space measured
in units of ξ ; the same parameters as in Fig. 6 have been used.
Note the different scaling of the axes in κm − 1; the right panel
(b) shows BR̄ in isotropic scales. The bistable domain BR̄ is elongated
along the transverse direction v̄ and narrow/bent along the unstable
direction ū, giving BR̄ its peculiar crescentlike shape. The branch
crossing line R̄0, see Eq. (80), is shown as a dashed black line.
Black crosses mark the cusps of BR̄ and are associated with the
contact points of UR̃ through the force balance equation (41); they
correspond to critical end-points in the thermodynamic Ising analog,
while the boundaries ∂BR̄ map to spinodals. Blue and red colors
identify different characters of vortex tip configurations as quantified
through the “order parameter” ũ of the Landau expansion (at β = 0),
see text, while magenta is associated to the bistable area BR̄; the blue
and red branches extend to the far side of the crescent and terminate
in the blue and red colored boundaries ∂Bb

R̄ and ∂Br
R̄, respectively.

Thin horizontal lines show vortex trajectories that proceed smoothly
in asymptotic space; see also Fig. 5(d). Blue and red dots mark the
asymptotic positions associated with vortex tip jumps that happen
at the exit of BR̄; they correspond to the pairs of tip positions in
Fig. 6. (b) Bistable domain BR̄ in isotropic scaled coordinates ū and
v̄ showing the ‘true’ shape of BR̄. Vortices impacting on the bistable
domain with an angle |θ | � θ∗ undergo a single jump on the far side
of BR̄, with the pinning force density directed along u and scaling
as F ‖

pin ∝ (κ − 1)5/2. Vortices crossing BR̄ at large angles close to
π/2 jump either never, once, or twice; at θ = π/2 the pinning force
density is small, F⊥

pin ∝ (κ − 1)3, and directed along v.

To find the width of BR̄, we have to solve Eq. (72) to
the next higher order, ū = ū(0) + ū(1); for β = 0, we find the
correction

ū(1) = (1 − κm)ũ + γ

6C̄
ũ3 + α

2C̄
ũṽ2 (74)

that produces a v̄ ↔ −v̄ symmetric crescent. Inserting the two
branches (59) of the jump ellipse, we arrive at the width of
the crescent that scales as (κm − 1)3/2. The correction to v̄ is
∝ (κm − 1) and we find the closed form

v̄ ≈ [1 + (λ+ + aũ)/C̄] ṽ, (75)

with a small antisymmetric (in ũ) correction. For a finite β �=
0, the correction ū(1) picks up an additional term (β/2C̄) ũ2ṽ

that breaks the v̄ ↔ −v̄ symmetry and the crescent is dis-
torted.
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Viewing the boundary ∂BR̄ as a parametric curve in the
variable ṽ with ũ = ũjp(ṽ) given by Eq. (59), we obtain
the boundary ∂BR̄ in the form of two separate arcs that define
the crescent-shaped domain BR̄ in Fig. 7(a). The two arcs
merge in two cusps at R̄c,± that are associated to the touching
points (70) in dual space and derive from Eqs. (72); measured
with respect to R̄m, these cusps are located at

δR̄c,± = (ūc,±v̄c)

≈ [
(a/2 C̄) ṽ2

c , ±(1 + λ+/C̄)ṽc
]
. (76)

The coloring in Fig. 7 indicates the characters “red” and
“blue” of the vortex states; these are defined in terms of the
“order parameter” ũ − ũm(v̄) of the Landau functional (61)
that changes sign at the branch crossing line Eq. (80), with the
shift

ũm(v̄) = −β

γ
ṽ(v̄) ≈ −β

γ

v̄

1 + λ+/C̄
, (77)

ũm(v̄) = 0 for our symmetric case with β = 0 in Fig. 7. Going
beyond the cusps (or critical points) at R̄c,±, the two states
smoothly crossover between “red” and “blue” (indicated by
the smooth blue–white–red transition), as known for the van
der Waals gas (or Ising magnet) above the critical point.
Within the bistable region BR̄, both “red” and “blue” states
coexist and we color this region in magenta.

The crescent geometry of the bistable domain BR̄ is very
different from the ring geometry in the isotropic problem; see
Fig. 5(d). Comparing the dimensions of the crescent with the
ring in Fig. 5(d), we find the following scaling behavior in
κm − 1: While the crescent BR̄ grows along v̄ as (κm − 1)1/2,
the isotropic ring involves the characteristic size ξ of the
defect, R̄− ∼ ξ and hence its extension along v̄ is a constant.
However, the scaling of the crescent’s and the ring’s width is
the same, ∝ (κm − 1)3/2. The different scaling of the trans-
verse width then will be responsible for the new scaling of the
pinning force density, Fpin ∝ (κm − 1)5/2.

D. Comparison to isotropic situation

Let us compare the unstable domains UR̃ for the isotropic
and anisotropic defects in Figs. 5(c) and 6, respectively. In the
isotropic example of Sec. II A, the jump and landing circles
R̃jp(R̄) and R̃lp(R̄) are connected to different phases, e.g., free
(colored in blue at R̃jp = R̃ f −) and pinned (colored in red at
R̃lp = R̃p−) associated with R̄−. Furthermore, the topology is
different, with the unstable ring domain separating the two
distinct phases, free and pinned ones. As a result, a second pair
of jump and landing positions associated with the asymptotic
circle R̄+ appears along the vortex trajectory of Fig. 5(c);
these are located at the radii R̃jp = R̃p+ and R̃lp = R̃ f + and
describe the depinning process from the pinned branch back
to the free branch (while the previous pair at radii R̃ f − and
R̃p− describes the pinning process from the free to the pinned
branch). The pinning (at R̄−) and depinning (at R̄+) processes
in the asymptotic coordinates are shown in Fig. 5(d). The
bistable area BR̄ with coexisting free and pinned states has
a ring-shape as well (colored in magenta, the superposition of
blue and red); the two pairs of jump and landing points in tip
space have collapsed to two pinning and depinning points in
asymptotic space.

In the present situation describing the strong pinning onset
for a generic anisotropic potential, the unstable domain UR̃
grows out of an isolated point (in fact, R̃m) and assumes the
shape of an ellipse that is simply connected; as a result, a
vortex incident on the defect undergoes only a single jump;
see Fig. 6. The bistable domain BR̄ is simply connected as
well, but now features two cusps at the end-points of the
crescent, see Fig. 7. The bistability again involves two states,
but we cannot associate them with separated pinned and free
phases—we thus denote them by “blue”-type and “red”-type.
The two states approach one another further away from the
defect and are distinguishable only in the region close to
bistability; in Fig. 7, this is indicated with appropriate color
coding. Note that the Landau-type expansion underlying the
coloring in Fig. 7 fails at large distances; going beyond a local
expansion near R̃m, the distortion of the vortex vanishes at
large distances and red/blue colors faint away to approach
“white.”

E. Topology

Let us discuss the origin of the different topologies that
we encountered for the isotropic and anisotropic defects in
the discussion above. Specifically, the precise number and
position of the contact points have an elegant topological
explanation. When a vortex tip touches the edges R̃jp of the
unstable domain there are two characteristic directions: One
is given by the unstable eigenvector v−(R̃jp) discussed in
Sec. III B along which the tip will jump initially; the second
is the tangent vector to the boundary ∂UR̃ of the unstable
domain, i.e., to the unstable ellipse. While the former is ap-
proximately constant and parallel to the unstable u direction
along R̃jp, the latter winds around the ellipse exactly once after
a full turn around UR̃. The contact points R̃c,± of the unstable
and stable ellipses then coincide with those points on the
ellipse where the tangent vector are parallel and antiparallel
to v−; at these points, the tip touches the unstable ellipse
but does not undergo a jump any more. Given the different
winding numbers of v− and of the tangent vector, there are
exactly two points along the circumference of UR̃ where the
tangent vector is parallel/antiparallel to the u direction; these
are the points found in Eq. (70). This argument remains valid
as long as the contour ∂UR̃ is not deformed to cross/encircle
the singular point of the v−(R̃jp) field residing at the defect
center.

The same arguments allow us to understand the absence
of contact points in the isotropic scenario: For an isotropic
potential, the winding number nU of the tangent vector around
UR̃ remains unchanged, i.e., nU = ±1, while the unstable
direction v− is pointing along the radius and thus acquires
a unit winding number as well. Indeed, the two directions,
tangent and jump, then rotate simultaneously and do not wind
around each other after a full rotation, explaining the absence
of contact points in the isotropic situation.

F. Energy jumps

Within strong pinning theory, the energy jump �epin as-
sociated with the vortex tip jump between bistable vortex
configurations at the boundaries of BR̄ determines the pinning
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FIG. 8. Energy jump �epin along the edges of the bistable do-
main BR̄ as a function of the transverse coordinate v̄; we have used
the same parameters as in Fig. 6. The energy jump vanishes at the
cusps ±v̄c, as the bistable tip configurations become identical and
their energies turn equal.

force density Fpin and the critical current jc; see Eqs. (19) and
(20). Formally, the energy jump �epin is defined as the differ-
ence in energy epin(R̃; R̄) between vortex configurations with
tips in the jump [R̃jp(R̄)] and landing [R̃lp(R̄) = R̃jp(R̄) +
�R̃] positions at fixed asymptotic position R̄ ∈ ∂BR̄,

�epin(R̄ ∈ ∂BR̄ ) ≡ epin[R̃jp(R̄); R̄] − epin[R̃lp(R̄); R̄]. (78)

In Sec. III B 2 above, we have found that the jump �R̃ is
mainly forward directed along u. Making use of the expansion
(64) of epin at R̃jp and the result (65) for the jump distance �ũ,
we find the energy jumps �epin in tip- and asymptotic space
in the form [cf. with the isotropic result Eq. (27)],

�epin(R̄) ≈ γ

72
�ũ4 ≈

(
9

8γ 3

)
[γ ũjp(ṽ) + β ṽ]4

≈
(

9

8γ 3

)[
(γ δ − β2)

(
ṽ2

c − ṽ2
)]2

≈
(

9

8γ 3

)[
(γ δ − β2)

(1 + λ+/C̄)2

(
v̄2

c − v̄2
)]2

. (79)

Here, we have used the parametric shape ũjp(ṽ) in Eq. (59)
for the jumping ellipse as well as Eq. (72) to lowest order,
ṽ ≈ v̄/(1 + λ+/C̄), to relate the tip and asymptotic positions
in the last equation. The energy jump (79) scales as (κm −
1)2 and is shown in Fig. 8. It depends on the v coordinate
of the asymptotic (or tip) position only and vanishes at the
cusps R̄c,±, see Eq. (76) [or at the touching points R̃c,±, see
Eq. (70)]. To order (κm − 1)2, the energy jumps are identical
at the left and right edges of the bistable domain BR̄.

Following the two bistable branches and the associated
energy jumps between them to the inside of BR̄, the latter van-
ish along the branch crossing line R̄0. In the thermodynamic
analog, this line corresponds to the first-order equilibrium
transition line that is framed by the spinodal lines; for the
isotropic defect, this is the circle with radius R̄0 = x0 framed
by the spinodal circles with radii R̄±; see Figs. 4 and 5(d). For
the anisotropic defect with β = 0, the branch crossing line

R̄0 = (ū0, v̄0) is given by the centered parabola (ū(0), v̄ (0) ) in
Eq. (73) [the latter describes the shape of BR̄ to lowest order,
while result (80) for the branch crossing line is exact within
our Landau-type expansion]; hence,

ū0 ≈ a

2C̄

1

(1 + λ+/C̄)2
v̄2

0 . (80)

The result for a finite skew parameter β �= 0 is given by
Eq. (C27) in Appendix C 1.

G. Pinning force density

The pinning force density Fpin is defined as the average
force density exerted on a vortex line as it moves across the
superconducting sample. For the isotropic case described in
Sec. II E, the individual pinning force fpin(R̄) = −∇R̄epin(R̄),
see Eq. (10), is directed radially and the force density Fpin is
given by the (constant) energy jump �epin ∝ (κ − 1)2 on the
edge ∂BR̄ of the bistable domain and the transverse length
t⊥ ∼ ξ , hence, Fpin ∝ t⊥�epin scales as (κ − 1)2.

For an anisotropic defect, the pinning force depends on the
vortex direction of motion v̂ = (cos θ, sin θ ) relative to the
axis of the bistable region BR̄; the latter is of a flat parabolic
shape that is open towards the unstable direction ū, see Fig. 7,
much different from the circle characteristic of the isotropic
defect. We choose angles −π/2 � θ � π/2 measured from
the unstable direction ū, i.e., vortices incident from the left;
the case of larger impact angles |θ | > π/2 corresponds to vor-
tices incident from the right and can be reduced to the previous
case by inverting the sign of the parameter a in the expansion
(61), i.e., the curvature of the parabola (73); to our leading
order analysis, the results remain the same. Furthermore, we
have to account for nonuniformity of the energy jump (79)
along the boundary of BR̄.

Given the flat shape of BR̄, we can separate two regimes
of impact angles θ onto BR̄: the frontal impact angles with
|θ | < θ∗ include those asymptotic vortex trajectories that un-
dergo exactly one jump on the far edge of BR̄, see the blue
dot and blue boundary ∂Bb

R̄ in Fig. 7. Second, we define the
transverse regime with angles θ∗ � |θ | � π/2, where vor-
tices crossing the bistable domain undergo either no jump, one
or two. The angle θ∗ then is given by the (outer) tangent of the
bistable domain at the cusps R̄c,± and we find the result

tan(θ∗) = (C̄ + λ+)

a

√
γ δ − β2

2γ C̄(κm − 1)
, (81)

implying that π/2 − θ∗ ∝ √
κm − 1 is small,

θ∗ ≈ π/2 − a

(C̄ + λ+)

√
2γ C̄(κm − 1)

γ δ − β2
. (82)

Let us assume a uniform distribution of identical
anisotropic defects, all with their unstable direction pointing
along x. While the jumps in energy still scale as �epin ∝
(κm − 1)2, vortices with a frontal impact angle |θ | < θ∗ ex-
perience a trapping distance that is no longer finite but grows
from zero as v̄c ∝ √

κm − 1 along y, cf. Eq. (76). Hence, we
expect that in this angular regime, the pinning force density
scales as F ‖

pin ∝ (κm − 1)5/2. Indeed, the precise calculation in
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Appendix A shows that for a frontal impact, the pinning force
density F<

pin is (i) pointing along the unstable direction ū and

(ii) turns out independent on the angle θ , F<
pin ≡ [F ‖

pin, 0] with

F ‖
pin = np

2v̄c

a0

〈�epin〉
a0

, (83)

where 〈�epin〉 denotes the average energy jump evaluated
along the v direction.

However, vortices with a transverse impact on BR̄ are
trapped within the narrow extension ūc ∝ (κm − 1) of BR̄
along x, see again Eq. (76), and we expect a different scaling
F⊥

pin ∝ (κm − 1)3. The detailed derivation in Appendix A is
carried out for an impact angle θ = π/2 and provides us with
the precise result Fπ/2

pin ≡ [0, F⊥
pin] with

F⊥
pin = np

2v̄c

a0

〈�epin∂v̄ ū〉
a0

(84)

and the average 〈�epin∂v̄ ū〉 again evaluated along the v direc-
tion.

Making use of the result (79) for �epin(v̄) in Eqs. (83)
and (84), we find explicit expressions for the pinning force
densities for impacts parallel and perpendicular to the unstable
direction u,

F ‖
pin ≈ 24

5
np

√
2C̄/γ

a0

C̄2

γ a0

γ (1 + λ+/C̄)√
γ δ − β2

(κm − 1)5/2 (85)

and

F⊥
pin ≈ 3

C̄2

γ a0

γ a/a0

γ δ − β2
(κm − 1)3, (86)

that confirm the above scaling estimates. Here, we have made
use of the definition (76) of v̄c and have brought the final
result into a form similar to the isotropic result (31) (with
the length

√
C̄/γ and the force C̄2/γ a0, equal to ξ/

√
3κ and

ep/12κ2 for a Lorentzian potential). Note that the result (85)
depends on the curvature a of the crescent via δ, Eq. (52), that
involves a2 only, but higher-order corrections will introduce
an asymmetry between left- and right moving vortices.

Within the interval θ∗ < θ < π/2, the longitudinal force
Fpin,u along u decays to zero and the transverse force Fpin,v

along v becomes finite, assuming the value (86) at θ = π/2.
The two force components have been evaluated numerically
over the entire angular regime and the results are shown in
Fig. 9.

1. Anisotropic critical force density Fc

When the vortex system is subjected to a current density j,
the associated Lorentz force FL(ϕ) = j ∧ B/c directed along
ϕ pushes the vortices across the defects. When FL is directed
along u, we have Fpin = [F ‖

pin, 0] and the vortex system gets

immobilized at force densities FL < Fc = F ‖
pin (or associated

current densities jc). When FL is directed away from u, the
driving component along v has to be compensated by a finite
pinning force Fpin,v that appears only for angles θ∗ < θ <

π/2. Hence, the angles of force and motion, ϕ associated
with the Lorentz force FL(ϕ) and θ providing the direction
of the pinning force Fpin(θ ), are different. We find them, along

0 π/8
0

0.5

1

1.5

0 π/4
0

1

Fpin,u/[np(ep/a0)(ξ/a0)(κm − 1)5/2]

Fpin,v/[np(ep/a0)(ξ/a0)(κm − 1)3]

F
‖
pin

F⊥
pin

F
c
/
F

‖ p
in

θ π/2

θ∗

ϕ π/2

FIG. 9. Top: scaled pinning force densities Fpin,u and Fpin,v versus
impact angle θ ; we have used the same parameters as in Fig. 6.
The longitudinal (along u) force Fpin,u remains constant and equal
to F ‖

pin for all angles |θ | < θ∗, while the transverse (along v) com-
ponent Fpin,v vanishes in this regime. The longitudinal force drops
and vanishes over the narrow interval θ∗ < |θ | < π/2, while the
transverse force Fpin,v increases up to F⊥

pin. Bottom: critical force
density Fc (directed along the Lorentz force FL = j ∧ B/c) versus
angle ϕ of the Lorentz force; the dashed line shows the upper bound
Fc < F⊥

pin/ sin(ϕ).

with the critical force density Fc(ϕ), by solving the dynamical
force equation (20) at vanishing velocity v = 0,

Fc(ϕ) = Fpin(θ ), (87)

resulting in a critical force density

Fc(ϕ) =
√

F 2
pin,u(θ ) + F 2

pin,v (θ ), (88)

with angles ϕ and θ related via

tan ϕ = Fpin,v (θ )

Fpin,u(θ )
. (89)

Since Fpin,v (θ < θ∗) = 0, the entire interval θ < θ∗ is com-
pressed to ϕ = 0 and it is the narrow regime θ∗ < θ < π/2
that determines the angular characteristic of the critical force
density Fc(ϕ). The critical force density Fc(ϕ) is peaked at
ϕ = 0 as shown in Fig. 9 (with a correspondingly sharp peak
in jc at right angles). Combing Eqs. (88) and (89), we can
derive a simple expression bounding the function Fc(ϕ),

Fc(ϕ) = Fpin,v (θ )
√

1 + cot2(ϕ) �
F⊥

pin

sin(ϕ)
, (90)

that traces Fc(ϕ) over a wide angular region; see the dashed
line in Fig. 9. At small values of ϕ, we cannot ignore the
angular dependence in Fpin,v (θ ) any more that finally cuts off
the divergence ∝ 1/ sin(ϕ) at the value Fc(ϕ → 0) → F ‖

pin.

2. Isotropized pinning force density Fpin

In a last step, we assume an ensemble of equal anisotropic
defects that are uniformly distributed in space and randomly
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oriented. In this situation, we have to perform an additional
average over the instability directions ûi associated with the
different defects i = 1, . . . N . Neglecting the modification of
Fpin(θ ) away from [F ‖

pin, 0] in the small angular regions θ∗ <

|θ | < π/2, we find that the force along any direction R̂ has
the magnitude

Fpin ≈ 1

N

N∑
i=1

|(F ‖
pinûi ) · R̂|

≈ F ‖
pin

∫ π/2

−π/2

dθ

π
cos θ = 2

π
F ‖

pin. (91)

As a result of the averaging over the angular directions, the
pinning force density is now effectively isotropic and directed
against the velocity v of the vortex motion.

IV. UNIAXIAL DEFECT

Above, we have found unstable and bistable domains
UR̃ and BR̄ for the uniaxially anisotropic defect that are
vastly different in shape when compared with those for the
isotropic defect. In the present section, we consider a weakly
anisotropic defect with a small uniaxial deformation quanti-
fied by the small parameter ε to understand how these results
relate to one another as the anisotropy parameter ε vanishes.
Furthermore, the unstable and bistable domains UR̃ and BR̄ for
the isotropic and anisotropic defect differ in their topology.
The second goal of this section then is to introduce the so-
called merger points R̃s and R̄s that define a second class of
important points, besides the onset points R̃m and R̄m, in the
buildup of the strong pinning landscape. Indeed, the separate
pieces making up the domains UR̃ and BR̄ for the anisotropic
defect, see Fig. 2(a), merge to define the nonsimply connected
ring shapes typical for the isotropic defect; see Fig. 2(b).
Technically, while the onset points R̃m are defined as minima
of the Hessian determinant D(R̃), the merger points R̃s turn
out to be associated with saddle points of D(R̃).

Given the specific goals of this section, we choose the
simplest anisotropic extension of the potential (2) in the form
of a uniaxially anisotropic defect with a stretched (along the
y axis) Lorentzian

ep(x̃, ỹ) = −ep

(
1 + x̃2

2ξ 2
+ ỹ2

2ξ 2(1 + ε)2

)−1

, (92)

with equipotential lines described by ellipses

x̃2

ξ 2
+ ỹ2

ξ 2(1 + ε)2 = const. (93)

and the small parameter 0 < ε 
 1 quantifying the degree of
anisotropy. The same analysis as below, though slightly more
involved, could be done for a similar potential that is phys-
ically realizable with two neighboring pointlike defects [17]
with the distance parameter d 
 ξ determining the amount of
anisotropy (see also Ref. [24] where a pair of defects has been
studied away from the strong pinning onset). At fixed radius
R̃2 = x̃2 + ỹ2, the potential (92) assumes maxima in energy
and in negative curvature on the x axis, and corresponding
minima on the y axis. Along both axes, the pinning force is
directed radially towards the origin and the Labusch criterion

(37) for strong pinning is determined solely by the curvature
along the radial direction. At the onset of strong pinning, the
unstable and bistable domains then first emerge along the x
axis at the points R̃m = (±√

2ξ, 0) and R̄m = (±2
√

2ξ, 0)
when

κm = κ (R̃m) = ep

4C̄ξ 2
= 1. (94)

Upon increasing the pinning strength κm, e.g., via softening
of the vortex lattice as described by a decrease in C̄, the
unstable and bistable domains UR̃ and BR̄ expand away from
these points, and eventually merge along the y axis at R̃s =
(0,±√

2ξ (1 + ε)), R̄s = (0,±2
√

2ξ (1 + ε)) when

κs = κ (R̃s) = ep

4C̄ξ 2(1 + ε)2
= κm

(1 + ε)2
= 1, (95)

i.e., for κm = (1 + ε)2. The evolution of the strong pinning
landscape from onset to merging takes place in the interval
κm ∈ [1, (1 + ε)2]; pushing κm beyond this interval, we will
analyze the change in topology and appearance of nonsimply
connected unstable and bistable domains after the merging.

The quantity determining the shape of the unstable domain
UR̃ is the Hessian determinant D(R̃) of the total vortex energy
epin(R̃; R̄), see Eqs. (39) and (1), respectively. At onset, the
minimum of D(R̃) touches zero for the first time; with in-
creasing κm, this minimum drops below zero and the condition
D(R̃) = 0 determines the unstable ellipse that expands in R̃
space. Viewing the function D(R̃) as a height function of
a landscape in the R̃ plane, this corresponds to filling this
landscape, e.g., with water, up to the height level D = 0 with
the resulting lake representing the unstable domain. In the
present uniaxially symmetric case, a pair of unstable ellipses
grow simultaneously, bend around the equipotential line near
the radius ∼√

2ξ , and finally touch upon merging on the y
axis. In our geometric interpretation, this corresponds to the
merging of the two (water-filled) valleys that happens in a
saddle-point of the function D(R̃) at the height D = 0. Hence,
the merger point R̃s correspond to saddles in D(R̃) with

D(R̃s) = 0, ∇R̃ D(R)
∣∣
R̃s

= 0, (96)

and

det[Hess[D(R̃)]]|R̃s
< 0, (97)

cf. Eq. (47).
In our calculation of D(R̃), we exploit that the Hessian in

Eq. (39) does not depend on the asymptotic position R̄ and we
can set it to zero,

D(R̃) = det
{
Hess

[
C̄R̃2/2 + e(i)

p (R̃) + δep(R̃)
]}

, (98)

where we have split off the anisotropic correction δep(R̃) =
ep(R̃) − e(i)

p (R̃) away from the isotropic potential e(i)
p (R̃) with

ε = 0. In the following, we perform a perturbative analysis
in ε 
 1 around the isotropic limit; this motivates our use of
polar (tip) coordinates R̃ and φ̃.

The isotropic contribution H(i) to the Hessian matrix H is
diagonal with components

H(i)

R̃R̃
(R̃) ≡ ∂2

R̃

[
C̄R̃2/2 + e(i)

p (R̃)
]

= C̄ + ∂2
R̃e(i)

p (R̃) (99)
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and

H(i)

φ̃φ̃
(R̃) ≡ (

R̃−2∂2
φ̃φ̃

+ R̃−1∂R̃

)[
C̄R̃2/2 + e(i)

p (R̃)
]

= C̄ − f (i)
p (R̃)/R̃. (100)

The radial component H(i)

R̃R̃
∝ (κm − 1) vanishes at onset,

while H(i)

φ̃φ̃
remains finite, positive, and approximately

constant.
The anisotropic component δep(R̃) introduces corrections

∝ ε; these significantly modify the radial entry of the full
Hessian while leaving its azimutal component Hφ̃φ̃ approxi-
mately unchanged; the off-diagonal entries of the full Hessian
scale as ε and hence contribute in second order of ε to D(R̃).
As a result, the sign change in the determinant

D(R̃) ≈ HR̃R̃(R̃)Hφ̃φ̃ (R̃) + O(ε2) (101)

is determined by

HR̃R̃(R̃) = H(i)

R̃R̃
(R̃) + ∂2

R̃δep(R̃) (102)

for radii close to R̃m with δR̃ = R̃ − R̃m ≈ O(
√

κm − 1). We
expand the potential (92) around the isotropic part e(i)

p (R̃),

δep(R̃) ≈ −ε [∂R̃e(i)
p (R̃)]R̃ sin2 φ̃, (103)

and additionally expand both e(i)
p (R̃) and δep(R̃) around

R̃m, keeping terms ∝ ε
√

(κm − 1). The radial entry of the
anisotropic Hessian matrix then assumes the form

HR̃R̃(R̃) ≈ C̄ [1 − κm(φ̃)] + γ [δR̃2/2 − ε sin2 φ̃ R̃mδR̃],

(104)

with γ = ∂4
R̃
e(i)

p (R̃)|R̃m
and the angle-dependent Labusch pa-

rameter

κm(φ̃) ≡ maxR̃

[−∂2
R̃
ep(R̃, φ̃)|φ̃

]
C̄

= κm − 2ε sin2 φ̃. (105)

The edges of the unstable region UR̃ then can be obtained by
imposing the condition HR̃R̃(R̃) = 0 and the solutions to the
corresponding quadratic equation define the jump positions
R̃jp(φ̃) (or boundaries ∂UR̃)

R̃jp(φ̃) ≈ R̃m(φ̃) ± δR̃(φ̃). (106)

These are centered around the (‘large’) ellipse defined by

R̃m(φ̃) = R̃m(1 + ε sin2 φ̃) (107)

and separated by [cf. Eq. (23)]

2 δR̃(φ̃) =
√

8C̄

γ
[κm(φ̃) − 1] (108)

along the radius. Making use of the form (105) of κm(φ̃)
and assuming a small value of κm > 1 near onset, we obtain
the jump line in the form of a (“small”) ellipse centered at
[±R̃m, 0],

γ δR̃2 + 4εC̄ φ̃2 = 2C̄(κm − 1). (109)

Hence, we find that the anisotropic results are obtained
from the isotropic ones by replacing the circle R̃m by the
ellipse R̃m(φ̃) and substituting κ → κm(φ̃) in the width (23),

FIG. 10. Unstable and bistable domains close to the onset of
strong pinning for a uniaxial defect (92) centered at the origin,
with ε = 0.1 and κm − 1 = 0.01. The pinning potential is steepest at
angles φ̃ = 0, π and least steep at φ̃ = ±π/2, hence strong pinning
is realized first in a small interval around φ̃ = 0, π (solid black
dots) where κm(φ̃) � 1. (a) The unstable domain UR̃ in tip space
is bounded by red/blue solid lines [jump lines JR̃, see Eq. (106)];
dashed lines mark the associated landing lines LR̃, see Eq. (112).
(b) Focus on the unstable domain near φ̃ = 0 in polar coordinates
R̃ and φ̃. The jumping (solid) and landing (dashed) lines have the
approximate shape of ellipses, see Eq. (109), in agreement with our
analysis of Sec. III B. (c) The bistable domain BR̄ in asymptotic
space involves symmetric crescents centered at φ̄ = 0, π and a nar-
row width ∝ [κm(φ̄) − 1]3/2, see Eq. (110), in agreement with the
analysis of Sec. III C. (d) Focus on the bistable domain at φ̄ = 0 in
polar coordinates R̄ and φ̄. Red/blue colors indicate different vortex
configurations as quantified through the order parameter R̃ − R̃m(φ̃).

see Figs. 10(a) and 10(b) evaluated for small values κm − 1 =
0.01 and ε = 0.1.

Analogously, the boundaries of the bistable domain BR̄ can
be found by applying the same substitutions to the result (28),
see Figs. 10(c) and 10(d),

R̄(φ̄) ≈ R̄m(φ̄) ± δR̄(φ̄), (110)

with R̄m(φ̄) = R̄m(1 + ε sin2 φ̄) and the width

2 δR̄(φ̄) = 2

3

√
8C̄

γ
(κm(φ̃) − 1)3/2. (111)

The landing line LR̃ is given by [see Eq. (26) and note that
the jump point is shifted by ũjp away from x̃m, see Eq. (22)]

R̃lp(φ̃) ≈ R̃m(φ̃) ∓ 2 δR̃(φ̃). (112)
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An additional complication is the finite angular extension
of the unstable and bistable domains UR̃ and BR̄; these are
limited by the condition κm(φmax) = 1, providing us with the
constraint

φ̃max = φ̄max ≈ ±
√

κm − 1

2ε
(113)

near the strong pinning onset with (κm − 1) 
 ε. The re-
sulting domains UR̃ have characteristic extensions of scale
∝ √

κm − 1; see Fig. 10.
Close to merging (marked by crosses in the figure) at φ =

±π/2, we define the deviation δφ = π/2 − φ with δφ 
 1,
and imposing the condition κm(φmax) = 1, we find

δφ̃max = δφ̄max ≈
√

1 − κm − 1

2ε
≈

√
1 − κs

2ε
. (114)

The corresponding geometries of UR̃ and BR̄ are shown in
Fig. 11 for 1 − κs ≈ 0.01 and ε = 0.1. Finally, δφ̃max vanishes
at merging for κs = 1 (or κm − 1 ≈ 2ε), in agreement, to order
ε, with the exact result (95).

Pushing the Labusch parameter beyond the merger with
κs > 1 or κm > (1 + ε)2 ≈ 1 + 2ε, the unstable and bistable
regimes UR̃ and BR̄ change their topology: they develop a
(nonsimply connected) ringlike geometry with separated inner
and outer edges that are a finite distance apart in the radial
direction at all angles φ̃ and φ̄. The situation after the merger
is shown in Fig. 12 for κs − 1 ≈ 0.01 and ε = 0.1, with the
merging points R̃s and R̄s marked by crosses.

V. MERGER POINTS

The merging of unstable and bistable domains is a general
feature of irregular pinning potentials that is relevant beyond
the simple example of a weakly anisotropic uniaxial defect
discussed above. While the exact geometries of UR̃ and BR̄
depend on the precise shape of the pinning potential, their
shape close to merging is universal. Below, we summarize the
results obtained from generalizing the expansion in Sec. III A
to saddle points R̃s of the determinant D(R̃); the detailed
analysis is deferred to the Appendix B. As with the onset of
strong pinning, the merger of two domains induces a change in
topology in the unstable and bistable domains; we will discuss
these topological aspects of onsets and mergers in Secs. V D
and VI below.

A. Expansion near merger

Following the strategy of Sec. III A, we expand the energy
functional around a saddle point R̃s of the determinant D(R̃)
to obtain closed expressions for the unstable and bistable
domains at merging. In doing so, we again define local co-
ordinate systems (ũ, ṽ) and (ū, v̄) in tip and asymptotic space
centered at the saddle point R̃s and its dual coordinate R̄s in
asymptotic space, respectively. The expansion corresponding
to Eq. (61) takes the form

epin(R̃; R̄) = C̄

2
(1 − κs) ũ2 + C̄ + λ+,s

2
ṽ2 + as

2
ũṽ2

+ αs

4
ũ2ṽ2 + βs

6
ũ3ṽ + γs

24
ũ4 − C̄ūũ − C̄v̄ṽ,

(115)

FIG. 11. Unstable and bistable domains before merging for a
uniaxial defect (92) centered at the origin, with ε = 0.1 and 1 − κs ≈
0.01. Strong pinning is realized everywhere but in a small interval
around φ̃ = ±π/2 where κm(φ̃) < 1. (a) The unstable domain UR̃

in the tip plane is bounded by the solid red/blue jump lines JR̃, see
Eq. (106) and involves two strongly bent ellipses originating from
angles φ̃ = 0, π (black dots) and approaching one another close to
φ̃ = ±π/2 (black crosses); red/blue dashed lines are landing points
as given by Eqs. (112). (b) Focus (in polar coordinates R̃, φ̃) on the
tips of the unstable domain near φ̃ = π/2. (c) The bistable domain
BR̄ in the asymptotic space consists of thin symmetric crescents
(colored in magenta) originating from φ̄ = 0, π , with the delimiting
black solid lines given by Eq. (110). (d) Focus on the cusps of
the bistable domain close to φ̄ = π/2 in polar coordinates R̄, φ̄.
Red/blue colors indicate different vortex configurations as quantified
through the order parameter R̃ − R̃m(φ̄).

with κs ≡ −λ−(R̃s)/C̄, λ+,s ≡ λ+(R̃s) and the remaining co-
efficients defined in analogy to Eq. (61). The saddle-point
condition (97) implies that [cf. (51) and (53)]

γsδs − β2
s < 0, (116)

with

δs ≡ αs − 2a2
s

C̄ + λ+,s
(117)

(for the saddle point there is no condition on the trace of the
Hessian). The coefficient (1 − κs) changes sign at some value
of the pinning strength and serves as the small parameter. The
mapping of the two-dimensional pinning energy (115) to an
effective one-dimensional Landau theory of the van der Waals
kind is discussed in Appendix C 2; see Eq. (C30).
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FIG. 12. Unstable and bistable domains for a uniaxial defect (92)
after merging, with ε = 0.1 and κs − 1 ≈ 0.01. (a) The unstable
domain UR̃ in tip plane is enclosed between the jump lines JR̃ [solid
red/blue, see Eq. (106)] and takes the shape of a deformed ring with
a wider (narrower) width at strongest (weakest) pinning near the
solid dots (crosses). Red/blue dashed lines mark the landing positions
LR̃ of the vortex tips and are given by Eq. (112). (b) Focus on the
narrowing in the unstable domain close to the merger points (crosses)
at φ̃ = π/2 in the polar coordinates R̃, φ̃. (c) The bistable domain
BR̄ in asymptotic space is a narrow ring (colored in magenta) thicker
(thinner) at points of strongest (weakest) pinning near φ̄ = 0, π

(φ̄ = ±π/2); black lines correspond to Eq. (110). (d) Focus on the
constriction in the bistable domain close to φ̄ = π/2 in polar coordi-
nates R̄, φ̄. Red/blue colors indicate different vortex configurations
as quantified through the order parameter R̃ − R̃m(φ̄).

B. Unstable domain UR̃

1. Jump line JR̃

The boundary of the unstable domain UR̃ is determined by
the jump condition D(R̃s,jp ) = 0 that leads us to the quadratic
form [cf. (56)]

[γs ũ2 + 2βs ũṽ + δs ṽ2]R̃s,jp
= 2C̄(κs − 1). (118)

Equation (118) describes a hyperbola (centered at R̃s) as its
associated determinant is negative, see Eq. (116).

As shown in Fig. 13, the geometry of the unstable domain
UR̃ changes drastically when 1 − κs changes sign. Before
merging, i.e., for 1 − κs > 0, the unstable domain [top and
bottom regions in Fig. 13(a)] is disconnected along the stable
v direction and the two red/blue branches of the hyperbola
(118) describe the tips of UR̃. When κs goes to unity, the tips
of the unstable domain merge at the saddle point R̃s. After
merging, the unstable domain extends continuously from the
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0

−3 0

−25

0

(a) (b)

ũ/ξ
√

1 − κs

ṽ
/
ξ
√

1
−

κ
s

ũ/ξ
√

κs − 1

ṽ
/
ξ
√

κ
s
−

1

FIG. 13. Jump lines JR̃ (solid red/blue) and landing lines LR̃

(dashed red/blue) in tip space R̃ (in units of ξ ), with the hyper-
bola JR̃ defining the edge ∂UR̃ of the unstable domain UR̃, before
(a) and after (b) merging, for 1 − κs = ±0.01. Parameters are λ−,s =
−0.25 ep/ξ

2, λ+,s = 0, and as ≈ 0.035 ep/ξ
3, αs = −0.025 ep/ξ

4,
βs = 0, γs ≈ 0.68 ep/ξ

4. A finite skew parameter βs = 0.025ep/ξ
4

tilts the hyperbola away from the axes (dotted curves). Crosses corre-
spond to the vertices (B5) and (B9) of the hyperbola before and after
merging. Pairs of solid and open circles connected via long arrows
are examples of pairs of jumping and landing tip positions. After
merging, see panel (b), the unstable domain UR̃ is connected along
the ṽ axis, dividing the tip coordinate plane into two separate regions.
The jumping and landing hyperbolas coincide at their vertices before
merging, see panel (a), but not thereafter, see panel (b), where the
jumping and landing hyperbolas are separated (vertices on LR̃ are
marked with open red/blue stars) and no contact point is present.
Note the rotation by 90 degrees of the unstable direction with respect
to Figs. 11(b) and 12(b).

top to the bottom in Fig. 13(b) with a finite width along the
unstable u direction, similar to the isotropic case shown in
Fig. 5(c). Correspondingly, the two (red and blue) branches of
the hyperbola (118) now describe the edges of UR̃. Hence, the
merging at κs = 1 produces a change in the (local) topology of
UR̃, with the gap along v at κs − 1 < 0 closing and reopening
along the unstable u direction at κs − 1 > 0.

2. Landing line LR̃

To find the second bistable vortex tip configuration R̃s,lp

associated to the edges of BR̄ before and after merging, we
repeat the steps of Sec. III B 2. For the jump vector �R̃s =
R̃s,lp − R̃s,jp, we find the result

�ũs(ṽ) = −3(γs ũs,jp(ṽ) + βs ṽ)/γs, (119)

�ṽs(ṽ) = −[as/(C̄ + λs,+)]ṽ �ũs(ṽ), (120)

cf. Eqs. (68) and (69) above. Before merging, we make use
of the parametrization for the jump coordinate ũs,jp(ṽ) in
Eq. (B3), while the parametrization ṽs,jp(ũ) in Eq. (B7) has
to be used after merging.

Before merging, when 1 − κs > 0, the vertices of the
landing and jumping hyperbolas coincide and the jump (119)–
(120) vanishes at these points. Moreover, as for the contact
points (70) close to onset of strong pinning, the tangent to the
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jumping and landing hyperbolas at the vertices is parallel to
the u direction, as is visible in Fig. 13(a).

For κs = 1, the tips of UR̃ merge and both the jumping
and landing hyperbolas coincide at R̃s. After merging, i.e., for
κs − 1 > 0, the condition �ũs = �ṽs = 0 cannot be realized
along the hyperbola (118) and the jumping and landing lines
separate completely; as a result, both the jumping distance
�R̃s as well as the jump in energy �epin are always finite (see
also Appendix C 2).

C. Bistable domain BR̄

The set of asymptotic positions corresponding to UR̃ before
and after merging, i.e., the bistable domain BR̄, can be found
by systematically repeating the steps in Sec. III C. Applying

the force balance equation ∇Repin(R; R̄)|R̃ = 0 to the energy
expansion (115), we find the counterpart of Eqs. (72),

C̄ū = C̄(1 − κs)ũ + as

2
ṽ2 + γs

6
ũ3 + βs

2
ũ2ṽ + αs

2
ũṽ2,

C̄v̄ = (C̄ + λs,+)ṽ + as ũṽ + βs

6
ũ3 + αs

2
ũ2ṽ, (121)

relating tip and asymptotic positions close to merging. As
for the unstable domain, the topology of BR̄ depends on the
sign of 1 − κs. The bistable domain BR̄ before merging is
shown in Fig. 14(a) for 1 − κs = 0.01. It consists of two parts,
corresponding to the two pieces of UR̃ for 1 − κs > 0, that
terminate at the cusps R̄<

s,c,±; see Eq. (B15). After merging,
when κs − 1 > 0, the cusps have vanished and the edges
have rearranged to define a connected bistable region; see
Fig. 14(b).

D. Topological aspect of mergers

To discuss the topological aspect of mergers, it is con-
venient to consider some examples of defects with specific
anisotropies. In Sec. IV, we have analyzed the case of a uniax-
ial defect with a quadrupolar anisotropy δep ∝ ε sin2 φ̃ in the
pinning potential, see Eq. (103), that produced a degenerate
onset at symmetric points [±x̃m, 0]. Below, we consider again
a weakly anisotropic defect centered in the origin but with
a dipolar deformation δep ∝ ε cos φ̃ that results in an angle-
dependent Labusch parameter

κm(φ̃) = κm − ε cos φ̃, (122)

cf. Eq. (105). Second, we discuss a defect with a warped well
shape.

Such nontrivial defect potentials could result from a local
accumulation of several isotropic defects as is the case in the
rare events described in Ref. [17]. Here, our examples serve as
a preparation for the discussion of strong pinning in a random
two-dimensional pinning potential, see Sec. VI below. Such
two-dimensional pinning landscapes have been mapped out
in a thin superconducting film [26] using the SQUID-on-tip
imaging technique [26]. In bulk superconductors, defects are
distributed in all three dimensions that considerable compli-
cates the analysis; see Ref. [17].

The strong pinning onset of a defect with a dipolar distor-
tion appears in an isolated point on the negative x axis, with
the unstable ellipse UR̃ deforming with increasing κm into a
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ū/ξ(κm − 1)
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/
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√
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−
1
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ũ/ξ
√

κm − 1

ū/ξ(κm − 1)

v̄
/
ξ
√

κ
m

−
1

(b)

FIG. 14. Bistable domain BR̄ in asymptotic space R̄ before
(a) and after (b) merging, for 1 − κs = ±0.01 and parameters as in
Fig. 13. (a) Before merging, the bistable domain BR̄ consists of two
parts, corresponding to the two unstable regions UR̃ in Fig. 13(a).
These terminate in the cusps at R̄<

s,c,± that approach one another
along the dashed parabola (B16) to merge at κs = 1. Red/blue colors
indicate different vortex configurations as quantified through the or-
der parameter ũ − ũm(v̄), while magenta is associated to the bistable
region BR̄. Colored dots mark the asymptotic positions associated
to the pairs of jump positions in Fig. 13(a). (b) After merging, the
bistable domain is continuously connected; the cusps/critical points
have vanished and the dashed parabola turns into the branch cutting
line. The black crosses now mark the positions of strongest pinching
of BR̄, the colored dots mark the asymptotic positions associated to
the pairs of tip positions in Fig. 13(b).

horseshoe that is open on the positive x axis—the closing of
the horseshoe to produce a ring, see Fig. 15, then corresponds
to the local merger shown in Fig. 13. With this example in
mind, we can repeat the discussion in Sec. III E: The unstable
eigenvector v−(Rjp) points radially outwards from the origin
over the entire horseshoe, including the merging region at
positive x. However, the tangent to the boundary ∂UR̃ rotates
forward and back along the horseshoe as shown in Fig. 15 (we
attribute a direction to ∂UR̃ with the convention of following
the boundary with the unstable region on the left); in fact, over
most of the boundary, the tangent is simply orthogonal to v−,
with both vectors rotating together when going along ∂UR̃. At
the ends of the horseshoe, however, the tangent locally aligns
parallel (antiparallel) to v− and the two vectors rotate (anti-
clockwise) with respect to one another, with the total winding
equal to 2π . After the merger, this winding has disappeared,
with the resulting ring exhibiting no winding in the tangent
fields on the inner/outer boundary; as a result, the contact
points between the jump and landing lines have disappeared.

Furthermore, the merger changes the topology of UR̃ from
the simply connected horseshoe to the nonsimply connected
ring, while the number of components in UR̃ has not changed.
Note that the change in the relative winding is not due to
crossing the singularity of the vector field v− as alluded to
in Sec. III E—rather, it is the merger of the horseshoe tips that
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ỹ
/
ξ

x̃/ξ x̃/ξ

FIG. 15. Left: Unstable region UR̃ for a defect with dipolar asym-
metry. Upon the onset of strong pinning, an unstable ellipse appears
to the left of the defect center (black solid dot). With increasing
pinning strength (decreasing C̄) the ellipse grows and deforms into a
horseshoe geometry. The unstable eigenvector field v− (red arrows)
points radially outward away from the defect center. The tangent field
to the boundary ∂UR̃ (black arrows) follows the unstable direction at
an angle of π/2 over most of ∂UR̃, with the exception of the two
turning points where the tangent rotates by π with respect to v−,
producing a relative winding of 2π . Right: After the merger of the
turning points the unstable region UR̃ changes topology and assumes
the shape of a ring. The windings of the tangent field with respect to
the eigenvector-field v− vanish separately for both boundaries of UR̃.

rearranges the boundaries of UR̃ and make them encircle the
singularity.

In the above example, we have discussed a merger that
changes the connectedness of UR̃. However, a merger might
leave the connectedness of UR̃ unchanged, while modifying
the number of components, i.e., the number of disconnected
parts, in UR̃. Let us again consider a specific example in the
form of an anisotropic defect with a warped well shape, pro-
ducing several (in general, subsequent) onsets and mergers;
in Fig. 16, we consider a situation with three onset points
and subsequent individual mergers. After the onset, the three
ellipses define an unstable region UR̃ with three disconnected
parts that are simply connected each. This configuration is
characterized by its number of components measuring C = 3.
As two of the three ellipses merge, the number of components
of UR̃ reduces to C = 2, the next merger generates a horseshoe
that is still simply connected with C = 1. The final merger
produces a ring; while the number of components remains
unchanged, C = 1, the unstable area assumes a nonsimply
connected shape with a “hole”; we associate the index H = 1
with the appearance of this hole within UR̃. In physics terms,
the last merger producing a hole in UR̃ is associated with the
appearance of a pinned state; the unstable ring separates stable
tip positions that are associated with pinned and free vortex
configurations residing at small and large radii, respectively.

Defining the (topological) characteristic χ ≡ C − H , we
see that χ changes by unity at every onset and merger, either
through an increase (for an onset) or decrease (for a merger)
in the number of components C → C ± 1, or through the
appearance of a hole (in a merger) H → H + 1. Indeed, the
quantity χ is known as the Euler characteristic of a manifold
and describes its global topological properties; it generalizes
the well-known Euler characteristic of a polyhedron to sur-
faces and manifolds [32]. Finally, Morse theory [33] connects
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C = 3
H = 0
χ = 3
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H = 0
χ = 2

C = 1
H = 0
χ = 1

C = 1
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FIG. 16. The unstable domain UR̃ starting out with C = 3 com-
ponents in panel (a) changes topology in three steps: after the first
(b) and second (c) mergers the number of components C has changed
from three in panel (a) to two in panel (b) to one in panel (c),
leading to a horseshoe shape of UR̃. The third merger closes the
horseshoe to produce the ring geometry in panel (d) characterized by
the coefficients C = 1 and H = 1 (H denotes the number of “holes”
in UR̃); the Euler characteristic χ = C − H changes by unity in every
merger.

the Euler characteristic with the local differential properties
(minima, maxima, saddles) of that manifold, hence establish-
ing a connection between local onsets and mergers [at minima
and saddles of D(R̃)] and the global properties of UR̃ such
as the appearance of new pinned states. In Sec. VI below,
we consider the general case of a random pinning landscape
in two dimensions and discuss the connection between local
differential and global topological properties of UR̃ in the light
of Morse theory—the topology of bistable domains BR̄ then
follows trivially.

VI. UR̃ OF A TWO-DIMENSIONAL PINSCAPE

We consider a two-dimensional pinning landscape ep(R)
as relevant in a thin superconducting film; our analysis shall
serve as a first step towards an understanding of a random
strong-pinning landscape. Physically, such a strong pinscape
may result from a denser set of weak defects that combine to
irregularly shaped strong effective pins. These strong centers
should appear with a dilute density to validate our strong pin-
ning ansatz requiring a low density of strong pins. In Fig. 17,
we analyze an illustrative situation with n = 3 (anisotropic
Lorentzian) defects as given in Eq. (92) with ε = 0.1 and posi-
tions listed in Table I; these produce an unstable landscape UR̃
of considerable complexity already; see Fig. 17. Our defects
are compact with ep(R) → 0 vanishing at R → ∞; as a result,
epin becomes flat at infinity. Note that a dense assembly of
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ỹ
/
ξ

x̃/ξ x̃/ξ

FIG. 17. (a) Grayscale image of the pinning potential landscape
ep(R̃), with the three diamonds marking the positions of the defects,
see Table I. (b)–(f) Shifted curvature function �C̄ (R̃) versus tip posi-
tion R̃ for increasing values of κm (decreasing C̄) as we proceed from
panel (b) to panel (f). We make use of the topographic interpretation
with positive values of �C̄ marked as landmass (greenish colors,
with low/high elevation in dark/light green) and negative values of
�C̄ constituting UR̃ in flat light blue (height levels are shown by
thin black lines). The pinscape in panel (a) produces a curvature
landscape with 7 minima (solid dots), 4 maxima (open dots), and 10
saddles (crosses). Several unstable regions UR̃ appear (solid dots turn
blue) and merge (crosses turn red) to change the topology of UR̃. The
Euler characteristic χ (UR̃ ) = m − s + M = 1 − 0 + 0 = 1 in panel
(b) changes to χ (UR̃ ) = 4 in panels (c) and (d), drops to χ (UR̃ ) = 0
in panel (e), and χ (UR̃ ) = −1 in panel (f); indeed, UR̃ in panel
(f) has one component C = 1 and two holes H = 2, reproducing
χ (UR̃ ) = C − H = −1.

TABLE I. Positions and relative weights of three uniaxially
anisotropic Lorentzian defects in Fig. 17 as given by Eq. (92).

x/ξ y/ξ Weight

Defect #1 1.14 1.07 0.65
Defect #2 −0.98 −0.19 1
Defect #3 0.20 −0.67 1

uniformly distributed individual defects produces a random
Gaussian pinning landscape, as has been shown in Ref. [28].

In the following, we focus on the unstable domain UR̃, with
the properties of the bistable domain BR̄ following straight-
forwardly from the solution of the force balance equation (5).
Unlike the analysis above that is centered on special points
of UR̃, ellipses near onset and hyperbolas near mergers, here,
we are interested in the global properties of the unstable
region produced by a generic (though still two-dimensional)
pinscape.

As discussed in Sec. III above, the unstable region UR̃
associated with strong pinning is determined by the condition
D(R̃) = 0 of vanishing Hessian determinant, more precisely,
by the competition between the lowest eigenvalue λ−(R̃) of
the Hessian matrix Hi j of the pinning potential ep(R) and the
effective elasticity C̄; see Eq. (40). To avoid the interference
with the second eigenvalue λ+(R̃) of the Hessian matrix, we
consider the shifted (by C̄) curvature function

�C̄ (R̃) ≡ C̄ + λ−(R̃), (123)

i.e., the relevant factor of the determinant D(R̃) = [C̄ +
λ−(R̃)][C̄ + λ−(R̃)]. The condition

�C̄ (R̃) = 0 (124)

then determines the boundaries of UR̃.
The above problem can be mapped to the problem of cut-

ting a surface, where �C̄ (R̃) is interpreted as a height-function
over R2 that is cut at zero level; the elasticity C̄ then plays
the role of a shift parameter that moves the function λ−(R̃)
downwards in height with decreasing C̄ (that corresponds to
increasing the relative pinning strength of the pinscape in
physical terms). As C̄ is decreased to compensate the absolute
minimum of λ−(R̃) < 0, C̄ + λ−(R̃) = 0, strong pinning sets
in locally at R̃m for the first time in the form of an unstable
ellipse UR̃; see Fig. 17(b) for our specific example with three
defects; the Labusch parameter κ (R̃) evaluated at the point R̃m

defines κm, the parameter tuned in Fig. 17. Decreasing C̄ fur-
ther, this ellipse grows and deforms, while other local minima
of λ−(R̃) produce new disconnected parts of UR̃, a situation
illustrated in Fig. 17(c) where four “ellipses” have appeared
around (local) minima (blue filled dots). A further increase in
pinning strength (decrease in C̄) continuous to deform these
“ellipses” and adds three new ones. As the first saddle drops
below the zero level (red cross), two components merge and
the number of components decreases; in Fig. 17(d), we have
three below-zero saddles and only four components remain,
C = 4. In Fig. 17(e) four further mergers have reduced C to 1
as the corresponding saddles drop below zero level. This pro-
duces a single nonsimply connected component, i.e., C = 1
and a hole, increasing the number of holes H from zero to
one. The last merger leading to Fig. 17(f) finally leaves C = 1
but cuts the stable region inside the ring into two, increasing
the number of holes to H = 2.

This sequence of onsets and mergers is conveniently de-
scribed in the topographic language introduced in Sec. IV that
interprets stable tip regions as land mass (green with bright
regions indicating higher mountains in Fig. 17) and unstable
regions as lakes (flat blue with (below-water) height levels
indicated by thin black lines), with the height �C̄ = 0 defining
the water level. The sequence of Figs. 17(b) to 17(f) then
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shows the flooding of the landscape as pinning increases (C̄
decreasing), with white dot minima turning blue at strong pin-
ning onsets and white cross saddles turning red at mergings;
maxima in the landscape are shown as black open circles.
Note that we distinguish critical points (minima, saddles)
residing below (blue and red) and above (white) water level.
Similarly, a (local) maximum above sea level (black open dot)
turns into a blue open dot as it drops below sea level; such an
event is missing in Fig. 17 but can be easily produced with
other defect configurations.

The above discussion relates the local differential proper-
ties of the function �C̄ (R̃) < 0, minima and saddles, to the
global topological properties of UR̃, its number of compo-
nents C(UR̃ ) and holes H (UR̃ ). This connection between local
and global properties is conveniently discussed within Morse
theory [33]. Before presenting a general mathematical formu-
lation, let us discuss a simple heuristic argument producing
the result relevant in the present context; in doing so, we make
use of the above topographic language.

Starting with the minima of the function �C̄ (R̃), a new
disconnected component appears in UR̃ whenever the mini-
mum drops below sea level as C̄ is decreased, that produces
an increase C → C + 1. With the further decrease of C̄, these
disconnected regions expand and merge pairwise whenever a
saddle point of �C̄ (R̃) goes below sea level, thereby inducing
a change in the topology of UR̃ by either reducing the number
of components C → C − 1 (keeping H constant) or leaving
it unchanged (changing H → H + 1), see, e.g., the example
with the horseshoe closing up on itself in Sec. V D. The
below sea-level minima and saddles of �C̄ (R̃) can naturally
be identified with the vertices and edges of a graph; the edges
in the graph then define the boundaries of the graph’s faces
(the same way as the vertices are the boundaries of the edges).
For a connected graph, Euler’s formula then tells us that
the number V of vertices, E of edges, and F of faces are
constrained via V − E + F = 1 (not counting the outer face
extending to infinity) and a graph with C components satisfies
the relation C = V − E + F as follows from simple addition.

We have already identified minima and saddles of
�C̄ (R̃) < 0 with vertices and edges of a graph; denoting the
number of below sea-level minima and saddles by m and s, we
have V = m and E = s. It remains to express the number F of
faces in terms of critical points of the surface �C̄ (R̃) < 0. In-
deed, the faces of our graph are associated with maxima of the
function �C̄ (R̃): Following the boundaries of a face, we cross
the corresponding saddles with the function �C̄ (R̃) curving
upwards away from the edges, implying that the faces of our
graph include maxima of �C̄ (R̃). These maxima manifest in
two possible ways: either the face contains a single below
sea-level maximum or a single above sea-level landscape. The
above sea-level landscape comprises at least one maximum
but possibly also includes other extremal points that we cannot
analyze with our knowledge of the below sea-level function
�C̄ (R̃) < 0 only; we therefore call the above sea-level land-
scape a (single) hole. The appearance of a single maximum
or hole is owed to the fact that faces are not split by a below
sea-level saddle as these have already been accounted for in
setting up the graph.

Let us denote the number of (below sea-level) maxima by
M and the number of holes by H , then F=H+M. Combining

this last expression with Euler’s formula and regrouping
topological coefficients C(UR̃ ) and H (UR̃ ) on one side and
extremal points m[�C̄ (R̃)], s[�C̄ (R̃)], and M[�C̄ (R̃)] on the
other, we arrive at the Euler characteristic χ ≡ C − H and its
representation through local differential properties,

χ (UR̃ ) ≡ [C − H]UR̃
= [m − s + M]�C̄ (R̃)<0. (125)

The result (125) follows rigorously from the Euler-Poincaré
theorem [32,33] in combination with Morse’s theorem [33].

Summarizing, knowing the number of critical points m, M,
and s of the seascape, i.e., its local differential properties, we
can determine the global topological aspects of the pinning
landscape via the evaluation of the Euler characteristic χ (UR̃ )
with the help of Eq. (125). The latter then informs us about
the number C of unstable domains in UR̃ where locally pinned
states appear and the number of holes H in UR̃ where glob-
ally distinct pinned states show up. Furthermore, the outer
boundaries of the lakes, of which we have C components,
are to be associated with instabilities of the free vortex state,
while inner boundaries (or boundaries of holes, which count
H elements) tell about instabilities of pinned states, hence
the Betti numbers C and H count different types of instabil-
ities. It would then have been nice to determine the separate
topological coefficients C and H individually—unfortunately,
χ (UR̃ ) as derived from local differential properties provides us
only with the difference C − H between locally and globally
pinned areas and not their individual values. Nevertheless,
using Morse theory, we could connect our discussion of local
differential properties of the pinning landscape in Secs. III A
and V A with the global pinning properties of the pinning
energy landscape as expressed through the topology of the
unstable domain UR̃.

Regarding our previous examples, the isotropic and uniax-
ial defects, we remark that for the latter the two simultaneous
mergers on the y axis produce a reduction in C = 2 → 1 and
an increase of H = 0 → 1 and hence a jump from χ = 2 to
χ = 0 in one step, as expected for two simultaneous mergers.
The symmetry of the isotropic defect produces a (degener-
ate) critical line at R̃m rather than a critical point; adding a
small perturbation ∝ x3 breaks this symmetry and produces
the horseshoe geometry discussed in Sec. V D above that is
amenable to the standard analysis.

A last remark is in place about the topological proper-
ties in dual space, i.e., of bistable regions BR̄. Here, the
mergers produce another interesting phenomenon as viewed
from the perspective of its thermodynamic analogue. Indeed,
the merger of deformed ellipses in tip space corresponds to
the merger of cusps in asymptotic space, which translates to
the vanishing of critical points and a smooth continuation of
the first-order critical and spinodal lines in the thermodynamic
analog; see also Sec. V C. We are not aware of a physical
example in thermodynamics that produces such a merger and
disappearance of critical points.

VII. SUMMARY AND OUTLOOK

Strong pinning theory is a quantitative theory describing
vortex pinning in the dilute defect limit where this complex
many-body system can be reduced to an effective single-pin–
single-vortex problem. The accuracy offered by this theory
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then allows for a realistic description of the shape of the
pinning potential ep(R) associated with the defects. While
previous work focused on the simplest case of isotropic de-
fects, here, we have generalized the strong pinning theory
to the description of arbitrary anisotropic pinning potentials.
Surprisingly, going from an isotropic to an anisotropic defect
has quite astonishing consequences for the physics of strong
pinning—this reminds about other physical examples where
the removal of symmetries or degeneracies produces new
effects.

While the strong pinning problem is quite a complex one
requiring the use of numerical tools, in general, we have
identified several generic features that provide the essential
physics of the problem and that are amenable to an analytic
treatment. Specifically, these are the points of strong pinning
onset and the merger points, around which the local expan-
sions of the pinning potential epin(R̃; R̄) in the tip coordinate
R̃ allow us to find all the characteristics of strong pinning. In
particular, we identify the instability region UR̃ in the vortex
tip space (with coordinates R̃) and the bistable region BR̄
in the space of asymptotic vortex positions R̄ as the main
geometric objects that determine the critical pinning force
density Fpin, from which the critical current density jc, the
technologically most relevant quantity of the superconductor,
follows straightforwardly. While the relevance of the bistable
region BR̄ was recognized in the past [8–10], the important
role played by the unstable region UR̃ went unnoticed so far.

When going from an isotropic defect to an anisotropic
one, the strong pinning onset changes dramatically: While
the unstable region UR̃ grows out of a circle and assumes
the shape of a ring at κ > 1 for the isotropic situation, for
an anisotropic defect the onset appears in a point R̃m and
grows in the shape of an ellipse with increasing κm > 1; the
location where this onset appears is given by the Hessian of
epin, specifically, the point R̃m where its determinant touches
zero first, det{Hess[epin(R̃; R̄)|R̄]}R̃m

= 0. The boundary of
this ellipse defines the jump positions JR̃ associated with the
strong pinning instabilities; when combined with the landing
ellipse LR̃, these two ellipses determine the jump distance δũ
of the vortex tip, from which follows the jump in the pinning
energy �epin ∝ δũ4, which in turn determines Fpin and jc.

The bistable region BR̄ in asymptotic vortex space comes
into play when calculating the average critical force density
Fpin opposing the vortex motion: While the vortex tip under-
goes a complex trajectory including jumps, the vortex motion
in asymptotic space R̄ is described by a straight line. As this
trivial trajectory in R̄ space traverses the bistable region BR̄,
the vortex tip jumps upon exiting BR̄, that produces the jump
�epin and hence Fpin. Again, the shape of BR̄ changes when
going from the isotropic to the anisotropic defect, assuming
a ring of finite width around a circle in the former case,
while growing in the form of a crescent out of a point for the
anisotropic defect.

The new geometries associated with UR̃ and BR̄ then
produce a qualitative change in the scaling behavior of the
pinning force density Fpin ∝ (κm − 1)μ near onset, with the
exponent μ changing from μ = 2 to μ = 5/2 when going
from the isotropic to the anisotropic defect. This change is
due to the change in the scaling of the geometric size of BR̄,

with the replacement of the finite ring radius ∝ (κ − 1)0 by
the growing size of the crescent ∝ (κm − 1)1/2 [the exponent
μ assumes a value μ = 3 for trajectories cutting the crescent
along its short dimension of size ∝ (κm − 1)]. Furthermore,
for directed defects, the pinning force density Fpin(θ ) depends
on the impact angle θ relative to the unstable direction u and is
aligned with u, except for a small angular regime close to θ =
π/2. This results in a pronounced anisotropy in the critical
current density jc in the vicinity of the strong pinning onset.

A fundamental difference between the strong pinning on-
sets in the isotropic and in the anisotropic case are the
geometries of the unstable UR̃ and bistable BR̄ regions: These
are nonsimply connected for the isotropic case (rings) but sim-
ply connected for the anisotropic defect (ellipse and crescent).
The resolution of this fundamental difference is provided by
the second type of special points, the mergers. Indeed, for a
general anisotropic defect, the strong pinning onset appears
in a multitude of points, with unstable and bistable regions
growing with κm > 1 and finally merging into larger areas.
Two examples illustrate this behavior particularly well, the
uniaxial defects with a quadrupolar and a dipolar deforma-
tion, see Secs. IV and V D. In the first case, symmetric onset
points on the x axis produce two ellipses/crescents that grow,
approach one another, and finally merge in a ring-shaped
geometry that is nonsimply connected. In the case of a dipolar
deformation, we have seen UR̃ grow out of a single point with
its ellipse expanding and deforming around a circle, assuming
a horseshoe geometry, that finally undergoes a merging of
the two tips to produce again a ring; similar happens when
multiple UR̃ domains grow and merge as in Fig. 16 showing
the result for a defect with a warped potential well.

These merger points are once more amenable to an
analytic study using a proper expansion of epin(R̃; R̄) in
R̃ around the merger point R̃s, with the latter again de-
fined by the local differential properties of the determinant
det{Hess[epin(R̃; R̄)|R̄]}, this time not a minimum but a sad-
dle. Rather than elliptic as at onset, at merger points the
geometry is hyperbolic, with the sign change associated with
increasing κs ≡ κ (R̃s) across unity producing a reconnection
of the jump- and landing lines JR̃ and LR̃.

While the expansions of epin(R̃; R̄) are describing the local
pinning landscape near onset and merging (and thus pro-
duce generic results), the study of the combined set of onset-
and merger-points describes the global topological properties
of UR̃ as discussed in Sec. VI: Every new (nondegenerate)
onset increases the number of components C in UR̃, while
every merger either decreases C or increases H , the number
of “holes” or “islands” (or nontrivial loops in a nonsimply
connected region) in the pinning landscape. It is the “last”
merging producing a nonsimply connected domain that prop-
erly defines a new pinned state; in our examples these are the
closings of the two deformed ellipses in the uniaxial defect
with quadrupolar deformation and the closing of the horse-
shoe in the defect with a dipolar deformation. Formally, the
relation between the local differential properties of the cur-
vature function �C̄ (R̃) = C̄ + λ−(R̃) [with λ−(R̃) the lower
eigenvalue of the Hessian of ep(R̃)], its minima, saddles, and
maxima, are related to the global topological properties of UR̃
as described by its Euler characteristic χ = C − H through
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Morse theory; see Eq. (125). Such topological structures have
recently attracted quite some interest, e.g., in the context of
Fermi surface topologies and topological Lifshitz transitions
[34,35].

The physics around the onset points as expressed through
an expansion of epin(R̃; R̄) resembles a Landau theory with R̃
playing the role of an order parameter and R̄ the dual variable
corresponding to a driving field—here, R̄ drives the vortex
lattice across the defect and R̃ describes the deformation of the
pinned vortex. The endpoints of the crescent BR̄ correspond
to critical end points as they appear in the Landau theory of a
first-order transition line, e.g., the Ising model in an external
field or the van der Waals gas. The boundary lines of BR̄
correspond to spinodal lines where phases become unstable,
e.g., the termination of overheated/undercooled phases in the
van der Waals gas. The existence of critical end points tells
that “phases,” here in the form of different pinning branches,
are smoothly connected when going around the critical point,
similar as in the gas–liquid transition of the van der Waals gas.
As the “last” critical point vanishes in a merger, a well-defined
new phase, here a new pinned branch, appears.

Perspectives for future theoretical work include the study
of correlations between anisotropic defects (see Ref. [17,24]
addressing isotropic defects) or the inclusion of thermal
fluctuations, i.e., creep (see Refs. [13,21]). Furthermore, di-
mensionality is a relevant issue: for one, our discussion of
the extended pinscape in Sec. VI has been limited to a two-
dimensional pinning potential and thus realistically applies to
thin superconducting films. In a bulk superconductor, defects
are distributed in all three dimensions that considerable com-
plicates the corresponding analysis of a full three-dimensional
disordered pinning potential, with the prospect of interest-
ing new results. Second, a single pointlike defect will never
produce an (effectively) anisotropic pinning potential: even
though an apparently anisotropic potential can be installed
with a point defect in an in-plane anisotropic superconductor,
the potential ep(R) can be isotropized by proper anisotropic
rescaling as described in Ref. [36], reducing the setup to an
isotropized one. As mentioned in Sec. IV, a pair of point
defects results in an anisotropic effective pin. This situation
is relevant when pins are weak and the strong pinning onset is
due to the clustering of defects. Note that such ‘rare’ events
require the pair density np,pair to be small, np,paira0ξ

2 
 1
with np,pair ∼ n2

pξ
3, while np itself might be larger. Such a

weak-pinning setup becomes critical with anisotropic effec-
tive defects of different strengths and shapes, i.e., we will
not have a uniform distribution of equal defects. An obvious
way to produce anisotropic defects then is via an extended
defect of complex shape (or an extended isotropic defect in
an anisotropic superconductor in a field tilted away from its
axis). This can be straightforwardly done in a thin film or a
layered superconductor (with the defect within one plane). In
a bulk superconductor, though, this problem is truly three-
dimensional, with a finite vortex segment along z subject to
the potential; see Ref. [25] for a numerical study. The re-
duction of this 3D problem to a 2D setup with a defined tip
coordinate R̃ remains to be done.

On the experimental side, there are several possible ap-
plications for our study of anisotropic defects. For a generic

anisotropic defect, the inversion symmetry may be broken.
In this case, the pinning force along opposite directions is
different in magnitude, as different jumps are associated to
the boundaries of the bistable region BR̄ away from onset,
i.e., at sufficiently large values of κm. Reversing the current,
the different critical forces then result in a ratchet effect
[37–39]. This leads to a rectification of an ac current and
hence a superconducting diode effect. While for randomly
oriented defects the pinning force is averaged and the sym-
metry is statistically restored, for specially oriented defects,
the diode effect will survive. Indeed, introducing nanoholes
into the material, vortex pinning was enhanced [23,40] and
a diode effect has been observed recently [41]. Generalizing
strong pinning theory to this type of defects then may help in
the design of superconducting metamaterials with interesting
functionalities. Furthermore, vortex imaging has always pro-
vided fascinating insights into vortex physics. Recently, the
SQUID-on-tip technique has been successful in mapping out a
2D pinning landscape in a film [26] (including the observation
of vortex jumps) that has inspired a new characterization of
the pinscape through its Hessian analysis [28]; the adaptation
of this current-driven 2D setup to the 3D situation is an inter-
esting challenge.

Finally, we recap the main benefits of this work in a nut-
shell: For one, we have established a detailed connection of
the strong pinning transition with the concept of first-order
phase transitions in thermodynamics, with the main practical
result that the scaling of the pinning force density Fpin ∝
(κm − 1)μ comes with an exponent μ = 5/2 when working
with generic defects of arbitrary shapes. Second, we have
found a mechanism, the breaking of a defect’s inversion
symmetry, that produces rachets and a diode effect in su-
perconducting material, a topic of much recent interest [42].
Third, we have uncovered the geometric structure and its
topological features that is underlying strong pinning theory,
including a proper understanding of the appearance of distinct
pinned states. While understanding these geometric structures
seems to be of rather fundamental/scholarly interest at present,
future work may establish further practical consequences that
can be used in the development of superconducting materials
with specific functional properties.
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APPENDIX A: PINNING FORCE DENSITY

We determine the magnitude and orientation of the pinning
force density Fpin(θ ) as a function of the vortex impact angle
θ for randomly positioned but uniformly oriented (along x)
defects of density np. The pinning force density is given
by the average over relative positions between vortices and
defects (with a minus sign following convention; VR̄ denotes
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the vortex lattice unit cell),

Fpin(θ ) = −np

∫
VR̄\BR̄

d2R̄
a2

0

fpin(R̄)

− np

∫
BR̄

d2R̄
a2

0

[
pb(R̄; θ ) fb

pin(R̄) + pr (R̄; θ ) f r
pin(R̄)

]
.

(A1)

Outside of the bistable domain, i.e., in VR̄\BR̄, a single stable
vortex tip configuration exists and the pinning force fpin(R̄) is
uniquely defined. Inside BR̄, the branch occupation functions
pb,r (R̄; θ ) are associated with the tip positions appertaining to
the “blue” and the “red” vortex configurations with different
tip positions R̃b,r (R̄), cf. Figs. 6 and 7. The pinning forces
fb,r
pin (R̄) are evaluated for the corresponding vortex tip posi-

tions and are defined as

fb,r
pin (R̄) = −∇R̄epin[R̃b,r (R̄); R̄]. (A2)

Let us now study how vortex lines populate the bistable
domain as a function of the impact angle θ . Examining Fig. 7,
we can distinguish between two different angular regimes:
a frontal-impact regime at angles away from π/2, |θ | � θ∗,
where all the vortices that cross the bistable domain undergo
exactly one jump on the far edge of BR̄, see the blue dot and
blue boundary ∂Bb

R̄ in Fig. 7; and a transverse regime for
angles θ∗ � |θ | � π/2, where vortices crossing the bistable
domain undergo either no jump, one or two. The angle θ∗ is
given by the (outer) tangent of the bistable domain at the cusps
R̄c,±; making use of the lowest-order approximation (73) of
the crescent’s geometry, we find that

tan(θ∗) = ∂ v̄ (0)

∂ ū(0)

∣∣∣∣
v̄c

= (C̄ + λ+)

a

√
γ δ − β2

2γ C̄(κm − 1)
. (A3)

1. Impact angles |θ| < θ∗

For a frontal impact with |θ | < θ∗, vortices occupy the
“blue” branch and remain there throughout the bistable do-
main BR̄ until its termination on the far edge ∂Bb

R̄, see Fig. 7,
implying that pb(R̄ ∈ BR̄ ) = 1 and pr (R̄ ∈ BR̄ ) = 0, indepen-
dent of θ . As a consequence, the pinning force Fpin does not
depend on the impact angle and is given by the expression

F<
pin = −np

∫
VR̄\BR̄

d2R̄
a2

0

fpin(R̄) − np

∫
BR̄

d2R̄
a2

0

fb
pin(R̄).

Next, Gauss’ formula tells us that for a function e(x), we can
transform ∫

V
dnx ∇e(x) =

∫
∂V

dn−1 S⊥ e(x), (A4)

with the surface element dn−1 S⊥ oriented perpendicular to
the surface and pointing outside of the domain V . In apply-
ing Eq. (A4) to the first integral of F<

pin, we can drop the
contribution from the outer boundary ∂VR̄ since we assume
a compact defect potential. The remaining contribution from
the crescent’s boundary ∂BR̄ joins up with the second integral
but with an opposite sign, as the two terms involve the same
surface but with opposite orientations. Altogether, we then

arrive at the expression

F<
pin = np

∫
∂Bb

R̄

d S⊥
a2

0

[
eb

pin(R̄) − epin(R̄)
]

+ np

∫
∂Br

R̄

d S⊥
a2

0

[
eb

pin(R̄) − epin(R̄)
]
, (A5)

where we have separated the left and right borders ∂Br,b
R̄

of the
bistable domain. Due to continuity, the stable vortex energy
epin(R̄) will be equal to eb

pin(R̄) on the left border ∂Br
R̄ and

equal to er
pin(R̄) on the right border ∂Bb

R̄. The expression (A5)
for F<

pin then reduces to

F<
pin = np

∫
∂Bb

R̄

d S⊥
a2

0

[
eb

pin(R̄) − er
pin(R̄)

]

= np

∫ v̄c

−v̄c

d v̄

a0

�epin(v̄)

a0
[1,−∂ ū/∂ v̄]

= np

[
2v̄c

a0

〈�epin〉
a0

, 0

]
≡ [F ‖

pin, 0], (A6)

with 〈�epin〉 the average energy jump evaluated along the v

direction. The force F<
pin is aligned with the unstable directed

along u, with the v component vanishing due to the antisym-
metry in v̄ ↔ −v̄ of the derivative ∂ ū/∂ v̄, and is independent
on θ for |θ | < θ∗.

2. Impact angle |θ| = π/2

Second, let us find the pinning force density Fπ/2
pin for vor-

tices moving along the (positive) v direction, θ = π/2. As
follows from Fig. 7, vortices occupy the blue branch and jump
to the red one upon hitting the lower half of the boundary
∂Bb

R̄; vortices that enter BR̄ but do not cross ∂Bb
R̄ undergo

no jump and hence do not contribute to Fπ/2
pin . As vortices in

the red branch proceed upwards, they jump back to the blue
branch upon crossing the red boundary ∂Br

R̄. While jumps
appear on all of the lower half of ∂Bb

R̄, a piece of the upper
boundary ∂Br

R̄ that contributes with a second jump is cut
away (as vortices to the left of ū(0) + ū(1) do not change branch
from blue to red). The length �v̄ of this interval scales as
�v̄/v̄c ∝ (κm − 1)1/4; ignoring this small jump-free region,
we determine Fπ/2

pin assuming that vortices contributing to Fπ/2
pin

undergo a sequence of two jumps, from blue to red on the
lower half ∂Bb<

R̄ and back from red to blue on the upper half
∂Br>

R̄ of the boundary ∂BR̄. Repeating the above analysis, we

find that the u components in Fπ/2
pin arising from the blue and

red boundaries now cancel, while the v components add up,

Fπ/2
pin = np

∫
∂Bb<

R̄

d S⊥
a2

0

[
eb

pin(R̄) − er
pin(R̄)

]

+ np

∫
∂Br>

R̄

d S⊥
a2

0

[
er

pin(R̄) − eb
pin(R̄)

]

= 2np

∫ v̄c

0

d v̄

a0

�epin(v̄)

a0
[0, ∂ ū/∂ v̄]

= np

[
0,

2v̄c

a0

〈�epin∂v̄ ū〉
a0

]
≡ [0, F⊥

pin]. (A7)
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In the numerical evaluation of the two force components, see
Fig. 9, we have to account for the upward motion of the tran-
sition from the blue to the red boundary when moving away
from from the angle θ = π/2, with the relevant boundary
turning fully blue at θ = θ∗. This way, the expression (84)
smoothly transforms to the result (A6). In our calculation, we
have adopted the approximation of dropping the jump-free
interval �v̄ that moves up and becomes smaller as θ decreases
from π/2 to θ∗.

APPENDIX B: HYPERBOLIC MERGER POINTS

We define local coordinate systems (ũ, ṽ) and (ū, v̄) in tip
and asymptotic space centered at R̃s and R̄s and fix our axes
such that D(R̃s) is a local maximum along the (unstable) u
direction and a local minimum along the (stable) v direction
of the saddle; the mixed term ∝ ũṽ is absent from the ex-
pansion (as the Hessian matrix is symmetric). Furthermore,
the vanishing slopes at the saddle point, see Eq. (96), imply
the absence of terms ∝ ũ3 and ∝ ũ2ṽ in the expansion and
dropping higher-order terms [corresponding to double-primed
terms in Eq. (43)], we arrive to the expression (115). The most
important term in the expansion (115) is the curvature term
C̄(1 − κs) ũ2/2 along the unstable direction u, with the coef-
ficient (1 − κs) changing sign at some value of the pinning
strength.

The jump condition D(R̃s,jp ) = 0 leads us to the quadratic
form (118) that defines the jump line JR̃; this can again be
cast in the form of a matrix equation

δR̃T
s,jpMs,jpδR̃s,jp = C̄(κs − 1), (B1)

with Ms,jp given by

Ms,jp =
[
γs/2 βs/2

βs/2 δs/2

]
, (B2)

with det Ms,jp = (γsδs − β2
s )/4 < 0.

Solving the quadratic equation (118) before merging, i.e.,
1 − κs > 0, we find solutions ũs,jp(ṽ) away from a gap along
the stable v direction,

ũs,jp(|ṽ| � ṽs,c)

= − 1

γs

[
βsṽ ±

√
2γsC̄(κs − 1) − (

γsδs − β2
s

)
ṽ2

]
, (B3)

i.e., Eq. (B3) has real solutions in the (unbounded) interval
|ṽ| � ṽs,c, with

ṽs,c =
√

2γsC̄(1 − κs)/|γsδs − β2
s |. (B4)

For the uniaxial defect (92) before merging, this gap corre-
sponds to a splitting of UR̃ along the stable angular direction,
producing two separated domains as shown in Fig. 11(a). The
coordinates (ũs,jp(±ṽs,c),±ṽs,c) give the positions of the ver-
tices δR̃<

s,c,± (relative to R̃s) of the hyperbola before merging,

δR̃<
s,c,± = ±(−βs/γs, 1) ṽs,c. (B5)

These are marked as black crosses in Fig. 13(a) [note the
rotation in the geometry as compared with Fig. 11(a)]. We
denote the distance between these vertices by δv<, defining a

gap of width ∝ √
1 − κs given by

δv< = 2|δR̃<
s,c,±| = 2

√(
γs + β2

s

γs

)
C̄(1 − κs)∣∣γsδs − β2

s

∣∣ . (B6)

After merging, i.e., for κs − 1 > 0, the (local) topology of
UR̃ has changed as the gap along v closes and reopens along
the unstable u direction; as a result, the two separated domains
of UR̃ have merged. The two branches of the hyperbola de-
rived from Eq. (118) are now parametrized as

ṽs,jp(|ũ| � ũs,e)

= − 1

δs

[
βsũ ±

√
2δsC̄(κs − 1) − (

γsδs − β2
s

)
ũ2

]
, (B7)

with

ũs,e =
√

2δsC̄(κs − 1)/
∣∣γsδs − β2

s

∣∣. (B8)

The corresponding unstable domain is shown in Fig. 13(b).
For the uniaxial defect (92) after merging, this gap now corre-
sponds to the finite width of UR̃ along the radial direction, as
shown in Fig. 12(a). The coordinates [±ũs,e, ṽs,jp(±ũs,e)] for
the vertices R̃>

s,e,± read

δR̃>
s,e,± = ±

(
1,−βs

δs

)
ũs,e (B9)

and correspond to the points of closest approach in the
branches of the hyperbola (118); these are again marked as
black crosses in Fig. 13(b) but are no longer associated with
critical points (we index these extremal points by “e”). Their
distance δu> is given by

δu> = 2|δR̃>
s,e,±| = 2

√(
δs + β2

s

δs

)
C̄(κs − 1)∣∣γsδs − β2

s

∣∣ , (B10)

i.e., the smallest width in UR̃ grows as ∝ √
κs − 1.

As discussed above and shown in Fig. 13, the solutions
of the quadratic form (118) before and after merging are
unbounded for every value of κs − 1. As a consequence,
neglecting the higher-order terms in the determinant D(R̃)
is valid only in a narrow neighborhood of the saddle R̃s,
where the boundaries of UR̃ have the shape of a hyperbola.
Away from the saddle, these higher-order terms are relevant
in determining the specific shape of the unstable and bistable
domain, e.g., the ringlike structures of UR̃ and BR̄ in Figs. 11
and 12.

We find the landing line LR̃ by determining the second
bistable vortex tip configuration R̃s,lp associated to the edges
of BR̄ before and after merging and find the results (119) and
(120) that are valid before and after merging using appropriate
parametrizations of ũs,jp and ṽs,jp.

The landing positions R̃s,lp = R̃s,jp + �R̃s arrange along
the branches LR̃ of a hyperbola in R̃ space that are described
by the matrix equation

δR̃T
s,lpMs,lp δR̃s,lp = C̄(κs − 1), (B11)

with the landing matrix now given by

Ms,lp = 1

4
Ms,jp +

[
0 0

0 3
4

(
δs
2 − β2

s
2γs

)
]
, (B12)

with det Ms,lp = (γsδs − β2
s )/16 < 0.
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Before merging, at κs < 1, the vertices of the landing and
jumping hyperbolas coincide. For κs = 1, the tips of UR̃ merge
and both the jumping and landing hyperbolas coincide at
R̃s. After merging, i.e., for κs − 1 > 0, the landing hyperbola
(B11) has vertices at

δR̃s,v,± = ±
(

1,− γsβs(
4γsδs − 3β2

s

)
)

ũs,v, (B13)

with

ũs,v =
√

2C̄(κs − 1)
(
4γsδs − 3β2

s

)
γs

(
γsδs − β2

s

) (B14)

different from the jumping hyperbola in Eq. (B9). At these
points, the stable and unstable hyperbolas are tangent to the v

direction, as is visible in Fig. 13(b).
We find the shape of the bistable domain BR̄ by repeating

the steps in Sec. III C that leads us to the equations (121)
relating tip and asymptotic positions close to merging. Before
merging, BR̄ consists of two parts that correspond to the two
pieces of UR̃ for 1 − κs > 0 terminating at the cusps R̄<

s,c,±.
The latter are related to the vertices R̃<

s,c,± of the jumping
hyperbola through the force balance equation (121), with

δR̄<
s,c,± ≈ [

(as/2 C̄) ṽ2
s,c, ±(1 + λs,+/C̄)ṽs,c

]
. (B15)

For finite values of (1 − κs), the cusps are separated by a
distance 2|δR̄<

s,c,±| ≈ 2(1 + λs,+/C̄)ṽs,c ∝ √
1 − κs. They ap-

proach one another along the parabola

ūs,0 ≈ a

2C̄

1

(1 + λ+/C̄)2
v̄2

s,0, (B16)

see the black dashed line in Fig. 14, with higher-order cor-
rections appearing at finite skew β �= 0. After merging, this
line lies within BR̄ and defines the branch crossing line, cf.
Eq. (80).

After merging, when κs − 1 > 0, the cusps have vanished
and the edges have rearranged to define a connected bistable
region; see Fig. 14(b). The extremal points of the two edges
are found by evaluating the force balance equation (121) at
the vertices R̃>

s,e,±, Eq. (B9), to lowest order,

δR̄>
s,e,± ≈ βs

δs

[
as

2 C̄

βs

δs
ũ2

s,e, ∓
(

1 + λs,+
C̄

)
ũs,e

]
. (B17)

For finite values of (κs − 1), these points are separated by
a distance 2|δR̄>

s,e,±| ≈ 2(1 + λs,+/C̄)(βs/δs)ũs,e ∝ √
κs − 1.

When the skew parameter vanishes as in Fig. 14, βs = 0,
higher-order terms in (κs − 1) in the force-balance equation
(121) become relevant in determining the positions R̄>

s,e,±,
separating them along the unstable u direction. In this case,
we obtain a different scaling for their distance, i.e., |δR̄>

s,e,±| ∝
(1 − κs)3/2.

APPENDIX C: EFFECTIVE 1D LANDAU THEORY

The Landau-type pinning energies (21) and (115) for the
vector order parameter (ũ, ṽ) involves a soft variable ũ with a
vanishing quadratic term ∝ (1 − κm) ũ2, as well as a stiff one,
ṽ, characterized by a finite elasticity. By eliminating the stiff
direction ṽ, we can arrive at a 1D Landau expansion for the

order parameter ũ that provides us with the desired results for
the unstable and bistable domains UR̃ and BR̄ near onset and
merging in a very efficient manner.

1. Close to onset

We start with the two-dimensional Landau-type energy
functional (61)

epin(R̃; R̄) = C̄(1 − κm)

2
ũ2 + C̄ + λ+

2
ṽ2 + a

2
ũṽ2

+ α

4
ũ2ṽ2 + β

6
ũ3ṽ + γ

24
ũ4 − C̄ ūũ − C̄ v̄ṽ,

(C1)

written in terms of the tip coordinates ũ, ṽ measured rela-
tive to R̃m, the position of the minimal determinant D(R̃)
at strong pinning onset, and with ũ and ṽ aligned with the
stable and unstable directions, respectively. The expansion
(C1) is anisotropic: the quadratic (elastic) coefficient along the
unstable ũ direction vanishes at the onset of strong pinning,
while the one along the stable ṽ direction stays positive and
large, allowing us to “integrate out” the latter. The asymptotic
coordinates ū, v̄ assume the role of the driving (conjugate)
fields for the tip positions (or order parameters) ũ, ṽ; the latter
then are determined by the force equations ∂R̃epin(R̃; R̄) = 0,

C̄ū = C̄(1 − κ )ũ + a

2
ṽ2 + γ

6
ũ3 + β

2
ũ2ṽ + α

2
ũṽ2, (C2)

C̄v̄ = (C̄ + λ+)ṽ + a ũṽ + β

6
ũ3 + α

2
ũ2ṽ, (C3)

see Eq. (72), with δR̄ = (ū, v̄) measured relative to R̄m. In-
spection of Eqs. (C2) and (C3) shows that near the strong
pinning onset, the Ansatz ũ, ṽ, v̄ ∝ √

κm − 1 and ū ∝ (κm −
1) produces a consistent solution. Solving the second equa-
tion (C3) for the stiff degree of freedom ṽ, we then find that

ṽ ≈ C̄v̄

C̄ + λ++ aũ
≈ v̄

1+λ+/C̄

(
1 − a/C̄

1+λ+/C̄
ũ

)
, (C4)

which is precise to order (κm − 1). Inserting ṽ back into the
force-balance equation (C2) for the unstable component ũ, we
find a cubic equation for ũ [precise to order (κm − 1)3/2] that
is driven by a combination of ū and v̄2,

C̄ū − (a/2) v̄2

(1 + λ+/C̄)2
≈

[
C̄(1 − κm) + (δ/2) v̄2

(1 + λ+/C̄)2

]
ũ

+ (β/2) v̄

(1 + λ+/C̄)
ũ2 + γ

6
ũ3. (C5)

Upon integration, we finally arrive at the effective one-
dimensional Landau expansion for the 1D order parameter
ũ that is precise to order (κm − 1)2 (up to an irrelevant shift
∝ v̄2),

eeff
pin(ũ; ū, v̄) = r(v̄)

2
ũ2 + w(v̄)

6
ũ3 + γ

24
ũ4 − h(ū, v̄)ũ, (C6)
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with the coefficients r, w, and h defined as

r(v̄) =
[
C̄(1 − κm) + δ

2

v̄2

(1 + λ+/C̄)2

]
,

w(v̄) = β
v̄

(1 + λ+/C̄)
,

h(ū, v̄) = C̄ū − a

2

v̄2

(1 + λ+/C̄)2
. (C7)

The Landau-type energy function (C6) belongs to the van der
Waals (gas-liquid) universality class; its first-order transition
line maps to the branch crossing line in the strong pinning
problem, its spinodals correspond to the arcs of the crescent
defining the bistable region BR̄, and its critical points map to
the two cusps of BR̄, i.e., in the strong pinning problem, the
spinodals end in two critical points. The cubic term wũ3/6 is
determined by the skew parameter β; in the absence of such
a skew, i.e., for a ±ṽ-symmetric unstable ellipse UR̃, we have
β = 0 and our problem assumes an Ising-type Z2 symmetry.

Let us begin with the determination of the critical coef-
ficients rc, wc, and hc. These are found by setting the first
three derivatives of eeff

pin(ũ) to zero [two spinodals (imply-
ing ∂ũeeff

pin = 0 and ∂2
ũ eeff

pin = 0) coalescing into a single point
(→ ∂3

ũ eeff
pin = 0)]. Setting the cubic derivative to zero, we find

the order parameter

ũc = −wc/γ ≈ −(β/γ )ṽc, (C8)

where we have used Eq. (C7) and the transformation v̄ ↔ ṽ

in Eq. (C4) to leading order.
The vanishing of the second derivative relates the critical

coefficients rc and wc,

rc = w2
c/2γ (C9)

(where we have made use of ũc). Inserting the dependencies
r(v̄) and w(v̄), see Eq. (C7), we find that

v̄2
c

(1 + λ+/C̄)2
= γ C̄(κm − 1)

2 det Mjp
, (C10)

with det Mjp = (γ δ − β2)/4. Using again Eq. (C4) to leading
order, we find that

ṽc ≈
√

2γ C̄(κm − 1)

γ δ − β2
, (C11)

cf. Eq. (60). The critical endpoints of the 1D Landau theory
then correspond to the touching points (70) of the unstable
domain UR̃,

δR̃c,± = ±(−β/γ , 1) ṽc, (C12)

found before, see Eq. (70) with Eq. (60).
Finally, the vanishing of the first derivative defines the

critical drive

hc = [rũ + wũ2/2 + γ ũ3/6]c = − w3
c

6γ 2
. (C13)

Making use of the coefficients (C7), this translates to the
critical drive ūc

ūc = (a/2C̄)ṽ2
c − w3

c

6C̄γ 2
(C14)

and its combination with the result for v̄c tells us that the
critical drives match up, to leading order, with the cusps (76)
of the bistable domain at R̄c,±,

δR̄c,± = (ūc,±v̄c)

≈ [(
a/2C̄

)
ṽ2

c , ±(1 + λ+/C̄)ṽc
]
. (C15)

Next, we find the entire boundary of the unstable region UR̃
that is defined as the points where local minima and maxima
of eeff

pin coalesce, i.e., where ∂2
u eeff

pin = 0,

r + wũjp + γ

2
ũ2

jp = 0. (C16)

Making use of the Landau coefficients (C7) as well as the rela-
tion between ṽ and v̄ in Eq. (C4), we recover the equation (56)
for the ellipse [we drop corrections ∝ (κm − 1)3/2],

γ ũ2
jp + 2βũjpṽjp + δṽ2

jp ≈ 2C̄(κm − 1). (C17)

To find the shape of the bistable region BR̄, we exploit the
fact that for fixed drives ū and v̄, the bistable and the unstable
vortex tip configurations are local extrema of eeff

pin, implying
that ∂ũeeff

pin = 0 and hence

rũ + w

2
ũ2 + γ

6
ũ3 = h, (C18)

what corresponds to the force-balance equation (C5) ex-
pressed in terms of the coefficients (C7). The cubic equa-
tion (C18) with its left side ∝ (κm − 1)3/2 depends on ū
through the drive h. According to Eq. (C7), the two terms in
the drive are of order (κm − 1) and hence have to cancel one
another to lowest order. As a result, we find that the bistable
domain is centered around the parabola

ū = a

2C̄

v̄2

(1 + λ+/C̄)2
, (C19)

that matches up with Eq. (73) found in Sec. III. Finding the
precise form of the bistable region BR̄, we have to solve
Eq. (C18) to cubic order in

√
κm − 1 with the help of an

expansion around the center parabola (C19), which amounts
to repeating the analysis leading to the results (74) and (75) in
Sec. III C.

Finally, we find the landing line LR̃ defined as the second
bistable tip position at fixed ū and v̄. We make use of the cubic
equation (C18) and represent it in the factorized form (with
the inflection point at ũjp having multiplicity two)

(ũ − ũjp )2(ũ − ũlp ) = 0, (C20)

and ũlp the landing position of the tip introduced in
Sec. III B 2. A somewhat tedious but straightforward calcu-
lation shows that the stable solution ũlp satisfies the quadratic
equation

r − 3

8

w2

γ
+ w

4
ũlp + γ

8
ũ2

lp = 0 (C21)

and thus arranges along the ellipse

γ

8
ũ2

lp + β

4
ũlpṽlp +

(
δ

2
− 3

8

β2

γ

)
ṽ2

lp = C̄(κm − 1) (C22)

when expressed in the original two-dimensional tip space; this
coincides with the original result (66).
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In a last step, we may go over to an Ising-type Landau
expansion by measuring the order parameter ū with reference
to the skewed line

ũm(v̄) =
(

−β

γ

)
v̄

(1 + λ+/C̄)
, (C23)

i.e.,

ũ′ = ũ − ũm(v̄). (C24)

The 1D effective Landau expansion now reads, with precision
to order (κm − 1)2,

eeff
pin(ũ′; ū, v̄) = r′

2
ũ′2 + γ

24
ũ′4 − h′ũ′, (C25)

with the new coefficients

r′ = r − w2

2γ
, h′ = h − w3

3γ 2
+ rw

γ
. (C26)

The condition h′ = 0 now defines the equilibrium state of
the thermodynamic problem that translates into the branch
crossing line where the bistable vortex tip positions have equal
energy. Using the definitions (C7) and (C26) for h and h′,
we find that the branch crossing line ū0(v̄0) in the original
two-dimensional asymptotic space reads

ū0 = a

2C̄

v̄2
0

(1 + λ+/C̄)2
− β

γ

[
(κm − 1)

v̄0

1 + λ+/C̄

+
(

δ

2
− β2

3γ

)
1

C̄

v̄3
0

(1 + λ+/C̄)3

]
, (C27)

extending the result (80) from Sec. III to finite values of β

with an additional term ∝ (κm − 1)3/2.

2. Close to merging

Let us study the strong pinning problem close to merg-
ing, as described by the two-dimensional Landau-type energy
functional (115),

epin(R̃; R̄) = C̄(1 − κs)

2
ũ2 + C̄ + λ+,s

2
ṽ2 + as

2
ũṽ2

+ αs

4
ũ2ṽ2 + βs

6
ũ3ṽ + γs

24
ũ4

− C̄ūũ − C̄v̄ṽ. (C28)

As found before for strong pinning close to onset, the
energy functional (C28) is anisotropic with respect to vortex
displacements in the stable and unstable direction. Following
the strategy of Appendix C 1, we can use the force-balance
equation (121) to relate the tip position along the v axis to v̄

and ũ,

ṽ ≈ v̄

1 + λ+,s/C̄

(
1 − as/C̄

1 + λ+,s/C̄
ũ

)
. (C29)

Inserting Eq. (C29) into the force-balance equation for the un-
stable component ũ and integrating, we find that the resulting
effective 1D Landau theory is identical in form to the one
close to onset,

eeff
pin(ũ; ū, v̄) = rs

2
ũ2 + ws

6
ũ3 + γs

24
ũ4 − hsũ, (C30)

with a proper replacement of all coefficients involving the
parameters appropriate at merging,

rs =
[
C̄(1 − κs) − |δs|

2

v̄2

(1 + λ+,s/C̄)2

]
,

ws = βs
v̄

(1 + λ+,s/C̄)
,

hs = C̄ū − as

2

v̄2

(1 + λ+,s/C̄)2
. (C31)

The difference to Eq. (C7) is the sign change in the term
∝ |δs|v̄2. This implies a modification of the main equation
determining the shape of UR̃ [from which BR̄ follows via the
force balance equation (41)], with the elliptic equation (C17)
transforming to the hyperbolic expression

γsũ
2
jp + 2βsũjpṽjp − |δs|ṽ2

jp ≈ 2C̄(κs − 1). (C32)

The results for the jumping and landing hyperbolas in R̃ space
and for the edges of the bistable domain in R̄ space before
and after merging can be derived by following the strategy of
Appendix C 1 above and agree with the corresponding results
from Sec. V A.

We close with a final remark on the disappearance of
critical points after merging. The critical points are found in
the standard manner by setting the first three derivatives of
eeff

pin(ũ; ū, v̄) to zero. This works fine before merging when
1 − κs > 0 and we find that criticality is realized for tip and
asymptotic positions as given by Eqs. (B5) and (B15) in
Sec. V A. However, after merging, the cubic derivative ∂3

ũ eeff
pin

never vanishes, signaling the absence of a critical point, in
agreement with the discussion in Secs. V C and V B 2. The
merger thus leads to the disappearance of the two critical (end-
)points in asymptotic space, with the attached first-order lines
(the branch crossing line) joining up into a single line that is
framed by two separated spinodals. We are not aware of such
a disappearance of critical points in a merging process within
the standard discussion of thermodynamic phase transitions.
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