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Measurement-induced quantum walks on an IBM quantum computer
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We study a quantum walk of a single particle that is subject to stroboscopic projective measurements on a
graph with two sites. This two-level system is the minimal model of a measurement-induced quantum walk.
The mean first detected transition and return time are computed on an IBM quantum computer as a function of
the hopping matrix element between the sites and the on-site potential. The experimentally monitored quantum
walk reveals the theoretically predicted behavior, such as the quantization of the first detected return time and
the strong increase of the mean first detected transition time near degenerate points, with high accuracy.
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I. INTRODUCTION

Quantum walks are a central concept for quantum in-
formation processing [1,2] as they are indispensable for
quantum algorithm development and for modeling of physical
processes. Furthermore, they provide a universal model of
quantum computation [3] and can be considered as a quantum
version of the classical random walk [4]. Measurement-
induced quantum walks [5] present a special class of quantum
walks for which the unitary time evolution is supplemented by
a (projective) measurement, resulting in a nonunitary evolu-
tion. To study this effect on a quantum computer, we consider
a closed quantum system that is subject to repeated identical
projective (stroboscopic) measurements and that evolves uni-
tarily between two successive measurements. The combined
evolution of the system is nonunitary and can be understood
as a monitored evolution (ME) which has some surprising
properties. Assuming stroboscopic measurements, where a
projection is applied repeatedly after a fixed time interval τ ,
we count the number of measurements to observe a certain
quantum state for the first time. This number depends on
the size of the underlying Hilbert space, the time interval τ ,
the detected state, and the initial state, in which the quantum
system was prepared. We must distinguish two different cases:
the first detected return (FDR), where the initial state and the
measured state are identical, and the first detected transition
(FDT), where the initial state and the measured state are differ-
ent. The FDR has been intensively studied and revealed some
remarkable properties [6–15]: The mean FDR time τ 〈n〉 is
quantized, where 〈n〉 is an integer and equal to or less than the
number of contributing energy levels [6,7]. Degenerate energy
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levels count only once. This implies that 〈n〉 jumps if we tune
the system through a degeneracy. The quantization is related
to the integer winding number of the Laplace transform of
the return amplitude [6,14] and exists also for random time
steps {τ j} when we average with respect to their distribution
[16]. In the latter case, the mean FDR time is formally a
Berry phase integral due to the time-averaged measurements.
The mean FDT time, on the other hand, is not quantized but
has characteristic divergences near degenerate energy levels
[17–19].

Neither the quantization of the mean FDR time nor the
divergences of the mean FDT time have been observed exper-
imentally. However, due to the fast improvement of current
quantum computers, including the possibility to implement
midcircuit measurements, which are, e.g., crucial for the re-
alization of quantum error correction protocols [20], these
computers provide an excellent platform for testing the theory
of the ME with stroboscopic measurements directly. For this
purpose, a tight-binding model on a finite graph is realized on
an IBM quantum computer to study the mean FDR time and
its fluctuations as well as the mean FDT time experimentally.
In this work we focus on the simplest case of a two-site graph
with one particle which is already sufficient to observe the
characteristic features of the ME, as described above. Such a
system is implemented on the IBM quantum computer with
one and with two qubits. For a small number of midcircuit
measurements, the error-mitigated results are found to be in
very good agreement with the theoretically predicted exact
results. In this context we calculate the error due to a finite
number N of measurements (typically N ≈ 40) in comparison
to the infinite number of measurements assumed in the theory.
It turns out that this error is exponentially small, as presented
in the Appendix.

The paper is organized as follows. Section II is the theo-
retical part that describes the model and the ME. A detailed
explanation of how the model is implemented on the quantum
computer and a discussion of an appropriate error-mitigation

2643-1564/2023/5(3)/033089(10) 033089-1 Published by the American Physical Society

https://orcid.org/0000-0003-3301-169X
https://orcid.org/0000-0001-7050-3883
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.5.033089&domain=pdf&date_stamp=2023-08-08
https://doi.org/10.1103/PhysRevResearch.5.033089
https://creativecommons.org/licenses/by/4.0/


SABINE TORNOW AND KLAUS ZIEGLER PHYSICAL REVIEW RESEARCH 5, 033089 (2023)

FIG. 1. Scheme of the tight-binding model with two sites. The
quantum particle is prepared on the initial site 2 and periodically
measured (indicated with the eye). Here U and γ denote the strength
of the potential and the hopping matrix element, respectively.

scheme are provided in Sec. III. In Sec. IV we present the
experiments for the FDR/FDT times as well as their variance.
We summarize our results in Sec. V and propose some ideas
for future studies.

II. MODEL

The tight-binding model for a quantum particle on a
finite chain of length l is described by the particle-number-
conserving Hamiltonian

H =
l∑

j=1

[−γ j, j+1(| j〉 〈 j + 1| + | j + 1〉 〈 j|) + Uj | j〉 〈 j|]

with proper boundary conditions. This tight-binding Hamilto-
nian is encoded by the qubit Hamiltonian

Hl =
l∑

j=1

[Ujσz, j − γ j, j+1(σx, jσx, j+1 + σy, jσy, j+1)], (1)

where σx, σy, and σz are Pauli matrices. The states
|0 . . . 01〉 , |0 . . . 10〉 , . . . , |10 . . . 0〉 encode the position of the
particle at site 1, 2, . . . , l along the chain. The first term of the
Hamiltonian represents the on-site energy Ui on each site i and
the second term represents the kinetic energy, parametrized by
the hopping matrix element γ between neighboring sites.

Now we consider a particle moving on two sites and pre-
pared initially on site 1 or 2 at time t = 0, which is measured
stroboscopically on site 2 after the time τ, 2τ, . . . (see Fig. 1).
The two-site Hamiltonian H2 acts on the computational basis
states |10〉 and |01〉 as sites 1 and 2 in our model, respectively.
The states |00〉 and |11〉 should not be populated. Since only
two states are occupied, we can simplify the two-qubit model
described by the Hamiltonian in Eq. (1) to a single-qubit
problem with the two basis states |0〉 = |01〉 and |1〉 = |10〉.
In this basis the Hamiltonian matrix reads

(〈 j| H2 | j′〉) = −γ σx + Uσz =
(

U −γ

−γ −U

)
, (2)

whose eigenenergies are E1,2 = ±
√

U 2 + γ 2.
The ME with n stroboscopic measurements is defined by

the evolution operator [14,19]

Mn = e−iH2τ (Pe−iH2τ )n−1, P = 1 − | j〉〈 j| = | j′〉〈 j′|, (3)

with j, j′ ∈ {0, 1} and j′ �= j, which can also be written for
n � 2 as

Mn = e−iH2τ | j′〉(〈 j′|e−iH2τ | j′〉)n−2〈 j′|e−iH2τ . (4)

Then the FDR probability |φr,n|2 = | 〈 j| Mn | j〉 |2 for
| j〉 → | j〉 reads{|〈 j|e−iH2τ | j〉|2 for n = 1,

|〈 j′|e−iH2τ | j′〉|2n−4|〈 j|e−iH2τ | j′〉〈 j′|e−iH2τ | j〉|2 for n � 2
(5)

and the FDT probability |φt,n|2 = |〈 j′| Mn | j〉|2 for | j〉 → | j′〉
reads

|〈 j′|e−iH2τ | j′〉|2(n−1)|〈 j′|e−iH2τ | j〉|2.
For the Hamiltonian H2 with U = 0 we get |〈 j′|e−iH2τ | j′〉|2 =
cos2(γ τ ) and |〈 j′|e−iH2τ | j〉|2 = sin2(γ τ ). Similar but slightly
more complex results are obtained for the parameter c =
cos(

√
U 2 + γ 2τ ) in the general case with U �= 0. Then,

for U = 0 the distribution function |φr,n|2 depends on
c = cos(γ τ ) and reads

|φr,n|2 =
{

c2, n = 1
(1 − c2)2c2(n−2), n > 1

(6)

for the FDR probability and for the FDT probability

|φt,n|2 = (1 − c2)c2(n−1). (7)

Thus, the sum of the FDR probabilities for all n � 1 gives 1
and the mean FDR time is τ 〈n〉. Subsequently, we will call 〈n〉
the mean FDR time, assuming that it is implicitly multiplied
by the time step τ .

Here c2 = 1 plays a special role because then the transition
| j〉 → | j′〉 is completely suppressed:

〈n〉 =
∑
n�1

n|φr,n|2 =
{

2, c2 < 1
1, c2 = 1.

(8)

The corresponding results of the FDT probabilities are∑
n�1

|φt,n|2 =
{

0, c2 = 1
1, c2 < 1,

(9)

〈n〉 =
∑
n�1

n|φt,n|2 =
{

0, c2 = 1
1/(1 − c2), c2 < 1.

(10)

These FDR/FDT results are obtained for an infinite number
of measurements. Since an experiment allows only a finite
number of measurements, the corresponding mean FDR/FDT
results for N measurements must be calculated separately. For
instance, the mean FDR time reads (cf. the Appendix)

〈n〉 =
N∑

n=1

n|φr,n|2 = 2 + c2(N−1)[N (c2 − 1) − 1], (11)

which gives 〈n〉 ∼ 2 for c2 < 1, N ∼ ∞, and 〈n〉=1 for c2=1.
The second moment reads

〈n2〉 = 2 − c2(N−1)[(N2 − N )c4 + 2(1 − N2)c2 + N2 + N]

1 − c2
,

(12)
and for the mean FDT time we obtain

〈n〉 =
N∑

n=1

n|φt,n|2 = 1 + c2N [N (c2 − 1) − 1]

1 − c2
. (13)
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An important difference is that 〈n〉 in Eq. (10) diverges due
to the infinite number of measurements for c2 ∼ 1, whereas it
vanishes as 1 − c2 for a finite number of measurements N in
Eq. (13). Otherwise, the deviation due to a finite number of
measurements is exponentially small.

III. IMPLEMENTATION ON A QUANTUM COMPUTER

A. Single-qubit implementation

General operators, such as the unitary evolution operator
exp(−iHτ ), must be constructed on a quantum computer as
a product of elementary gate operators. For U = 0 the time
evolution is equal to single-qubit rotation about the X axis

e−iγ σxt =
(

cos(γ t ) −i sin(γ t )
−i sin(γ t ) cos(γ t )

)
(14)

= Rx(2γ t ) (15)

and is implemented with an Rx gate.
In the case of U �= 0, the parts of the Hamiltonian H2 are

not commuting, so each part cannot be simulated separately.
However, if the Hamiltonian H consists of a sum of simple
qubit operators we can employ time slicing or Trotterization
[21]. In terms of exp(−iH2τ ) this means that we divide the
time τ into k time slices �t with �t = τ/k, which provides
the approximation

e−iH2τ ≈ (eiγ σx�t e−iUσz�t )k . (16)

In the limit k → ∞ the approximation becomes exact. There-
fore, for a good approximation the Trotter number k must be
large. In our case we obtained reliable results for k = 30. In
the single-qubit case of H2 we have

e−iγ σx�t =
(

cos(γ�t ) −i sin(γ�t )

−i sin(γ�t ) cos(γ�t )

)
(17)

= Rx(2γ�t ) (18)

and

e−iUσz�t =
(

e−iU�t 0
0 eiU�t

)
= Rz(2U�t ) (19)

such that the single-qubit unitary operator can be written as

e−iH2τ ≈ {Rz(2U�t )Rx(2γ�t )}k. (20)

The unitary evolution is followed by a projective measure-
ment in the computational basis, defined by the projectors
P0 = |0〉〈0| and P1 = |1〉〈1|. To implement the unitary oper-
ator in Eq. (20), followed by projective measurements, we run
the quantum circuit (circuit 1) on the quantum device

k N

where k denotes the number of Trotter steps and N the number
of measurements. The gates Rz and Rx implement the rotations
Rz(2U�t ) and Rx(2γ�t ) in Eq. (20), respectively, and the
initial state | j〉 is either |0〉 or |1〉.

B. Two-qubit implementation

In analogy to the single-qubit case, we approximate the
unitary time evolution for two qubits with the Hamiltonian

H2
2 = −γ (σx ⊗ σx + σy ⊗ σy) + Uσ0 ⊗ σz (21)

as

e−iH2
2 t ≈ (eiγ σx⊗σx�t eiγ σy⊗σy�t e−iUσ0⊗σz�t )k. (22)

The single factors are written in the basis of |00〉 , . . . , |11〉 as

eiγ σx⊗σx�t eiγ σy⊗σy�t

= Rxx(2γ�t )Ryy(2γ�t )

=

⎛
⎜⎜⎜⎝

1 0 0 0
0 cos(2γ�t ) −i sin(2γ�t ) 0
0 −i sin(2γ�t ) cos(2γ�t ) 0
0 0 0 1

⎞
⎟⎟⎟⎠ (23)

and

ei(Uσ0⊗σz�t ) = σ0 ⊗ Rz(2U�t )

=

⎛
⎜⎜⎝

e−iU�t 0 0 0
0 eiU�t 0 0
0 0 e−iU�t 0
0 0 0 eiU�t

⎞
⎟⎟⎠. (24)

The corresponding quantum circuit (circuit 2) can be visu-
alized as

k N

where the gates Rz, Ryy, and Rxx implement the rotations
Rz(2U�t ), Ryy(2γ�t ), and Rxx(2γ�t ), respectively. The ini-
tial states | j〉 and | j′〉 are either |0〉 or |1〉 and only the first
qubit is projectively measured.

C. Error mitigation

In general, there are several sources of errors on current
quantum computing devices, e.g., amplitude damping, phase
damping, depolarization, state preparation, and measurement
errors. In this work we focus on the mitigation of the latter as
we implement quantum circuits with up to 40 midcircuit mea-
surements and therefore anticipate that measurement errors
have the most significant impact on our experimental results.

Many readout-error-mitigation schemes rely on classical
postprocessing techniques that involve measuring a calibra-
tion matrix and applying this matrix to the raw experimental
data, which would render readout-error mitigation inefficient
and time consuming in our case. Furthermore, due to the
relatively high number of measurements, a regular updating
of the measurement calibration matrix would be necessary.
Therefore, we use a readout-error-mitigation technique that is
better suited for a high number of midcircuit measurements.
This scheme employs the framework of quantum error cor-
rection and embeds the state after the application of a unitary
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gate and before a measurement in a nonlocal state of three
entangled qubits, analogous to the encoding in the three-qubit
repetition code, as depicted in the following quantum circuit
(circuit 3):

+

+

N

This three-qubit repetition code is able to mitigate bit-flip
errors by performing a majority vote after each measurement
sequence [22,23]. This technique in particular is successful
if readout errors dominate the two-qubit gate errors, which
is the case if the distribution function |φn|2 has most of its
weight at low number of measurement n and therefore the
result depends only on the first few measurements.

For the two-qubit quantum circuits we are using an error-
detection approach. Errors are detected by measuring both
qubits and are present if the states |00〉 and |11〉 are measured.
The data where errors are detected are disregarded.

IV. FIRST DETECTED RETURN
AND TRANSITION EXPERIMENTS

We use IBM’s open-source QISKIT library for quantum
computing. QISKIT provides tools for different tasks such as
creating Trotter expansions, quantum circuits with midcircuit
measurements, performing simulations, and computations on
real quantum devices [24]. Since only a finite number of
midcircuit measurement is possible on the real hardware, we
discuss the dependence of the result on the number of mea-
surements N in the Appendix.

We perform the experiments by initializing a particle on
site 2, letting it freely evolve for some time before we measure
if the particle is on site 1 (site 2), and repeat this process
n times until we detect the particle on site 1 (site 2) as vi-
sualized in Fig. 1. Based on the stroboscopic measurement
protocol, the statistics of the FDR time shows that the mean
〈n〉 is quantized and equal to 2 in the two-site tight-binding
problem, except for the degenerate points, where the potential
U is

Ud =
√

π2k2

τ 2
− γ 2 (k = 1, 2, . . .). (25)

In that case we have cos2(
√

U 2
d + γ 2τ )=1 and get |φr,1|2=1,

according to Eq. (6), and 〈n〉 = 1. Therefore, the particle is
measured at the first measurement with certainty.

We start with the one-qubit experiments (qubit 12 on
IBMQ Montreal) with 32 000 runs for U = 0, τ = 0.4, and
varying γ . We initialize the qubit in state |1〉 and perform
alternately an x rotation and a measurement in the z basis
N = 40 times according to circuit 1. The result is postpro-
cessed to obtain the FDT (FDR) probability |φt,n|2 (|φr,n|2)
by evaluating the counts and n where the initial state and the

measured state are for the first time different (the same), i.e.,
when the measured state is for the first time |0〉 (|1〉). From
these probabilities we can calculate the mean 〈n〉, as defined
in Eqs. (8) and (10), as well as its second moments 〈n2〉 for a
finite number of measurements (cf. the Appendix). The mean
FDR time 〈n〉 at U = 0 is computed on IBMQ Montreal with
and without error mitigation, with results depicted in Fig. 2(a).
It clearly shows the quantization 〈n〉 = 2 as well as the degen-
erate points at γ = πk/τ , with γ = 0, γ = π/τ ≈ 7.85, and
γ = 2π/τ ≈ 15.7 (τ = 0.4), where 〈n〉 = 1 as expected. At
these points the variance 〈n2〉 − 〈n〉2 shows the theoretically
expected divergences in Fig. 2(b). The experimental values
are in very good quantitative agreement with the exact results
for N = 40 measurements and are improved by the repetition-
code error-mitigation scheme introduced in Sec. III C (see
circuit 3).

In Fig. 2(c) the exact FDR probability is visualized as a
function of the hopping matrix element γ and the number of
measurements. This agrees very well with the experimental
results of the corresponding FDR probability on IBMQ Mon-
treal without error mitigation in Fig. 2(d).

According to the theory, the FDT time for the hopping
to another site has different properties. Its mean FDT is not
quantized and diverges already near the degeneracy Ud . The
results for the same parameter as for the FDR are presented
in Fig. 3. In Fig. 3(a) the mean FDR time is small and close
to one and it grows near the degeneracy points at γ = πk/τ ,
when the particle remains on the initial site. The exact results
of the mean FDT time for N = 40 measurements do not di-
verge at the degenerate points but are zero (cf. the Appendix),
in contrast to their divergence for N → ∞. The experiment
shows a finite nonzero value. This is due to the fact that the
qubit decays at a smaller n, visible by comparing Figs. 3(c)
and 3(d): The experimental FDT probability |φt,n|2 is nonzero
and not exactly zero as in Eq. (7).

To investigate further the mean FDR and FDT times for
varying γ , we consider the two-qubit experiments on IBMQ
Montreal (qubits 12 and 13) with 32 000 runs for U = 0,
τ = 0.4, and varying γ . We initialize the qubit in the state
|01〉 and perform alternately a two-qubit xx rotation and
yy rotation and perform a measurement in the z basis of
both qubits (for the error mitigation) N = 40 times. The re-
sult is postprocessed to obtain the FDT (FDR) probability
|φt,n|2 (|φr,n|2) by evaluating the counts and n, where the
initial state and the measured state are different (FDT) or
the same (FDR) for the first time. Besides the relevant states
|10〉 and |01〉 for the ME, the system can also occupy |00〉
or |11〉. Those contributions are used in our error-detection
strategy.

We present results in Fig. 4, with and without error mitigat-
ing. Similar to the one-qubit case, the mean FDR quantization
(〈n〉 = 2) is clearly visible in the error-mitigated data of
Fig. 4(a), while the raw experimental data in Figs. 4(a) and
4(c) is more noisy and the mean FDR time is slightly larger
than 2. Nonetheless, the effect of degenerate points is clearly
visible also in the mean FDT time of Fig. 4(b), where 〈n〉
decreases at the degenerate points, as expected from the exact
curve at N = 40. In Fig. 4(d) the experimental FDT probabil-
ity |φt,n|2 is close to zero at the degenerate points, in contrast
to the one-qubit case of Fig. 3(a).
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First detected return (FDR) probability
(a)

(b)

(c) (d)

Exact Exp. without EM

FIG. 2. Single-qubit experiment (U = 0): (a) mean FDR time 〈n〉 and (b) variance of n of the two-site system for the return |1〉 → |1〉 for
τ = 0.4 and N = 40 as a function of the hopping matrix γ is calculated theoretically (blue solid line) and computed on IBMQ Montreal with
(green circles) and without error mitigation (EM) (red triangles). The green shaded area marks the standard deviation of the error-mitigated
result. The FDR probability of the ME |φr,n|2 as a function of γ and number of measurements n is presented for the theory in (a) and for
the experiment on IBMQ Montreal without error mitigation in (b). Also shown is the FDR probability of the monitored evolution |φr,n|2 as a
function of γ and (c) the number of measurements simulated and (d) experimental data from IBMQ Montreal without error mitigation.

First detected transition (FDT) probability
(a)

(b)

(c) (d)

Exact Exp. without EM

FIG. 3. Single-qubit experiment (U = 0): (a) mean FDT time 〈n〉 and (b) variance of n for the same system and the same model parameters
as in Fig. 2. The blue solid curve is the theoretical result, while the computation on IBMQ Montreal is presented with error mitigation (green
circles) and without (red triangles). The green shaded area marks the standard deviation of the error-mitigated result. Also shown is the FDT
probability of the ME as a function of γ and (c) the number of measurements from theory and (d) the experiment on IBMQ Montreal without
error mitigation.
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Experimental data without EM(a)

(b)

(c) (d)

FDR FDT

FIG. 4. Two-qubit experiment (U = 0): (a) mean FDR time 〈n〉 of the two-site system for the return |01〉 → |01〉 and (b) mean FDT
time 〈n〉 of the two-site system for the transition |01〉 → |10〉 for τ = 0.4 and N = 40 as a function of the exact hopping matrix element γ

(blue solid line) and computed on IBMQ Montreal with (green circles) and without error mitigation (red triangles). The standard deviation is
approximately 0.5 and is not shown for better visibility. (c) FDR probability of the monitored evolution |φr,n|2 as a function of γ and number
of measurements on IBMQ Montreal without error mitigation. (d) FDT probability of the monitored evolution |φt,n|2 as a function of γ and
number of measurements on IBMQ Montreal without error mitigation.

First detected return (FDR) probability
(a)

(b)

(c) (d)

Exact Exp. without EM

FIG. 5. Single-qubit experiment (U > 0): (a) mean FDR time 〈n〉 and (b) variance of n of the two-site system for the return |1〉 → |1〉
for γ = −1, τ = 3 (�t = 0.1 and k = 30), and N = 40 as a function of the on-site energy U exact (blue solid line) and computed on IBMQ
Montreal with (green circles) and without error mitigation (red triangles). The green shaded area shows the standard deviation of the error-
mitigated result. (c) FDR probability of the monitored evolution |φr,n|2 as a function of U and number of measurements (exact). (d) FDR
probability of the monitored evolution |φr,n|2 as a function of U and number of measurements computed on IBMQ Montreal without error
mitigation.
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First detected transition (FDT) probability
(a)

(b)

(c) (d)

Exact Exp. without EM

FIG. 6. Single-qubit experiment (U > 0): (a) mean FDT time 〈n〉 and (b) variance of n for the same system and the same model parameters
as in Fig. 5. The blue solid curve is the theoretical result, while the computation on IBMQ Montreal is presented with error mitigation (green
circles) and without (red triangles). The green shaded area marks the standard deviation of the error-mitigated result. Also shown is the FDT
probability of the ME (c) as a function of U and the number of measurements from theory and (d) for the experiment on IBMQ Montreal
without error mitigation.

Next we compute the two-site system with an on-site po-
tential U on IBMQ Montreal. The mean FDR time 〈n〉 is
displayed as a function of U in Fig. 5. We perform the one-
qubit experiments (qubit 12 on IBMQ Montreal) with 32 000
runs for γ = −1, τ = 3, and varying U , after initializing the
qubit in state |1〉 and perform alternating x and z rotations and
a measurement in the z basis for N = 40 on circuit 1 with
�t = 0.1 and k = 30 Trotter steps. Again, the mean FDR
time is 〈n〉 = 2, except for 〈n〉 = 1 at the degenerate points
Ud of Eq. (25). In the present case this is Ud ≈ 0.31, 1.84, and
2.98. The raw experimental data are in qualitative agreement
and the error-mitigated data are in very good quantitative
agreement with the exact results and the quantization of 〈n〉.
The corresponding divergences of the variance 〈n2〉 − 〈n〉2 are
also experimentally confirmed for nonzero U in Figs. 5(a) and
5(b).

In Fig. 5(c) the exact FDR probability is shown as a func-
tion of the energy bias U and the number of measurements,
and in Fig. 5(d) the corresponding measured FDR probabil-
ity on IBMQ Montreal is presented without error mitigation.
Both results are almost identical, like in the U = 0 case for
varying γ .

The mean FDT time in Fig. 6(a) shows the complementary
behavior. In the case where the FDT probability is large at
small n close to U = 1, the raw experimental findings are
in very good qualitative agreement with the exact values.
For larger U the main contribution originates from larger n
[see Figs. 6(c) and 6(d)]; therefore, the measurement errors
accumulate, leading only to a qualitative agreement of the

mean FDT time in Fig. 6(a) and its variance in Fig. 6(b).
Here, eventually other error-mitigation methods should be
introduced since the applied scheme is not able to mitigate
the errors for deeper quantum circuits (due to the error rate
induced by the two-qubit gates in circuit 3), which are needed
to calculate the mean 〈n〉 in the FDT case for varying U .

We have demonstrated experimentally with a high accu-
racy that for the FDR problem of a particle in a two-site
system, the mean return time 〈n〉 is quantized and equal to the
dimension of the underlying Hilbert space with nondegenerate
eigenvalues (in our case 〈n〉 = 2). Moreover, at the degenerate
points we found 〈n〉 = 1. In our two-site (two-level) problems,
this reflects the situation, in which the particle stays at the
initial site. Because the experiment involves a large number of
midcircuit measurements, the readout-error mitigation is es-
sential. We have successfully used an error-mitigation scheme
that is based on the repetition code with majority vote and
error detection when the depth of the quantum circuits is
relatively short.

V. CONCLUSION

We experimentally investigated a monitored evolution of
a tight-binding Hamiltonian on a quantum device and com-
puted the mean FDR and mean FDT times for a one-qubit
and a two-qubit system, where repeated measurements inter-
rupt the unitary evolution by a projection after a time step
τ . To this end, we exploited the capabilities of midcircuit
measurements on IBM quantum devices. The predictions of
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the general theory for a finite but large number of measure-
ments are accurately confirmed by the quantum computation.
The FDR probability distribution of the monitored evolution
is in good quantitative agreement with the exact result. We
experimentally verified the remarkable property of the FDR
problem in a two-site system: The mean 〈n〉 is quantized
and equal to the size of the system (in our case 2) for all
U and γ . The mean 〈n〉 is reduced to 1 at the degenerate
points, where the size of the system, i.e., the number of non-
degenerate eigenvalues of exp(−iH2τ ), is reduced to 1. In this
case the quantum gates effectively act as an identity matrix,
multiplied by a phase factor. The behavior is different for the
FDT problem, since 〈n〉 diverges near the degenerate points.
While the experimental data are very accurate for the FDR
mean times, confirming the quantization, the jumps at the
degenerate points, and the strong fluctuations, the mean FDT
times for a nonzero energy bias (finite U ) are less accurate.
In particular, the behavior near the degenerate points requires
further experimental improvement on the hardware as well as
on error-mitigation scheme, since those results depend on the
measurement of a deeper circuit. The latter might accumulate
readout errors and two-qubit gate errors. The experimental
data for a larger number of measurements will benefit from
devices which are capable of performing and processing a
larger number of midcircuit measurements.

Our results reflect the large potential of the capabilities pro-
vided by the IBM quantum computers in terms of midcircuit
measurements. Our ME, in connection with the topologically
protected quantization of the mean FDR time, establishes a
very flexible and scalable method for testing the performance
of a quantum computer. The simple example of a single par-
ticle on two sites already indicates the direction in which
an improvement in terms of long-time behavior and more
complex systems is necessary. Future work should consider (i)
larger systems with more particles and (ii) the application of
measurement-induced quantum walks to quantum control and
quantum algorithms, e.g., for quantum search or constrained
quantum optimization [25,26].
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APPENDIX

From the distributions of the FDR and FDT probabilities
(cf. the main text) we can calculate the sum of the probabilities
and the moments of n for a finite number of measurements N .
For instance, the sum of the FDR probabilities reads

N∑
n=1

|φr,n|2 = 1 − (1 − c2)c2(N−1) (A1)

(a)

(b)

FIG. 7. Mean FDR time 〈n〉 of the two-site system for the return
|1〉 → |1〉 as a function of (a) γ (τ = 0.4 and U = 0) and (b) U (τ=3
and γ = 1) for different numbers of measurements N .

and the sum of the FDT probabilities

N∑
n=1

|φt,n|2 = 1 − c2(N−1). (A2)

While the FDR sum is 1 for c2 � 1, the FDT sum is 1 for
c2 < 1 but vanishes for c2 = 1 in the limit N → ∞. The latter
reflects the fact that the two-level system always stays in the
initial state if c2 = 1, since the transition matrix element is

(a)

(b)

FIG. 8. Variance of the FDR time 〈n2〉 − 〈n〉2 of the two-site
system for the return |1〉 → |1〉 as a function of (a) γ (τ = 0.4
and U = 0) and (b) U (τ = 3 and γ = 1) for different numbers of
measurements N .
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(a)

(b)

FIG. 9. Mean FDT time 〈n〉 of the two-site system for the re-
turn |1〉 → |0〉 as a function of (a) γ (τ = 0.4 and U = 0) and (b)
U (τ = 3 and γ = 1) for different numbers of measurements N .

1 − c2. Moreover, for the mean FDR time 〈n〉 we obtain

〈n〉 =
N∑

n=1

n|φr,n|2 = 2 + c2(N−1)[N (c2 − 1) − 1], (A3)

which gives 〈n〉 ∼ 2 for c2 < 1, N ∼ ∞, and 〈n〉 = 1 for c2 =
1. The second moment reads

〈n2〉 = 2 − c2(N−1)[(N2 − N )c4 + 2(1 − N2)c2 + N2 + N]

1 − c2
.

(A4)
Finally, for the mean FDT time we obtain

〈n〉 =
N∑

n=1

n|φt,n|2 = 1 + c2N [N (c2 − 1) − 1]

1 − c2
. (A5)

It should be noted that the last two expressions vanish for
c2 → 1 at any finite N , while they diverge when we take
N → ∞ first and then c2 → 1. This means that the limits
c2 → 1 and N → ∞ do not commute. In Figs. 7–9 we plot the
mean FDR time 〈n〉 and variance of n as well as the mean FDT
time for different numbers of measurements N as a function
of U and γ .
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