PHYSICAL REVIEW RESEARCH 8§, 033090 (2023)

Anatomy of dynamical quantum phase transitions

Maarten Van Damme,!-" Jean-Yves Desaules ®,2* Zlatko Papié ,2 and Jad C. Halimeh ®3#7
' Department of Physics and Astronomy, University of Ghent, Krijgslaan 281, 9000 Gent, Belgium
2School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom
3Department of Physics and Arnold Sommerfeld Center for Theoretical Physics (ASC), Ludwig-Maximilians-Universitit Miinchen,
Theresienstrafie 37, D-80333 Miinchen, Germany
*Munich Center for Quantum Science and Technology (MCQST), Schellingstrafe 4, D-80799 Miinchen, Germany

® (Received 9 November 2022; accepted 11 July 2023; published 8 August 2023)

Global quenches of quantum many-body models can give rise to periodic dynamical quantum phase transitions
(DQPTs) directly connected to the zeros of a Landau order parameter (OP). The associated dynamics has been
argued to bear a close resemblance to Rabi oscillations characteristic of two-level systems. Here, we address the
question of whether this DQPT behavior is merely a manifestation of the limit of an effective two-level system

or if it can arise as part of a more complex dynamics. We focus on quantum many-body scarring as a useful toy
model allowing us to naturally study state transfer in an otherwise chaotic system. We find that a DQPT signals
a change in the dominant contribution to the wave function in the degenerate initial-state manifold, with a direct
relation to an OP zero only in the special case of occurring at the midpoint of an evenly degenerate manifold. Our

work generalizes previous results and reveals that, in general, periodic DQPTs comprise complex many-body
dynamics fundamentally beyond that of two-level systems.

DOI: 10.1103/PhysRevResearch.5.033090

I. INTRODUCTION

One of the central goals of far-from-equilibrium quantum
many-body physics is the understanding of dynamical quan-
tum universality classes, the pursuit of which has led to the
introduction of several concepts of dynamical phase transi-
tions [1-4]. Extending the concept of spontaneous symmetry
breaking in equilibrium, one concept of dynamical phase tran-
sitions is characterized by the order parameter (OP) of the
long-time steady state following a quench in a control parame-
ter after starting in an ordered (symmetry-broken) initial state
[5-7]. The critical value of the quench parameter separates a
symmetry broken from a symmetric steady state. In addition
to this Landau type of dynamical phase transitions, another
concept has been introduced, known as dynamical quantum
phase transitions (DQPTs), that relies on a connection to
thermal phase transitions [8]. It is based on recognizing that
the overlap (yo|y(¢)) between the initialAstate [Y0) and the
time-evolved wave function |/ (1)) = e~ |yr), with H the
quench Hamiltonian, is a boundary partition function with
complexified time it representing inverse temperature. Equiv-
alently, the return rate, — lim; _, .o L™" In | (0| (£))|?, with L
the system size, becomes a dynamical analog of the thermal
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free energy, with a DQPT formally defined as a nonanalyticity
in it at a critical time t..

In a wide variety of quantum many-body models hosting
a global symmetry, DQPTs in the wake of sufficiently large
quenches starting in the ordered phase have been shown to
be directly connected to zeros of the OP dynamics [9-16].
In the seminal work introducing DQPTs, the model showing
this behavior is the integrable transverse-field Ising chain
(TFIC) [8]. This model can be solved exactly by mapping it
to a two-band free fermionic model using a Jordan-Wigner
transformation, where each disconnected momentum sector is
a two-level system. For nonintegrable models, e.g., the long-
range interacting TFIC or two-dimensional quantum Ising
models, the direct connection between DQPTs and OP zeros
occurs for large quenches, where the transverse-field strength
is much larger than the coupling constant, and which can be
considered perturbatively close to classical precession in two-
level systems during the short timescales where this behavior
is prominent [10,12,15]. Indeed, for intermediate quenches
where this perturbative treatment is no longer valid, this con-
nection breaks down [17-19], and for small quenches within
the ordered phase, anomalous DQPTs can appear even with-
out any OP zeros occurring over all investigated timescales
[10,11,20]. As such, it has been argued that the periodic
DQPT behavior seen for large quenches may be a mere mani-
festation of effective two-level system dynamics [21].

Here, we address this argument by investigating DQPTs
in models exhibiting “state transfer’—a dynamical process
where the wave function evolves cyclically between the states
of a given manifold—due to quantum many-body scarring
[22-24]. Such models possess a small number of anomalous
eigenstates throughout their spectrum, leading to oscillatory
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FIG. 1. Schematic of the main conclusions of our work. During
“state-transfer” quench dynamics in the spin-S U(1) QLM initialized
in an extreme vacuum, DQPTs (red diamonds) arise in the return rate
when there is a shift in wave-function—overlap dominance between
components of the degenerate vacuum manifold, where each com-
ponent vacuum is denoted by m,e{—S, ..., S} (orange dots) in the
total Hilbert space H. (a) For § = 3/2 we find a DQPT occurring
at the same time as a zero in the OP £(¢) (blue dot). This DQPT
signals state transfer between the intermediate vacua m, = +1/2.
Other DQPTs show no such connection. This can be generalized
for any half-integer S. (b) For § = 1, a DQPT and an OP zero do
not occur simultaneously. Instead, the OP zero is halfway between
two consecutive DQPTs that signal state transfer to and away from
the middle vacuum m, = 0. This holds for all integer S. This picture
generalizes previous results and highlights the complex many-body
dynamics comprising DQPTs.

dynamics from a few specific states in an otherwise thermal-
izing system. We will focus on a formulation of the lattice
Schwinger model [25] known as the spin-S U(1) quantum link
model (QLM) [26,27]. This model has been shown to exhibit
quantum many-body scarring for massless quenches starting
in the maximal-flux (extreme) vacua for a wide range of spin
values [28,29]. We show in these models that periodic DQPTs
arise within complex many-body dynamics that is beyond
two-level systems, and where a DQPT signals state transfer
from one vacuum to another within a (25+1)-fold degenerate
vacuum manifold (see Fig. 1). We find no direct connection
between DQPTs and OP zeros for integer S. For half-integer
S, a DQPT is directly connected to an OP zero only when the
DQPT signals a transfer between intermediate minimal-flux
vacua of opposite flux sign. We further show that models
where DQPT behavior resembles two-level system dynamics
are a special case of our general picture.

II. MODEL

We consider the spin-S U(1) QLM, given by the Hamilto-
nian [26,27,30]

Z[ JSE+ 1D

=1

/\—A+
6,8 116,41 +He)

.

+ 1 5+%( ,JH)Z], (1)

where we have adopted particle-hole and Jordan-Wigner
transformations [31,32]. The Pauli operator 6; describes the
matter occupation on site j with mass u, and the spin-S
operators i41//S(S + 1) and §Z 1 represent the gauge and
electric ﬁelds respectively, remdmg on the link between sites
j and j + 1. The tunneling constant is J, which we shall set
to unity as the overall energy scale, « is the gauge-coupling
strength, and L is the number of sites.

The generator of the U(1) gauge symmetry of Hamiltonian
(1) is

N i + i

G,-—(—l)( +s,,+1+ . ) @
and gauge-invariant states |¢) satisfy Gj|¢) =gjlo), v/,
where g;/(—1)e{=2S,...,25+1}. We will work in the
physical sector g; =0, Vj.

A building block of the U(1) QLM has been experimen-
tally realized for S— oo in a cold-atom setup [33]. Large-scale
implementations of the spin-1/2 U(1) QLM on a Bose-
Hubbard superlattice have been employed to observe gauge
invariance [34] and thermalization dynamics [35].

III. QUENCH DYNAMICS

We now present time-evolution results obtained through
the infinite matrix product state (iMPS) technique based on the
time-dependent variational principle [36-39]. This technique
works directly in the thermodynamic limit, and also allows
us to directly detect DQPTs as level crossings between the
logarithms of the eigenvalues of the MPS transfer matrix
[10,40,41], without any need for finite-size scaling with L.
DQPTs for gauge theories have already been studied in the
context of the spin-1/2 U(1) QLM [13,42,43], and also for
S>1/2 [44] as well as in the Schwinger model [14,45], but not
in the context of quantum many-body scarring. For the most
stringent calculations that we have performed in iMPS for this
work, we find convergence for a maximal bond dimension of
550 and a time step of 0.0005/J.

We are interested in the dynamics of the experimentally
relevant return rate (RR)

A(t) = min {4, (1)}, (3a)

(3b)

1
b (0) = = Jim — I |{yg |y )

which has recently been used to identify DQPTS in a trapped-
ion experiment [46]. Here, {|1ﬁ5” 3} is the set of vacua
with m, e{-S, ..., S}, which are the (25+1)-fold degenerate
ground states of Hamiltonian (1) for «/J = 0 and pu/J—o00.
We call a vacuum extreme when |m,| = S, and intermediate
when |m,|<S. We can represent a vacuum state on the two-site
two-link unit cell as |y*) = |—1, m;, —1, —m;), indicating
the eigenvalue —1 of 67 at each (empty) matter site and the
eigenvalue m, of §° § i on each link, but we will often refer to
this vacuum 51mply by its value of m,. A detailed discussion
of how to calculate the RR in iMPS can be found in Ref. [41].

The system is initialized in the extreme vacuum [yr5)
and subsequently quenched with the QLM Hamiltonian (1)
with u/J =« /J =0, yielding the time-evolved wave func-
tion | (1)) = e~ "H'|y3). Furthermore, we will also calculate
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FIG. 2. Dynamics of the extreme vacuum |—1,3/2, —1, —3/2)
in the wake of a quench by Hamiltonian (1) at S =3/2, u/J =
«/J = 0, which leads to state-transfer scarring [29]. (a) The RR (3a)
shows a cascade of minima related to its various components (3b).
Each minimum corresponds to a maximal overlap with one of the
four vacua [;*). The smallest minimum occurs at half the revival
period T~5.137 [29], where the wave function exhibits a very large
overlap with the second extreme vacuum |—1, —3/2, —1, 3/2). Each
DQPT signals a shift in the dominant wave-function overlap within
the vacuum manifold. (b) The electric-flux zeros directly connect to
the DQPTs signaling a dominance shift in the overlap with the mid-
dle vacua m, = £1/2, but other DQPTSs do not correspond to zeros in
the OP. (c¢) The minima of the chiral condensate are similar to those
of the RR, appearing at roughly the same times.

in iMPS the quench dynamics of the electric flux and chiral
condensate,

E() = lim —Z( DY O, @), (o)

n(t) = > + lim wa(zn (@) (4b)

The electric flux is an OP associated with the global Z, sym-
metry of Hamiltonian (1) [47].

We first consider the case of S = 3/2. The corresponding
RR (3a) and its components (3b) are shown in Fig. 2(a).
Focusing on times 1<12.07/J, we find three DQPTs equally
separated in time. The DQPT signaling the state transfer
between two vacua forms by the intersection of their corre-
sponding RR components A,, (¢). The first DQPT indicates

1 ‘ ‘
QLM, S = Am.—+1(t)
(a) m; = )‘mz::]r(lt)
0.75+ wu/J =0 —_— =1 (t)
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FIG. 3. Dynamics of the extreme vacuum |—1, 1, —1, 0) in the
wake of a quench by Hamiltonian (1) at S=1, u/J =«/J =0,
which leads to state-transfer scarring [29]. For integer S, the OP
zero connects to the MNM of the RR corresponding to the vacuum
m, = 0, and lies at a time between two consecutive DQPTs that
signal state transfer to and away from the middle vacuum m, = 0.

state transfer between the extreme vacuum m, = 3/2 and the
intermediate one m, = 1/2, while the second indicates state
transfer between m, = 1/2 and m, = —1/2. We find that this
second DQPT, which indicates a sign change in the dominant-
vacuum flux, occurs at roughly the same time as the first OP
zero, marked with a red dot in Fig. 2(b). The two minima
in the RR between these DQPTs indicate maximal overlap
between the wave function and the intermediate vacua m, =
+1/2. The third DQPT signals the dominance of the second
extreme vacuum m, = —3/2 in the wave-function overlap,
and at t~12.07/J, we find a minimum in the RR that is very
close to zero, indicating maximal overlap with this extreme
vacuum. Henceforth, let us call local minima corresponding to
extreme (intermediate) vacua as major (minor) local minima,
abbreviated as MJM and MNM, respectively. Note how the
MIM at r~12.07/J corresponds to the minimum of the OP,
since the second extreme vacuum m, = —3/2 has the largest
negative flux.

For +212.07/J, the dynamics roughly reverses itself, with
two MNM indicating maximal overlaps with the intermedi-
ate vacua, and a MJM indicating that the wave function is
once again very close to the initial state m, = 3/2. The state
transfer at late times is not as robust as at early times, and so
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FIG. 4. Dynamics of the extreme vacuum |—1,1/2, —1, —1/2)
in the wake of a quench by Hamiltonian (1) at S =1/2, u/J =
«/J = 0, which leads to state-transfer scarring [29]. For this special
case, our general picture reduces to that of the literature, where
each DQPT corresponds to an OP zero during evolution times when
scarring is robust.

the DQPT signaling transfer between the vacua m, = F1/2
occurs at a slightly different time than the second OP zero:
t~17.6/J and t~18.9/J. This is not surprising, as scarring is
expected to deteriorate over time as ergodic dynamics begin
to dominate. Indeed, we see a multitude of nonanalyticities
in each component A,, (t) after its first local minimum, which
is indicative of complex quantum many-body dynamics. We
expect that such nonanalytic behavior will dominate the RR
itself at sufficiently long times, eventually destroying scarring
and the periodicity of DQPTs.

An intriguing connection between the chiral condensate
(4b), which is not an OP, and the RR (3a) can be seen in
Fig. 2(c). Every MNM or MJM in the latter is reproduced
in the former at the same evolution times, and the relative
amplitudes of these local minima are qualitatively similar. In
a way, the chiral condensate mirrors the analytic parts in the
behavior of the RR, but it does not capture the signatures of
DQPTs.

To investigate the effect of the parity of the degenerate
manifold, we now repeat the same quench for the spin-1 U(1)
QLM, starting in the extreme vacuum |—1, 1, —1, —1), i.e.,
m, =S = 1. As seen in the fidelity shown in Fig. 3(a), the
phenomenology is the same in that the wave function evolves
through large overlaps with the three vacua m, = 0,£1, where

T
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FIG. 5. Dynamics of the extreme vacuum |—1,3/2, —1, —3/2)
in the wake of a quench by Hamiltonian (1) at S = 3/2, u/J = 0.1,
and «/J = 0, which does not lead to state-transfer scarring. This
quench is the same as Fig. 2 in the main text aside from the value of
the mass in the quench Hamiltonian, (©/J = 0.1 rather than zero).
This quench can be considered perturbatively close to the massless
case, where we see the general picture drawn in the main text extends
here at early times, but breaks down afterwards.

the overlap is largest with the extreme vacua m, = £1. The
relation of the RR to the electric flux and chiral condensate,
shown in Figs. 3(b) and 3(c), respectively, follows a similar
vein as in the case of § = 3/2, except for a fundamental dif-
ference in the case of the OP. Whereas for § = 3/2 the DQPT
signaling transfer between the vacua m, = £1/2 coincides
with an OP zero, for S = 1 no DQPT coincides with an OP
zero [see Fig. 3(b)]. This is because, for S = 1, the point
in time when the OP is zero coincides with the MNM due
to maximal wave-function overlap with the middle vacuum
m, = 0. This difference only depends on whether § is integer
or half-integer, which determines the parity of the (25+1)-
fold degenerate manifold.

IV. DISCUSSION

The conclusions drawn from Figs. 2 and 3 paint a more
general picture of DQPTs, of which previous results resem-
bling two-level dynamics are a special case. In this general
picture, a DQPT is associated with a shift in dominance of
the RR—equivalently, the wave function—between the dif-
ferent components of the degenerate initial-state manifold.
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FIG. 6. Dynamics of the intermediate vacuum
|—1,1/2, -1, —1/2) in the wake of a quench by Hamiltonian
(1) at S=3/2, u/J =0, and «/J =0, which does not lead to
state-transfer scarring. The only difference between this quench and
that of Fig. 2 is that the initial state is an intermediate rather than
extreme vacuum. Due to the absence of state-transfer dynamics, the
general picture we developed in the main text does not apply here.

A zero in the OP occurs when the dynamics transfers be-
tween different hemispheres of the manifold with opposite
OP signs. When the manifold is even degenerate, the OP
zero coincides with the DQPT signaling transfer between the
two intermediate vacua with smallest OP absolute value 1/2.
This is what we see in Fig. 2 for the spin-3/2 U(1) QLM,
and is expected to apply for any half-integer S. When the
manifold is odd degenerate, the OP zero does not coincide
with a DQPT, but rather occurs halfway in time between two
consecutive DQPTs signaling state transfer to and away from
the middle vacuum of zero OP. This is what we see in Fig. 2
for the spin-1 U(1) QLM, and is expected to hold for any
integer S.

The general picture we establish is valid in models with
state-transfer scarring. A resemblance to two-level systems,
where every DQPT is directly connected to an OP zero and
vice versa, is a special case that becomes valid either (i)
when the manifold is doubly degenerate, as can be seen in
the case of S = 1/2 in Fig. 4 where each DQPT is directly
connected to an OP zero at short to intermediate times be-
fore state transfer slightly deteriorates (see also Ref. [13] for
small-mass quenches for S = 1/2), or (ii) when the quenches
can be perturbatively connected to two-level dynamics, such

1F
Am.—r3/2(t) |
(a) m +1/2§t;
0.75 TS BT — D —12(0
f/S‘?I:StJ »%2’:({ e — D\, ——3/2(t)
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0 5 10 ¢ 15 20
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TSM, S =3/2, m, =3/2
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FIG. 7. Dynamics of the extreme vacuum |—1,3/2, —1, —3/2)
in the wake of a quench by Hamiltonian (Al) at S =3/2, u/J =
k /J = 0, which leads to resonant scarring. The qualitative picture is
identical to that of Fig. 2 for the spin-3/2 U(1) QLM.

as in large quenches of quantum Ising models [10,12,15,16].
Our general picture is also valid for other regularizations of
the lattice Schwinger model, and does not apply when state
transfer breaks down, e.g., when we quench an extreme vac-
uum but with a finite mass, or perform a massless quench on
an intermediate vacuum (which does not lead to state-transfer
dynamics; see Appendix).

It is also worth noting that our general picture, as well as its
special case in previous literature, are only valid for a RR that
includes projections on all the states of the initial manifold, as
in Egs. (3). This can be seen by considering, for example, only
the component of the initial state itself as the total RR. In such
case we find a plethora of aperiodic DQPTs without any direct
connection to the OP [see panels (a) of Figs. 2—4]. However,
we employ the RR defined in Egs. (3) due to its experimental
relevance [46] in addition to its traditional use in the field of
DQPTs [12].
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APPENDIX: SUPPLEMENTAL RESULTS

In this Appendix, we present results for quench protocols
that do not lead to state-transfer scarring, leading to the in-
applicability of the general picture drawn in the main text.
First, we consider a quench of the extreme vacuum in the
spin-3/2 U(1) QLM at mass u/J = 0.1. Figure 5(a) shows
the return rate. At early times, it looks qualitatively similar
to that of Fig. 2(a) for the massless quench, but at late times
it is qualitatively different, and the periodicity of DQPTs
is no longer there. In fact, starting around r~19/J, we see
several DQPTs occurring in quick succession. In the general
picture of the main text, the first OP zero should coincide
with the first DQPT in the case of half-integer S, but in this
case such a connection is not clearly present [see Fig. 5(b)].
The dynamics of the chiral condensate, shown in Fig. 5(c),
exhibits a connection to the return rate similar to that in
the case of the massless quench, where the minima of both
quantities roughly coincide in time and relative amplitude.

Next, we consider a massless quench from an intermediate
vacuum, where the dynamics becomes significantly different
from that of Fig. 2. Indeed, the return rate, shown in Fig. 6(a),
exhibits many aperiodic DQPTs, where the OP in the same
time window has a single zero that is hard to temporally
connect to any of these DQPTs. Even the connection between
the chiral condensate, shown in Fig. 6(c), and the return rate
is no longer clear.

A different way of regularizing lattice quantum electro-
dynamics is through the truncated Schwinger model (TSM),
given by the Hamiltonian

L

; Jooar Ao

o = X[ 56747070+ 1
j=1

2
~ LN 2
+ 185+ 5 (5 ) ] (AD)
where the only difference with the U(1) QLM in Eq. (1) is that

the gauge-field operator is given by f;fj +1 Whose elements are

(i’ffjJrl Ymn = Smn—1, instead of SLH /+/S(S+1). Note that the
electric field is still represented by the Pauli operator Cvj i1
Hamiltonian (A1) also hosts a U(1) gauge symmetry gener-
ated by G ;in Eq. (2), in addition to a global Z, symmetry.

The TSM (A1) is equivalent to the QLM (1) for S<1, up
to a trivial rescaling of the tunneling coefficient. As such,
we repeat the quench of Fig. 2 for the TSM with § = 3/2,
where now the time-evolved wave function in Egs. (3) and
(4) is | (1)) = e v |yS). The corresponding quench dy-
namics is displayed in Fig. 7, where we see qualitatively
identical behavior with the corresponding case of the U(1)
QLM. The only difference is that the period is slightly dif-
ferent, Trsm~11.54/S(S+1) rather than T~5.137S for the
QLM, confirming results obtained in exact diagonalization for
finite system sizes [48]. Again we see the direct one-to-one
correspondence in the MNM and MJM of the RR, Fig. 7(a),
and those of the chiral condensate, Fig. 7(c). The electric flux,
on the other hand, only seems to connect with the MIM of
the RR in terms of its minima, and equivalently, the chiral
condensate, but does not show anything special at the evo-
lution times where the MNM occur [see Fig. 7(b)]. As in
the case of the QLM, we find that the OP zeros occur at or
slightly after the times at which a DQPT arises signaling the
shift in wave-function—overlap dominance between the two
intermediate vacua.
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