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Shielding collisions of ultracold CaF molecules with static electric fields
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We study collisions of ultracold CaF molecules in strong static electric fields. These fields allow the creation
of long-range barriers in the interaction potential, effectively preventing the molecules from reaching the
short-range region where inelastic and other loss processes are likely to occur. We carry out coupled-channel
calculations of rate coefficients for elastic scattering and loss. We develop an efficient procedure for including
energetically well-separated rotor functions in the basis set via a Van Vleck transformation. We show that
shielding is particularly efficient for CaF and allows the rate of two-body loss processes to be reduced by a factor
of 107 or more at a field of 23 kV/cm. The loss rates remain low over a substantial range of fields. Electron and
nuclear spins cause strong additional loss in some small ranges of field, but have little effect elsewhere. These
results pave the way for evaporative cooling of CaF towards quantum degeneracy.
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I. INTRODUCTION

Ultracold molecules have many potential applications,
ranging from quantum simulation [1,2] and quantum com-
puting [3,4] to the creation of novel quantum phases [5,6].
There is particular interest in polar molecules, which can
have long-range anisotropic interactions resulting from their
permanent dipoles. A variety of such molecules have been
produced at microkelvin temperatures by association of pairs
of atoms [7–12], or by direct laser cooling [13–18].

Many applications of ultracold molecules need high phase-
space densities. For atoms, this is usually achieved by
evaporative or sympathetic cooling [19,20]. However, high-
density samples of ultracold molecules usually undergo
collisional loss, due to a variety of short-range mechanisms
that may include two-body inelastic or reactive collisions
[21], three-body collisions [22], or laser-induced loss [23].
There is therefore much interest in shielding collisions of
ultracold molecules to prevent colliding pairs reaching short
range. This can be achieved by confining molecules to two
dimensions, with an electric field perpendicular to the plane,
so that repulsive dipole-dipole interactions dominate [24–26].
Alternatively, in three dimensions, it requires engineering re-
pulsive interactions based on the dipole-dipole interaction.

There have been theoretical proposals to achieve 3D
shielding using static electric fields [27–30], near-resonant
microwaves [31,32], or lasers [33]. Both microwave shielding
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and static-field shielding have been demonstrated experimen-
tally [34–37]. In this paper, we focus on static-field shielding
of bosonic CaF, although our results also apply to similar
molecules. CaF is of interest because it has been laser-
cooled to a few µK and confined in magnetic and optical
traps [15–17]. In the optical traps, phase-space densities are
reaching the regime where evaporative cooling becomes fea-
sible, especially when the molecules are electrically polarized
so that elastic collision rates are enhanced by dipolar in-
teractions [38]. However, it is known from studies using
tweezer traps that ground-state CaF molecules undergo two-
body collisional loss with a loss rate constant of (7 ± 4) ×
10−11 cm3 s−1 [39]. This may be due to the reaction 2CaF →
CaF2 + Ca, which is exothermic [40] and barrierless [41],
or to the formation and subsequent loss of complexes. Evap-
orative cooling is impossible in the presence of such fast,
destructive collisions.

It is thus important and timely to consider the effective-
ness of electric shielding for CaF and similar systems. Here,
we present coupled-channel calculations to demonstrate that
shielding with a static electric field is likely to be extremely
effective for CaF. We calculate cross sections for elastic scat-
tering and trap loss as a function of electric field and collision
energy. We show how s-wave and higher partial waves con-
tribute in both cases. We then use these results to evaluate the
likely effectiveness of evaporative cooling in this system.

The structure of the paper is as follows. Section II describes
our coupled-channel treatment, together with a discussion of
basis-set size and an efficient way of extending the basis set
using a Van Vleck transformation. Section III describes our
results for elastic scattering and loss processes, first in the
spin-free case and then including the effects of electron and
nuclear spins and of magnetic field. Section IV presents our
conclusions. Finally, the Appendix presents a detailed dis-
cussion of the convergence of the calculations, together with
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FIG. 1. Energy of (a) a single CaF molecule and (b) a pair of
CaF molecules as a function of electric field, neglecting electron and
nuclear spin. The initial pair state (ñ, mn) = (1,0)+(1,0) is shown
in red. The states (0,0)+(2,0), (0,0)+(2,±1), and (0,0)+(2,±2) are
shown in green, blue, and orange, respectively, and cross the initial
state between 18 and 22 kV/cm.

an analysis of resonance oscillations that can occur in some
cases.

II. THEORY

A. Coupled-channel approach for the spin-free case

We begin by treating each CaF molecule as a rigid rotor
with a dipole moment μk oriented along its internuclear axis.
Electron and nuclear spins are initially neglected, but will be
considered later. The Hamiltonian for a single molecule k is

ĥk = bkn̂2
k − μk · F, (1)

where n̂k is the operator for molecular rotation, bk is the
rotational constant, and F is an applied electric field along
the z axis. For 40Ca19F, b/h ≈ 10.267 GHz and |μ| = 3.07 D.
Figure 1(a) shows the single-molecule energy levels as a func-
tion of electric field; we label the levels (ñ, mn); here ñ is a
quantum number that correlates with the free-rotor quantum
number n at zero field and mn represents the conserved projec-
tion of n onto the z axis. Figure 1(b) shows the corresponding
energy of a pair of noninteracting CaF molecules.

The dipole-dipole interaction between two molecules takes
the form

Ĥdd = [3(μ1 · R̂)(μ2 · R̂) − μ1 · μ2]/(4πε0R3), (2)

where R is the intermolecular distance and R̂ is a unit vector
along the intermolecular axis. Shielding may occur when two
pair states that are connected by Ĥdd are close enough in
energy that they are strongly mixed. Two molecules that col-
lide on the upper curve then experience a repulsive potential
curve proportional to 1/R3. In Fig. 1(b), this can occur when
two molecules in the state (1,0) collide at fields just above
21.55 kV/cm, where (1,0)+(1,0) lies just above (0,0)+(2,0).
It can also occur just above 20.20 kV/cm, where (1,0)+(1,0)
lies just above (0,0)+(2,±1). In the remainder of this paper,
we focus on collisions of pairs of molecules in the state (1,0).

The Hamiltonian for a colliding pair of molecules is

Ĥ = h̄2

2μ

(
−R−1 d2

dR2
R + L̂

2

R2

)
+ ĥ1 + ĥ2 + Vint, (3)

where μ is the reduced mass, L̂ is the operator for relative
rotation, and Vint is the interaction potential. The total wave-
function is expanded

�(R, R̂, r̂1, r̂2) = R−1
∑

j

� j (R̂, r̂1, r̂2)ψ j (R), (4)

where r̂k is a unit vector along the axis of molecule k. We use
a basis set of functions {� j},

� j = φñ1
mn1

(r̂1)φñ2
mn2

(r̂2)YLML (R̂), (5)

symmetrized for exchange of identical bosons. Here φñ1
mn1

(r̂1)
and φñ2

mn2
(r̂2) are field-dressed rotor functions that diagonalize

ĥ1 and ĥ2, respectively, and YLML (R̂) are spherical harmonics

that are the eigenfunctions of L̂
2
. This produces a set of

coupled differential equations, which are solved as described
below.

The field-dressed functions φñ
mn

(r̂) are themselves ex-
panded in free-rotor functions Ynmn (r̂). An advantage of using
field-dressed basis functions in the expansion (4) is that it
is possible to use a large value of nmax in solving Eq. (1)
and then a smaller value of ñmax for the basis set (5) used
to solve the coupled equations. The computer time taken to
solve the coupled equations is determined by ñmax, and values
of nmax > ñmax result in a negligible increase in total computer
time.

The projection of the total angular momentum, Mtot =
mn1 + mn2 + ML, is a conserved quantity. We therefore solve
the coupled equations separately for each value of Mtot.

B. Interaction potential

The full interaction potential between two CaF molecules
is very deep and strongly anisotropic at short range [41].
However, shielding occurs due to dipole-dipole interactions
that occur at intermolecular distances R � 100 a0. At these
distances, the chemical interactions that dominate at short
range make very little contribution, and they are neglected
in the present paper. However, there are significant effects
due to dispersion interactions, which are proportional to R−6

at long range. These are of two types. Rotational dispersion
interactions arise from matrix elements of Ĥdd off-diagonal
in monomer rotational quantum numbers, which are included
directly in the coupled equations. In addition, there are
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electronic dispersion interactions, arising from dipole-dipole
matrix elements off-diagonal in electronic state. We take
these into account through an additional interaction V elec

disp =
−Celec

6 /R6, with Celec
6 ≈ 2300 Eha6

0.

C. Van Vleck transformation and adiabatic curves

The interaction potential Vint is dominated at long range
by Ĥdd, with shorter-range contributions from higher-order
multipolar interactions, dispersion forces, and chemical bond-
ing interactions. Ĥdd causes strong mixing of partial waves L,
even at quite long range. Furthermore, incoming partial waves
with L � 0 make substantial contributions to elastic cross
sections for dipolar scattering, even for very low collision
energies [38]. Because of this, basis sets with large values of
Lmax are needed. The details of the convergence are described
in the Appendix, but for illustration we use basis sets with L
up to Lmax = 20 in this section.

In the presence of an electric field, total parity is not con-
served. The only quantities that are fully conserved are the
exchange symmetry for identical particles (which must be +1
for 40Ca 19F, which is a composite boson) and Mtot. However,
(−1)L is also conserved if the only terms in Vint are Vdd and
V elec

disp . Even with the latter restriction, the resulting basis sets
are very large; for example, for ñmax = 5 and Lmax = 20, there
are N = 6240 channels with Mtot = 0 and even L in the ex-
pansion (4). Coupled-channel calculations take computer time
approximately proportional to N3, and are very challenging
for such large basis sets.

To circumvent this issue, we solve coupled equations that
include explicitly only a small number of pair functions
(ñ1, mn1)+(ñ2, mn2). The remaining pair functions are in-
cluded through an effective Hamiltonian that takes account
of Hdd through a Van Vleck transformation [42,43]. The full
set of channels is partitioned into two classes, denoted class
1 (labels a, b, . . .) and class 2 (labels α, β, . . .), such that
no channel in class 2 is asymptotically close in energy to
any channel in class 1. The channels in class 1 are included
explicitly in the coupled-channel calculations, while those in
class 2 are included perturbatively. Formally, we perform a
unitary transformation such that the matrix elements of Ĥdd

between channels in class 1 and class 2 vanish up to first order.
In second-order perturbation theory, this contributes matrix
elements between the channels in class 1 of the form

〈a|Ĥdd,VV|b〉

=
∑

α

1

2

[
〈a|Ĥdd|α〉〈α|Ĥdd|b〉

(Ea − Eα )
+ 〈a|Ĥdd|α〉〈α|Ĥdd|b〉

(Eb − Eα )

]
.

(6)

We make the further approximation of replacing the energies
in the denominators with their asymptotic values, so that
they are independent of R. Since Ĥdd is proportional to R−3,
Ĥdd,VV is proportional to R−6. The selection rules for ma-
trix elements of Ĥdd are 
L = 0,±2 and 
ML = 0,±1,±2,
so that those of Ĥdd,VV are 
L = 0,±2,±4 and 
ML =
0,±1,±2,±3,±4.

Shielding may be understood qualitatively in terms of
effective potential curves obtained by diagonalizing ĥ1 +
ĥ2 + Vint at fixed values of R. To a first approximation,
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FIG. 2. Adiabats correlating with pair levels (1,0)+(1,0) and
(0,0)+(2,0), calculated for an electric field of 24.5 kV/cm with
Lmax = 6 by full diagonalization with nmax = 5 (black solid lines),
nmax = 3 (blue dashed lines) and with a Van Vleck transformation
including only pair levels up to ñ = 2 in class 1, but with all the
additional levels up to nmax = 5 in class 2 (dashed orange lines).
The R axis is logarithmic, with tick marks separated by 20 a0. The
inset shows an expanded view of the adiabats correlating with L = 0,
2, 4, 6 at the threshold (1,0)+(1,0) near the long-range barrier for
incoming L = 0.

collisions occur on these “adiabats”, although there are also
transitions between them that are fully accounted for in
coupled-channel calculations. Figure 2 shows the adiabats
correlating with (1,0)+(1,0) and (0,0)+(2,0), for an electric
field of 24.5 kV/cm, where shielding is moderately effec-
tive, calculated in several ways as described below. When
(0,0)+(2,0) lies slightly below (1,0)+(1,0), as at this field, the
adiabats for (1,0)+(1,0) are repulsive at distances of a few
hundred bohr due to mixing with the lower threshold; it is this
repulsion that can prevent molecules reaching short range and
produce shielding. A particularly important feature in Fig. 2
is the barrier in the incoming channel with L = 0, with finite
height and width as shown in the inset.

The black solid lines in Fig. 2 show adiabats calculated by
direct diagonalization using a basis set with ñmax = nmax = 5
and Lmax = 6. The blue dashed lines show adiabats calcu-
lated with a smaller basis set with ñmax = nmax = 3; it may
be seen that this does not accurately reproduce the barrier
in the incoming channel with L = 0, and also gives slightly
incorrect threshold energies. The dashed orange lines show
adiabats calculated with a Van Vleck transformation, with
only levels up to ñ = 2 in class 1, but with all the additional
levels up to ñmax = 5 included in class 2. It may be seen
that the Van Vleck transformation faithfully represents the
full adiabats for R > 80 a0, including the height and width
of the barrier. There are some differences at shorter range,
mainly due to channels that come down from the higher
thresholds, but these do not make important contributions to
shielding.

Use of a Van Vleck transformation allows an enormous re-
duction in the number of channels needed in coupled-channel
calculations. The spin-free calculations described below use a
basis set with functions up to ñ = 2 in class 1. With Lmax = 20
this requires 455 basis functions in the coupled-channel
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calculations, compared to 6240 needed for the full basis set
with ñmax = 5. Furthermore, Van Vleck transformations that
include only a very few pair levels in class 1 still provide
qualitatively accurate results, as described in the Appendix.

When a Van Vleck transformation is used, the computer
time taken to solve the coupled equations is determined almost
entirely by the number of functions in class 1. There is then no
further advantage in choosing ñmax < nmax, as there is without
a Van Vleck transformation. In the remainder of this paper,
therefore, we use basis sets with ñmax = nmax, but with only a
subset of the resulting functions included in class 1 and thus
in the coupled equations.

D. Trap loss

Colliding molecules may be lost from a trap in two ways.
First, colliding pairs may undergo a transition to a lower-lying
pair state. In this case both molecules acquire kinetic energy
that is almost always larger than the trap depth, and are lost
from the trap. We refer to this as inelastic loss. Secondly, any
pairs that penetrate through the engineered repulsive barrier
and reach small intermolecular distance are also likely to be
lost. This may occur by a variety of mechanisms, including
short-range inelasticity, laser absorption, or three-body colli-
sions. We refer to this as short-range loss and to the sum of
inelastic and short-range loss as total loss.

To model these processes, we solve the coupled equa-
tions with a fully absorbing boundary condition at short range,
as in Refs. [44,45]. We use log-derivative propagators [46,47]
adapted to copropagate two linearly independent solutions for
each channel, and use these to construct traveling-wave solu-
tions with no outgoing part at a distance Rabsorb. This produces
a nonunitary S matrix that is used to produce separate cross
sections σel, σinel, and σshort for elastic scattering, inelastic
scattering, and short-range loss, respectively. The expressions
for the cross sections in terms of S-matrix elements are given
in the Appendix. The corresponding rate coefficients k at col-
lision energy Ecoll are related to the cross sections σ through
k = vσ , where v = (2Ecoll/μ)1/2. Thermally averaged rate
coefficients require further averaging over a Maxwell-
Boltzmann distribution, but that is not performed here.

At the electric fields of interest for shielding, dipole-dipole
and isotropic dispersion interactions generally dominate the
collision physics at distances greater than 100 a0. At shorter
distances, however, other forces that are not included here
start to contribute. These include dipole-quadrupole interac-
tions, the anisotropy of electronic dispersion forces and (at
yet shorter distances) chemical bonding. Nevertheless, under
some circumstances there are interesting resonance effects
due to states confined between 60 and 100 a0, as described
in the Appendix. To capture these effects, we place the fully
absorbing boundary at Rabsorb = 50 a0, effectively assuming
that all collisions that reach that distance produce trap loss.
This is a reasonably conservative approximation, although it
does not give a strict upper bound to loss, because reflections
at shorter range can in principle cause enhanced loss through
interference effects.

E. Electron and nuclear spins

All experiments on laser-cooled CaF so far have been
carried out on 40Ca19F, where 19F has nuclear spin i = 1/2

and 40Ca has no nuclear spin. In addition, there is an electron
spin s = 1/2. The spins contribute several extra terms in the
molecular Hamiltonian due to fine and hyperfine interactions.
To account for them in our coupled-channel calculations, we
supplement the field-dressed spin-free functions |ñ, mn〉 with
functions for the electron and nuclear spins. This will be
described in Sec. III C below.

III. RESULTS

A. The spin-free case

This section will explore CaF+CaF collisions as a function
of electric field, neglecting electron and nuclear spins. Initially
we present rate coefficients at Ecoll/kB = 10 nK and 10 µK.
The latter is slightly above the lowest temperature of 5 µK
so far achieved for CaF [16,17], so is a likely starting point
for evaporative cooling. The former is close to the regime of
limitingly low energy. In this regime, the cross sections for
inelastic scattering and short-range loss are proportional to
1/v, so the corresponding rate coefficients are independent
of energy. The elastic cross sections, however, are indepen-
dent of energy in the low-energy limit, so kel ∝ E1/2

coll . Further
details of the energy dependence and its origins are given in
Sec. III B.

Before presenting results, we consider the convergence of
the calculations with respect to basis set. All calculations use
a rotor basis set with ñmax = nmax = 5, which is very well
converged. However, only a subset of the field-dressed pair
functions are included in the class-1 basis set; the remain-
der are accounted for by a Van Vleck transformation. As
shown in the Appendix, even very small class-1 basis sets
give qualitatively correct results across the whole range of
fields of interest. However, small rotor basis sets can intro-
duce oscillations due to resonance effects. These oscillations
are suppressed with larger class-1 basis sets. Except where
otherwise stated, we use a basis set with all combinations of
field-dressed rotor functions up to ñ = 2 included in class 1.
This is referred to below as the “large” rotor basis set.

As shown in the Appendix, the elastic cross sections con-
verge quite fast with respect to Lmax, but the loss cross
sections converge much more slowly. In the remainder of this
section, we use basis sets with Lmax = 20, chosen to give
convergence of both elastic and loss rates to within 1%. We
include all incoming partial waves Lin � Lmax in the summa-
tions used to evaluate cross sections.

Figure 3 shows the spin-free rate coefficients for elastic
collisions and loss processes of CaF molecules initially in
(ñ, mn) = (1,0), as a function of electric field, in the vicinity
of the crossings at 21.55 and 20.20 kV/cm. We note that the
inelastic loss shown here includes only processes that occur
outside Rabsorb = 50 a0, and any inelastic loss that occurs
inside this distance is counted as short-range loss. The cross
sections for both inelastic and short-range loss are suppressed
dramatically over a wide range of fields above the cross-
ing with (0,0)+(2,0) at 21.55 kV/cm, with a minimum near
23 kV/cm. The elastic cross section at 10 nK shows a large
oscillation and enhancement in this field range, due princi-
pally to the variation in s-wave scattering length described
below. At 10 µK, however, the elastic scattering is dominated
by higher partial waves and this feature is absent.
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FIG. 3. Rate coefficients for spin-free CaF elastic collisions and
loss processes as a function of electric field for (a) Ecoll/kB = 10
nK and (b) Ecoll/kB = 10 µK. The range of electric fields spans the
crossings of (1,0)+(1,0) with (0,0)+(2,0) at 21.55 kV/cm and with
(0,0)+(2,±1) at 20.20 kV/cm. The calculations use the large rotor
basis set with Lmax = 20.

The calculated ratio of elastic to inelastic rate coefficients
at 23 kV/cm is about seven orders of magnitude at Ecoll/kB =
10 nK and eight orders of magnitude at 10 µK. The very large
value of the elastic rate coefficient will make evaporative
cooling efficient. For example, a sample in a typical crossed
optical dipole trap with an initial density of 1011 cm−3 and
temperature of 5 µK can be evaporated to BEC in a few
seconds. With a BEC density of order 1013 cm−3 and a rate
coefficient for loss below 10−15 cm3 s−1, the collisional limit
to the lifetime exceeds 100 s. Since collisional loss is sup-
pressed over quite a wide range of fields, significant tuning of
the dipole moment is achievable.

Figure 4 shows an expanded view of the rate coeffi-
cients near the lower-field crossing, between (1,0)+(1,0) and
(0,0)+(2,±1). The loss rates are suppressed in this region
too, but not as strongly and over a much narrower range
of fields. There is no significant feature near 18.3 kV/cm,
where (1,0)+(1,0) crosses (0,0)+(2,±2); these pair states
are not directly coupled by Ĥdd, which can change mn only
by 0 or ±1.

The general features of the rate coefficients may be ex-
plained in terms of the adiabats. Figure 5 shows the adiabat
for the incoming channel that corresponds to (1,0)+(1,0) and
L = 0 at long range, for a variety of electric fields close to the
crossings at 20.20 and 21.55 kV/cm. At fields slightly above
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FIG. 4. Rate coefficients for spin-free CaF elastic collisions and
loss processes as a function of electric field for Ecoll/kB = 10 µK at
fields near the crossing between (1,0)+(1,0) and (0,0)+(2,±1). The
calculations use the large rotor basis set with Lmax = 20.

each crossing, the adiabats are repulsive at distances of a few
hundred bohr due to mixing with the lower threshold; it is
this repulsion that can prevent molecules reaching short range
and produce shielding. At fields below the crossing, the same
mixing causes attraction, so there is no shielding.

The adiabats also explain the differences in depth and
width between the two shielding features. For the feature
above 21.55 kV/cm, due to the crossing with (0,0)+(2,0),
there is a substantial barrier in the incoming channel for
L = 0. The repulsive outer limb of this barrier is due
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(1,0)+(1,0) and L = 0 at long range, for a variety of electric fields
relevant to shielding near (a) the crossing between (1,0)+(1,0) and
(0,0)+(2,0) at 21.55 kV/cm and (b) the crossing between (1,0)+(1,0)
and (0,0)+(2,±1) at 20.20 kV/cm.
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principally to mixing with (0,0)+(2,0), but this competes with
attractive rotational dispersion interactions due to pair states
further away. It is the rotational dispersion that limits the
height of the barrier. However, because of the large rotational
constant and small dipole-dipole energy scale of CaF [30],
rotational dispersion is relatively weaker here than for KRb
[28], so the barrier is higher and exists over a wider range
of field. By contrast, for the feature above 20.20 kV/cm,
due to crossing with (0,0)+(2,±1), the barrier is limited by
interactions with (0,0)+(2,0), which lies only 70 mK × kB

higher than (1,0)+(1,0) at 20.20 kV/cm and quickly comes
closer as the field increases towards 21.55 kV/cm. This gives
a much smaller barrier, and correspondingly weaker shielding,
which extends over only a narrow range of fields. The overall
result is that the feature above 21.55 kV/cm is much more
pronounced and extends over a much wider range of fields
than in KRb and similar systems, while the feature above
20.20 kV/cm remains relatively weak and narrow. The effect
of the rotational constant on shielding above the higher-field
crossing has previously been discussed by González-Martínez
et al. [30], although they did not interpret the effect in terms
the adiabats.

B. Dependence on collision energy

In the absence of long-range anisotropy, low-energy
scattering is usually dominated by s-wave collisions, with
incoming Lin = 0. The diagonal S-matrix element in the in-
coming channel S00(k0) may be characterized by a complex
energy-dependent scattering length a(k0),

a(k0) = α(k0) − iβ(k0) = 1

ik0

(
1 − S00(k0)

1 + S00(k0)

)
, (7)

where k0 = (2μEcoll/h̄2)1/2. The corresponding contribution
to the elastic scattering cross section is [48]

σel,00(k0) = 4πg|a|2
1 + k2

0 |a|2 + 2k0β
, (8)

where g = 2 for identical bosons. This is not the complete
s-wave contribution to the elastic cross section, because it ne-
glects contributions from L-changing collisions with Lout > 0.
We refer to σel,00(k0) as the diagonal s-wave contribution to the
cross section. Similarly, the expression that is commonly used
for the inelastic cross section,

σinel,00(k0) = 4πgβ

k0
(
1 + k2

0 |a|2 + 2k0β
) , (9)

actually includes contributions from L-changing collisions
that form part of the elastic cross section. These distinctions
are often not important for atomic collisions, but they are
important in the present case.

Figure 6 shows the calculated real and imaginary parts
of the scattering length as a function of k0 from spin-free
calculations at fields of 24.5 and 26 kV/cm. At both fields
α(k0) is large and negative at low energy, but its magnitude
decreases substantially as the energy increases. The negative
low-energy scattering length arises because the lowest adiabat
(correlating with L = 0) is attractive and behaves as −C4R−4

at long range [49]. This occurs because there are off-diagonal
matrix elements of Ĥdd between L = 0 and 2. As a result, a
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long-range well exists outside the shielding barrier. This well
is not deep enough to support a bound state for CaF in the
range of fields considered here, so produces a scattering length
that is negative at low energy.

For atom-atom scattering with a long-range potential of the
form −C6R−6, both α(k0) and β(k0) are independent of k0 at
limitingly low energy, with a leading correction term propor-
tional to k2

0 [50]. For a potential of the form −C4R−4, however,
the leading correction to α(k0) is linear in k0. This behavior
is seen in Fig. 6. α(k0) crosses zero near Ecoll/kB = 22 µK
at 24.5 kV/cm and near 6 µK at 26 kV/cm, producing
corresponding minima in σel,00(k0) as a function of energy.
The imaginary part β(k0) also varies linearly with k0 at low
energies, due to the elastic contribution from L-changing col-
lisions, and will be described below.

Figure 7(a) shows σel,00(k0) as a function of electric field
for several collision energies. The cross section at 10 nK
directly reflects the field dependence of a(0), whose real
part α(0) crosses zero near 21.6 kV/cm and again near
27.2 kV/cm, as shown in Fig. 7(b). The higher-field crossing
and the corresponding minimum in σel,00(k0) move to lower
field at higher energies as α(0) becomes more negative. The
lower-field crossing moves in the opposite direction. Fig-
ure 7(c) shows the s-wave contributions to rate coefficients for
total loss for various collision energies. In this case the energy
dependence is much simpler, with a slow but steady drop in
cross section as energy increases.

For dipole-dipole scattering, higher partial waves also play
an important role. The dipole-dipole interaction couples dif-
ferent partial waves L, and dies off only slightly faster (R−3)
than the centrifugal separation between the channels (R−2).
Because of this, there are substantial contributions to elastic
cross sections from Lin > 0 and/or Lout > 0, which we refer
to as σel,L>0. For dipoles fixed in space, the contributions
to elastic cross sections may be estimated from a Born ap-
proximation [38], and for identical bosons at limitingly low
energy they sum to 2.234D2, where D = d1d2μ/(4πε0 h̄2) is
the dipole length and dk are the space-fixed dipoles induced
by the electric field. Of this, 1.396D2 arises from Mtot = 0.
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loss kloss with Lin = 0 but summed over Lout.

Figure 8 shows the higher-L contributions to elastic cross
sections as a function of field for collision energies between
10 nK × kB and 10 µK × kB. It also shows the Born approx-
imation 2.234D2, which varies with field because of the
variation in the induced dipole shown in Fig. 8. The Born
approximation is very accurate at 10 nK, but breaks down
substantially at higher energies, particularly at fields in the
range important for shielding. Figure 9(a) shows the higher-L
contribution for a single field of 24.5 kV/cm, further bro-
ken down into contributions from individual values of Lin.
It may be seen that the breakdown of the Born approxima-
tion occurs principally for Lin < 4. Thus, contributions from
Lin > Lmax and Lout > Lmax, which are not captured by our
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coupled-channel calculations, can instead be accounted for
with good accuracy using the Born approximation.

The higher-L contributions to elastic cross sections are
determined by dipole-dipole interactions at very long range,
typically R > 500 a0. The diagonal s-wave contribution arises
from shorter-range physics, governed by the outer turning
point of the shielding barrier in the adiabat for L = 0, but
still at R > 200 a0 for fields where shielding is effective. At
these distances the Hamiltonian is strongly dominated by the
dipole-dipole terms, so we expect the elastic rate coefficients
obtained here to be quantitatively predictive.

Figure 9(b) shows the breakdown of the cross sections for
inelastic and short-range loss into contributions from individ-
ual values of Lin. The losses from Lin > 4 are very small, and
partial waves Lin > 6 contribute less than one part in 108 to
the cross sections.

In the Born approximation, the off-diagonal S-matrix ele-
ments for L-changing elastic collisions are proportional to k0

at low energy [38,51]. At limitingly low energy,

β(k0) = βloss + (1/45)D2k0, (10)

where only βloss represents loss and the term linear in k0

results from elastic scattering. This is the behavior seen in
Fig. 6. It may be noted that Ref. [30] calculated loss rates
using Eq. (9), with β(k0) obtained from coupled-channel cal-
culations of S00 at Ecoll/kB = 100 nK. This procedure can
dramatically overestimate loss rates where shielding is most
effective; for CaF at 23 kV/cm, βloss = 1.1 × 10−4 a0 but
β(k0) = 7.7 a0 at Ecoll/kB = 100 nK, so it would overestimate
the loss rate by about a factor of 105. The absolute loss
rate is important because it will determine the lifetime of
the ultracold dipolar gas.

Figure 10(a) shows the dependence of the total rate co-
efficients on energy for a field of 24.5 kV/cm. Figure 10(b)
breaks these down into contributions from Lin = 0 and Lin >

0. For the elastic rates, the two contributions have the same
threshold law. Nevertheless, Lin = 0 dominates at energies be-
low 10 µK × kB, while Lin > 0 dominates above that. For the
inelastic and short-range loss, the contributions from Lin = 0
and Lin > 0 have different threshold laws: the s-wave con-
tribution to the rate coefficient is independent of energy at
very low energy, while that from Lin > 0 is proportional to
Ecoll. The two contributions are comparable above 10 µK.
This explains the very different dependence of kel on field at
Ecoll/kB = 10 nK and 10 µK in Fig. 3.

C. Effects of electron and nuclear spins

Quéméner et al. [29] have argued that the spin quan-
tum numbers should behave as spectators during shielding
collisions, so that spin-free calculations are adequate. Never-
theless, they presented results that indicate that, for fields even
slightly (10%) above the optimum field for shielding in RbSr,
inclusion of the full spin structure can enhance shielding by
a factor of 10, increasing to 104 at fields 30% higher. They
attributed this effect to additional repulsion due to spin states
neglected in the spin-free calculations. We have therefore
carried out a detailed investigation of the effects of spin on
shielding for CaF.
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FIG. 10. Rate coefficients as a function of collision energy at a
field of 24.5 kV/cm. Panel (a) shows the rate coefficients summed
over Lin, whereas panel (b) shows them separated into contributions
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The effects of electron and nuclear spins on the individ-
ual molecules are described by the Hamiltonian for fine and
hyperfine structure,

ĥfhf = γ ŝ · n̂ + ζF î · ŝ + t
√

6T 2(C) · T 2(î, ŝ) + cF î · n̂. (11)

Here the first term represents the electron spin-rotation in-
teraction, while the second and third terms account for the
isotropic and anisotropic interactions between electron and
nuclear spins. T 2(î, ŝ) denotes the rank-2 spherical tensor
formed from î and ŝ, and T 2(C) is a spherical tensor whose
components are the Racah-normalized spherical harmonics
C2

q (θ, φ). The last term represents the nuclear spin-rotation in-
teraction, which is typically three orders of magnitude smaller
than the others. The values of the constants γ , ζF, t and cF for
CaF are taken from Refs. [52,53].

In the present paper, we are interested in collisions in the
presence of an electric field of around 20 kV/cm. Figure 11
shows the fine and hyperfine splittings for the monomer states
with (ñ, mn) = (0,0), (1,0), and (2,0), which are the most rele-
vant for shielding. The only fully conserved quantum number
is m f = mn + ms + mi. For all states, however, the general
pattern is that g, the resultant of i and s, is approximately con-
served, along with mn and mg, but ms and mi are individually
poorly defined.

The fine and hyperfine structure complicates the pat-
terns of pair levels in the vicinity of crossings be-
tween spin-free levels. Figure 12 shows the crossings of
(ñ, mn) = (1,0)+(1,0) with (0,0)+(2,0) when spin splittings
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FIG. 11. Hyperfine splittings of CaF rotor levels (in MHz) at
electric field 23 kV/cm.

are included. If both molecules are initially in the lowest
spin component, with (ñ, mn, g, mg) = (1,0,0,0) (black line),
the crossing with (0,0,0,0)+(2,0,0,0) (green line) is almost
unshifted at 21.55 kV/cm, but there are additional cross-
ings with excited spin channels at 21.66 and 21.77 kV/cm.
The consequences of these are discussed below.

To solve the coupled equations for scattering, we use basis
sets constructed from products of field-dressed rotor functions
|ñ, mn〉, calculated without spins, and spin functions |g, mg〉,
formed as Clebsch-Gordan sums of |s, ms〉 and |i, mi〉. There
are four spin functions for each monomer rotor state, so 16
spin combinations for each pair state. The full pair basis
set is restricted by the conservation of Mtot, which is now
mn1 + mg1 + mn2 + mg2 + ML, and by exchange symmetry,
but the overall size of the basis set nevertheless increases by a
factor of about 10 when spins are included. This increases the
computer time by a factor of about 1000, so it is necessary to
use smaller rotor basis sets than for spin-free calculations.
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FIG. 13. Effect of electron and nuclear spins on rate coefficients
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rotor basis set with Lmax = 2. Only Mtot = 0 is included. The full spin
structure is included for the pair functions in class 1, with the remain-
der included by Van Vleck transformations. The red curves show the
corresponding results without spin structure, also for Lmax = 2.

The Van Vleck transformation once again makes it possible
to include the effects of well-separated basis functions without
including them in the explicit basis set used to solve the
coupled equations. We choose a limited set of combinations
of rotor and spin functions to include in class 1. In principle,
Ĥdd and every operator in Eq. (11) have matrix elements
connecting basis functions in class 1 with those in class 2.
However, the term ζF î · ŝ is diagonal in rotor quantum num-
bers, and the small nuclear spin-rotation term is neglected.
Terms involving spin operators in second order are indepen-
dent of R and have negligible effects on scattering. The terms
involving Ĥdd in second order are identical to those included
in the spin-free case, and are diagonal in spin quantum num-
bers. The additional terms that appear in a second-order Van
Vleck transformation to handle spin are those first order in
Ĥdd and also first order in either the spin-rotation interaction
Ĥsn = γ

∑
k=1,2 ŝk · n̂k or the anisotropic hyperfine interaction

Ĥ (2)
is = t

√
6

∑
k=1,2 T 2(Ck ) · T 2(îk, ŝk ). These terms are of the

form

〈a|Ĥdd,sn,VV|b〉

=
∑

α

1

2

[ 〈a|Ĥdd|α〉〈α|Ĥsn|b〉
(Ea − Eα )

+ 〈a|Ĥdd|α〉〈α|Ĥsn|b〉
(Eb − Eα )

+ 〈a|Ĥsn|α〉〈α|Ĥdd|b〉
(Ea − Eα )

+ 〈a|Ĥsn|α〉〈α|Ĥdd|b〉
(Eb − Eα )

]
(12)

and similarly for Ĥ (2)
dd,is,VV, with Ĥ (2)

is replacing Ĥsn on the
right-hand side. We approximate the energy denominators
with their spin-free asymptotic values, so that the whole of
each operator is proportional to R−3.

Figure 13 shows rate coefficients for elastic scattering and
total loss, with and without the inclusion of spins. These
calculations use the large rotor basis set, but with Lmax

restricted to 2 to make the calculations including spin afford-
able. All spin functions are included for every pair function in
class 1. There is very little difference between the two
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FIG. 14. Rate coefficient for total loss at Ecoll/kB = 10 µK, cal-
culated with the small rotor basis set combined with full spin
structure (black) and with the spin-N13 basis set (red). The calcu-
lations use Lmax = 20 and Mtot = 0. The vertical orange line shows
the field where the spin-changing channels open.

calculations, except in narrow regions of field around 21.7
and 21.8 kV/cm, where there are narrow spikes in the loss
cross sections when spin is included. The similarity of the
cross sections across the rest of the range of fields contrasts
with the results shown for RbSr in Fig. 4 of Ref. [29], which
showed substantially enhanced shielding at fields analogous
to the upper half of Fig. 13.

The large spin-induced loss peaks occur near the fields
where spin-changing channels corresponding to (0,0)+(2,0)
become energetically open. The large and small peaks cor-
respond to open channels with one or both molecules,
respectively, excited to states with g = 1; the corresponding
crossings are labeled with closed and open circles in Fig. 12.
There is a large flux into these outgoing channels when the
kinetic energy of the products is very low (less than about
3 mK), and also at slightly lower fields, due to resonance
effects described below. This is a dramatic, though localized,
breakdown of the idea that spins act as spectators in the region
important for shielding.

There are no matrix elements of spin operators that con-
nect the incoming channels for (1,0)+(1,0) directly to the
near-degenerate spin-changing channels. However, there are
second-order matrix elements of the type (12) that can cause
such couplings, via other rotor states. The operators Ĥsn and
Ĥ (2)

is act on the state of one monomer at a time and cannot
change the quantum numbers of both monomers simultane-
ously. They are also diagonal in L and ML. Ĥsn can change
g and mg by 0 or ±1 while conserving mn + mg, but does
not have matrix elements diagonal in mn = 0 or mg = 0. It
thus connects either (1,0)+(1,0) or (0,0)+(2,0) only to pair
functions with mn1 = ±1 or mn2 = ±1. The only states of this
type with lower energy are (0,0)+(1,±1), (0,0)+(2,±1), and
(1,±1)+(1,0), but there are higher states too. Ĥ (2)

is can change
mg by 0, 1, or 2 while conserving mn + mg, but has no matrix
elements involving g = 0 in CaF. The overall effect is that
Ĥ (2)

dd,is,VV has no matrix elements at all that connect directly
to the initial state considered here, with g1 = g2 = 0.

The principal approximation in our Van Vleck transfor-
mation is the approximation of the energy denominators in

FIG. 15. Rate coefficients at Ecoll/kB = 10 µK around the spin-
changing loss peak, obtained with the spin-N13 basis set. The black
solid line shows the total inelastic rate coefficient and the colored
lines show the state-to-state inelastic rate coefficients from the initial
state (1,0,0,0)+(1,0,0,0) to other levels. The dashed black line shows
the rate coefficient for short-range loss. The vertical orange line
shows the field where the spin-changing channels open.

Eq. (12) by their asymptotic values. This can be important for
nearby channels that come close in energy as a function of R.
Such channels need to be in class 1 to capture their full effects.
A minimal set of functions in class 1 to calculate the effects of
spin is therefore (ñ, mn, g, mg) = (1,0,0,0)+(1,0,0,0) and the
12 channels obtained by combining (0,0,0,0) with (2,0,g,mg)
and (2,±1,g,mg), with (g,mg) taking all 4 possible values. We
refer to this basis set as spin-N13.

Figure 14 shows the spin-induced loss peak near
21.66 kV/cm in more detail. It compares results using the
spin-N13 basis set (red line) with those obtained using the
small rotor basis set combined with all possible spin func-
tions in class 1 (black line). All other channels up to ñ = 5
are included via Van Vleck transformations at minimal extra
cost. These calculations use Lmax = 20, which gives much
better convergence than in Fig. 13, with a larger background
loss. The vertical orange line shows the field where the spin-
changing channels corresponding to (0,0,0,0)+(2,0,1,±1)
become energetically open. The lowest such channels for
Mtot = 0 have L = 2, with centrifugal barriers of height
13 µK × kB near 900 a0. The rate coefficient shows a sharp
peak when the kinetic energy release is near this barrier max-
imum, then drops smoothly back to the background rate over
the next 0.1 kV/cm. There is also a peak near 21.66 kV/cm,
where the spin-changing channels are still closed; this is a Fes-
hbach resonance due to a state bound by about 300 µK × kB

in each spin-changing channel. The spin-N13 basis set suc-
cessfully reproduces the full pattern of peaks, including the
resonance. Calculations with the spin-N13 basis set take about
a factor of 100 less computer time than those with the full spin
basis set, so this shows an impressive further demonstration of
the power of the Van Vleck transformation.

Figure 15 shows rate coefficients for state-to-state inelas-
tic processes and short-range loss around the spin-induced
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peak. Far from the peak on both sides, the dominant prod-
uct states are (0,0,0,0)+(2,0,0,0) and (0,0,0,0)+(2,±1,0,0),
which are driven directly by spin-free dipole-dipole inter-
actions. The vertical line shows the field at which the
spin-changing channels open. Immediately above this field,
the total cross section is dominated by flux into the newly
open channels. Just below this field, the products are mostly
in lower states (0,0,0,0)+(2,mn,1,±1). These pair states are
directly coupled to the resonant channels corresponding to
(0,0,0,0)+(2,0,1,±1) by Ĥdd, so flux into them is enhanced
when there is additional density in (0,0,0,0)+(2,0,1,±1)
close to the resonances. There is very little flux into
(0,0,0,0)+(2,0,1,0), although it becomes open in the same
range of fields.

The positions of the spin-changing peaks depend strongly
on the molecular coupling constants, particularly the hyper-
fine splitting. For CaF this splitting is small, around 120 MHz,
so the main spin-changing peak is only about 0.11 kV/cm
above the crossing field. SrF is similar in this respect. For
some other 2� molecules, however, the hyperfine splitting
is considerably larger [54] and there may be spin-changing
peaks that lie at fields that will interfere with shielding.

D. Effect of magnetic field

It is important to know whether magnetic fields have signif-
icant effects on shielding. In the case of microwave shielding
of CaF, a magnetic field around 100 G is beneficial because
it recovers a nearly conserved quantum number mn that is
otherwise destroyed by ĥfhf. For static shielding, this is not an
issue because the electric field itself is sufficient to ensure that
mn is nearly conserved. Nevertheless, small magnetic fields
may cause appreciable splitting of otherwise near-degenerate
levels, and we investigate those effects here.

A magnetic field B introduces Zeeman terms in the Hamil-
tonian. In a full treatment [55], there are terms involving the
electron spin, the nuclear spin, and the molecular rotation.
However, the rotational and nuclear-spin terms are typically
three orders of magnitude smaller than the electron-spin term.
We therefore ignore them in the present calculations, and
consider only the term

ĥZeeman = gSμBŝ · B. (13)

A magnetic field has very little effect on the rate coefficients,
except near the peak involving low-energy spin-changing
channels described in Sec. III C. However, it does substan-
tially modify this peak. Figure 16 shows the rate coefficients
for total loss in this region in magnetic fields B = 5 and 10
G, parallel to the electric field, with those in zero magnetic
field. It may be seen that the peak splits into two similar
structures, with a separation approximately proportional to
the field. This occurs because the state (0,0,0,0)+(2,0,1,±1),
which is responsible for the feature as described in
Sec. III C, it itself split into two Zeeman components with
mg = +1 and −1.

IV. CONCLUSIONS

We have studied ultracold collisions of two CaF molecules
in high static electric fields. A near degeneracy between
field-dressed pair functions allows the creation of a repulsive

10-14

10-13

10-12

10-11

10-10

21.60 21.65 21.70 21.75

k
lo

ss
 (

c
m

3
/s

)

Electric Field (kV/cm)

0 G

5 G

10 G

FIG. 16. Effect of a small magnetic field on the rate coefficient
for total loss at Ecoll/kB = 10 µK. The calculations use the small rotor
basis set with full spin structure, with Lmax = 20 and Mtot = 0. The
loss rate is almost unaffected by magnetic fields outside the range
shown.

long-range barrier due to dipole-dipole forces. This barrier
prevents the molecules reaching the short-range region where
inelastic and other loss processes are likely to occur.

We have carried out coupled-channel quantum scattering
calculations on the ultracold collisions. Electric fields cause
strong mixing of CaF rotor states, so we use basis sets based
on field-dressed rotor states. Converged calculations require
large basis sets of both rotor states and partial waves, and
can quickly become prohibitively expensive in computer time.
We have developed an efficient way to include energetically
well-separated rotor states in the calculation, using a Van
Vleck transformation, so that their effects are taken into
account without including extra functions in the coupled-
channel basis set. With this method, calculations with large
basis sets are made much cheaper and even very small explicit
basis sets can give results of useful accuracy.

We have found that static-field shielding is particularly
effective for CaF. Loss processes are reduced by up to
seven orders of magnitude over a broad range of collision
energies. The rate coefficients for loss reach a minimum
near 23 kV/cm, and are suitable for efficient evaporative
cooling all the way to Bose-Einstein condensation. At the
lowest collision energies, the rate coefficients remain be-
low 10−13 cm3 s−1 across a range of fields from 21.7 to
24.5 kV/cm. This should allow production of long-lived dipo-
lar condensates with space-fixed molecular dipole moments
tunable from −0.44 to −0.34 D.

We have studied the energy dependence of different con-
tributions to rate coefficients for elastic scattering and loss.
The elastic rate at the lowest energies shows a pronounced
peak near 23 kV/cm, principally because of a maximum
in the s-wave scattering length there. At collision energies
close to 10 µK, by contrast, the s-wave contribution is small;
elastic scattering is then dominated by higher partial waves
and the dependence on field is much weaker. Loss processes
are mostly dominated by s-wave scattering. The loss rate is
almost independent of energy below 100 nK, but it decreases
substantially at higher energies; at 23 kV/cm it decreases by
about a factor of 20 between 10 nK and 10 µK.

We have investigated the effects of electron and nuclear
spin on shielding collisions. At most fields the effects are
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very small. However, there are dramatic enhancements of
loss rates near specific fields where spin-changing channels
are energetically just accessible. At such fields the spins are
intimately involved in the collision, and are far from being
“spectators”. For CaF, such a feature exists at fields just below
21.7 kV/cm, where it enhances loss rates by up to three orders
of magnitude. We have also investigated the effects of small
magnetic fields, which modify the spin-changing loss feature
but otherwise have little effect on rate coefficients.

This paper paves the way for experiments on evaporative
cooling of CaF in strong electric fields. It shows that such
experiments have a good prospect of cooling CaF all the
way to quantum degeneracy. While the BEC will be stable
against two-body loss processes for several seconds, it may
not be stable against collapse. The stability and behavior of
the condensate depend on the dipole length D and the s-wave
scattering length a. We calculate a negative scattering length
for all electric fields and collision energies of interest. In
contrast with unshielded systems, where a is determined by
short-range physics and cannot be predicted from a priori
potentials, a is here determined by the long-range well that
exists outside the shielding barrier. Because of this, we expect
the present calculation of a to be accurate.

In free space, and in the absence of the electric shield,
a dipolar BEC will collapse when the scattering length is
negative, because the energy is lowered as the density in-
creases indefinitely. The collapse can be avoided by confining
the BEC in a pancake-shaped trap with the dipoles aligned
along the short axis, so that most dipoles lie side-by-side and
repel [56,57]. The electric shield prevents close approach of
two molecules, so may also help to stabilize the BEC against
collapse, although its influence on the many-body dynamics of
a BEC has not yet been studied. Further stabilization can come
from fluctuations around the mean-field energy, and in some
circumstances a dipolar BEC can form self-bound droplets
and exotic supersolid phases [58]. The stability and many-
body phases of a strongly dipolar BEC in the presence of an
electric shield and in various trap geometries are interesting
topics for future study.

The data presented in this paper are available from Durham
University [59].
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APPENDIX: CONVERGENCE OF SCATTERING
CALCULATIONS

1. Calculation of cross sections

Elastic and state-to-state inelastic cross sections involv-
ing initial and final pair levels i = (ñ1, mn1, ñ2, mn2) and
f = (ñ′

1, m′
n1, ñ′

2, m′
n2) are obtained in terms of S-matrix
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FIG. 17. Convergence of cross sections for (a) elastic scattering
and (b) total loss with respect to Lmax at electric field F=24.5 kV/cm.
The calculations use the large rotor basis set.

elements from coupled-channel calculations,

σel,i = gπ

k2
0

∑
LL′MLM ′
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L
− SMtot
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σinel,i f = gπ
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∑
LL′MLM ′

LMtot
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iLML, f L′M ′

L

∣∣2
, (A2)

where g = 2 for identical bosons and k0 = (2μEcoll/h̄2)1/2 is
the incoming wave vector. Where necessary, spin quantum
numbers are included in the specification of states i and f .
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FIG. 19. Dependence of rate coefficients on the basis set of rotor functions included in class 1. All calculations use ñmax = nmax = 5 and
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set, with only pair levels (1,0)+(1,0), (0,0)+(2,0), and (0,0)+(2,±1) in class 1.

Total inelastic cross sections σinel,i are obtained by summing
over all final pair levels f 
= i at long range.

The cross section for short-range loss is obtained from the
unitarity deficit, summed over channels for incoming state i,

σshort,i = gπ
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FIG. 20. Adiabats correlating with pair levels (1,0)+(1,0) and
(0,0)+(2,0), calculated for an electric field of 24.5 kV/cm with
Lmax = 6 by full diagonalization with nmax = 5 (black solid lines)
and with the small rotor basis set (orange dashed lines). The inset
shows an expanded view of the adiabats near the long-range barrier
for incoming L = 0.

where here the sum over f includes i. The short-range loss
may include contributions from inelastic processes that occur
inside Rabsorb. The total loss may be calculated either as the
sum of σinel,i and σshort,i or equivalently as

σloss,i = gπ

k2
0

∑
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⎛
⎝1 −

∑
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L

∣∣∣SMtot
iLML,iL′M ′

L
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⎞
⎠. (A4)

Partial cross sections for a single incoming L, designated
Lin elsewhere for clarity, are obtained from similar expressions
without the sum over L.

2. Convergence with respect to Lmax

Figure 17 shows the convergence of the cross sections for
elastic scattering and total loss with respect to Lmax at
10 µK and 24.5 kV/cm. The elastic cross sections σel converge
quite fast with respect to Lmax, and are converged to within
1% of their final value by Lmax = 12. However, the loss cross
sections converge much more slowly, and require Lmax = 18
for a similar degree of convergence. In most calculations we
use Lmax = 20.

Figure 18 shows rate coefficients for collision energy
Ecoll = 10 µK × kB, calculated with the same basis set of rotor
functions as Fig. 3, but with Lmax = 6 instead of Lmax = 20.
It gives qualitatively correct results, but underestimates the
rate coefficients for short-range and inelastic loss by about
an order of magnitude around 23 kV/cm, where maximum
shielding occurs.
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FIG. 21. Rate coefficients as a function of electric field for Rabsorb = 10 a0 (black), 50 a0 (red), and 80 a0 (blue). The calculations use the
large rotor basis set with Lmax = 20. These results are obtained using Mtot = 0 at Ecoll/kB = 10 µK.

3. Convergence with respect to basis set of rotor functions

Figure 19 shows the dependence of the coupled-channel
rate coefficients on the set of pair functions included in
class 1. All remaining basis functions up to ñmax = nmax = 5
are included in class 2 and are accounted for by the Van Vleck
transformation. The orange curves show results with the large
rotor basis set used for most calculations in the present paper,
with all pair levels up to ñ = 2 included in class 1. The blue
curves show results with a smaller rotor basis set with all pair
levels below (1,0)+(1,0) and (0,0)+(2,0) in class 1. The red
curves show results with the small rotor basis set, with only
(1,0)+(1,0), (0,0)+(2,0), and (0,0)+(2,±1) in class 1.

Figure 19(a) shows the elastic cross sections, and it may be
seen that even the smallest rotor basis set gives good results
for these. Figures 19(b), 19(c), and 19(d) show short-range
loss, inelastic loss, and total loss, respectively, with total loss
being the most important. Even the small rotor basis set (red
curves) gives qualitatively correct results, and is about a factor
of 1500 cheaper than the large rotor basis set. However, it does
introduce significant oscillations in the loss cross sections be-
tween 23 and 28 kV/cm. The oscillations are approximately
in phase for inelastic scattering and short-range loss. They are
resonant oscillations due to states confined inside the barrier
in the adiabat for L = 0. The adiabats for the small rotor basis
set are compared with those for the large rotor basis set in
Fig. 20. In both cases there is a classically allowed region

inside the barrier, extending from at R ∼ 100 a0 inwards.
For the small rotor basis set (orange dashed curves) there
is a simple potential well in this region, extending to R ∼
60 a0. Barrier penetration is enhanced near states confined in
this well, and produces increases in both inelastic scattering
and short-range loss. When extra rotor functions are added,
however, they introduce additional avoided crossings between
adiabats (black curves), which complicate the short-range re-
flections. As a result, the oscillations are only just visible for
the large rotor basis set.

Even a minimal basis set, with only (1,0)+(1,0) and
(0,0)+(2,0) in class 1 (not shown) gives qualitatively correct
results, although in this case the oscillations between 23 and
27 kV/cm are even more pronounced and the loss rates devi-
ate from the large-basis results by up to a factor of 10 at some
fields.

4. Behavior with respect to Rabsorb

Figure 21 shows rate coefficients calculated with Rabsorb =
10, 50, and 80 a0. It may be seen that the results for 10 and
50 a0 are almost identical. For 80 a0 some inelastic loss is
transferred into short-range loss, but the total loss is much less
affected. This reflects the fact that some inelastic loss does
take place inside 80 a0, as expected from the adiabats in Fig. 2.
When Rabsorb = 80 a0, this loss appears in the calculations as
short-range loss rather than inelastic loss.
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