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Photon emission statistics of a driven microwave cavity
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Recent experimental advances have made it possible to detect individual quantum jumps in open quantum
systems, such as the tunneling of single electrons in nanoscale conductors or the emission of photons from
nonclassical light sources. Here, we investigate theoretically the statistics of photons emitted from a microwave
cavity that is driven resonantly by an external field. We focus on the differences between a parametric and a
coherent drive, which either squeezes or displaces the cavity field. We employ a Lindblad master equation dressed
with counting fields to obtain the generating function of the photon emission statistics using a theoretical
framework based on Gaussian states. We then compare the distribution of photon waiting times for the two
drives as well as the g(2) functions of the outgoing light, and we identify important differences between these
observables. In the long-time limit, we analyze the factorial cumulants of the photon emission statistics and the
large-deviation statistics of the emission currents, which are markedly different for the two drives. Our theoretical
framework can readily be extended to more complicated systems, for instance, with several coupled microwave
cavities, and our predictions may be tested in future experiments.
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I. INTRODUCTION

The control of single photons in the microwave regime is
gathering increasing interest as recent quantum technologies
have paved the way for accurate emitters and detectors of
microwave photons [1–9]. Detectors may be based on double
quantum dots in which the absorption of a photon causes
the inelastic tunneling of an electron from one quantum dot
to the other [10–12]. Calorimetric schemes have also been
developed, whereby the temperature of a mesoscopic reservoir
abruptly increases upon the absorption of a photon [13–15].
For microwave photons, unlike their optical counterparts,
thermal effects are important, since the photon energies can be
comparable to the temperature in sub-Kelvin experiments. In
this context, the heat carried by photons in microwave cavities
[16] or electrical circuits [17] has been investigated, and more
generally, the statistics of photon transfers has become an
important topic in quantum thermodynamics [18,19], for in-
stance, in connection to thermodynamic uncertainty relations
for open quantum systems [20,21].

Theoretically, the photon counting statistics of parametric
amplifiers at zero temperature has been investigated [22] as
well as the photon-number fluctuations in driven resonators
[23–25]. In addition, the statistics of photons exchanged be-
tween a thermal microwave cavity and its environment has
been explored [26] together with the number of photons that
are transferred between a microwave cavity and an external
driving field [21]. Typically, the photons are noninteracting,
such that the problem is quadratic in the creation and an-
nihilation operators, and in that case, a powerful theoretical
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FIG. 1. Photon emissions from a driven microwave cavity. (a),
(b) A microwave cavity is driven at its resonance frequency ω0, and
photons are emitted into a thermal environment at the rate γ . We
compare the parametric drive in (a) with strength r and phase φr

to the coherent drive in (b) with Rabi coupling � and phase φ�.
(c), (d) Phase-space representations of the stationary states, which
at zero temperature are a squeezed state (c) and a coherent state (d),
respectively. Here, the usual oscillator length is denoted by x0, and
the corresponding momentum is p0 = h̄/x0. The parameters for the
parametric drive are r = 0.7γ and φr = 0, and for the coherent drive
they are � = 0.7γ and φ� = π/4. (e), (f) Average emission currents
for different temperatures given by n̄.
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framework based on Gaussian states can be employed [27].
Such theoretical investigations are motivated by the ongoing
efforts to realize efficient detectors of single microwave pho-
tons, which may soon make it possible to measure the photon
counting statistics in real time.

Here, we investigate the photon emission statistics from
a microwave cavity that is either parametrically driven or
coherently driven as illustrated in Figs. 1(a) and 1(b). Due
to the external drive, the cavity field is either squeezed or
displaced as shown in Figs. 1(c) and 1(d). The photon emis-
sion statistics is encoded in a generating function, which we
obtain from a Lindblad master equation dressed with counting
fields. Technically, we solve the master equation using a the-
oretical framework based on Gaussian states, which leads to
a Riccati equation whose solution eventually yields the gen-
erating function. Here, we note that related approaches were
recently developed both for bosons [28–30] and fermions
[31]. With the generating function at hand, we can analyze
the differences between the drives in the time domain by
evaluating the distribution of photon waiting times and the
g(2)-correlation functions. We also consider the number of
photons that are emitted over a long time interval by analyzing
the factorial cumulants of the emission current together with
its large-deviation statistics. Our predictions may be tested in
future experiments on driven microwave cavities combined
with efficient photon detectors.

The paper is organized as follows. In Sec. II, we intro-
duce the microwave cavity together with the parametric drive
and the coherent drive that we investigate. We describe the
Hamiltonian of the driven cavity together with the Lindblad
master equation that accounts for the exchange of photons
with a thermal environment. In Sec. III, we find the generating
function of the photon emission statistics, which forms the
backbone of the paper, and which we use to obtain all other
results in the following sections. In Sec. IV, we evaluate
the distribution of waiting times between subsequent photon
emissions and identify important differences between the two
drives. In Sec. V, we consider the g(2) function of the outgoing
photons, which we use to show that the photon emissions
do not constitute a renewal process with uncorrelated waiting
times. In Sec. VI, we turn to the long-time limit of the photon
current, and we find that all factorial cumulants are positive,
which seems to be a typical property of noninteracting bosons.
Finally, in Sec. VII, we evaluate the large-deviation statistics
of the photon current and find that they are markedly different
for the two drives. In Sec. VIII, we present our conclusions
together with an outlook on possible developments for the
future. Several technical details are deferred to the Appen-
dices, including a brief discussion of Gaussian states and our
derivation of the generating functions, which is based on the
solution of a Riccati equation.

II. DRIVEN MICROWAVE CAVITY

We consider a microwave cavity that is driven by an exter-
nal field, and we focus on a single cavity mode with frequency
ω0. In particular, we are interested in comparing the photon
emission statistics due to different drives. On the one hand, we
consider a parametric drive described by the time-dependent

Hamiltonian

Ĥr (t ) = h̄ω0â†â + h̄r(â2e−i2(ωr t−φr ) + â†2ei2(ωr t−φr ) )/2, (1)

where â† and â are the creation and annihilation operators of
photons in the cavity, and the cavity field is squeezed by an
external pump field with frequency ωr , phase φr , and nonlin-
ear gain coefficient r, see Fig. 1(a) [32]. On the other hand,
we consider a coherent drive described by the time-dependent
Hamiltonian

Ĥ�(t ) = h̄ω0â†â + h̄�(âe−i(ω�t−φ� ) + â†ei(ω�t−φ� ) )/2, (2)

where the external microwave field has the frequency ω�,
phase φ�, and Rabi coupling �, see Fig. 1(b). We focus on
resonant driving, so that ωr/� = ω0 in the two cases. We then
switch to a frame that rotates with the frequency ω0 and find
the time-independent Hamiltonians

Ĥr = h̄r(â2e−i2φr + â†2ei2φr )/2 (3)

and

Ĥ� = h̄�(âe−iφ� + â†eiφ� )/2. (4)

In addition, the cavity is weakly coupled to an environment,
such that the density matrix of the cavity ρ̂(t ) evolves accord-
ing to the Lindblad equation [33]

d ρ̂(t )

dt
= Lρ̂(t ) = − i

h̄
[Ĥ , ρ̂(t )] + γ

2
Dρ̂(t ), (5)

where the Liouvillian L consists of two parts. The first term
with the commutator describes the coherent evolution of the
cavity due to the Hamiltonians in Eqs. (3) and (4), Ĥ = Ĥr/�,
while the incoherent dynamics due to the environment is gov-
erned by the dissipator

Dρ̂ = (n̄ + 1)(2âρ̂â† − {â†â, ρ̂}) + n̄(2â†ρ̂â − {ââ†, ρ̂}).
(6)

Here, the equilibrium occupation of the cavity at the inverse
temperature β is denoted by n̄ = 1/(exp[β h̄ω0] − 1), and γ

is the coupling between the cavity and the environment. The
first term in the dissipator describes photon emissions to the
environment, while the second one corresponds to photon
absorptions from the environment. We note that the para-
metrically driven cavity only reaches a stationary state if the
coupling is smaller than the decay rate r < γ . If not, the
system becomes unstable [32].

In Figs. 1(c) and 1(d), we show the Wigner phase-space
representation of the stationary state given by the equa-
tion Lρ̂s = 0. The Wigner function is defined as

W (x, p) = 1

π

∫
dq〈x + q|ρ̂|x − q〉e2iqp/h̄, (7)

and for both drives, the stationary state has a Gaussian
Wigner function, implying that they are Gaussian states, see
Appendix A. For the parametric drive, the stationary state is
a squeezed thermal state, while for the coherent drive at zero
temperature, it is a displaced coherent state.

III. PHOTON EMISSION STATISTICS

We are interested in the probability P(n, t ) that n photons
have been emitted into the environment during the time span
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[0, t]. To this end, it is convenient to introduce the probability
generating function

G(s, t ) =
∞∑

n=0

P(n, t )sn. (8)

In addition, it will be useful to consider the factorial moment
generating function, which is related to the probability gener-
ating function by a simple change of variables:

M(ζ , t ) = G(ζ + 1, t ) =
∞∑

n=0

P(n, t )(ζ + 1)n. (9)

By differentiating it with respect to ζ at ζ = 0, we obtain the
factorial moments of the number of emitted photons

μm = ∂m
ζ M(ζ , t )|ζ=0. (10)

The factorial cumulants follow in a similar way as

κm = ∂m
ζ lnM(ζ , t )|ζ=0. (11)

Factorial moments and cumulants are useful to characterize
positive discrete quantities, and the factorial cumulants are
defined in such a way that only the first one is nonzero for a
Poisson distribution [34–46]. By contrast, ordinary cumulants
are defined so that only the first two cumulants are nonzero
for a Gaussian distribution. Since the probability generating
function and the factorial moment generating function are
related by a simple change of variables, we will refer to both
of them as the generating function whenever confusion can be
avoided.

To obtain the photon emission statistics, we unravel the
Lindblad equation with the respect to the number of emitted
photons using standard techniques [47]. The emission statis-
tics then follow as P(n, t ) = tr{ρ̂(n, t )}, where the density ma-
trix has been resolved with respect to the number of emitted
photons. In addition, by defining ρ̂(ζ , t ) = ∑∞

n=0 ρ̂(n, t )(ζ +
1)n, the generating function becomes M(ζ , t ) = tr{ρ̂(ζ , t )}.
Importantly, this density matrix obeys the generalized Lind-
blad equation [26]

d ρ̂(ζ , t )

dt
= Lζ ρ̂(ζ , t ) = Lρ̂(ζ , t ) + ζγ (n̄ + 1)âρ̂(ζ , t )â†,

(12)
where the counting field ζ now enters the Liouvillean Lζ . The
procedure for solving Eq. (12) is described in Appendices A
and B and involves the use of Gaussian states.

For the parametric drive, we find

Mr (ζ , τ ) =
∏

ν=±r̃

√
2ξνeτ (ξν+ν+1)/4√

eτξν (ξν + χν ) + ξν − χν

, (13)

where we have introduced the functions

ξν =
√

(1 + ν)2 − 2ζ (n̄ + 1)(2n̄ − ν) (14)

and

χν = [(1 + ν)2 − ζ (n̄ + 1)(2n̄ − ν)]/(1 + ν). (15)

We have also defined the dimensionless coupling and time

r̃ = r/γ , τ = γ t . (16)

For r = 0, Eq. (13) reduces to the generating function of a
thermal cavity that was found in Ref. [26]. Moreover, for

n̄ = 0, we recover the generating function at zero temperature
obtained in Ref. [22].

The generating function consists of two factors that are
generating functions on their own, each corresponding to the
squeezing of the cavity state along one of the two principal
axes in the phase space. As a result, each factorial cumulant is
a sum of two terms. For example, the dimensionless average
photon current reads

J̃r = κ1/τ = (n̄ + 1)

2

[
n̄ − r̃/2

1 + r̃
+ n̄ + r̃/2

1 − r̃

]
, (17)

which, without the drive, reduces to the average photon emis-
sion rate from a cavity in thermal equilibrium

J̃0 = n̄(n̄ + 1). (18)

The emission current from a cavity to a thermal reservoir can
also be written as J̃r = n̄r (1 + n̄), where n̄r is the average
number of photons in the cavity and n̄ is given by the tem-
perature of the reservoir. From Eq. (17), we can then identify
the number of photons in the cavity as

n̄r = n̄ + r̃2/2

1 − r̃2
, (19)

which diverges together with the current as r̃ → 1.
For the coherently driven cavity, we find

M�(ζ , τ ) = M0(ζ , τ )eC�(ζ ,τ ), (20)

where M0(ζ , τ ) is given by Eq. (13), and we have defined

C�(ζ , τ ) = �̃2 ξ0τ cosh
[

ξ0τ

4

] + (
4
(
ξ 2

0 − 1
) + ξ 2

0 τ
)

sinh
[

ξ0τ

4

]
4n̄ ξ 3

0

1−ξ 2
0

(
cosh

[
ξ0τ

4

] + ξ0 sinh
[

ξ0τ

4

])
(21)

together with the dimensionless coupling

�̃ = �/γ , (22)

while ξ0 is given by Eq. (14). Similar to the parametric drive,
we can identify two independent emission processes. The
first factor of the generating function M0(ζ , τ ) accounts for
photon emissions due to thermal excitations that also oc-
cur without the drive. The second factor eC�(ζ ,τ ) describes
emission processes due to the drive. We note that a similar
factorization has been found for the distribution of photons
inside the cavity [24]. We also see that, for both drives, the
phases φr/� are unimportant for the photon emission statistics.

From the generating function, we find the average photon
current, which takes on the form

J̃� = J̃0 + �̃2(n̄ + 1), (23)

where �̃2(n̄ + 1), is a contribution from the drive that adds
to the thermal part. Again, we may also identify the average
number of photons in the cavity, which reads

n̄� = n̄ + �̃2. (24)

As shown in Fig. 1(f), the temperature dependence on the av-
erage current is weak for large couplings �̃ while it becomes
stronger for smaller values of �̃. At low temperatures, the
photon emission statistics are dominated by the contribution
from the drive, and it becomes Poissonian with the rate �̃2,
since C�(ζ , τ ) = �̃2τζ for n̄ = 0.
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FIG. 2. Waiting time distributions. (a) Waiting time distributions for the parametric drive with the coupling r = 0.75γ and different
temperatures given by n̄. The dashed lines are the exponential short and long time limits in Eqs. (26) and (27). (b) Waiting time distributions
for the coherent drive with � = γ and different temperatures. The dashed line indicates an exponential decay with the rate given by Eq. (31).
In both panels, the insets show the distributions on a linear scale.

IV. WAITING TIME DISTRIBUTIONS

To go beyond the information contained in the average cur-
rrent, we consider the distribution of waiting times between
consecutive photon emissions, which we denote by W (τ )
[48,49]. Waiting time distributions have been measured both
for photon emissions [50] and electron tunneling [51–53], and
the measurements are demanding, since they require detectors
with a high fidelity as no events should be missed. For sta-
tionary processes, the distribution depends only on the time
difference between emissions, and it can be obtained directly
from the generating function. Specifically, it can be written as
[54,55]

W (τ ) = 〈τ 〉∂2
τ �(τ ), (25)

where 〈τ 〉 is the mean waiting time, and �(τ ) is the idle-time
probability that no photons are emitted during a time span of
duration τ . The idle-time probability can be obtained from the
generating function since �(τ ) = M(−1, τ ) = P(n = 0, τ )
by definition. Moreover, the mean waiting time can be related
to the idle-time probability as 〈τ 〉 = −1/�̇(0) = 1/J̃ , where
we have also used that it is given by the inverse average emis-
sion current. Physically, the two time derivatives in Eq. (25)
can be interpreted as the detection of a photon emission at the
beginning and at the end of the time interval [56].

In Fig. 2, we show waiting time distributions for the two
drives with different temperatures. At low temperatures, the
waiting time distributions are clearly different for the two
drives, whereas they become similar as the temperature is
increased, and the thermal contribution starts to dominate.
At low temperatures, the waiting time distribution for the
parametric drive becomes bi-exponential with decay rates that
can be determined at zero temperature. In particular, for n̄ =
0, we find

Wr (τ ) � 1 + 2r̃2

2 − 2r̃2
e−γ r̃

i τ , τ � 1 (26)

and

Wr (τ ) �
√

1 − r̃4(r̃2 − r̃4)

(r̃2 + 2
√

r̃2 + 1 + 2)
3/2 e−γ r̃

f τ , τ 	 1 (27)

for short and long times, respectively, where

γ r̃
i = 8r̃4 + 5r̃2 + 2

2 + 2r̃2 − 4r̃4
, (28)

and

γ r̃
f = r̃2(

√
r̃2 + 1 + r̃)

2(r̃2 + r̃
√

r̃2 + 1 + √
r̃2 + 1 + r̃ + 1)

(29)

are the corresponding decay rates, which are indicated by
dashed lines in Fig. 2(a). The decay rate at long times is
bounded as γ r̃

f � (
√

2 − 1)/2 � 0.21, while the initial decay
rate is only bounded from below as 1 � γ r̃

i .
By contrast, for the coherent drive, the waiting time distri-

bution at n̄ = 0 reduces to the simple expression

W�(τ ) = �̃2e−�̃2τ , (30)

corresponding to a Poisson process as seen in Fig. 2(b). At
finite temperatures, the decay of the waiting time distribution
at long times is governed by the rate

γ �
f = �̃2(n̄ + 1)

1 + 4n̄(n̄ + 1)
(31)

as illustrated with a dashed line in Fig. 2(b).
The waiting time distribution at zero time delay is interest-

ing since it yields the average number of photons in the cavity
right after a photon emission: n̄(0)/n̄ = 〈τ 〉W (0). Without the
drive, we have n̄(0)/n̄ = 2, meaning that the average number
of photons in the cavity right after a photon emission is twice
as large as the steady-state average, reflecting the bunching of
the photons [26]. For the parametric drive, we find

n̄r (0)

n̄r
= 8n̄2 + (4n̄(n̄ + 3) + 1)r̃2 + 2r̃4

(2n̄ + r̃2)2
, (32)

which displays an interesting, nonmonotonous dependence on
the driving strength r̃ and the temperature through n̄ as shown
in Fig. 3(a). For a given temperature, the largest value of
this ratio is reached by the relation n̄ = r̃2/2 and inserting
this expression into Eq. (32), we obtain the dashed line in
Fig. 3(a). This relation implies that, at low temperatures n̄ �
1, the photon number within the cavity is strongly increased
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FIG. 3. Photons in the cavity after a photon emission. (a) Average number of photons in the parametrically driven cavity after a photon
emission as a function of the coupling and with different temperatures. The dashed line indicates the maximum value for a given coupling,
which is obtained at a temperature given by the relation n̄ = 2(r/γ )2. (b) Same results as a function of the coupling and the temperature with
the maximum value for a given coupling indicated by a black dashed line. The white dashed lines correspond to each the four colored curves
in panel (a).

by an emission as n̄r (0)/n̄r � 1
16 (1/n̄ + 40). We also show

the relation in Fig. 3(b) and note that for r̃ = 1, the ratio
is independent of n̄ and obtains the value 3 even though n̄r

diverges.
For the coherent drive, the average number of cavity

photons after an emission decreases monotonously with in-
creasing coupling, and we find the simpler expression

n̄�(0)

n̄�

= 2n̄2 + 4n̄�̃2 + �̃4

(n̄ + �̃2)2
, (33)

which takes values between one and two. Here, the value
of one corresponds to the zero-temperature limit, which is
governed by the coherent drive, while the value of two is
reached at high temperatures, where thermal effects dominate.
At zero temperature, the detection of a photon reveals no
information about the photons in the cavity statistics, as the
photon emission process is Poissonian.

V. SECOND-ORDER COHERENCE

As an alternative to the waiting time distribution, we con-
sider the second-order degree of coherence [57,58]

g(2)(τ ) = 〈â†(0)â†(τ )â(τ )â(0)〉
〈â†(τ )â(τ )〉〈â†(0)â(0)〉 . (34)

The g(2) function is important for determining if the emit-
ted photons are bunched [g(2)(0) > g(2)(τ )] or antibunched
[g(2)(0) < g(2)(τ )] [32], and it is typically easier to measure
compared to the waiting time distribution since it does not
depend on the detector efficiency.

The g(2) functions can be obtained from the generating
function (see Appendix C for details), and as an important
check, we find the known expression [29]

g(2)
r (τ ) = 1 + J̃2

0

J̃2
r

∑
ν=±r̃

e(ν−1)|τ |

2

(
1 + ν/2n̄

1 − ν

)2

(35)

for the parametric drive and

g(2)
� (τ ) = 1 + J̃2

0

J̃2
�

(
e−|τ | + e−|τ |/2 2�̃2

n̄

)
(36)

for the coherently driven cavity. In Fig. 4, we show the g(2)

functions for different driving strengths, and we see that the
photons are bunched in both cases. We note that g(2)(0) also
yields the relative number of cavity photons right after a
photon has been emitted [48].

By comparing the g(2) function and the waiting time distri-
bution, we can determine if the photon emissions constitute a
renewal process, implying that subsequent waiting times are
correlated. For a renewal process, the two are related in the
Laplace domain as [48,56,59]

g(2)(s) = 〈τ 〉 W (s)

1 − W (s)
, (37)

where g(2)(s) and W (s) are the Laplace transformed distribu-
tions, which can be found in Appendix C. By checking this
relation, we find that it generally does not hold for either of
the drives. Only for the coherent drive, the emission events
become a renewal process at zero temperature n̄ = 0, where
the stationary state is a coherent state, and the photon emission
process is Poissonian.

VI. LONG-TIME LIMIT

In addition to the time-resolved quantities that we have
considered so far, it is also interesting to investigate the photon
emission statistics collected over a long time duration. To this
end, we consider the long-time limit of the scaled factorial
cumulant generating function

F (ζ ) = lim
τ→∞ ln[M(ζ , τ )]/τ, (38)

which for each of the two drives reads

Fr (ζ ) = [2 − (ξr̃ + ξ−r̃ )]/4 (39)

and

F�(ζ ) = F0(ζ ) + ζ �̃2(n̄ + 1)

1 − ζ [4n̄(n̄ + 1)]
, (40)

respectively, where F0(ζ ) = Fr (ζ )|r=0 is the scaled generat-
ing function of a thermal cavity, and ξν is given by Eq. (14).
The scaled factorial cumulants are then obtained as κ̃m =
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FIG. 4. Second-order coherence. (a) g(2) functions for the parametric drive with n̄ = 1/16 and we have defined γ̄ = γ (1 − r/γ ). (b) Similar
results for the coherent drive. The black dashed lines correspond to a nondriven thermal microwave cavity.

∂m
ζ F (ζ )|ζ=0, and we find

κ̃r
m = (n̄ + 1)m(2m)!

8
(
m − 1

2

)
m!

∑
ν=±r̃

(n̄ + ν/2)m

(1 − ν)2m−1
(41)

and

κ̃�
m = κ0

m + �̃2m!(4n̄)m−1(n̄ + 1)m (42)

for each of the two drives with κ̃0
m = κ̃r=0

m . Interestingly, all the
factorial cumulants are positive, which appears to be a typical
feature of noninteracting bosons [26,60,61]. By contrast, the
factorial cumulants of noninteracting electrons alternate in
sign with the order [35].

The first factorial cumulant is the average current, which is
shown in Figs. 1(e)–1(f) for the two drives. In Fig. 5, we plot
the ratio of the current fluctuations over the average current,
which is given by the Fano factor

F = 1 + κ2/κ1, (43)

and we see clear differences between the two drives. The
parametric drive produces a higher level of noise at all tem-
peratures compared to the coherent drive, which is dominated
by thermal fluctuations, in particular at high temperatures.
At low temperatures, the photon emission statistics from the
coherently-driven cavity becomes Poissonian, and the Fano
factor equals one for all values of the coupling �. Only in the

region around n̄ � 1, the Fano factor clearly depends on the
coupling.

VII. LARGE-DEVIATION STATISTICS

Finally, we consider the large-deviation statistics of the
photon current. To this end, we formally write the probability
distribution for the photon emission statistics by inverting the
generating function as

P(n, t ) = 1

2π

∫ π

−π

dχG(eiχ , t )e−inχ . (44)

At long times, we may express the distribution as

P(J = n/t, t ) = 1

2π

∫ π

−π

dχe[F (χ )−iJχ]t , (45)

where J = n/t is the photon emission current, and F (χ ) is the
scaled factorial cumulant generating function with the substi-
tution ζ → eiχ − 1. In this form, the integral is amenable to
a saddle-point approximation, which allows us to express the
large-deviation statistics as

ln[P(J, t )]

t
� F (χ0) − iJχ0, (46)

where the imaginary saddle point χ0 solves the saddle-point
equation F ′(χ0) = iJ .

FIG. 5. Fano factor of the photon current. (a) Fano factor for the parametric drive as a function of the temperature, given by n̄, and with
different couplings. (b) Similar results for the coherent drive. The dashed lines correspond to a nondriven cavity.
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FIG. 6. Large-deviation statistics of the photon emission current. (a) Statistics of the photon current for the parametric drive with the
coupling r = 0.3γ and different temperatures. The dashed line is the analytic expression in Eq. (47). (b) Statistics of the photon current for the
coherent drive with the coupling � = 0.3γ and different temperatures.

In Fig. 6, we show the large-deviation statistics for the two
drives at different temperatures. At large temperatures, the
distributions are similar as they are both dominated by thermal
effects. On the other hand, clear differences become visible as
the temperature is lowered. In particular, at zero temperature,
we can find simple expressions for the large-deviation statis-
tics. For the parametric drive with n̄ = 0, we find for large
currents

ln[Pr (J, t )]

γ t
� 1

2
− 1

4

√
2r̃2 + 2 − J̃

2
ln

[
(r̃2 + 1)2

4r̃2

]
, (47)

which predicts a linear dependence for J 	 γ as shown with
a dashed line in Fig. 6(a). In this context, we note that the
statistics of radiation emitted at a Josephson parametric reso-
nance was explored in Ref. [62]. For the coherent drive at zero
temperature, we find

ln[P�(J, t )]

γ t
= J̃ − �̃2 − J̃ ln

(
J̃

�̃2

)
, (48)

which is the statistics of a Poisson process.

VIII. CONCLUSIONS

We have investigated the statistics of photons that are emit-
ted from a driven microcavity and explored the differences
between a parametric drive and a coherent drive. To this end,
we have found the generating function for the photon emission
statistics using a technique based on Gaussian states and the
solution of a Riccati equation. For both drives, the photon
emission statistics can be understood in terms of two indepen-
dent processes. We have calculated the distribution of waiting
times between subsequent photon emissions and identified
important differences between the two drives. Moreover, from
the g(2) function of the outgoing photons, we have shown that
the photon emissions do not constitute a renewal process since
subsequent waiting time are correlated. In the long-time limit,
we have obtained simple expressions for the Fano factor and
the factorial cumulants, which are all positive. We have also
found marked differences between the two drives in the large-
deviation statistics of the photon current. Throughout the
paper, we have focused on finite-temperature effects, which

are of particular importance for microwave photons, both
for calorimetric detection schemes as well as in the broader
framework of quantum thermodynamics.

Our work can be extended in many directions. For exam-
ple, it is possible to include several thermal reservoirs and
investigate the statistics of the heat that will flow through the
cavity due to a temperature difference between them. Such
investigations may be of relevance in the context of thermo-
dynamic uncertainty relations for quantum systems. Within
our formalism, it is also possible to describe several coupled
microwave cavities with the potential of generating nonclas-
sical correlations and entanglement between the outgoing
photons. As single-photon detectors in the gigahertz regime
are currently being developed, our predictions for the photon
emissions statistics may be observable in future experiments.
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APPENDIX A: GAUSSIAN STATES

The driven cavity in the main text is naturally described
by Gaussian states. Here, we establish their definition and
the relevant notation, which are then used in the following
Appendix to develop an approach to the full counting statistics
of driven cavities.

The characteristic function of a state ρ̂ is given by

χρ̂ (α) = tr{ρ̂ exp (â†α − âα∗)}, (A1)

where α is a complex variable and α = (α, α∗)T . The Wigner
function of the state is then given by the Fourier transform of
the characteristic function as

W (x, p) = 1

2π2

∫
d2α χρ̂ (α)ei α+α∗√

2
p̃+ α−α∗√

2
x̃
, (A2)
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where x̃ = x/x0 and p̃ = x0 p/h̄ are given in terms of the
usual oscillator length x0. Creation and annihilation operators
acting on a density matrix produce the following characteristic
functions [32]:

χâρ̂ (α) = (−∂∗
α − α/2)χρ̂ (α),

χρ̂â(α) = (−∂∗
α + α/2)χρ̂ (α),

χâ†ρ̂ (α) = (∂α − α∗/2)χρ̂ (α),

χρ̂â† (α) = (∂α + α∗/2)χρ̂ (α). (A3)

A Gaussian state has the characteristic function [27]

χρ̂ (α) = e−α†σz�σzα/2+α†σzd , (A4)

where σi are the Pauli matrices, and we refer to d = (d, d∗)T

and � as the displacement vector and the covariance matrix,
respectively, which are related to the first and second moments
of â. Specifically, they read

d = (〈â〉, 〈â†〉)T (A5)

and

� =
(

〈δâ†δâ〉 〈δâ†δâ†〉
〈δâδâ〉 〈δâ†δâ〉

)
+ 1/2, (A6)

where δâ = â − 〈â〉 is the deviation from the average value,
and 1 is the identity matrix. The two stationary states in the
main text, which are squeezed or displaced thermal states, are
both examples of Gaussian states.

APPENDIX B: GENERATING FUNCTION

To find the generating function of the photon emission
statistics, we assume that the density matrix including the
counting field can be described as a Gaussian state [28]. As
we will see, this ansatz allows us to find the unique solution
of the Lindblad equation including the counting field, demon-
strating that the ansatz indeed is correct. Thus, we consider
the characteristic function

χρ̂(ζ ,t )(α) = M(ζ , t )e−α†σz�(t )σzα/2+α†σzd(t ), (B1)

where we have used that, it yields the trace of the density ma-
trix at α = 0, such that χρ̂(ζ ,t )(0) = tr{ρ̂(ζ , t )} = M(ζ , t ) =
exp[C(ζ , t )]. Taking the derivative of this characteristic func-
tion with respect to time, we get(

d

dt
C − α†σz

d�

dt
σzα/2 + α†σz

d

dt
d
)

χρ̂ = χLζ ρ̂ , (B2)

where the time arguments of C, d, and � have been omitted
to simplify the notation. Using the Liouvillian including the
counting field in Eq. (12) in combination with the expressions
in Eq. (A3) on the right hand side of Eq. (B2), we then
obtain equations of motion for the displacement vector and
the covariance matrix.

For the parametric drive, we now find

d(t ) = 0, (B3)

having used the initial condition d(0) = 0 in the stationary
state, together with the equations of motion

d

dt
�(t ) = �(t )X�(t ) + W �(t ) + �(t )W † + F (B4)

and

d

dt
C(ζ , t ) = tr{(�(t ) − 1/2)X }/2, (B5)

where we have defined the matrices

X = γ ζ (n̄ + 1)1,

F = γ (n̄ + 1/2)1 + X/4,

W = −γ (r̃e−i2φσz iσzσx + 1)/2 − X/2 (B6)

The initial condition for the covariance matrix �(t = 0) ≡
�0 is found from the stationary state of the Lindblad equa-
tion without the counting field as

(W �0 + �0W
† + F )|ζ=0 = 0, (B7)

since the stationary state has been reached as we start counting
photons, which also implies that C(ζ , t = 0) = 0. The equa-
tion of motion for the covariance matrix � with the counting
field ζ is known in control theory as a Riccati equation, and it
can be solved analytically [63].

First, we find the covariance matrix �∞ at long times. To
this end, we introduce the symplectic matrix

H =
(

W † X
−F −W

)
, (B8)

which has four eigenvectors. We choose two of them, v1 and
v2, so that the covariance matrix �∞ yields the stationary
solution �0 at ζ = 0. Specifically, by constructing the 2 × 4
matrix C = (v1, v2) and defining two 2 × 2 matrices so that
C = (C1,C2)T , we eventually find �∞ = C2C

−1
1 .

Once we have the covariance matrix at long times, we
obtain the full time-dependent solution from the matrix

L(t ) = [�(t ) − �∞]−1, (B9)

which evolves according to the Lyapunov equation

d

dt
L = −(W + �∞X )L − L(W + �∞X )† − X. (B10)

Since this a linear equation for L, it can be integrated and
solved by first vectorizing L. We then find �(t ) by inverting
L(t ). As the last step, we obtain the generating function by
inserting the covariance matrix into Eq. (B5), and after some
algebra we arrive at Mr (ζ , t ) in Eq. (13).

The coherently driven cavity is characterized by the occu-
pation n̄ζ (t ) and the displacement d (t ) = 〈â〉 with the initial
conditions n̄ζ (0) = n̄ and d (0) = i�e−iφ� . The equations of
motions for each of these quantities can be obtained just as
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above, and they read

d

dt
n̄ζ (t ) = γ

(
n̄ − n̄ζ (t ) + ζ (1 + n̄)n̄2

ζ (t )
)
, (B11)

together with

d

dt
d (t ) = γ

(
ie−iφ��̃ − d (t )

(
1 + (

ξ 2
0 − 1

)
n̄ζ (t )/2n̄

))
/2,

(B12)
and

d

dt
C(ζ , t ) = γ

(
ξ 2

0 − 1
)
(n̄ζ (t ) + |d (t )|2)/4n̄. (B13)

Solving these equations, we then arrive at Eq. (20).

APPENDIX C: SECOND-ORDER COHERENCE

The g(2) function can be related to the noise as

g(2)(τ ) = 1 +
∫ ∞

−∞
dωe−iωτ (F (ω) − 1)/2πJ, (C1)

where F (ω) = S(ω)/J is the Fano factor, and we can find the
noise using MacDonald’s formula [64–66]

S(ω) = ω

∫ ∞

0
dt sin(ωt )

d

dt
(κ2 + κ1), (C2)

expressed in terms of the first and second factorial cumulants.
We then find the g(2) functions in Eqs. (35) and (36). More-
over, in the Laplace space

g(2)(s) =
∫ ∞

0
dτe−sτ g(2)(τ ), (C3)

we have

g(2)
r (s) = 1 + J̃2

0

J̃2
r

∑
ν=±r̃

(1 − ν/2n̄)2

2(1 + ν)2(s + 1 + ν)
(C4)

for the parametrically driven cavity and

g(2)
� (s) = 1 + J̃2

0

J̃2
�

(
1

s + 1
+ 2

2s + 1

2�̃2

n̄

)
(C5)

for the coherently driven cavity. In combination with the wait-
ing time distributions, we use these expressions to check the
renewal assumption in Eq. (37).
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