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Random networks with q-exponential degree distribution
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We use the configuration model to generate random networks having a degree distribution that follows a q-
exponential, Pq(k) = (2 − q)λ[1 − (1 − q)λk]−1/(q−1), for arbitrary values of the parameters q and λ. Typically,
for small values of λ, this distribution crosses over from a plateau at small k’s to a power-law decay at large
values of the node degrees. Furthermore, by sufficiently increasing λ, we can continuously narrow this plateau,
getting closer and closer to a pure power-law degree distribution. As a generalization of the pure scale-free
networks, therefore, q-exponentials display a rich variety of behavior in terms of their topological and transport
properties. This is substantiated here by investigating their average degree, assortativity, small-world behavior,
resilience to random and malicious attacks, and k-core decomposition. Our results show that the more the degree
distribution resembles a pure power law, the less well connected the networks. As a consequence, their average
degree follows 〈k〉 ∼ λ−1 for λ < 1, and the expected average degree knn of the nearest neighbors of a given
node with degree k generally decreases with λ. Moreover, random q-exponential networks exhibit small-world
behavior for any λ, but with an average shortest path that becomes smaller as λ decreases and q increases.
Finally, q exponentials become more resilient to random and malicious attacks as their degree distribution
systematically deviates from the pure power law. Being at the same time well-connected and robust, networks
with q-exponential degree distribution exhibit scale-free and small-world properties, making them a particularly
suitable model for applications in several systems.
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I. INTRODUCTION

In a large variety of fields, one finds experiments, nu-
merical results, and theoretical models that fairly well agree
with q exponentials. This includes applications in fully de-
veloped turbulence [1], anomalous diffusion in plasmas [2],
statistics of cosmic rays [3], econometry [4,5], biophysics
[6], and many others. In particular, many empirical complex
networks have been found to follow q-exponential degree
distributions [7–9]. The same behavior has also been de-
tected in several proposed model networks [10], most of them
generated through growth models based on the preferential
attachment principle [11–14]. These models produce empir-
ically q-exponential distributions, which in some cases can
even be confirmed analytically [8,14]. Here we use the con-
figuration model [15] to systematically generate and study
the properties of random networks with arbitrarily chosen
q-exponential degree distribution.

Networks are called scale-free if the distribution of degrees
follows a power law with exponent γ , P(k) ∼ k−γ , where k is
the degree of a node, defined as the number of connection it
has with other nodes. The q-exponential distribution given by

Pq(k) = (2 − q)λ[1 − (1 − q)λk]−1/(q−1), (1)
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has two parameters, q � 1 and λ � 0. It is a generalization of
a power-law distribution, since for large k (k � λ−1) it decays
like k−γ with γ = 1/(q − 1). For small degrees (k � λ−1),
however, it tends to a plateau distribution of height (2 − q)λ.
The parameter λ−1 therefore determines the crossover be-
tween these two regimes. The distribution Eq. (1) represents
a fundamental ingredient in the mathematical formalism of
the generalized thermostatistics and its applications [16–24].
Although most properties observed in complex networks with
heavy-tailed distributions are determined by the shape of the
tail, deviations from the power law at smaller degrees alter the
occurrence of the least connected nodes, resulting in structural
changes that can affect the main properties and processes
taking place on these networks. In what follows, we take a
closer look at these effects.

Different from previous works based on preferential at-
tachment models of growth to obtain networks with degree
distributions mimicking the q-exponential behavior, here, as
already mentioned, we employ the configuration model [15]
to build our random networks. In this way, we assure that the
particular topological properties observed, including intrinsic
node correlations [25], are not induced by the growth process,
but are rather a direct consequence of the q-exponential form
of the degree distribution. The remainder of the paper is or-
ganized as follows. In Sec. II, we describe the construction
of q-exponential networks using the configuration model. In
Sec. III, we investigate, as a function of parameters q and
λ, the main properties of these networks, namely, their in-
trinsic assortativity, average minimum path, and robustness to
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random failure and malicious attack targeted by the highest
degree. Finite-size scaling analysis is also used to investigate
the k-core decomposition of the q-exponential networks. We
conclude in Sec. IV.

II. GENERATING q-EXPONENTIAL NETWORKS

We start by assigning to each node i a prescribed degree
ki, drawn from a q-exponential distribution. More precisely,
since the degrees are integers, we chose randomly a num-
ber xi from a q-exponential distribution and define ki as the
largest integer smaller than xi. To avoid obtaining many small
disconnected clusters, we only consider nodes with degree
ki � 2. We visualize the yet unconnected ki degrees on node
i by ki stubs. Then we proceed to connect nodes pairwise.
To do this, we choose two different nodes with probabilities
proportional to their number of stubs. If these two nodes are
not yet connected, a link is placed between them and the
number of stubs is decreased for each of the two nodes by one.
This process continues until all stubs have been connected or,
in case that at the end some stubs remain disconnected, these
stubs are removed and the degree originally assigned to the
corresponding nodes is adjusted accordingly. Furthermore, a
maximum degree kmax exists due to the fact that the number
of nodes in the network is finite. When γ < 3, the second
moment 〈k2〉 of the distribution diverges and one can show
that 〈k2〉 ∼ k3−γ

max , i.e., that the second moment is controlled by
the most connected node. This property can have profound ef-
fects on the behavior of processes taking place in the network,
including fragility to targeted attacks and resilience to random
failure [26–28].

III. RESULTS AND DISCUSSION

As shown in Fig. 1, the degree distributions obtained by
this method follow very closely the expected q-exponential
form of Eq. (1). For λ � 1, one observes a pronounced
plateau for small k. On the other hand, when λ � 1, effec-
tively, our degree distribution will be identical to a scale-free
distribution with the same kmin. Therefore, by decreasing
the parameter λ, we can continuously move away from a
scale-free degree distribution and widen the plateau. Thus,
varying λ will allow us to identify the effect of the deviations
from pure scale-freeness that are particular to q-exponential
distributions.

In Fig. 2, we show how the average degree 〈k〉 depends
on λ for different values of the parameter q. As expected
for a q-exponential network, for small values of λ, the aver-
age degree is proportional to λ−1. However, for sufficiently
large values of λ, the degree distribution turns into a power
law. In this last regime, the average degree becomes inde-
pendent on λ. Therefore, on one hand scale-free networks
have many more least-connected nodes than networks having
q-exponential degree distribution with small λ. The smaller λ,
the denser the networks become, increasing the number and
degree of their hubs. Topological differences like these can
lead to substantial changes in structural properties of complex
networks as well as in the static and dynamical behavior of
models when implemented on these substrates.

It has been shown [25,29,30] that random networks with
heavy-tailed degree distribution often display intrinsic assor-

FIG. 1. Degree distribution of q-exponential networks (symbols)
compared with the expected distribution of Eq. (1) (solid lines) for
q = 1.4 and for λ = 0.01 (blue stars), λ = 0.1 (green triangles),
λ = 1 (red squares), and λ = 100 (black circles). The inset shows a
comparison between the degree distributions of a q exponential with
λ = 100 and a pure scale-free distribution (dashed black line) with
q = 1.4 (γ = 2.5). These results are obtained for networks with size
N = 500 000 by averaging over 100 samples. As can be seen, for
small λ the distributions attain a plateau at small degrees and the
power-law regime becomes larger with increasing λ.

tativity. This is also the case for q-exponential networks. In
Fig. 3, we show the expected average degree knn(k) of the
nearest neighbors of a given node with degree k. As can be
seen, the most connected nodes have a smaller knn, pointing
towards negative intrinsic assortativity. The reason for this
dissortative behavior in random networks is that the most
connected nodes can neither connect to themselves nor have

FIG. 2. Dependence of the average degree 〈k〉 on the parameter λ

for different values of q. These curves correspond to q = 1.4, (black
circles), q = 1.33, (red squares), and q = 1.25, (blue stars). For
values of λ < 1, the average degree follows 〈k〉 ∼ λ−1, as expected
for q-exponential distributions. In the pure power-law limit (λ � 1),
the average degree saturates at a value independent of λ.
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FIG. 3. Dependence of the average nearest-neighbor degree knn

of vertices on the degree k for networks with size N = 107 nodes,
q = 1.4, and λ = 100 (black circle), λ = 1 (red square), λ = 0.1
(green triangle), and λ = 0.01 (blue star). The plateaus of each
curve correspond to the value 〈k2〉/〈k〉 [25]. All curves point towards
intrinsic dissortative behavior for sufficiently large values of k.

multiple connections between them [25]. We also see from
Fig. 3 that knn becomes larger the more the distribution devi-
ates from a pure scale-free one.

Random q-exponential networks also exhibit small-world
behavior, which means that their average shortest path in-
creases logarithmically with network size, 〈�〉 = α log10 N ,
as shown in Fig. 4. Clearly, the shortest path becomes con-
siderably shorter as the degree distributions systematically
deviate from the pure power law, namely, for sufficiently large
values of λ. Figure 5 shows the variation of the prefactor α

for different values of q in the range 1.25 � q � 1.4, and
λ = 0.1, 1, and 100. For all practical purposes, this range of

FIG. 4. Size dependence of the mean length of the shortest-path
〈�〉 for q = 1.33 and for λ = 0.01 (blue stars), λ = 0.1 (green trian-
gles), λ = 1 (red squares), and λ = 100 (black circles). The results
are obtained by averaging over 105, 104, 104, 104, 104, 103, and 103

samples of size N = 5000, 10 000, 20 000, 40 000, 80 000, 160 000,

and 320 000, respectively.

FIG. 5. The prefactor α as a function of q for λ = 100 (black
circles), λ = 1 (red squares), and λ = 0.1 (green triangles). Each
point is obtained from a least-squares fit to the data, 〈�〉 ∼ α log10 N ,
with error bars being smaller than the symbols. The continuous lines
represent guides to the eye.

q, which corresponds to 2.5 � γ � 4.0, covers all interesting
power-law decays. As already mentioned, the case λ = 100
is equivalent to a scale-free network with P(k) ∼ k−γ and
kmin = 2.

A particularly important property for practical purposes
is the robustness of networks against random failures. In
Fig. 6, we plot the density of nodes in the largest cluster

FIG. 6. The density of nodes in the largest cluster S( f ) as a
function of the fraction f of removed nodes for random failures in q-
exponential networks with q = 1.25, λ = 0.01 (blue stars), λ = 0.1
(green triangles), λ = 1 (red squares), and λ = 100 (black circles).
These results correspond to networks of size N = 320000 by aver-
aging over 200 samples. The continuous lines for λ = 0.01, 0.1, and
λ = 1 represent guides to the eye, while for λ = 100 the black solid
line corresponds to the result for random attacks on a pure scale-free
network. The inset shows the critical fraction fc determined by the
Molloy-Reed criteria [32].
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S( f ) as a function of the fraction f of randomly removed
nodes, for N = 320 000, q = 1.25, and various values of λ.
For large λ � 1, this degree distribution becomes a power law
with γ = 4. Considering that kmin = 2, this network should
exhibit a critical point fc < 1 [31]. That is precisely what
one sees in Fig. 6 for λ = 100. For smaller values of λ,
the network becomes more robust, with fc → 1 as λ → 0.
In the inset of Fig. 6 we see how fc depends on q for
different values of λ. Clearly, the closer a q-exponential net-
work resembles a scale-free, namely, for large values of λ,
the more it is fragile against random failures. Furthermore,
this effect is dramatically amplified with the decrease of the
parameter q.

In the case of malicious attack, we show in Fig. 7(a) the
variation of the density of the largest cluster S as a function
of the fraction f of removed nodes targeted by the highest
degree, for q = 1.4 (γ = 2.5) and different values of λ. Here
the degree distribution is updated after each node removal,
as described in Refs. [28,33]. As depicted, the q-exponential
networks become less and less resilient as the crossover λ

increases, since a larger fraction of nodes needs to be removed
before the critical point is achieved. This behavior persists
up to a point at which the value of λ is sufficiently large, so
the scale-free behavior of the degree distribution dominates.
As a result, the q-exponential curve S versus f for λ = 100
and the corresponding one generated from networks with pure
scale-free distribution are perfectly coincident.

At this point, we argue that the basis for comparing the
robustness of scale-free and q-exponential networks is not
obvious, in the sense that the first can be viewed as a particular
case of the second if we consider the same values of q and kmin

and for a sufficiently large value of the parameter λ. The situ-
ation becomes quite different for low values of λ, since these
q-exponential networks have substantially larger values of 〈k〉,
being therefore more resilient. In order to obtain scale-free
networks having the same average degree as these q exponen-
tials, we therefore have to change their kmin. In any case, it
is still interesting to compare the resilience of q-exponential
and scale-free networks with similar average degrees. As an
example, if we fix q = 1.4 and consider q-exponentials gen-
erated with kmin = 2 and λ = 10−1, and scale-free networks
with kmin = 8, both of them of size N = 106, their resulting
average degrees become quite close, namely, 〈k〉 = 24 and 25,
respectively. In the case of random attacks, the q-exponential
and the scale-free networks respond in a similar fashion, being
necessary the removal of most of the nodes to completely de-
grade their largest clusters (not shown). This strong resilience
should be expected, since the parameter q = 1.4 (γ = 2.5)
falls into the regime where even scale-free networks are robust
to random failure [31]. The results presented in Fig. 7(b) show
that, in these particular conditions, q-exponential networks
(with small λ) are less resilient for malicious attacks than
scale-free ones (or q-exponentials with large λ). Precisely, the
fraction of the largest cluster, S( f ), of these q-exponential
networks decays faster with f than that of their scale-free
counterparts with similar average degree, with the largest clus-
ter vanishing after a smaller fraction of the nodes are removed.
For comparison, we also show the response to malicious at-
tacks of the less robust scale-free networks generated with
kmin = 2, leading to 〈k〉 = 6.

FIG. 7. (a) The density of nodes in the largest cluster S( f ) as a
function of the fraction f of removed nodes for malicious attacks
targeted by the highest degree, for q = 1.4 and λ = 0.01 (blue stars),
λ = 0.1 (green triangles), λ = 1 (red squares), and λ = 100 (black
circles). The continuous lines for λ = 0.01, 0.1, and λ = 1 represent
guides to the eye, while for λ = 100 the black solid line corresponds
to the result for malicious attack on a pure power-law network. These
results correspond to networks of size N = 320 000 by averaging
over 200 samples. (b) The density S( f ) as a function of the fraction
f of networks generated with q = 1.4 and subjected to malicious
attacks targeted by highest degree. The results correspond to scale-
free networks with kmin = 2 and 〈k〉 = 6 (black circles), kmin = 8 and
〈k〉 = 24 (blue stars), and for q-exponential networks with λ = 10−1,
kmin = 2, and 〈k〉 = 25 (red squares). They were obtained with net-
works of size N = 106 by averaging over 100 samples.

Figure 8 shows the dependence of the critical fraction fc

on the parameter q, as determined by Molloy-Reed’s criterion
[32] and for different values of q. It is interesting to note that
the behavior of fc changes substantially with λ. For instance,
considering λ = 0.1 we see a plateau up to q ≈ 4/3, followed
by a decay. On the other hand, for λ = 100 we observe a clear
maximum in fc at q ≈ 4/3. As mentioned, for λ = 100 the
degree distribution approaches the form of a power law, and
this maximum in the critical condition is consistent with the
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FIG. 8. The critical fraction fc for malicious attacks as a func-
tion of q for λ = 0.1 (green triangles), λ = 1 (red squares), and
λ = 100 (black circles). The results are obtained for networks of
size N = 500 000 by averaging over 2000 samples. The fraction from
which the largest cluster does not obey Molloy-Reed’s criterion is the
critical fraction fc. The q-exponential networks with smaller values
of λ are clearly more robust, as a larger fraction of nodes needs to be
removed to attain the critical point. The continuous lines represent
guides to the eye.

expected for pure scale-free networks [34]. We note that this
maximum is due to a compromise between two effects. For
q > 4/3, the degree distribution decays asymptotically as a
power law with controlling exponent γ < 3, reaching γ = 2
as q approaches 3/2. At this limit, removing just a few hubs
results in a total breakdown of the network. At the other limit,
as γ diverges when q → 1, the degree distribution is no longer
heavy-tailed, decreasing rapidly. Moreover, by setting kmin =
2, the generated network is already near the critical state. This
behavior can be suppressed by imposing kmin � 3 in the case
of pure scale-free networks [34], or by using small values of
λ in q-exponential networks.

Next we extend the analysis of the topology of q-
exponential networks by investigating their hierarchical struc-
ture in terms of the k-core decomposition method [35–41].
The k-core of a graph G is the largest connected subgraph in
which all its nodes have a degree larger than or equal to k.
To obtain the k core, we remove all nodes with a degree less
than k. Next, we scan if some nodes still have a current degree
less than k and remove them. We repeat this check until no
additional removal is possible. From this decomposition, we
can define for each node a rank in the network, such that a
node will be the more peripheral the smaller is its k. k-core
subgraphs are resilient against failure, since they preserve
their convexity after (k − 1) random rewirings of edges or
nodes. This kind of robustness tends to increase for the in-
nermost nodes. Here we analyze the finite-size dependence
of the highest k core, kh, and its mass, Mh, for q-exponential
networks with q = 1.4 and different values of the parameter
λ. From Ref. [40], we expect to obtain finite-size scaling as

kh ∼ Nδ (2)

FIG. 9. (a) Highest k-core and (b) mass of the highest k-core
versus N for q = 1.4 and λ = 0.01 (blue stars), λ = 0.1 (green trian-
gles), λ = 1 (red squares), and λ = 100 (black circles). The results
are obtained by averaging over 105, 104, 104, 104, 104, 103, and 103

samples of size N = 5000, 10 000, 20 000, 40 000, 80 000, 160 000,

and 320 000, respectively.

for the highest k-core, and

Mh ∼ N� (3)

for the mass of the highest k core. We find that the exponents
δ and � are functions of the distribution parameters q and
λ. Figure 9(a) shows the dependence on the network size N
of kh in a double-logarithmic plot for q = 1.4 and different
values of λ. As compared to the moderate dependence of
the exponent δ on λ, the prefactor of the relation of Eq. (2),
however, increases considerably with λ−1. On the other hand,
as shown in Fig. 9(b), the dependence of Mh on N indicates
that both the exponent � and the prefactor of Eq. (3) de-
crease substantially with λ. This shows that networks with a
larger plateau (smaller λ) have a highest k core that is bigger
and has a larger k. This is in accordance with our previous
findings that q-exponential networks become more robust the
smaller λ.

033088-5



CESAR I. N. SAMPAIO FILHO et al. PHYSICAL REVIEW RESEARCH 5, 033088 (2023)

IV. CONCLUSIONS

In conclusion, we have generated unbiased complex net-
works exhibiting q-exponential degree distributions with
arbitrary parameter values. These structures generalize the
scale-free networks in the sense that pure power-law de-
gree distributions can be obtained through the control of
the crossover parameter λ determining the extent of the
q-exponential plateau at low values of node degree. Our re-
sults show that this additional degree of freedom gives the
q-exponential networks great flexibility with respect to topo-
logical and transport properties, as investigated here for their

assortativity, small-world behavior, resilience to random and
malicious attacks, and finite-size scaling of the k-core de-
composition elements. In the future, it would be interesting
to also study dynamical properties of these networks, like
synchronization, epidemic spreading, and opinion formation.
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