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Motional ground-state cooling of single atoms in state-dependent optical tweezers
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Laser cooling of single atoms in optical tweezers is a prerequisite for neutral atom quantum computing and
simulation. Resolved sideband cooling comprises a well-established method for efficient motional ground-state
preparation, but typically requires careful cancellation of light shifts in so-called magic traps. Here, we study
a novel laser cooling scheme which overcomes such constraints, and applies when the ground state of a
narrow cooling transition is trapped stronger than the excited state. We demonstrate our scheme, which exploits
sequential addressing of red sideband transitions via frequency chirping of the cooling light, at the example
of 88Sr atoms and report ground-state populations compatible with recent experiments in magic tweezers. The
scheme also induces light-assisted collisions, which are key to the assembly of large atom arrays. Our work
enriches the toolbox for tweezer-based quantum technology, also enabling applications for tweezer-trapped
molecules and ions that are incompatible with resolved sideband cooling conditions.
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I. INTRODUCTION

Quantum control of individual atoms trapped in optical
tweezers has seen a very rapid development in the last years
[1], which has opened routes for applications such as quan-
tum computing and simulation [2–4], precision metrology
[5,6], or ultracold chemistry [7,8]. The quest for high-fidelity
operations on the internal states of the atoms, for example,
logic gate operations or optical clock interrogation, also re-
quires cooling of the external motion, ideally down to the
quantum mechanical ground state of the tweezer trap [9,10].
Efficient ground-state preparation is also key for assembling
Hubbard-type lattice models atom by atom with optical tweez-
ers [11,12], or for realizing ultrafast quantum gate protocols
via resonant Förster interactions [13].

Large motional ground-state occupation is typically
achieved using well-established sideband-resolved cooling
protocols [9,10], which more recently also became available
for alkaline-earth(-like) atom arrays exploiting their narrow
intercombination transitions [14–16]. Sideband laser cooling,
however, poses tight constraints on the trapping condition,
as it requires careful cancellation of differential light shifts
for the internal atomic states involved in the cooling cy-
cle, a situation referred to as magic trapping. Consequently,
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many of the applications mentioned above, including optical
tweezer-based atomic clocks [5,6] or novel concepts for qubit
implementations in gate-based quantum processors [17,18],
are incompatible with such constraints. Novel laser cooling
mechanisms that work at more general conditions thus not
only expand the toolbox for neutral atom quantum technology,
but may also find applications in controlling optically trapped
molecules or even ions [19–21].

In this paper, we demonstrate a method for motional
ground-state cooling at the example of single trapped 88Sr
atoms which is applicable in the generic situation of sizable
differential light shifts between the relevant atomic states. The
strategy relies on a frequency chirp of the cooling light to
quench the population of initially occupied motional states
towards the trap ground state. A detailed theoretical proposal
and analysis thereof has been reported recently in Ref. [22].
Optimizing the cooling parameters, we measure ground-state
populations exceeding 80% along the radial (more strongly
confined) tweezer axis. At the same time, the cooling protocol
efficiently removes pairs of atoms from the trap via light-
assisted collisions resulting in a final 50% filling probability
with exactly one atom, prerequisite for the systematic assem-
bly of large atom arrays [23,24].

II. GROUND-STATE COOLING SCHEME FOR
STATE-DEPENDENT TWEEZERS

We consider an atom with two internal electronic states |g〉
and |e〉 trapped in the Gaussian-shaped potential formed by an
optical tweezer [Fig. 1(a)]. Sufficiently close to the trap bot-
tom, the atom is harmonically confined with state-dependent
oscillator frequencies ωg and ωe, respectively. Standard side-
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FIG. 1. Chirp-cooling in state-dependent optical tweezers.
(a) Radial tweezer potential for the |g〉 = |1S0〉 and |e〉 = |3P1〉 states
of the cooling transition. The state-dependent trap depth enables
transfer of excited motional states into the trap ground-state via
strong red sideband transitions, reducing νg by �ν > 1 vibrational
quanta (arrows denote excitation and subsequent spontaneous de-
cay). The potential curves are offset vertically so that Udiff indicates
the (positive) light shift of the electronic transition between the
motional ground states from the free-space resonance. (b) Numerical
simulations of the cooling dynamics, demonstrating ground-state
transfer when the laser detuning δ (measured from the trap shifted
resonance at Udiff ) is ramped from a large red detuning towards
δ ≈ −ωg. The thickness of the yellow areas is proportional to the
population in |νg〉. Arrows indicate population transfer when the res-
onance condition for the sideband transitions drawn in (a) is matched.
(c) Experimental realization: Single 88Sr atoms are trapped in an
optical tweezer (green), using a high-NA objective. The polarization
of the tweezer light is indicated by the arrow in the NA cone. Chirp-
cooling is realized with three pairs of counter-propagating, circularly
polarized 689 nm MOT beams (cooling). Additional laser beams
(probe and shelving) are used for sideband thermometry. (d) Ratio
of the AC polarizability (and hence of the trap depths) between |1S0〉
and the light-shifted substates |e0〉 and |e±〉 of |3P1〉 as a function of
trapping wavelength. The dotted line indicates the wavelength used
in the experiment.

band cooling (Raman- or single-photon scheme) requires
equal AC polarizabilities αe and αg for the electronic levels,
yielding identical ladders of motional states independent of
the atom’s internal state. Provided a narrow laser transition
between |g〉 and |e〉 with linewidth γ � ωg (festina lente
regime, see Refs. [25,26] for its importance in all-optical
cooling schemes to Bose-Einstein condensation), one can then
cool the atomic motion in the trap by setting the laser to a
fixed frequency resonant with the first red sideband, i.e., de-
tuned by −ωg from the free-space transition frequency. Magic
trapping(αe = αg) ensures, that the condition for addressing
the red sideband is independent of the harmonic oscillator
level.

Such persistent cooling conditions are no longer given
when the trapping potential is state-dependent (αe �= αg).
Only very recently, it has been demonstrated that efficient
cooling into the trap ground state can still be realized with

a fixed laser frequency for αg/αe < 1, i.e., when the ex-
cited state |e〉 is trapped stronger than the ground state |g〉
[27,28]. Here, we investigate the opposite case, αg/αe > 1,
for which cooling with a fixed frequency cannot work. This
can be seen in Fig. 1(a), which depicts the situation we
study in our experiment. Specifically, we employ the narrow
(γ = 2π × 7.4 kHz) 1S0 to 3P1 intercombination transition
at a laser wavelength of about 689 nm for in-trap cooling.
It is convenient to define the laser detuning δ with respect
to the trap-shifted resonance condition Udiff/h̄ [see Fig. 1(a)]
for driving the electronic transition with the atom in the mo-
tional ground state, i.e., |g, νg = 0〉 to |e, νe = 0〉. Here, νg(νe)
is the harmonic oscillator quantum number of the ground
(excited) state vibrational ladder. In our scenario where
ωe < ωg, the resonance condition to drive the red sideband
δ ≈ (νg − 1)ωe − νgωg now depends on νg. An attempt to
cool the lowest-lying vibrational excitations requires to set δ

close to the red sideband condition for νg = 1, i.e., δ ≈ −ωg.
Such a laser frequency, however, causes heating of higher-
lying vibrational states. Consequently, cooling with a fixed
frequency would not succeed. This problem can be resolved
by using a time-dependent chirp of δ which compensates for
the νg-dependence of the condition to address red sidebands
one after the other. Such a frequency chirp then dissipates
motional quanta without concurrent heating, since the proto-
col assures that higher vibrational states are first transferred
to lower energy, before states closer to the trap bottom are
addressed (see also Ref. [22] for a recent proposal). Note that
a fixed laser frequency provides an effective repulsive energy
cap in the trap, which was exploited in Ref. [14] to prevent
atom loss during imaging and which was interpreted by a
classical Sisyphus effect.

Before we turn to the experimental results, we briefly ana-
lyze the chirp-cooling approach numerically. To this end, we
compute the quantum dynamics of a harmonically confined
and laser-coupled (Rabi frequency 	) two-level atom in 1D
including state-dependent trapping. The time evolution is ob-
tained by integrating the Liouville-von Neumann equation for
the density matrix with a finite basis set of oscillator levels
accounting for decay of the excited state (decay rate γ ) via
the Lindblad operators (see Appendix E). Results for typical
experimental parameters are shown in Fig. 1(b) for a linear
(10 ms long) ramp of δ from δi/ωg = −3.7 to δ f /ωg = −1
and for the atom initially prepared in |νg = 4〉. The data
reveal that chirping allows for efficient transfer into the mo-
tional ground state. For the chosen parameters [(ωg, ωe,	) =
2π (150, 110, 20) kHz], the final ground-state population is
>94%. Cooling occurs due to resonant addressing of various
red sidebands during the chirp, coupling states of different
motional quantum numbers νg > νe [arrows in Figs. 1(a) and
1(b)]. Note that in contrast to magic trapping conditions,
where couplings between different oscillator levels with �ν =
|νg − νe| > 1 are strongly suppressed for tight confinement
by the Lamb-Dicke effect, here, they play a vital role in the
cooling dynamics due to direct wave-function overlaps 〈νg|νe〉
between levels of equal parity [29]. The simulations also
reveal optimal ground-state population when δ f ≈ −ωg, i.e.,
when the laser frequency chirp ends near the resonance condi-
tion for driving the first red sideband from |νg = 1〉. Note that
the simulation parameters for Fig. 1(b) are chosen in a way
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that the underlying mechanism of the cooling scheme is well
visible and are not optimized for highest ground-state transfer.

III. COOLING AND THERMOMETRY

Our experiments start with loading a single optical tweezer
with wavelength λ = 539.91 nm and a waist of 564(5) nm
from a 88Sr magneto-optical trap (MOT) operated on the 1S0

to 3P1 intercombination line [Fig. 1(c)] (see Appendix A) . Af-
ter loading, the tweezer is typically occupied by more than one
atom in the electronic ground state 1S0 (trap depth ≈0.5 mK).
At the trapping wavelength, the tweezer potential for 1S0 is
deeper than for the excited 3P1 state of the cooling transition,
i.e., realizing the situation αg/αe > 1 discussed above. More
precisely, we perform all experiments at nominally zero mag-
netic field and with a linearly polarized tweezer. In that case,
the three magnetic substates of the 3P1 level (mJ = 0,±1)
are shifted by the AC-Stark interaction with the trap light.
We label the AC-Stark-shifted eigenstates |e0〉, |e−〉, and |e+〉.
The latter two are energetically degenerate (see Ref. [14] and
Appendix C). The wavelength dependence of the ratio αg/αe

for all three levels is shown in Fig. 1(d). This allows us to per-
form experiments using two different transitions with vastly
different values αg/αe (∼1.13 for |e0〉 and ∼1.90 for |e±〉).

We start investigating the cooling dynamics on the tran-
sition to |e±〉, which exhibits the stronger differential light
shift, measured to be U |e±〉

diff /h̄ = 2π × 5.50(5) MHz for the
tweezer’s optical power of about 1.70(2) mW set throughout
this work. The cooling protocol starts by switching on the
689 nm MOT beams with an initial detuning δi = −2π ×
4.1 MHz. We estimate the Rabi frequency to about 2π ×
50 kHz. The beams are kept on for 100 ms, during which
the laser frequency is ramped linearly to a variable final
detuning δ f .

The temperature after the ramp is measured via the release-
and-recapture technique [30]. Briefly, the trap is turned off
diabatically for a variable release time tr before it is suddenly
switched on again. We then image the atoms on the 1S0 − 1P1

transition at 461nm by collecting fluorescence photons on a
sCMOS camera. From the photon signal on the camera, we
deduce the survival probability of a single atom in the trap (see
Appendix B and below for more details). Exemplary data of
such measurements are shown in Fig. 2(a) for different values
of δ f and compared to data taken without the cooling protocol
(circles). A slower decay of the measured survival proba-
bility with tr is indicative for lower temperature, as hotter
atoms escape faster from the trap volume. The results reveal
a reduction of temperature with decreasing |δ f |, i.e., when
the frequency is chirped closer to the light-shifted resonance
at U |e±〉

diff /h̄.
To extract a classical temperature Tcl at the end of the chirp

from datasets as shown in Fig. 2(a), we fit classical Monte-
Carlo simulations of the release-and-recapture sequence to
the data, assuming a thermal energy distribution with mean
energy Ē = kBTcl in each spatial direction (solid lines) [30].
Results of this analysis are plotted in Fig. 2(b) as a function
of δ f (triangles). The data reveal a minimum temperature
of 4.17(6) µK in the vicinity of δ f ≈ −ωg. Throughout this
work ωg = 2π × 126(5) kHz, as measured via sideband spec-
troscopy (see below). Compared to the data taken without

FIG. 2. Thermometry after chirp-cooling via release-and-
recapture. (a) Atom-survival probability as a function of the release
time tr is shown for three different values of δ f as indicated
(triangles, squares, diamonds) after cooling on the transition to |e±〉,
and compared to a measurement with no cooling applied (circles).
Solid lines are fits of a classical particle trajectory simulation
to the data to extract the temperature. The blue-dashed line
shows the prediction of a quantum mechanical simulation for an
atom in the motional ground state (see Appendix D). (b) Temperature
Tcl extracted from classical trajectory simulations of data as shown in
(a) as a function of the detuning δ f at the end of the frequency chirp.
Triangles (squares) are results for cooling on the transition to |e±〉
(|e0〉). The circle denotes the temperature without cooling applied.
The vertical line indicates the resonance condition (δ f = −ωg)
for the lowest red sideband |g, νg = 1〉 → |e, νe = 0〉. At this
point, the minimal temperature is achieved. The dashed line depicts
the temperature-equivalent Tgs of the radial zero-point motion energy
in the trap. Error bars in all figures show one standard deviation and
are mostly smaller than the data points.

cooling, we achieve a reduction in temperature by about one
order of magnitude. Chirping further down in |δ f | again leads
to heating, as the cooling light approaches the resonance
condition for driving the carrier transition from the ground
state (δ = 0).

The minimal measured temperature is found close to the
temperature-equivalent of the zero-point motion energy of
the radial tweezer ground state Tgs = h̄ωg/2kB = 3.04 µK
(dashed line), indicating sizeable radial ground-state popu-
lation. Since the classical analysis does not account for the
zero-point motion in the trap, we also analyze the experi-
mental data with the lowest-measured temperature quantum
mechanically. As the release-and-recapture method is only
weakly dependent on the axial tweezer direction, it is suf-
ficient to model the recapture probability along the radial
direction. To this end, we time-evolve the wave functions of
the first few states of a 2D harmonic oscillator numerically.
After time tr of free expansion, the Gaussian tweezer po-
tential is added to deduce the probability of recapture (see
Appendix D). The result of this analysis for the 2D ground
state [dashed line in Fig. 2(a)] is already close to the lowest-
temperature experimental data (δ f = −ωg). Next, the analysis
is extended to a thermal distribution of the first few 2D
harmonic oscillator states. A fit of this model to the data
for δ f = −ωg yields 82(3)% ground-state population along
one radial direction. To demonstrate the robustness of the
chirp-cooling, we finally repeat the measurements on the tran-
sition to |e0〉, for which the differential light shift U |e0〉

diff /h̄ =
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FIG. 3. (a) Scheme for sideband thermometry via shelving into
metastable states. The atom in the ground state 1S0 is excited to
the 3P1 (|e0〉) state by a short probe laser pulse. The population
transferred to 3P1 is hidden from the imaging cycle (1S0 − 1P1) by
optically pumping into the metastable 3P0 and 3P2 states via 3S1.
(b) Measured loss fraction from 1S0 due to shelving as a func-
tion of probe detuning δp after cooling on the transition to |e±〉 to
δ f = −1.2ωg (diamonds) and δ f = −5.5ωg (circles). Solid lines are
numerical simulations fitted to the data to extract the ground-state
fraction (see text).

2π × 1.30(2) MHz is much weaker. We obtain very similar
results [squares in Fig. 2(b)] and attribute the slightly higher
minimal temperature to the higher sensitivity required for
tuning δ f .

While the above results already provide evidence that the
chirp-cooling method yields a large ground-state population,
we complement the thermometry by resolved sideband
spectroscopy on the 1S0 − 3P1 transition to |e0〉 along the
radial direction of tweezer confinement. For spectroscopy,
we apply a short (75 µs) probe pulse with the laser frequency
set to the vicinity of the |e0〉 resonance and the propagation
direction perpendicular to the tweezer axis. Subsequently,
the population transferred to |e0〉 is rapidly shelved into
the metastable states 3P0 and 3P2 [Fig. 3(a)]. The sequence
is repeated three times before imaging on the 1S0 - 1P1

transition to increase the signal. Results are shown in
Fig. 3(b) close to the lowest temperature achieved when
cooling on the transition to |e±〉 (diamonds). Compared to
the case of less-deep cooling (circles), we observe strong
sideband asymmetry, a hallmark for large ground-state
population. Shift and broadening of the line with increasing
temperature is due to the differential AC-Stark shift on the
probe transition. Note that without cooling, the sidebands
are completely unresolved. Such effects are absent in more
conventional sideband thermometry, for which narrow optical
lines with vanishing differential AC-Stark shifts are used.

Extracting the ground-state population from our data thus
requires fitting with a full numerical simulation of the spec-
troscopy sequence. To this end, we compute the dynamics
of the trapped two-level atom density matrix with an initial
thermal trap population as above. The population in |e0〉 is
extracted at the end of the probe pulse and the loss fraction is
determined assuming a fitted success probability ps for shelv-
ing. Trap frequencies ωg,e and the temperature of the initial
state are also fit parameters (see Appendix E). Our lowest
temperature data (diamonds) is found to be compatible with
a ground-state fraction in the range of 73% to 97%, which

FIG. 4. Light-induced losses and parity projection during cool-
ing. (a) Histograms of photon counts before (yellow) and after (blue)
cooling on |e±〉 to δ f = −1.2ωg. The vertical dashed (dotted) line
indicates the lower threshold set for identifying N = 1 (N � 2)
atom(s). Dash-dotted lines are Gaussian fits to the data to guide the
eye. The inset shows the fluorescence of a single atom imaged onto
at 3x3 pixel array of the sCMOS camera. (b) Probability to detect
N = 1 (circles) and N � 2 (triangles) atom(s) in the tweezer after
chirp-cooling to a final detuning δ f . The dashed line indicates unity
filling with 50% probability. Note the change in scaling of the axis
of abscissas for δ f /ωg > −2 (shaded area).

is in agreement with the results extracted from release-and-
recapture. This ground-state fraction is also comparable with
sideband cooling in magic-wavelength tweezers reported for
strontium [14,15].

Finally, we note that our data analysis neglects possible
shifts and broadening of the carrier signal due to axial tem-
perature orthogonal to the probe beam direction. Those can
be present when probing at nonzero AC-Stark shift due to
the dependence of the radial carrier transition frequency on
the axial motional state, and allow us to infer also an upper
limit estimate for the axial temperature. Indeed, since the
observed linewidth is well compatible with our 1D analysis,
we conclude that the axial temperature cannot be significantly
higher than the measured radial temperature. This provides
evidence that cooling acts simultaneously in axial trap direc-
tion, revealing additional information that is not accessible
from release-and-recapture.

IV. PARITY PROJECTION DURING COOLING

Next, we study the dynamics of the atom number popu-
lation in the tweezer during cooling. Most importantly, we
find that chirp-cooling to low temperatures in the trap also
causes light-induced losses which reliably remove pairs of
atoms from the trap [31,32]. This can be readily seen from his-
tograms of the detected photon count before and after cooling
[Fig. 4(a)]. Without cooling, we observe a multipeak structure
in the histogram, where the individual peaks are associated
with one, two and more than two atoms in the trap. After
cooling, a clean binary distribution with a one and a zero atom
peak is observed. We find an approximately equal number of
photon counts in the two peaks, i.e., about 50% filling with
exactly one atom. In Fig. 4(b), we show how the probabilities
for finding one (circles) and more than one (triangles) atom(s)
in the trap evolve with the final detuning δ f of the cooling
ramp. Pairs of atoms are continuously lost with decreasing
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FIG. 5. Chirp-cooling in a one-dimensional tweezer array.
(a) Averaged fluorescence image of a line of ten tweezers (10 µm
spacing) after cooling chirp (including parity projection). [(b)–(d)]
Release-and-recapture thermometry data (cf. Fig. 2) for the three
tweezers indicated with boxes after a cooling chirp to δ f = −1.2ωg

on the transition to |e±〉. Solid lines are fits of a classical particle
trajectory simulation to extract the temperature Tcl. The blue dash-
dotted line shows the prediction of a quantum mechanical simulation
for an atom in the motional ground state. The red dashed line (gray
dotted line) shows the classical fit to the single-tweezer data of
Fig. 2 for the same cooling parameters (with no cooling applied).
(e) Temperatures Tcl as a function of the tweezer index shown in
(a). Again, the red dashed line depicts the single-tweezer result after
cooling with the same cooling parameters, and the gray dotted line
is the temperature measured in a single tweezer without cooling.
The blue dash dotted line depicts the temperature-equivalent Tgs of
the radial zero-point motion energy in the trap. Error bars show one
standard deviation and are mostly smaller than the data points.

temperature and essentially vanish for |δ f | � 2ωg. Indeed, this
is expected as the rate for light-assisted collisions, which arise
from coupling to a weakly bound molecular state below the
1S0 −3 P1 asymptote [14,33], strongly depends on the wave-
function overlap of the initial pair of atoms. Moreover, along
with the decreasing multiatom signal, we find an increase
in the single-atom probability, providing evidence that initial
trap loading with an odd atom number �3 results in a single
atom after cooling. Thus the chirp-cooling directly delivers
parity projection, an ideal starting point for a deterministic
assembly of large atom arrays [23,24].

V. COOLING IN AN ARRAY OF TWEEZERS

Finally, we demonstrate the possibility to apply our chirp-
cooling scheme to an array of multiple tweezers. To this end,
we generate a one-dimensional line of ten equally spaced
(≈10 µm) traps [Fig. 5(a)], using an acousto-optical deflec-
tor in our optical tweezer path (see Appendix A). The traps
are generated by applying ten RF tones to the modulator.
We equalize the trap depths to a level of ≈2% via tweezer-
resolved measurements of light shifts and correction on the
individual RF amplitudes. The procedure for tweezer loading
and cooling is equivalent to the single-tweezer case.

Exemplary release-and-recapture thermometry data for the
two outermost and a central tweezer are shown in Figs. 5(b)–
5(d) when chirp-cooling on the transition to |e±〉 with δ f =
−1.2ωg, i.e., close to the minimally achieved temperature
obtained in a single tweezer (cf. Fig. 2). As before, the classi-
cal temperature Tcl is extracted from Monte-Carlo trajectory
simulations (solid green lines), which for all ten tweezers
fall almost on top of the simulation results of the single-
tweezer data (red-dashed line), reported above for the same
parameters. The extracted values for Tcl, shown in Fig. 5(e),
lie between Tcl = 3.8(2) µK and Tcl = 5.7(2) µK, close to the
single-tweezer result [Tcl = 4.8(5) µK] reported above for the
same cooling parameters. The gray-dotted line again indicates
the temperature without cooling. The small variations in Tcl

across the array are attributed to residual differences in the
trap depths. Indeed, the absolute value of δ f required for
optimal cooling depends approximately linearly on the trap
depth, and in our case needs to be controlled on the percent
level (h̄ωg/Udiff ≈ 2%).

VI. CONCLUSION AND OUTLOOK

In conclusion, we have demonstrated a novel, broadly ap-
plicable ground-state cooling method for trapped atoms in
optical tweezer arrays, which heavily releases constraints on
magic trapping conditions for future experiments. This opens
new routes for tweezer-based quantum technologies, requir-
ing trapping wavelengths that have been so far incompatible
with efficient in-trap cooling, specifically in view of the rapid
developments with alkaline-earth(like) atoms [5,34], i.e.,
strontium [14,15] or ytterbium [16]. For example, the tweezer
wavelength selected in this work provides magic trapping of
the two clock states 3P0 and 3P2, which enables new concepts
for qubit encoding in a neutral atom quantum computer [18].
The cooling scheme also allows operating at wavelengths
that offer additional magic trapping for Rydberg states, which
mitigates decoherence and in-fidelity of two-body gates [17],
and is also applicable to optical lattice systems [22]. When si-
multaneously applied during imaging on the narrow intercom-
bination transition, the reported technique may also allow for
reaching higher scattering rates, particularly for atom detec-
tion in the so far unexplored case of a more strongly trapped
ground state [28]. Finally, we expect that applying individu-
ally controlled cooling beams along radial and axial direction
in a pulsed sequence should allow for reaching the full three-
dimensional trap ground state, and leave a detailed investiga-
tion of the cooling dynamics along the weakly trapped tweezer
axis for future work. In that context, it is also interesting
to apply optimal control strategies on the frequency-chirped
laser pulses to increase the cooling efficiency.
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APPENDIX A: TWEEZER LOADING

Tweezer loading starts with the preparation of a six-beam
blue magneto-optical trap (MOT) of 88Sr atoms in a glass
cell (Japan Cell), operated on the 1S0 − 1P1 (λ = 460.9 nm)
transition. The MOT is loaded from an atomic beam source
(AOSense, Inc.) comprising an oven, a Zeeman slower, and a
2D-MOT for transverse cooling. After 30 ms of MOT loading
at a detuning of −2π × 46 MHz and with a saturation pa-
rameter of s = 0.12, we decrease the detuning and saturation
parameter to −2π × 21 MHz and s = 0.01 within 10 ms to
reduce temperature. The atoms are kept in this second stage
of the blue MOT for another 50 ms, before they are loaded
into a narrow-line red MOT on the 1S0 − 3P1 (λ = 689.5 nm)
intercombination transition. To this end, the magnetic field
gradient is ramped from ≈50 G/cm to ≈2 G/cm. During
the first part of the red MOT, the cooling laser is broadened
to a frequency comb with a 5 MHz width and a regular
30 kHz spacing by periodically modulating the RF-frequency
applied to an acousto-optical modulator (AOM) to increase
the capture volume. The comb is subsequently ramped down
to a single frequency with a final detuning of −2π × 150 kHz
while simultaneously reducing the laser intensity from s ≈
3700 to ≈45. After another 10 ms hold time, the MOT
contains several 104 atoms at an equilibrium temperature of
≈1.4 µK. This atom number is found to be well-suited for
loading a single tweezer and also multitweezer arrays, so
that each site is filled with one or more atoms while also
avoiding too many atoms in a single trap. The latter may cause
nonpairwise losses, ultimately leading to less than 50% filling
after parity projection [28].

For generating tweezers, we employ a frequency-doubled
fiber laser system providing 10 W output power at 540 nm
(TOPTICA Photonics). We send the trapping light through a
2D acousto-optical deflector (AA Opto-Electronic DTSXY-
400) before focusing into the MOT region with a high-NA
(0.5) microscope objective (Mitutoyo G Plan Apo 50X) to a
waist of 564(5) nm. This allows us to extend the studies of
our cooling scheme also to multitweezer arrays (see Fig. 5).
To achieve homogeneous loading over an extended array, we
increase the MOT volume by a two-step ramp of the laser de-
tuning from −2π × 150 kHz to −2π × 280 kHz within 25 ms
and further to −2π × 560 kHz within 15 ms [14]. During the
second part of this detuning ramp, the tweezer intensity is
ramped up to 0.85 mW for a single tweezer. Subsequently, the
MOT beams and the magnetic quadrupole field are turned off,
and the tweezer intensity is further ramped to its final value of
1.7 mW, at which we perform our chirp-cooling experiments.
Note that we illuminate the atoms with two repumping beams
resonant with the 3P0 − 3S1 (679 nm) and 3P2 − 3S1 (707 nm)
transitions during the entire MOT and tweezer loading
procedure.

APPENDIX B: ATOM IMAGING

For single-atom detection, we induce fluorescence on the
1S0 − 1P1 transition using a separate imaging beam, pulsed

on for 75 ms with s ≈ 1.2 × 10−3. Prior to this, the tweezer
light intensity is increased to 3.4 mW. Fluorescence photons
are collected via the same objective used to focus the optical
tweezers and are imaged onto a 3 × 3 pixel area [compare
inset of Fig. 4(a)] of a sCMOS camera (Teledyne KINETIX).
The atoms are kept cold during imaging by using the red
MOT beams with a fixed detuning of +2π × 1.2 MHz from
the 1S0 − 3P1 free-space resonance, corresponding to a detun-
ing from the trap-shifted transition to |e0〉 of about −2π ×
1.4 MHz.

The images are classified into three categories depending
on the number Nph of detected photons: No atom (Nph � 20),
single atom (20 < Nph � 65), multiple atoms (Nph > 65). We
quantify the accuracy of this classification in a similar way
as reported in Ref. [14]. Taking consecutive images of the
same single atom, we find a probability of p = 92.2(2)%
to detect the atom in the second image conditioned on its
detection in the first one, similar to the results reported in
Refs. [14,15]. This atom loss during imaging also dictates the
imaging fidelity. More specifically, realizations where an atom
is lost from the trap result in a reduced number of detected
photons, which may be below the lower threshold Nth set for
identifying one atom. An upper bound for the probability of
such false negative detection events may be estimated via
1 − exp(ln(p)Nth/N̄ ), where N̄ is the mean number of de-
tected photons for one atom [14]. For the imaging parameters
used throughout this work, we find a false negative rate of
about 3.6(1) %. The false positive rate for identifying a single
atom (0.00(2) %) is negligible.

To extract the survival probability in Fig. 2(a) and the
loss fraction in Fig. 3(b), a value ζc is assigned to each of
the imaging classification outcomes: ζc = 0 (no atom), ζc = 1
(single atom), and ζc = 2 for multiple atoms, which is then
averaged for each data point. To improve the signal-to-noise
ratio of the sideband spectroscopy data in Fig. 3(c), we take
two consecutive images. The first one is taken after the shelv-
ing spectroscopy pulse. Before taking the second image, we
return the shelved population from the long-lived 3P0 and 3P2

states back into the imaging cycle by applying the 679-nm and
707-nm repumping lasers. We then postselect on realizations
where an atom is detected in the second image.

Finally, we note that the accuracy to distinguish between
single and multiple atoms in the trap is much lower than
between zero and one atom, since the corresponding signals
in the histograms [Fig. 4(a)] strongly overlap. The character-
ization threshold for multiple atoms is chosen high enough
that it does not affect the low-temperature measurements
with a clean bimodal distribution, i.e., after successful parity
projection.

APPENDIX C: DIFFERENTIAL AC-STARK SHIFTS

In Fig. 1(d), we plot the ratio of the AC polarizabilities
(and hence the trap depths) between the 1S0 electronic ground
state and the trap-shifted sublevels |e0〉 and |e±〉 of the 3P1

excited state. For our case of nominally zero magnetic field
and a linearly polarized tweezer, the AC-Stark shift for 3P1

can be readily expressed in terms of scalar (αs) and tensor
(αt ) polarizabilities (the contribution of the vector polarizabil-
ity vanishes in the absence of magnetic field and for linear
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polarization [14,35]). The polarizability of the 1S0 ground
state has only a scalar contribution.

More specifically, we consider the time-independent AC-
Stark interaction Hamiltonian with an optical field 	E (t ) =
	E+e−iωt + 	E−e+iωt , where 	E+ = E0	ε, 	ε being the polariza-
tion vector, and 	E− the complex conjugate of 	E+. Omitting
the vector term, the Hamiltonian reads

H = −αsE
2
0 − 3αt

J (2J − 1)

(
{ 	E+ · 	J, 	E− · 	J}

2
− J (J + 1)E2

0

3

)
.

(C1)

Here, 	J = (Jx, Jy, Jz ) denotes the total angular momentum
operator and J the associated angular momentum quantum
number. In the absence of an external magnetic field, it is
convenient to define the quantization axis along the tweezer
polarization, which we set (without loss of generality) along
the x direction. Accordingly, we label the bare Zeeman sub-
states of the 3P1 level as |mJ = 0,±1〉, where mJ is the
magnetic quantum number associated with the projection of
the total angular momentum along the tweezer polarization.
The AC-Stark Hamiltonian then reduces to

Hlin = −E2
0

(
αs + αt

3J2
x − J (J + 1)

2(2J − 1)

)
. (C2)

Since the Hamiltonian above is diagonal in the |mJ = 0,±1〉
basis defined along the x direction, the total polarizability
reads [14]

α = αs + αt
3m2

J − J (J + 1)

J (2J − 1)
. (C3)

For J = 1 (3P1) one finds α = αs − 2αt for |e0〉 = |mJ =
0〉 and α = αs + αt for |e±〉 = |mJ = ±1〉. Wavelength-
dependent values for αs and αt are obtained from numerical
calculations as follows.

We evaluated the dynamic polarizabilities by solving the
inhomogeneous equation in valence space [36] using the
Dalgarno-Lewis [37] approach. This approach allows to ac-
count for both discrete states and the continuum. We find
intermediate-state wave functions δψ± from an inhomoge-
neous equation,

|δψ±〉 = 1

Heff − E0 ± ω

∑
k

|�k〉〈�k|D|�0〉

= 1

Heff − E0 ± ω
D|�0〉, (C4)

where D is the z-component of the effective electric dipole
operator D, �0 is the wave function, and E0 is the energy of
the state of interest, either 1S0 or 3P1 in the present work.

The wave functions are computed using the relativistic
high-precision hybrid method that combines configuration
interaction and coupled-cluster approaches (CI+all order)
[38,39]. In this method, the energies and wave func-
tions are determined from the time-independent multiparticle
Schrödinger equation

Heff (Ek )�k = Ek�k, (C5)

where the effective Hamiltonian Heff includes contributions of
the core states constructed using the coupled-cluster method.

The polarizability is given by

αv (ω) = 〈�0|D0|δψ+〉 + 〈�0|D0|δψ−〉, (C6)

where v indicates that this method gives the valence con-
tribution to the polarizability. The small core polarizability
contribution is computed in the random-phase approximation.
One of the challenges of the accurate polarizability computa-
tion for the 3P1 state in the region below 600 nm is strong
sensitivity to the accuracy of the energy levels. To resolve
this problem, we developed a code to automatically replace
the theoretical energy values for low-lying dominant contri-
butions by exact experimental values as well as use improved
recommended values of the reduced matrix element where
available. The substitution is done for all data points using
the sum-over-states formula

αv (ω) = 2
∑

k

(Ek − E0)|〈�0|D0|�k〉|2
(Ek − E0)2 − ω2

, (C7)

improving the polarizability accuracy. The uncertainties are
estimated for all polarizability values.

APPENDIX D: CLASSICAL AND QUANTUM
MECHANICAL RELEASE-AND-RECAPTURE

ANALYSIS

In this section, we provide details on the classical and
quantum mechanical analysis of the release-and-recapture
data shown in Fig. 2. Our classical analysis follows the pro-
cedure described in Ref. [30]. Specifically, we draw a Monte
Carlo sample of spatial and velocity vectors from a thermal
distribution of point particles in a 3D harmonic trap using our
experimental parameters. For a given classical temperature
Tcl, the three spatial coordinates are Gauss-distributed with
a standard deviation of σi =

√
kBTcl/mω2

i , where m is the
mass of the 88Sr atom, and ωi the oscillator trap frequency
in direction i = (x, y, z). The Gaussian velocity distribution
in each direction has a standard deviation of σv = √

kBTcl/m.
A simulated release-and-recapture trace is obtained by prop-
agating this ensemble in free-space for a variable time tr .
The survival probability is then computed by evaluating the
fraction of the ensemble that is trapped after instantaneous
switch-on of the Gaussian tweezer potential. A particle is con-
sidered to be trapped, when its kinetic energy is smaller than
the local (absolute) potential energy after the free propagation.
Such simulated traces are then fit to the data via a chi-squared
analysis with Tcl as fit parameter.

This analysis does not capture the zero-point motion en-
ergy of the trapped atom, and the fitted classical temperature
Tcl overestimates the true quantum mechanical temperature.
Effects of quantized motion in the trap are taken into account
by our quantum mechanical analysis of the lowest energy data
in Fig. 2(a). To this end, it is sufficient to consider only the
radial dynamics, since the release-and-recapture technique is
only weakly dependent on the longitudinal motion. First, we
compute the free expansion of initial 2D harmonic oscillator
wave functions with occupation numbers (νx, νy), where x
and y denote the cartesian coordinates of the radial tweezer
direction. After a variable time tr , the Gaussian tweezer po-
tential is turned on instantaneously and the wave function is
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evolved inside the potential for another 100 µs. The fraction of
the wave function that has remained inside the potential then
yields the survival probability p(νx,νy ). Assuming a thermal
population of the 2D harmonic oscillator levels, the survival
probability pqm for an ensemble at a quantum mechanical
temperature Tqm is finally obtained by weighting p(νx,νy ) with
the corresponding Boltzmann factor,

pqm = 1

Z
p(νx,νy ) e−h̄ω(x,y) (νx+νy+1)/(kBTqm ). (D1)

Here, ω(x,y) denotes the radial trap frequency and Z the
partition function of the 2D harmonic oscillator. We fit the
simulated pqm to the data with Tqm as fit parameter. Finally, the
fitted value for Tqm yields the ground-state population along
one radial direction stated in the main paper.

APPENDIX E: NUMERICAL MODELING OF
CHIRP-COOLING AND SIDEBAND

SPECTROSCOPY DATA

In this section, we provide details of our method for de-
scribing the chirp-cooling and for modeling the sideband
spectroscopy data. Our method is similar to the approach
taken in Refs. [22,29]. To reduce the computational costs
of our simulations, we neglect coupling between different
spatial directions and restrict ourselves to one radial direction
of the three-dimensional trap. Under this approximation, the
system can be described as a driven two-level atom in a
one-dimensional harmonic trap. The electronic ground state
|g〉 is trapped with the frequency ωg and the excited state |e〉
with ωe. We use the levels of the harmonic oscillator with the
frequency ωg as a basis for the motional state of the atom. For
our simulations, we take the 30 lowest oscillator levels into
account. Using the creation and annihilation operators a† and
a that act on these levels, the Hamiltonian of the system reads
[29,40]

H = h̄ωg
(
a†a + 1

2

) + Hatom(t ) + Hint. (E1)

To derive the electronic Hamiltonian Hatom(t ) of the laser-
driven atom, we change into the rotating frame of the laser.
Using the rotating wave approximation, we obtain

Hatom(t ) = h̄	

2
eiη(a†+a)|e〉〈g| + h̄	∗

2
e−iη(a†+a)|g〉〈e|

− h̄δ(t )|e〉〈e|, (E2)

with the time-dependent detuning δ(t ), Rabi frequency 	,
Lamb-Dicke parameter η = kx0 = 2π

λ

√
h̄

2mω
, wavelength λ =

689 nm, and m being the mass of the 88Sr atom.
The interaction Hint between the electronic and motional

states of the atom emerges from the trap frequency being state-
dependent and is given by

Hint = h̄
(
ω2

e − ω2
g

)
4ωg

(a + a†)2 |e〉〈e| + U |e〉〈e|, (E3)

where U is chosen such that the transition from |g〉 to |e〉 is
driven resonantly for δ(t ) = 0 if the atom is in its motional
ground state.

To incorporate the decay of the excited state with rate
γ = 2π × 7.4 kHz, we describe the system with a Lindblad

FIG. 6. Measurement of the probe Rabi frequency 	 used for
sideband spectroscopy. Measured loss fraction from 1S0 due to shelv-
ing as a function of probe time for different detunings from the
carrier transition, i.e., νe = νg, to |e0〉. Solid lines show numerical
simulations fit to the data, which yield 	 = 2π × 44.9(5) kHz.

master equation, ρ̇ = −i(Heffρ − ρHeff ) + Lρ. The decay en-
ters the non-Hermitian Hamiltonian Heff = H − ih̄γ

2 |e〉〈e| and
the term

Lρ = h̄γ

2

∫ π

0
e−iη(a†+a) cos θ |g〉〈e|ρ|e〉〈g|

× eiη(a†+a) cos θ sin θ dθ. (E4)

This term accounts for the population returning into the
ground state and for the recoil of the emitted photon projected
onto the direction of the trap.

To illustrate the chirp-cooling approach [Fig. 1(b)], we
apply a Rabi frequency of 	 = 2π × 20 kHz and a time-
dependent detuning δ(t ) that is ramped linearly from −3.7 ωg

to −1 ωg within 10 ms. The trap frequencies are set to
ωg = 2π × 150 kHz and ωe = 2π × 110 kHz. To demon-
strate the cooling mechanism, we use the motionally excited
state |g, 4〉 as the initial state. The resulting Lindblad master
equation is solved using QuTiP [41].

For modeling the sideband spectroscopy data, we extend
our model by introducing an effective dark state. The sideband
spectroscopy is a two-step process. First, we apply a probe
pulse with Rabi frequency 	 and detuning δ for 75 µs. Second,
we transfer the resulting population in |e〉 to the dark state with
a success probability ps. The probe pulse is again simulated
using QuTiP, using a thermal density matrix with temperature
T as initial state. In the experiment, the shelving signal is
increased by repeating the spectroscopy sequence three times
before imaging. To account for this in our simulation, we
also compute the pulse sequence three times, and take the
populations of oscillator states after each pulse (with the atom
measured in |g〉) as the initial condition for the next pulse. In
doing so, we include the influence of the probe pulse on the
population of motional states, which is experimentally rele-
vant since the lifetime of |e〉 (1/γ = 21.5 µs) is comparable to
the probe pulse length. Repeating this procedure for various
values of δ yields the simulated sideband spectra. Finally,
we fit the simulation results to the experimentally measured
data with free parameters T , ωg, and ps. The Rabi frequency
	 = 2π × 44.9(5) kHz is measured independently (see Fig. 6
and text below), and the excited state trap frequency ωe is
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computed from the calculated polarizability ratio of the tran-
sition to |e0〉. The fit yields ωg = 2π × 126(5) kHz, i.e., the
trap frequency stated in the main paper and ps = 0.33. The
range of ground-state fraction reported in the main text reflects
the set of simulated sideband spectra when varying T that
are compatible with the data within the experimental error
bars.

Finally, we discuss briefly the independent measurement of
	, for which we apply our sideband spectroscopy sequence as
before but now vary the length of the probe pulses. Measured
shelving data as a function of probe time exhibits damped
Rabi oscillations (see Fig. 6). To extract 	, we fit the data
with the same numerical simulations as described above, but
now vary the time of the probe pulses for different values of δ.
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