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Determining global property of dusty plasma from single particle dynamics
using machine learning
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By machine learning, specifically the convolutional neural network (CNN) technology, the screening pa-
rameter κ is determined from single particle dynamics in two-dimensional (2D) dusty plasma simulations
and also in an experiment. Independent Langevin simulation runs are performed with different κ values to
obtain individual particle dynamical data to train, validate, and test CNNs. By adjusting the training dataset to
mimic the application with the experimental data, three different CNNs are designed. From the analyzed results
with the test dataset of simulations, all three CNNs have excellent performance in determining the κ value, with
the resulting root-mean-square error of the determined κ value of 0.081, 0.279, and 0.155, respectively. While
using these trained CNNs with the 2D dusty plasma experimental data, the distribution of the determined κ

values has a prominent peak at the κ value, agreeing well with that determined from the phonon spectra. The
results presented here clearly demonstrate the feasibility of determining the global property of dusty plasmas
purely from single particle dynamics using machine learning, which may be developed further to diagnose more
complicated plasma environment conditions in the future.
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I. INTRODUCTION

For any physical system, its global property is definitely
a key problem that needs to be quantified or investigated.
Statistical mechanics aims to explain the global physical
properties of matter in bulk, based on the dynamics of its mi-
croscopic constituents [1]. In principle, statistical mechanics
is applicable to different phases of matter, which has achieved
considerable success [1–8]. In statistical mechanics, starting
from the position and velocity information of the abundant
particles, their detailed dynamics data can be easily averaged,
leading to the global property that is able to describe the
collective behaviors of the studied system [3]. In some exper-
iments, due to the hardware limitation, there are probably not
enough data of particle dynamics captured. In fact, the posi-
tion and velocity information of particles cannot be accurately
and simultaneously obtained experimentally [9,10]. Here, we
attempt to determine the global property of an experimental
system from individual particle dynamics, or even without the
velocity information.

Laboratory dusty plasma, also termed complex plasma,
typically refers to partially ionized gas containing micron-
size solid dust particles [11–23]. Under the typical laboratory
conditions, these dust particles are charged by free electrons
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and ions in the plasma, reaching a high negative charge of
≈104 e in the steady state within microseconds [24]. These
highly charged dust particles can be suspended and confined
by the electric field in the sheath, forming a single layer, i.e.,
the so-called two-dimensional (2D) dusty plasma [25–32].
The interaction between these dust particles can be accurately
described using the Yukawa repulsion [33]. Due to their high
charges, these dust particles are strongly coupled [34]; as
a result, a collection of them typically exhibits properties
or behaviors of both solids and liquids [35–44]. Since each
individual dust particle can be directly imaged and tracked
experimentally, 2D dusty plasma is an excellent model system
to study various physical properties and dynamics in liquids
and solids at the kinetic level, such as viscosity [26], vis-
coelasticity [28], phase transitions [27], and waves [45,46].

Machine learning, leading the recent rapid development of
computer technology, becomes a powerful tool for massive
data analysis that attracts tremendous attention in various
fields [47]. In plasma physics studies, machine learning has
been applied to many studies [48–53]. For example, in [49],
based on machine learning technology, a robust disruption
warning algorithm is developed to predict the disrupted dis-
charges of fusion plasmas in tokamak with overall disruption
prediction accuracy of � 90%. In [51], machine learning is
used to reveal the accuracy boundary between higher-fidelity
models and a simple, lower-fidelity model. In [52], machine
learning is used to build a turbulence transport prediction
model for fusion plasmas, which is able to perform rapid
experimental analysis. In [53], using machine learning, an
architecture for a tokamak magnetic controller is developed,
which is able to autonomously learn to command the full set
of control coils.
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Recently, in dusty plasma related investigations, machine
learning has also been widely exploited in various investi-
gations [54–63]. In 3D dusty plasma investigations, machine
learning is used to distinguish fcc, hcp, and bcc phases [54],
obtain the phase transition diagram [55], study the electrorhe-
ological transition from the stringlike to the isotropic system
[56], as well as identify the interface of binary complex
plasma [57]. In [58], machine learning is used to track the
microparticle clouds in exploding wires, dusty plasmas, and
atmospheric plasmas, so that the data analysis results are
improved. In [59], the machine learning algorithm is adopted
to reconstruct the three-dimensional positions of particles in a
dense cloud of particles in plasma with the successfully recon-
structed particle fraction of � 80%. In [60], machine learning
is also used to enhance the diagnosis of dusty plasma. In [61],
the dust ablation trails in tokamaks are automatically iden-
tified and analyzed by the developed machine learning code
package, with an accuracy of � 99%. In [62], the solid-liquid
phase transition diagram for 2D dusty plasma is obtained
using machine learning, agreeing well with [13]. While using
machine learning to analyze the 2D dusty plasma experiment
[63], the environmental forces acting on dust particles are
extracted from the noisy data with an accuracy of 50% better
than conventional methods.

As one of the two key parameters to characterize the global
property of dusty plasmas [17], the screening parameter κ is
defined as the ratio of the length scale between neighboring
dust particles to the environment Debeye length λD. In 2D
dusty plasma experiments, the determination of the κ value
is not so straightforward due to the complicated plasma diag-
nostics and the λD variation in different levitation heights in
the plasma sheath. One widely used method is based on the
stochastic thermal motion of dust particles in the initial highly
ordered lattice [27–29], from which the wave spectra are cal-
culated, so that the corresponding longitudinal and transverse
dispersion relations are obtained. Then, one may compare
these experimentally obtained dispersion relations to the theo-
retical dispersion relationships of a 2D Yukawa lattice [64,65],
where there are two variables of κ and the dusty plasma
frequency ωpd [27–29]. By characterizing the discrepancy
between the experimental and theoretical dispersion relations
while varying both κ and ωpd , a χ2 surface on the κ and ωpd

plane is obtained, so that the κ value and its uncertainty can
be determined from the confidence interval of χ2, similarly to
[66]. Here, we attempt to determine the κ value differently,
from the individual particle dynamics data using machine
learning, specifically the convolutional neural network (CNN)
technology [67]. Either in 2D dusty plasma experiments or
simulations, the particle dynamics data are all discrete, so
that the time interval between neighboring frames is crucial
in the data analysis. In 2D dusty plasma experiments, the
time interval between frames is always controlled by cameras,
typically in units of milliseconds. While using machine learn-
ing, this time interval needs to be connected to dusty plasma
dynamics, i.e., typically normalized using ωpd . However, ωpd

has not been determined yet, which also varies in different
experimental conditions. Thus, this issue needs to be solved in
the machine learning data analysis, as presented in detail later.

The rest of this paper is organized as follows. In Sec. II, we
briefly introduce our simulation method to mimic 2D dusty

plasmas, and the 2D dusty plasma experiment which will be
analyzed below. In Sec. III, we describe the structure and
training procedure of our designed CNNs. In Sec. IV, we
report the analyzed κ results of the simulation data using our
designed CNNs from the single particle dynamics and com-
pare their accuracy. We also use these CNNs to determine the
κ value in the 2D dusty plasma experiment, agreeing well with
the obtained κ value from a completely different approach.
In Sec. V, we provide our interpretation of the performance
and generalization ability of our designed CNNs, as well as
the future possibility to improve its performance. Finally, a
summary is given in Sec. VI.

II. SIMULATION AND EXPERIMENT

To characterize our studied 2D dusty plasmas, the two
key parameters of the screening parameter κ = a/λD and
the coupling parameter � = Q2/4πε0akBT [17] are both
used. Here, a is the Wigner-Seitz radius of (nπ )−1/2 [17]
as a function of the number density n. The timescale is
normalized using the 2D nominal dusty plasma frequency
ωpd =

√
Q2/(2πε0ma3) [17].

A. Simulation method

To mimic 2D dusty plasmas, we perform Langevin
dynamic (LD) simulations of 2D Yukawa systems using
LAMMPS. In our simulations, the equation of motion for each
dust particle i is

mr̈ = −∇
N∑
j �=i

φi j − νmv + ξr . (1)

Here, φi j is the interparticle interaction of the Yukawa re-
pulsion [33] φi j = Q2 exp(−ri j/λD)/4πε0ri j , where Q is the
particle charge, ri j is the distance between the particles i and
j, λD is the Debye length, and ε0 is the vacuum electric
permittivity. On the right-hand side of Eq. (1), the second
term −νmv is the frictional gas damping, expressed using the
Epstein drag model with the coefficient of ν [68]. The last
term ξr corresponds to the Langevin random kicks, which is
chosen to attempt to achieve the desired temperature accord-
ing to the fluctuation-dissipation theorem [69]. Note that for
the training, validation, and test of our CNN, we perform two
sets of LD simulations, as described later.

Here are some details of our simulations. For all of our
simulation runs, the coupling parameter and the frictional
gas damping coefficient are both specified to be constant as
� = 800 and ν = 0.027ωpd , respectively, while the screening
parameter κ varies from 0.25 to 2.00, all comparable to those
in typical 2D solid dusty plasma experiments [26–29]. The
integration time step is chosen to be δtωpd = 0.001, as well
justified in [70]. To mimic the typical operation of 2D dusty
plasma experiments [26–29], we output the simulated particle
positions every 1600 integration steps, i.e., ωpd dt = 1.6,
for each simulation run with the total time duration of
tωpd = 819.2.

The first set of our simulations, for the training of our CNN,
contains eight independent simulation runs with the κ values
changing from 0.25 to 2.00 with the constant step of 0.25. The
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FIG. 1. Typical fluctuations of one particle position during the
stochastic thermal motion of simulated 2D dusty plasma under κ = 2
and � = 800 from the training dataset. The global property of the
whole system is determined by the collection of thousands of par-
ticles, so that, in principle, the motion of each individual particle
should reflect the global property. The main topic of this paper is
to determine the global property of the whole system based on the
information directly extracted from the particle position fluctuations
using machine learning. Note that for the position fluctuation data of
one individual particle, the frame number is 512 and the time interval
between neighboring frames is ωpd dt = 1.6.

2D simulation box has the dimensions of 243.8 a × 211.1 a,
containing simulated 214 particles, with the periodic boundary
conditions. The obtained positions of these simulated particles
are all packed as the training dataset of our CNN, containing
8 × 214 particle position data, as one typical example shown
in Fig. 1.

The second set of our simulations, for the validation and
test of our CNN, contains 15 independent simulation runs
with 15 specified κ values of 0.25, 0.40, 0.50, 0.60, 0.75,
0.90, 1.00, 1.10, 1.25, 1.40, 1.50, 1.60, 1.75, 1.90, and 2.00,
respectively. The simulation box here has the dimensions of
121.9 a × 105.6 a, i.e., only 1/4 of the first set, containing
212 particles, with the same particle number density and the
same periodic boundary conditions. We randomly select 29

particles from each simulation run and then pack their position
fluctuation data as the validation dataset. Next, we randomly
choose the position fluctuation data of other 29 particles from
each simulation run and pack them as the test dataset.

B. Experimental data

To test the actual performance of our CNN, we also use
the particle position data of 2058 consecutive frames images
from the 2D dusty plasma experiment of [29]. These images
are captured by a top-view camera, with the resolution of
800 × 600 pixels, operated at the frame rate of 55 frames per
second (FPS), with the field of view of (29.05 × 21.78) mm2,
containing ≈4400 dust particles. These imaged dust parti-
cles just vibrate briefly in the highly ordered lattice without
any noticeable disturbances, as shown in Fig. 2(a). The
Wigner-Seitz radius [17] of this lattice is obtained directly
from these images as a = 0.21 mm. Note that we use the
improved moment method [9] to determine particle positions
from the experimental images with the typical uncertainty of
< 1/4 pixel, just corresponding to only about 2% of the lattice
constant b = 0.40 mm.

As shown in Fig. 2, we plot the superposition of the particle
positions from the 2D dusty plasma experiment in t = 2 s and

FIG. 2. Superposition of positions of ≈60 particles from (a) the
2D dusty plasma experiment of [29] for t = 2 s and (b) our per-
formed LD simulation for tωpd = 172. As described in [29], from
the obtained wave spectra of the solid lattice, the values of κ and
ωpd in this 2D dusty plasma experiment are determined simultane-
ously, which are κ = 0.47 and ωpd = 86 s−1, respectively. In (b),
the simulation conditions are specified as κ = 0.50 and � = 800,
respectively. The particle position fluctuations in (a) and (b) are quite
similar, whose characteristics may be identified using the machine
learning studied here. Note that here only about 1.4% of the total
field of view in the experiment is presented in (a), while only about
1.5% of the total simulation box is presented in (b).

our simulation within tωpd = 172, both containing ≈60 parti-
cles. Clearly, the particle position fluctuations in Figs. 2(a) and
2(b) are quite similar, whose characteristics probably can be
identified by machine learning, as we study here. Note that for
the simulation data in Fig. 2(b), the conditions are specified as
κ = 0.50 and � = 800.

To determine the values of ωpd and κ , in [29], the wave
spectra of the thermal motion of this initial highly ordered
lattice are calculated to obtain the longitudinal and transverse
dispersion relations. Next, these experimentally obtained dis-
persion relations are compared to the theoretical dispersion
relationships [64,65] with varying values of ωpd and κ . Then,
the most matching pair of ωpd and κ , with the least dis-
crepancy between the experimental and theoretical dispersion
relations, is chosen as the determined values of ωpd and κ .
As described in [29], the determined values from these wave
spectra are κ = 0.47 and ωpd = 86 s−1, respectively. Note
that the 55 FPS is enough to capture the detailed dynamics
for the studied 2D dusty plasma with ωpd = 86 s−1; however,
both too low and too high frame rates may lead to larger
systematic error or noise in the particle tracking [10], which
is not helpful in the CNN performance. In this paper, we
will determine the value of the screening parameter κ using
machine learning, a completely different approach, from the
same experiment data.

We make use of the experimental data by extracting
them into 72 section movies. We extract the original particle
position data every t = ν−1

f = 0.37 s, with the constant time
duration of 10 s for each, containing 550 frames. Our current
determination of the κ value using the CNN relies on the
position fluctuations of these dust particles. However, in
the experiment, the time series of these position data for one
particle generally contain overall drifts, probably due to the
rotation of the total 2D dust suspension. These overall drifts
greatly suppress the particle position fluctuations, greatly
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FIG. 3. Typical time series of one particle position in (a),(c) the
2D solid dusty plasma experiment and (b),(d) the corresponding data
after attempting to remove their overall drifts. As shown in (a) and
(c), the motion of one particle typically contains overall drifts. Here,
we attempt to use the average velocity vd of each particle to remove
the overall drift using r′ = r − vdt , where r is the location of each
particle at any time t . For a particle with the fixed drift velocity, as
in (a), the removing result, as in (b), meets our expectation that the
time series of one particle’s position is quite similar to the position
fluctuations in Fig. 1. However, for particles with the varying drift
velocity, as in (c), the removing result exhibits nonphysical features,
as in (d). Thus, we calculate the standard deviation of the time series
for the particle positions after removing the overall drift and only
keep those with the standard deviation of � a/4. Finally, we obtain
the position fluctuation data of 5998 particles during 10 s in the
experiment of [29].

affecting the accuracy of our CNN. Thus, we need to remove
the overall drift motion from these time series of particle
positions efficiently, as explained next.

To remove the drift motion of each particle in each
section movie, we subtract its drift from its locations r in
all times using r′ = r − vdt . Here, the drift velocity vd is
directly determined by the total displacement of this particle
in this section movie divided by the total time duration of
10 s. As shown in Fig. 3(a), the time series of one parti-
cle position generally exhibits the monotonic linear variation
trend, corresponding to the overall drift with a nearly constant
velocity. Then, after removing the drift motion, the obtained

particle position fluctuations in Fig. 3(b) are quite similar to
the fluctuations in the training data of Fig. 1, which definitely
include the global property information for our investigations
here. However, not all particles only drift at a constant velocity
in all section movies as in Fig. 3(a). For example, in Fig. 3(c),
the magnitude and direction of the drift velocity both change
and, as a result, our simple removing method above causes
the nonphysical feature of r′ in Fig. 3(d). Theoretically, for
the highly ordered lattice without any disturbances, the dis-
tribution of the particle position fluctuations is pretty narrow,
i.e., much smaller than the Wigner-Seitz radius a, as shown
in Fig. 1. Thus, for our analysis with CNN, we only keep
the experimental data for particles with the standard deviation
of the particle fluctuation of � a/4, as in Fig. 3(b). Other
experimental data, such as Fig. 3(d), are all excluded in the
latter data analysis. Using this criteria, finally we obtain the
position fluctuation data of 5998 particles in total from the
72 section movies extracted from the experiment of [29].
Note that the position fluctuations of each particle contain
550 frames, which are reduced to 512 using the downsampling
method [71,72] with the constant new time interval in later
CNN analysis.

III. STRUCTURE AND TRAINING PROCEDURE OF CNN

We follow the typical machine learning method [67,73] to
design two models of our CNN, as shown in Fig. 4, which
both consist of four steps. Model A is designed to analyze
time series of particle positions, i.e., the particle position
data of consecutive frames with the known or assumed time
interval. In step 1 of model A, starting from a two-channel
sequence data (2 × 512) of the particles’ x and y positions, we
apply four consecutive sets of 1D convolutional layer and one
average pooling layer to generate the output of 256 feature
vectors (256 × 2). Here, the kernel sizes of the convolution
layers and average pooling layers are 1 × 5 and 1 × 4, re-
spectively, while the activation function is the ReLU function.
As described in [67], in step 1 of model A, according to our
specified parameters, each 1D convolutional layer increases
the channel number of the input data by either four or two
times, and then each subsequent average pooling layer reduces
the data amount of each channel to one-quarter of its size,
leading to the size of the final output data of (256 × 2) from
the initial input data of (2 × 512). Note that the average pool-
ing layer used here can be regarded as a kind of low-pass filter,
which is able to effectively remove the high-frequency noise
in the input data. In step 2, to convert the obtained (256 × 2)
feature vectors in the previous step to one feature vector
(1 × 512) here, we apply a flatten layer [74]. Meanwhile, to
prevent overfitting, a dropout layer [75] is added here. In step
3, a linear layer with the ReLU activation function is used
to further extract features from the feature vector (1 × 512),
leading to a new feature vector (1 × 128). In step 4, we apply
a linear layer without an activate function, leading to the final
output (1 × 1) of model A, which just corresponds to the final
determined value, i.e., the expected screening parameter κNN

in our current investigation.
Model B is designed to analyze independent or uncorre-

lated particle position data, which are not necessary to be a
time series. Thus, the fluctuation of particle position is no
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FIG. 4. Four steps of the structure for our convolutional neural
network (CNN). In model A, first, four consecutive sets of one 1D
convolutional layer combined with one average pooling layer are
used with the input of two-channel sequence data (2 × 512), leading
to the output of 256 feature vectors (256 × 2). Second, a flatten layer
is used to convert these feature vectors into a new feature vector
(1 × 512), and a dropout layer is added to prevent the overfitting.
Third, we apply a linear layer with the rectified linear unit (ReLU)
activate function to obtain a new feature vector (1 × 128). Finally,
a linear layer without an activate function is applied, leading to
the final output (1 × 1) of model A, which just corresponds to the
determined screening parameter κNN. In model B, the only difference
in the structure is in the first step, where the input data are single-
channel images (1 × 64 × 64), so that the four 1D layers of model A
are replaced by four 2D convolutional layers here, so that 256 feature
maps (256 × 1 × 1) are obtained. The remaining three steps are the
same for both models, while the parameters are different as shown.

longer used; instead, we completely rely on the static distribu-
tion of particle positions in each snapshot. The only difference
between models A and B is in step 1, as shown in Fig. 4. In
step 1 of model B, we apply four 2D convolutional layers due
to the input of single-channel image data (1 × 64 × 64), as
described in Sec. IV B in detail. Then, after the same three
steps as in model A, we obtain the final output (1 × 1) of
model B, which also corresponds to the determined screening
parameter κNN.

We follow [67,73] to train our CNN using the first set of
our simulations. First, we randomly divide the training dataset
to several batches, each containing the position data of 128
different particles. Second, we input the data of one batch to
our CNN and use the Smooth L1 loss function [74] to quantify
the difference, which is named as the loss between the output
κNN from our CNN and the specified screening parameter
value κMD in our simulations. Third, based on the loss of this
batch, the Adam optimizer [76] with the default parameters is
used to update all learnable parameters in our CNN. Fourth,
we repeat the above two steps until all batches are used. Fifth,
we repeat all the above steps 50 times for the specified epoch
number.

FIG. 5. Obtained loss results during the training procedure of our
CNNs. As the epoch number increases, the training and validation
loss results of each CNN gradually decay, nearly to zero, finally, in-
dicating that our CNNs converge well without the overfitting feature,
so that they all have sufficient generalization ability.

Note that whenever we input one batch into the model, we
train the model once. To improve the training efficiency, after
training the model 32 times using 32 batches, we perform the
validation test using the validation dataset once, where the
loss of this model is calculated. Thus, our training program
outputs the losses of both the corresponding batch and the
validation dataset every 32 times of training, as presented
next. While using all the batches divided from the entire train-
ing dataset, we just finish performing one complete iteration
through the training dataset during the training process of
the model, which is called one epoch. However, the entire
training dataset is not needed to be completely used at the
same time. For example, if only 10% of the entire training
dataset is used to train the model, then one may use 0.1
epoch to describe the current training progress, as shown
in Fig. 5.

IV. RESULTS

In this paper, we design three different CNNs, labeled as
CNN1, CNN2, and CNN3, respectively, and train them using
the same method as described in Sec. III. After training them,
we plot their training and validation losses, respectively, in
Fig. 5. Figure 5 clearly indicates that they all converge well
without the overfitting feature, so that they all have sufficient
generalization ability. Let us explain the difference between
these three CNNs in detail next.

A. Validation by CNN1

To validate the feasibility of the machine learning method
in determining the global property of the whole system
completely based on the fluctuations of individual particle
positions, we use model A with the simulation data first. We
follow the training procedure described in Sec. III to train
model A using the first set of our simulations, i.e., the training
dataset. When the training is finished, we label the trained
model A as CNN1.

The determined κ values, κNN from our CNN1, agree well
with the specified κMD values in the test dataset of our simula-
tions, as shown in Fig. 6. We use CNN1 to analyze the position
fluctuation data for each particle in the test dataset described
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FIG. 6. Our determined κNN results using the trained CNN1 with
the test simulation dataset. For each run of the test simulation dataset,
our CNN1 determines the κNN value for each particle. The mean of all
determined κNN values is almost the same as the specified screening
parameter κMD value in the simulation, with the root-mean-square
error (RMSE) of only 0.081.

in Sec. II A. The determined screening parameter κNN value
from each particle is plotted as one dot in Fig. 6. Thus, for
each value of κMD, there are 512 dots of the determined κNN

value in Fig. 6. Then, for each κMD, we calculate the mean
and standard deviation of the determined κNN, respectively, as
marked in Fig. 6, also presented in Table I. From the straight
line in Fig. 6, clearly, for each specified value of κMD, the
mean of the determined κNN is almost the same as κMD, with a
small standard deviation. In short, using CNN1, we validate
that the fluctuations of individual particle positions can be
used to accurately determine the global property of the κ value
for the whole system.

To characterize the accuracy of the obtained κNN val-
ues from our CNN, we calculate the root-mean-square error
(RMSE) [77]. As a measure of the deviation of the ob-
tained data to the true value, the RMSE is calculated using√

1
N

∑N
i=1(κNN − κMD)2, where N is the total number of the

obtained κNN values, i.e., the total number of the analyzed par-
ticles. For our obtained κNN values from the CNN1 in Fig. 6,
the calculated RMSE value is only 0.081 when κMD varies
from 0.25 and 2.00. This low value of RMSE undoubtedly
indicates the pretty satisfactory performance of our CNN1,
further demonstrating the feasibility of our machine learning
method in determining the global property of the κ value
purely from the information of individual particle position
fluctuations.

However, our CNN1 with the satisfactory performance
above cannot be directly used in the experimental data anal-
ysis. This is because the κNN determination using CNN1
above is based on the test of the simulation data with the
time interval between two consecutive frames of 1.6 ω−1

pd ,
which is exactly the same as that of the training simula-
tion data, i.e., the training and test datasets have the same
time duration between neighboring frames. For dusty plasma
experiments, the time interval between frames can typically
be easily controlled in milliseconds, i.e., in the real time
unit, while the corresponding value in units of ω−1

pd is really
unknown since ωpd is still not determined. In fact, the ωpd

value varies for different experiment conditions. To solve this
problem, we propose two more CNNs, so that the κ value
in experimental data can also be determined, as described
next.

TABLE I. The analysis results of the test simulation dataset from our three CNNs. First, for each value of κMD, we calculate the mean and
standard deviation σ of the determined κNN values from our CNNs, respectively. Then, for each value of κMD, we perform a Gaussian fitting on
the distribution of these determined κNN values for CNN2 and CNN3, respectively, resulting in the corresponding mean and standard deviation
σ presented here. Finally, to characterize the accuracy of the determined κNN values from our CNNs, we calculate the RMSE for all determined
κNN values of each CNN, as listed here. The obtained RMSE values clearly indicate that within these three CNNs, the performance of CNN2
is good and CNN3 is better, while CNN1 is the best.

CNN1 CNN2 CNN3

Gaussian’s Gaussian’s Gaussian’s Gaussian’s�������κMD

κNN

mean σ mean σ mean σmean σ mean σ

0.25 0.30 0.08 0.52 0.13 0.48 0.09 0.44 0.15 0.43 0.17
0.40 0.39 0.09 0.70 0.27 0.60 0.16 0.58 0.13 0.58 0.11
0.50 0.47 0.08 0.74 0.26 0.65 0.20 0.57 0.14 0.57 0.14
0.60 0.54 0.08 0.65 0.23 0.55 0.14 0.63 0.11 0.63 0.12
0.75 0.70 0.07 0.84 0.25 0.77 0.20 0.71 0.15 0.70 0.15
0.90 0.87 0.10 0.92 0.28 0.88 0.31 0.85 0.13 0.85 0.11
1.00 0.98 0.03 0.98 0.26 0.91 0.22 0.92 0.18 0.92 0.19
1.10 1.02 0.06 1.09 0.29 1.04 0.31 1.07 0.16 1.09 0.17
1.25 1.23 0.05 1.18 0.28 1.17 0.32 1.18 0.15 1.25 0.01
1.40 1.37 0.10 1.22 0.30 1.22 0.35 1.37 0.12 1.27 0.03
1.50 1.49 0.02 1.42 0.26 1.45 0.27 1.48 0.11 1.50 0.03
1.60 1.54 0.07 1.60 0.22 1.63 0.22 1.57 0.11 1.50 0.02
1.75 1.75 0.02 1.65 0.22 1.70 0.20 1.74 0.10 1.75 0.01
1.90 1.94 0.09 1.82 0.15 1.90 0.07 1.87 0.11 1.75 0.01
2.00 2.00 0.03 1.87 0.12 1.92 0.05 1.93 0.10 2.02 0.01

RMSE 0.081 0.279 0.155
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FIG. 7. Spatial distributions of position fluctuations of (a) a
single particle and (b) 256 particles for the time duration of tωpd =
819.2, from our 2D dusty plasma simulation under κ = 2 and � =
800. Clearly, while the sampling is large enough as in (b), the spatial
distribution of particle positions tends to be close to Gaussian. How-
ever, if the sampling is not enough, as in (a), the distribution scatters
more randomly.

B. Determination by CNN2

Since in experiments the time interval between neighbor-
ing frames in units of ω−1

pd is unknown, we may completely
ignore the time information in determining the κNN value only
from the spatial distribution of individual particle positions,
as one example shown in Fig. 7. As shown in Fig. 7(b), with
enough sampling data, the spatial distribution of individual
particle positions tends to be close to Gaussian. Of course,
for one single particle position in a limited time duration, the
corresponding distribution tends to scatter more randomly, as
in Fig. 7(a), from which we expect to use the machine learning
to extract some useful information. Here, following the same
training process as in Sec. III, we train model B using the
spatial distribution of all individual particle positions in the
training dataset, comparable to the information in Fig. 7(b).
The final trained model B is labeled as CNN2. Next, we use
CNN2 to determine the κNN value from the distribution of
position fluctuations for each individual particle, such as in
Fig. 7(a).

To characterize the distribution of particle position fluctua-
tions, we convert the spatial distribution to a 64 × 64 matrix.
The positions of each particle are converted from the time
series of fluctuations into a spatial distribution, as shown in
Fig. 7(a). For one particle, we create a square of −a � x(y) �
a, and divide it into 64 × 64 subregions with the size of
a/32 × a/32 each. Then, we count the number of times this
particle appears in each subregion for its position fluctuations.
Finally, we plot the obtained counts using the Max-Min nor-
malization, leading to the position spatial distribution data of
each particle. When these matrices are obtained, the latter data
analysis can be easily performed.

As shown in Fig. 8(a), the determined values of κNN from
CNN2 are generally consistent with the specified values of
κMD. As compared with that of CNN1 in Fig. 6, the distri-
bution of the determined κNN values from CNN2 in Fig. 8(a)
is much wider because the time-related information is com-
pletely removed. For each specified κMD value, we calculate
the mean of the obtained κNN values and also fit them to
Gaussian expression, with the results presented in Table I;
both roughly agree with the specified κMD value in simula-

FIG. 8. Our determined κNN results using the trained CNN2 with
(a) the test simulation dataset and (b) the experiment data. In (a),
although the RMSE of about 0.279 is significantly larger than that of
CNN1, the mean of κNN and the average from the Gaussian fitting
of the determined κNN values from our trained CNN2 are still both
approximately the same as with the specified κMD values in the test
simulation dataset. In (b), while using our CNN2 with the experiment
data, there is a prominent peak at ≈0.455 in the distribution of the
determined κNN values, agreeing well with κ = 0.47 obtained from
the phonon spectra in [29].

tions. This agreement indicates that CNN2 is able to extract
the spatial distribution characteristics of particle position fluc-
tuations under different screening parameters, even without
the time information, seemingly beyond the scope of our
current physics understanding. The RMSE of CNN2 is about
0.279, about 3.5 times that of the CNN1, which is reasonable
since the time information is completely lost.

Our CNN2 is able to be directly used to analyze experiment
data, as demonstrated in Fig. 8(b). As explained in Sec. II B,
we have the position fluctuations of 5998 particles, extracted
from the 2D solid dusty plasma experiment [29]. Next, our
CNN2 is able to determine one κNN from the fluctuations of
each particle. Then, we plot the distribution of these obtained
5998 values of κNN in Fig. 8(b), which has a prominent peak
at ≈0.455. In [29], using the widely accepted phonon spec-
tra analysis method, the κ value was found to be 0.47. The
location of the peak of our CNN2 determined κNN values
agrees well with the κ value determined from a completely
different approach, clearly indicating that even without the
time information, the global property of the system is still able
to be accurately determined by our CNN2.

C. Determination by CNN3

Although the exact ωpd value of one 2D dusty plasma
suspension is unidentified, the typical varying range of ωpd is
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often known, especially for the experiments performed on the
same setup, which may be included in machine learning to re-
duce the final uncertainty. For the 2D dusty plasma experiment
[29] analyzed here, we know that the typical range of ωpd is
70 � ωpd � 90 s−1 from the previous experiments [27–29]. If
the time duration of the analyzed experiment movie is 10 s,
then the corresponding duration of the simulation run should
be 700 � tωpd � 900. To mimic the experiment analysis, let
us include this information of the adjustable time duration into
our simulation data analysis next.

To obtain new datasets containing the particle position fluc-
tuations with the adjustable time duration of 700 � tωpd �
900, we perform two new sets of simulation runs, for the
training and test (also including validation) purposes, respec-
tively. As in Sec. II A, the first set of the training data contains
eight independent simulation runs, while the second set of
the validation and test data contains another 15 independent
simulation runs. The detailed simulation settings are the same
as in Sec. II A, with only two different points. First, for each
simulation run here, the time duration is always specified to
900 ω−1

pd , where we output the simulated particle positions
every 1200 integration steps, i.e., ωpd dt = 1.2. Second, the
simulation box size for the eight independent simulation runs
of the training set is 121.9 a × 105.6 a, only 1/4 of that used
in Sec. II A. For each simulation run of the training dataset,
we extract the particle position fluctuations for the different
values of the time duration 700, 750, 800, 850, and 900 ω−1

pd ,
corresponding to 583, 625, 667, 708, and 750 frames, respec-
tively. To mimic the experiment operation with the unknown
time duration, for each simulation run of the validation and
test dataset, we extract the particle position fluctuations using
four arbitrary values of the time duration between 700 and
900 ω−1

pd . Then, as in Sec. II A, we pack the position fluctu-
ation data of all particles in five different values of the time
duration from the first set of simulations as the new training
dataset. Meanwhile, we randomly choose 29 particles from
each simulation run of the second set of simulations, and
pack their position fluctuation data with the four arbitrary
values of the time duration as the validation and test datasets.
Note that no matter how long the time duration is, the frame
number of each particle is always reduced to 512 using the
downsampling method [71,72] with the constant new time
interval for the later CNN operations. We train model A using
this new training dataset following the same procedure as in
Sec. III, resulting in a new trained model A, named as CNN3.

From Fig. 9(a), the determined κNN values from CNN3
agree with the specified κMD values, better than the results
of CNN2 in Fig. 8(a). For each specified κMD, the calculated
mean of κNN and the average from the Gaussian fitting are
both approximately the same as the κMD value, as shown in
Table I. As compared with Fig. 8(a), the distribution of the
determined screening parameter values κNN is significantly
more concentrated. We also calculate the RMSE of the de-
termined κNN results from CNN3, which is about 0.155, much
smaller than that of CNN2. These results clearly indicate that
the performance of CNN3 is better than that of CNN2.

We also use CNN3 to analyze the same experimental data
used in Sec. IV B to determine the κNN value, as shown in
Fig. 9(b). As in Sec. IV B, we analyze the position fluctuations
of the same 5998 particles using CNN3, leading to 5998

FIG. 9. Our determined κNN results using trained CNN3 with
(a) the test simulation dataset and (b) the experiment data, respec-
tively. In (a), for all runs of the test simulation dataset, our trained
CNN3 determines the κNN values for all particles, with the RMSE
of about 0.155, significantly smaller than that of CNN2 in Fig. 8.
The mean of κNN and the average from the Gaussian fitting of κNN

are still both nearly the same as the specified screening parameter
value κMD in the test simulation dataset. In (b), using our CNN3
with the experiment data, the prominent peak in the distribution of
the determined κNN values is located at ≈0.498, agreeing well with
κ = 0.47 obtained from the phonon spectra in [29].

determined values of κNN. The distribution of these obtained
5998 κNN values from CNN3, plotted in Fig. 9(b), clearly
exhibits a prominent peak at ≈0.498, also agreeing well with
κ = 0.47 from the phonon spectra [29]. Clearly, the distri-
bution of the obtained κNN values in Fig. 9(b) is much more
concentrated than that from CNN2 in Fig. 8(b). For example,
the count for κNN � 0.8 is nearly zero in Fig. 9(b); however, in
Fig. 8(b), the tail of the count for κNN � 0.8 is still substantial.
In short, the performance of CNN3 in accurately determining
the κ value in the 2D dusty plasma experiment from the single
particle information is better than CNN2 since the adjustable
time information is incorporated in CNN3.

V. DISCUSSIONS

In fact, due to the same time interval between neighboring
frames, the particle position fluctuation data used in CNN1
and CNN3 do imply the particle velocity information, which
is completely lacking while using CNN2. From our under-
standing, among these three CNNs, the best performance of
CNN1 with the least RMSE is mainly due to the exactly same
time duration between neighboring frames in the training and
test datasets. While using CNN3, to mimic the operations in
typical dusty plasma experiments, the time duration between
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FIG. 10. The distribution of the determined κNN values from
CNN1, CNN2, and CNN3, for the test simulation data with the
specified κMD values of 1.25 and 1.40, respectively. Note that in the
training dataset used here, κ = 1.25 is included, while κ = 1.40 is
not. From (a) and (c), for the particle position fluctuation data of
κMD = 1.25, the distribution of the determined κNN values exhibits
a prominent peak at κMD = 1.25. However, from (d) and (f), for the
data of κMD = 1.40, the distribution of the determined κNN values
exhibits two distinctive peaks at κMD = 1.25 and 1.50, respectively,
just the two closest κMD values in the training dataset. For (b) and
(e), due to the larger uncertainty of the determined κNN value and
the wider distribution, the peak feature is not as clear. Note that
(a), (b), (d), and (e) contain 512 κNN values determined by either
CNN1 or CNN2 from the position fluctuation data of 512 different
particles in the test simulations, while (c) and (f) contain 4 × 512 κNN

values determined by CNN3 from the position fluctuation data of 512
different particles with four random values of the time duration in the
test simulation dataset.

neighboring frames of the training data is not exactly the same
as that of the test data, leading to a slightly larger RMSE,
i.e., about twice the value of CNN1. When we use CNN2,
the time-related information is completely removed and the
spatial distribution of the particle position fluctuations is used
to determine κNN, reasonably leading to the largest RMSE,
which is about 3.5 times the value of CNN1.

In addition to reporting the mean of the determined κNN

values above, in Fig. 10, we plot their distribution from these
three CNNs for two test simulation runs of κMD = 1.25 and
1.40, respectively. From Figs. 10(a)–10(c), for each CNN,
the distribution of the determined κNN values always ex-
hibits a prominent peak around the κMD, also very close to
its mean value, especially for CNN1 and CNN3. However,
from Figs. 10(d) and 10(f), for either CNN1 or CNN3, the
corresponding distribution of the determined κNN values sur-
prisingly exhibits two distinctive peaks at the two sides of
κMD, where the weighted mean value agrees well with the
specified κMD value of 1.40. In Fig. 10(e), the distribution of
the determined κNN values does not have a significant two-
peak feature, unlike Figs. 10(d) and 10(f).

From the results in Fig. 10, we believe that the general-
ization ability of these three CNNs is really excellent. From
Table I, in the test dataset, there are seven κMD values which
do not exist in the training dataset, including κMD = 1.4 in
Figs. 10(d)–10(f). Although none of these CNNs are trained
with these seven κMD values, including κMD = 1.40, the mean
of the determined κNN values is still very close to each κMD

value, indicating well their excellent generalization ability.
For the test data with the same κ value as the training data,
due to their similarity, it is not surprising that the distribution
of the determined κNN values is centered at the specified κMD

value, as shown in Figs. 10(a) and 10(c). However, for the
test data with the κ value that is not included in the training
dataset, both CNN1 and CNN3 search the training data with
all existing κ values to find the two closest κ values, leading
to the exhibited two-peak feature as in Figs. 10(d) and 10(f),
with the weighted mean value agreeing with the specified
κ value in the test simulations. For CNN2, the uncertainty of
the determined κNN value is larger and the distribution is also
much wider [Figs. 10(b) and 10(e)], so that the peak feature is
also not as clear.

As shown in Table I, when κMD is close to 0.25 or 2.00,
the mean of the determined κNN values deviates from κMD the
most, especially for CNN2 and CNN3. We think that this fea-
ture is probably caused by two facts. First, the distribution of
the determined κNN values is broadened, especially for CNN2
and CNN3, as shown in Fig. 10. Second, in our current inves-
tigation, κMD varies only in the range of [0.25, 2.00], resulting
in the same range of the determined κNN values. From the first
fact, when κMD is close to 0.25, the value of the determined
κNN values should be distributed to a wider range of both
smaller and larger than κMD. However, since κMD only varies
in the range of [0.25, 2.00], the obtained κNN cannot be smaller
than 0.25. As a result, the mean of the obtained κNN values is
more strongly biased by the obtained κNN larger than κMD, as
shown in Table I. Similarly, when κMD is close to 2.00, the
mean of the obtained κNN values is significantly smaller than
κMD since it is more biased by those smaller than κMD. Mean-
while, due to the small broadening of the distribution of the
determined κNN from CNN1, this feature is the least obvious
for CNN1. By either expanding the value range of κMD or fur-
ther upgrading the structure of CNN2 and CNN3 to improve
their performance, this feature may be reduced in the future.

Here, we would like to discuss some complicated prob-
lems related to some 2D dusty plasma experiments. If the
interparticle interaction in the 2D dusty plasma experiment
deviates from pure Yukawa repulsion, for example, including
the significant ion wake effect, our current CNNs trained by
the LD simulation described in Sec. II can no longer be used to
analyze this experiment. Instead, the CNNs should be trained
using a new simulation dataset, in which the ion wake effect
is taken into account. Note that for some 2D dusty plasma
experiment data with the significant nonuniform problem not
reported here, we may divide the field of view of the ex-
perimental images into different subregions; as a result, one
may perform the same machine learning method reported here
for each subregion, where the lattice constant is still nearly
uniform.

In fact, our CNN3 may be further updated to improve
its performance. From our understanding, the current
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performance of CNN3 is not the best because its structure
is not complicated enough, so that our CNN is not able to
fully learn and remember enough features of the particle
position fluctuation data with the adjustable time duration.
In the future, we may probably deepen our CNN model, or
even change its structure, so that it has the ability to learn
more complicated features in the particle fluctuation data.
Meanwhile, simply increasing the amount of the training data
may also improve the performance of CNN3.

VI. SUMMARY

To summarize, using three CNNs of machine learning,
we successfully determine the global property of the screen-
ing parameter in the 2D dusty plasma simulations and the
experiment, purely by using the individual particle position
fluctuations. For the individual particle position fluctuation
data, the time interval between neighboring frames in units of
the inverse of the dusty plasma frequency is a key parameter.
If this time interval of the test data is the same as that of the
training data, our CNN1 that is used here is able to accurately
determine the screening parameter value, with the RMSE of
only 0.081. In dusty plasma experiments, although the time
interval between neighboring frames in the unit of s is clearly
known, the dusty plasma frequency varies for different con-
ditions. As a result, in experiments, the time interval between
neighboring frames in units of the inverse of the dusty plasma
frequency ω−1

pd is generally unknown, so that it is impossible
to match this time interval in the simulation training data. To
mimic using machine learning with experimental data anal-
ysis, we may completely ignore the time information in the
training dataset by converting the particle position fluctuations
into the particle position distribution, as used in CNN2. The

obtained κNN value from CNN2 is also close to the specified
κMD in the test dataset, with the RMSE of 0.279. Another way
to solve this unknown time interval in units of ω−1

pd is to in-
clude an adjustable time range to rescale the particle position
fluctuations in the training dataset, as used in CNN3, leading
to a more accurately determined κNN value, with the RMSE of
0.155. In the analysis with the 2D dusty plasma experimental
data, the distribution of the determined κNN values from either
CNN2 or CNN3 has a prominent peak located at the κNN

value, agreeing well with the κ value determined from the
phonon spectra fitting in [29].

All of the results above clearly demonstrate that the global
property of 2D dusty plasma can be accurately determined
from individual particle position fluctuations using machine
learning. One advantage of this machine learning method
is its high efficiency in the data analysis. For example, our
trained CNN2 and CNN3 are able to accurately determine
the κ values for thousands of analyzed particles in the 2D
solid dusty plasma experiment within a few seconds, greatly
facilitating our analysis of experiment data. For future dusty
plasma investigations, machine learning may be applied to
diagnose the complicated environment conditions, such as
the magnetic and electric fields in tokamaks, based on the
detailed dynamics of the experimentally observed individual
dust particles there.
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