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Analysis of attosecond entanglement and coherence using feasible formulae
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In recently published papers [M. J. J. Vrakking, Phys. Rev. Lett. 126, 113203 (2021); J. Phys. B 55,
134001 (2022)], Vrakking proposed an inventive scheme to control the entanglement or coherence of the
vibrational states in a hydrogen molecular ion and a continuum electron, both of which were generated via the
photoionization of a hydrogen molecule irradiated by a coherent pair of extreme ultraviolet (XUV) attosecond
pulses and a few-femtosecond ultraviolet (UV) pulse. He clarified, for the first time to our knowledge, how
the coherence of the XUV attosecond pulse pair is transferred to the molecular ion system accompanying a
detached continuum electron by numerically solving a time-dependent Schrödinger equation (TDSE) governing
the evolution of the ion and the electron in a rigorous manner. Nevertheless, it was not straightforwardly
resolved how and why the specific characteristics of the resultant joint energy spectrogram emerged and how the
entanglement or coherence was altered with the irradiation of the UV pulse. In this paper, we present an analytical
solution of the TDSE using time-dependent perturbation theory, and we utilize the resultant solution to explain
what causes the particular features in the entanglement or coherence between the electron and the ion spectra.
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I. INTRODUCTION

Photoelectron spectroscopy using light sources in the pho-
ton energy region of vacuum ultraviolet (VUV) or extreme
ultraviolet (XUV) is a conventional tool for studying elec-
tronic and nuclear states in a molecule. This is mainly owing
to the preservation of the energy conservation law among
the photon energy of XUV light h̄ω, the ionization energy
of an electron in a molecule Ip, and the kinetic energy (KE)
of a detached electron Ke, so as to satisfy Ke = h̄ω − Ip,
where h̄ and ω are Planck’s constant divided by π and the
angular frequency of the VUV/XUV light field, respectively.
The details of the electronic and nuclear states in a molecule
should be embedded in the structure of the photoelectron spec-
trum according to this simple relation when the VUV/XUV
light field is monochromatic. This conventional measurement
principle signifies that we can determine what happens in
the molecule after the ionization without directly measuring
the state of molecular ions left behind a continuum electron.
For example, we implicitly assume that one H+

2 molecular
ion in the v′ = 2 vibrational state should be generated from
one neutral H2 molecule upon the irradiation of XUV light
with a photon energy of 21.21 eV whenever we detect one
electron with a KE of 5.23 eV in an electron spectrometer
[1]. The ability to determine the state of a physical system by
observing the state of another physical system might originate
from a kind of correlation or entanglement between the two
systems, although we cannot determine whether the relation
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between the two systems really corresponds to the techni-
cal term of “entanglement” defined in quantum physics [2]
until we rigorously analyze the composite quantum system
involving both the continuum state of an electron (e−) and
the quantum states in a molecular ion (M+) generated after
the irradiation of XUV light. This issue regarding quantum
entanglement in a photoionization process may not have been
noticed since photoelectron spectroscopy became one of the
major tools in physics and chemistry more than half a century
ago [3], because the energy conservation law of Ke = h̄ω − Ip

is a too obvious and sufficient reason to explain that the struc-
ture in the observed photoelectron spectrum originates from
the quantum states of bound electrons in a molecule with-
out explicitly considering the state of a continuum electron.
In addition, the XUV light sources used in early photoelec-
tron studies were monochromatic, which did not ensure the
coherence of modern laser light sources; thus, it might not
be straightforward to describe the interaction between such
partially incoherent light and a molecular system.

The recent advent and progress of coherent ultrafast XUV
light sources generated as a high-order harmonic (HH) field
of intense femtosecond pulses in the visible-infrared photon
energy region, which are called attosecond pulses, stimulated
researchers’ interest in another phenomenon in the photoion-
ization process: The coherence among the quantum states in
the ionized atoms or molecules. Some of the main concerns in
this research field were to find how and when the coherence
of the electronic states [5,6] emerged and disappeared owing
to the electron correlations in an ion [7,8], the electron corre-
lations involving a continuum electron [9], and the evolutions
of nuclear states [10–12], the last of which might be regarded
as “baths” that disturb the coherence in a general quantum
system [13,14]. The major tool for analyzing the coherence
in these studies was the reduced density matrix of the ion-
ized molecule, in which the degree of the continuum state
of a detached electron was partially traced from the density
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FIG. 1. Experimental scheme to confirm the coherence between the continuum state of a detached electron and the vibrational state of H+
2

shown in Ref. [4].

matrix. Thus, it was natural for researchers to be interested in
the entanglement between the ionized molecule and the de-
tached electron [8,15–17] because the reduced density matrix
was also the principal measure that determines the degree of
entanglement [2]. Nevertheless, there was no notable study
on photoelectron spectroscopy under the consideration of the
coherence or entanglement between the ionized molecule and
the continuum electron. This might be because it was apparent
that the energies of the vibrational states could not be resolved
in a photoelectron spectrum with the irradiation of broadband
XUV attosecond pulses.

In 2021, Vrakking shed new light on this research field [4].
The key idea of his study was to irradiate a molecule with
a pair of XUV attosecond pulses followed by an ultraviolet
(UV) pulse, and detect an ejected electron and a fragment
molecular ion in coincidence. In his study, coherence in a
broad frequency range and a pulse duration sufficiently shorter
than the period of the nuclear motion, which are specific
characteristics of an XUV attosecond pulse as opposed to
those of a monochromatic XUV light source used for pre-
cision photoelectron spectroscopy, played a crucial role in
determining the coherence or entanglement between the state
of a continuum electron and that of the molecular ion in the
composite quantum system, e− ⊗ M+.

A schematic figure of the experiment Vrakking proposed
is shown in Fig. 1. In this scheme, a hydrogen molecule,
H2, is provided as a target, then a pair of XUV attosecond
pulses with a time separation of τx is irradiated to photoionize
the H2 target. The hydrogen molecular ion, H+

2 , generated
immediately after the photoionization, starts vibrating, while
the detached electron should be sent to an electron spec-
trometer to resolve the KE. After a delay time of τu > τx

from the time of the first XUV attosecond pulse irradiation,
a few-fs UV pulse is irradiated to dissociate the vibrating
H+

2 into a hydrogen atom, H, and a proton, H+. The KE
of the proton is measured using an ion spectrometer in co-
incidence with the detection event of a photoelectron such
that the detected photoelectron and proton originate from the
same hydrogen molecule. This coincident measurement of the
KE of the photoelectron with that of the proton can provide
the joint energy spectrum (JES) of the electron and proton,
which should indicate how entanglement and coherence are
altered in the composite quantum system. In fact, Vrakking
provided clear evidence of the coherence between the pho-
toelectron and the ion at τx = 12.1 fs by demonstrating that
the phase of the spectral interference fringes of the photoelec-
tron was altered upon changing the delay of the UV pulse
τu, although the UV pulse was always irradiated after the
detachment of the electron. The interchange of coherence and
entanglement was also found as a variation of the purity of
the reduced density matrix in accordance with the change in
τx, and many such fruitful outcomes were obtained from this
study.

Nevertheless, we do not clearly understand why and how
the spectral features of the JES could be controlled via τx

because previous studies [4,18] were based on numerical
calculation to solve the time-dependent Schrödinger equa-
tion (TDSE), and the relations among the spectral interference
of the continuum electron, the vibrational period of H+

2 , and
the kinetic energy release (KER) of the dissociating H + H+
were not explicitly resolved. Thus, it will be useful to find
an analytical model for describing the JES and revealing the
origin of its modulation structure. In addition, the entangle-
ment or coherence between the continuum electron and the
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dissociating H + H+ generated after UV pulse irradiation is
still unknown.

In this paper, we report on the derivation of an analytical
formula providing the approximate solution of the TDSE by
applying perturbation theory. The JES calculated using this
formula properly reproduces those obtained by numerical cal-
culation in Ref. [4]. We also demonstrate that the JES without
resolving the KER of the proton should be sufficient to exhibit
the coherence of the composite system, e− ⊗ H+

2 , through the
numerical integration of the KER of the proton, taking ad-
vantage of the low calculation cost of the analytical formula.
We clarify how the modulation structure of the KE spectrum
of the electron changes upon changing τu by employing the
simplified formula.

In the following two sections, we apply the first- and
second-order solutions of the TDSE obtained from the time-
dependent perturbation theory (described in Appendix A)
to approximate the one-photon (Sec. II) and two-photon
(Sec. III) transition amplitudes so as to reproduce the e− ⊗ H+

2
system under the experimental scheme depicted in Fig. 1.
Then, the JES and the KE spectra of the electron calculated
from the obtained formula are exhibited. After describing the
analysis of the modulation structure of the KE spectra, we
discuss the degree of coherence or entanglement by evaluating
the purity and von Neumann entropy of the reduced density
matrix after the irradiation of the XUV pulse pair (Sec. II) and
also by evaluating those after the irradiation of the UV pulse
(Sec. III). A summary is given in the final section (Sec. IV).

II. ONE-PHOTON INTERACTION

A. General form of the state vector

In Appendix A, we provide detailed descriptions concern-
ing how we have derived the general formulas of the electronic
state vectors of the molecular system interacting with optical
fields in accordance with the conventional time-dependent
perturbation theory and the Born-Oppenheimer (BO) approxi-
mation, under which the electronic state vector |�(R; t )〉 given
by Eq. (A20) in Appendix A parametrically depends on the
nuclear coordinates R. The notations used in the following
equations are all defined in Appendix A.

In this section, we focus on the second term on the right-
hand side of Eq. (A20), which describes the state vector
evolved with a linear contribution of the optical electric field;
thus, we identify this term as the state vector with the one-
photon interaction as follows:

|� (1)(R; t )〉 = 1

ih̄

∫ t

t0

dt1

∫
d3MR1

∫
d3MR2e

Ĥ (R)
ih̄ (t−t1 ) Î (R; R1)

× V̂ (t1)Î (R1; R2)e
Ĥ (R2 )

ih̄ (t1−t0 )|�(R2; t0)〉, (1)

where we introduce the identity operator Î (R; R′) satisfying∫
d3MR′ Î (R; R′)|�(R′; t )〉 = |�(R; t )〉 for any |�(R; t )〉. If

the eigenstate vectors of molecular Hamiltonian Ĥ (R), which
may be written as |Ψk (R)〉, form the complete set, the iden-
tity matrix takes the form of Î (R; R′) = ∫∑

k |Ψk (R)〉〈Ψk (R′)|,
where k is the quantum number identifying the electronic and
nuclear states, and all the states of all charged molecular ions
and detached continuum electrons should be included in the

summation or integration if we define Î (R; R′) in a rigorous
manner. However, here we consider only the state vectors of
a neutral molecule and a singly charged molecular ion ac-
companying a continuum electron, and thus we approximate
Î (R; R′) as

Î (R; R′) � P̂(R; R′) + P̂+(R; R′), (2)

which is the summation of the projection operator to the
state of a neutral molecule, P̂(R; R′), and that to the state
of a molecular ion accompanying a continuum electron,
P̂+(R; R′). These operators are defined in Eqs. (A8) and (A17)
in Appendix A, respectively.

We assume the initial state to be the ground electronic and
nuclear states of a neutral molecule, |�(R2; t0)〉 = |�0

g (R2)〉,
allowing us to neglect the contribution of P̂+(R1; R2) in
Î (R1; R2) on the right-hand side of V̂ (t1) in Eq. (1) when
we substitute Eq. (2) into Eq. (1). As a result, |� (1)(R; t )〉
is divided into two vectors, one of which represents the ex-
cited state of a neutral molecule |� (1)

n (R; t )〉 and the other of
which is the state vector of the molecular ion accompanying
a continuum electron |�+(1)

i (R; t )〉, as shown in the following
equations:∣∣� (1)

n (R; t )
〉 = 1

ih̄

∑
α

∑∫
v

∣∣�v
α (R)

〉
e−iωv

αtμv
αgẼ

(
ωv

α − ω0
g

)
,

(3)∣∣� (1)
i (R; t )

〉 = 1

ih̄

∑
β

∑∫
v′

∫ ∞

0
dωe

∣∣�+v′

β (R)
〉|ψcβ

(ωe)〉

× e−i(ω+v′
β +ωe )tμ+v′

βg (ωe)Ẽ
(
ω+v′

β + ωe − ω0
g

)
.

(4)

Here, we define the transition dipole moment to the
α-electronic and vth vibrational state in the neutral
molecule as μv

αg ≡ ∫
d3MR1〈�v

α (R1)|μ̂|�0
g (R1)〉 =∫

d3MR1φ
v∗
α (R1)φ0

g (R1)〈ψeα
(R1)|μ̂|ψeg (R1)〉 and that to

the β-electronic and v′th vibrational state in the molecular
ion accompanying a continuum electron with a KE of h̄ωe as

μ+v′
βg (ωe) ≡ ∫

d3MR1 〈�+v′

β (R1)|〈ψcβ
(ωe)|μ̂|�0

g (R1)〉 = ∫
d3M

R1φ
+v′∗
β (R1)φ0

g (R1) 〈ψ+
eβ

(R1)|〈ψcβ
(ωe)|μ̂|ψeg (R1)〉. Both

dipole moments are obtained by integrating the overlap of
the nuclear wave functions multiplied by the electronic
transition dipole moment with respect to the nuclear
coordinates as usual. The angular frequencies of ωv

α and
ω+v′

β are obtained by dividing the eigenenergies of E v
α in

Eq. (A6) and E+v′

β in Eq. (A14) by h̄, respectively. We
have omitted the constant phase factor eiω0

gt0 from Eqs. (3)
and (4) and approximated the time integration in terms of
t1 as the Fourier amplitude of the positive frequency part
of the complex optical electric field given by Eq. (A19),∫ t

t0
dt1E (t1)ei�t1 � ∫ ∞

−∞ dt1E (t1)ei�t1 ≡ Ẽ (�), because we
can expect that the magnitude square peaks of the electric
fields of the first and second XUV pulses and that of the UV
pulse (|Ex(t1)|2, |Ex(t1 − τx )|2, and |Eu(t1 − τu)|2) will arrive
at the interaction region long after the initial time t0 and far
before the present time t . The inverse Fourier transform (FT)
should be performed using E (t ) = 1

2π

∫
d�Ẽ (�)e−i�t from

the definition of the FT mentioned above. The actual form
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of Ẽ (�) can be given by Ẽ (�) = Ẽx(�; τx ) + Ẽu(�; τu) =
Ẽx(�)(1 + ei�τx ) + Ẽu(�)ei�τu from Eq. (A19), where Ẽx(�)
and Ẽu(�) are the Fourier amplitudes of Ex(t ) and Eu(t ),
respectively. Note that these Fourier amplitudes may be
expressed as

Ẽx(�) = Ãx(� − ωx ), (5)

Ẽu(�) = Ãu(� − ωu) (6)

when we adopt a single-peak envelope as an XUV pulse with
a carrier angular frequency of ωx and a UV pulse with a
carrier angular frequency of ωu. If we assume that the XUV
optical field originates from the HH pulse called the attosec-
ond pulse train (APT), Ẽx(�) can be expressed as Ẽx(�) =∑

n Ãx2n+1 (� − ω2n+1), where the odd number 2n + 1 denotes
the harmonic order and the carrier angular frequency of the
(2n + 1)th harmonic pulse is denoted as ω2n+1. The magni-
tudes of the Fourier amplitudes of the temporal envelopes,
Ãx(�), Ãx2n+1 (�), and Ãu(�), should all exhibit a peak around
� = 0.

We restrict ourselves to considering the ionization process
bringing about the state vector |� (1)

i (R; t )〉 in Eq. (4) to ana-
lyze the entanglement or coherence between the molecular ion
and the continuum electron described by using a composite

basis set of |�+v′

β (R)〉|ψcβ
(ωe)〉 . The excited states in the

neutral molecule constituting |� (1)
n (R; t )〉 in Eq. (3) play a role

in the nonlinear excitation/ionization process, determined as
high-order terms in the perturbative solution. We also only
consider a single-peak XUV pulse described in Eq. (5) for
simplicity.

B. Entanglement or coherence of the e− ⊗ H+
2 system

We simplify the state vector |� (1)
i (R; t )〉 to express the

e− ⊗ H+
2 system. The nuclear coordinate R can be reduced

to a relative position vector from one proton to another, and
the rotational state is assumed to be the ground state. The
most relevant electronic state in the e− ⊗ H+

2 system is the
1sσg ground state of H+

2 ; thus, we omit the summation with
suffix β and replace β with g′ in Eq. (4). We also neglect the
dissociative nuclear wave function in the 1sσg ground state
and only take the discrete vibrational numbers into account.
The state vector is renormalized such that the trace of the
density matrix, which will later be needed to evaluate the
degree of entanglement, should coincide with unity. We can
neglect the contribution of the UV optical field because we
assume that the photon energy of the UV optical field is lower
than the ionization energy, namely, ω+v′ − ω0

g > ωu. This al-
lows us to evaluate the magnitude of the Fourier amplitude of
the UV optical field Ẽu(ω+v′ + ωe − ω0

g ) = Ãu(ωe + ω+v′ −
ω0

g − ωu) � 0 in the range of ωe � 0.
Then, the state vector of the e− ⊗ H+

2 system is given by

∣∣� (1)
i (R; t )

〉 = C
∑
v′

∫ ∞

0
dωe

∣∣�+v′

1sσg
(R)

〉 |ψc (ωe)〉 e−i(ω+v′ +ωe )t

× μ+v′
1sσg

(ωe)Ãx
(
ω+v′ + ωe − ω0

g − ωx; τx
)
,

(7)

where C is a normalization constant and we define
Ãx(� − ωx; τx ) as Ãx(� − ωx; τx ) ≡ Ãx(� − ωx )(1 +
ei�τx ) = Ẽx(�)(1 + ei�τx ) = Ẽx(�; τx ).

According to a standard textbook of quantum computation
and information [2], and as already demonstrated with respect
to the e− ⊗ H+

2 system in Ref. [18], the reduced density ma-
trix of the composite system composed of pure states plays
a significant role in evaluating the degree of entanglement.
In our model, we disregard the mixture of the vibrationally
and rotationally excited states in the initial neutral molecule.
Thus, the density matrix with the one-photon interaction
can be simply expressed as the following pure state density
matrix:

ρ̂
(1)
i (R′, R′′; t ) = ∣∣� (1)

i (R′; t )
〉 〈

�
(1)
i (R′′; t )

∣∣, (8)

where |� (1)
i (R; t )〉 is given by Eq. (7). The re-

duced density matrix with respect to the nuclear
degree of freedom ρ̂

(1)
nclr (R

′, R′′; t ) is obtained by
calculating

∫ ∞
0 dωe〈ψc (ωe)|ρ̂ (1)

i (R′, R′′; t )|ψc (ωe)〉.
The v′v′′ element of ρ̂

(1)
nclr (R

′, R′′; t ) is given by∫
d3R′ ∫ d3R′′〈�+v′

1sσg
(R′; t )|ρ̂ (1)

nclr (R
′, R′′; t )|�+v′′

1sσg
(R′′; t )〉,

where |�+v′

1sσg
(R′; t )〉 ≡ |�+v′

1sσg
(R′)〉e−iω+v′

t is the asymptotic
form of the wave function of the molecular ion at time t . As
a result, we obtain the v′v′′ element of the reduced density
matrix ρ

(1)
ionv′v′′ as follows:

ρ
(1)
ionv′v′′ = |C|2

∫ ∞

0
dωeμ

+v′
1sσg

(ωe)μ+v′′∗
1sσg

(ωe)Ãx
(
ω+v′ + ωe

− ω0
g − ωx; τx

)
Ã∗

x

(
ω+v′′ + ωe − ω0

g − ωx; τx
)
. (9)

The normalization constant is obtained as follows by impos-
ing

∑
v′ ρ

(1)
ionv′v′′ = 1:

|C|2 =
[ ∑

v′

∫ ∞

0
dωe

∣∣μ+v′
1sσg

(ωe)
∣∣2

× ∣∣Ãx
(
ω+v′ + ωe − ω0

g − ωx; τx
)∣∣2

]−1

. (10)

The reduced density matrix described in Eq. (9) is the same as
that in Eq. (33) in Ref. [18] introduced by Vrakking without
the description for the detailed derivation process, and thus we
have shown that this equation is correct under the condition
that the perturbative solution is valid.

The reduced density matrix with respect to the
continuum electron is calculated by the formula ρ̂ (1)

e (t ) =∑
v′

∫
d3R′ ∫ d3R′′〈�+v′

1sσg
(R′; t )|ρ̂ (1)

i (R′, R′′; t )|�+v′

1sσg
(R′′; t )〉,

and we obtain its ω′
e-ωe element ρ (1)

e (ω′
e, ωe) =

〈ψc (ω′
e; t )|ρ̂ (1)

e (t )|ψc (ωe; t )〉 as

ρ (1)
e (ω′

e, ωe)

= |C|2
∑
v′

μ+v′
1sσg

(ω′
e)μ+v′∗

1sσg
(ωe)Ãx

(
ω+v′ + ω′

e

− ω0
g − ωx; τx

)
Ã∗

x

(
ω+v′ + ωe − ω0

g − ωx; τx
)
, (11)

which is independent of t because we define |ψc (ωe; t )〉 ≡
|ψc (ωe)〉e−iωet . We show a trivial example of the reduced
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density matrix ρ̂ (1)
e (t ) leading to a physical quantity.

The projection operator P̂(ωe) = |ψc (ωe)〉〈ψc (ωe)| yields
the probability of finding a continuum electron with
a KE of h̄ωe by Tr{ρ̂ (1)

e (t )P̂(ωe)} = ρ (1)
e (ωe, ωe) =

|C|2 ∑
v′ |μ+v′

1sσg
(ωe)|2|Ãx(ω+v′ + ωe − ω0

g − ωx; τx )|2, which
is indeed proportional to the photoelectron spectrum.

Before using the reduced density matrix ρ
(1)
ionv′v′′ in Eq. (9)

to evaluate the entanglement, we give an explicit form
of the state vector apparently expressing the entanglement
between the molecular ion and the continuum electron un-
der the extreme condition that a single XUV electric field
with an angular frequency of ωx and an infinitely narrow
bandwidth described as Ãx(ω+v′ + ωe − ω0

g − ωx; τx = 0) =
2δωÃx0δ(ωe + ω+v′ − ω0

g − ωx ) is irradiated. Substituting this
electric field into Eq. (7), we obtain the state vector∣∣� (1)

i (R; t )
〉 ∝

∑
v′

μ+v′
1sσg

(
ωv′

e

)∣∣�+v′

1sσg
(R)

〉 ∣∣ψc
(
ωv′

e

)〉
, (12)

where ωv′
e ≡ ωx − (ω+v′ − ω0

g ). Equation (12) is similar to a
typical form of the Schmidt decomposition [2] of the compos-
ite state if the dipole moment μ+v′

1sσg
(ωv′

e ) is a non-negative real
number, and we impose the normalization condition. Thus, we
determine that the state of the molecular ion is quasientangled
with the state of the continuum electron from this equation.
Researchers have been making use of this fact for the con-
ventional photoelectron spectroscopy of molecules since the
first observation of the structure involving discrete peaks in
the photoelectron spectrum of H2 more than half a century
ago [1]. When an electron with a KE of h̄ωv′

e is detected,
we tacitly assume that the state of the H+

2 ion left behind is
the v′th vibrational state. The possible determination of the
state of one system involved in a composite system by the
measurement of the state of another system is the same as the
property of the Bell states, which are well-known examples
showing entanglement [2].

Next, we investigate the purity of the square of the reduced
density matrix Pu, or the von Neumann entropy S, as an
indicator of entanglement. We assume that the dipole moment
does not significantly change in the range of the frequency
bandwidth of Ãx(� − ωx ), and the electronic states can be

approximated to those at the equilibrium nuclear position of
the ground vibrational state in the X 1�+

g state of H2, Req,
allowing us to apply the following approximation:

μ+v′
1sσg

(ωe) �
∫

d3Rφ+v′∗
1sσg

(R)φ0
X (R)

〈
ψ+

e1sσg
(Req )

∣∣
× 〈

ψc
(
ωv′

e

)∣∣μ̂|ψeX (Req )〉 ≡ μ+v′
, (13)

where φ0
X (R) is the ground vibrational wave function in the

X 1�+
g state of H2 and φ+v′∗

1sσg
(R) is the v′th vibrational wave

function in the 1sσg state of H+
2 . The dipole moment becomes

the product of the overlap integral between the vibrational
wave functions and the electronic dipole at Req to generate
a continuum electron with a KE of h̄ωv′

e , and thus it can be
excluded from the ωe integral in Eq. (9). By applying the
approximation of Eq. (13) to Eq. (9), we obtain the following
reduced density matrix of the nuclei:

ρ
(1)
ionv′v′′ (τx ) = |C|2μ+v′

μ∗+v′′
∫

dωeÃx
(
ωe − ωv′

e

)
Ã∗

x

(
ωe − ωv′′

e

)
× {1 + ei(ωe+�ωv′

)τx }{1 + e−i(ωe+�ωv′′
)τx }. (14)

Here, we define the ionization energy from the ground
electronic-vibrational state in the neutral molecule to the v′th
vibrational state in the 1sσg state as h̄�ωv′ ≡ h̄(ω+v′ − ω0

g ),
and we extend the lower limit of the ωe integral to −∞ by
assuming that the photon energy of the XUV field is suffi-
ciently high to satisfy the condition ωv′

e = ωx − �ωv′ � δ�,
where δ� is the bandwidth of Ãx(�). We explicitly show the
dependence of the delay between the XUV pulse pair τx in the
reduced density matrix.

In accordance with Ref. [18], we also employ the model of
the Gaussian envelope function as Ãx(�):

Ãx(�) = Ã0e− �2

δ�2 +i φ̈

2 �2

, (15)

where φ̈ is the group delay dispersion (GDD) of the XUV
pulse. Substituting Eq. (15) into Eq. (14), we specify the
following form of the reduced density matrix:

ρ
(1)
ionv′v′′ (τx ) = |C′|2μ+v′

μ∗+v′′
e− 1

2δ�2 (ωv′−ωv′′
)2

[e− δ�2

8 {φ̈(ωv′−ωv′′
)}2{1 + ei(ωv′ −ωv′′

)τx }

+ e− δ�2

8 {φ̈(ωv′−ωv′′
)+τx}2

ei{ωx+ 1
2 (ωv′−ωv′′

)}τx + e− δ�2

8 {φ̈(ωv′−ωv′′
)−τx}2

e−i{ωx− 1
2 (ωv′−ωv′′

)}τx ]. (16)

Here, |C′|2 is related to |C|2 as |C′|2 = |C|2√π
2 |Ã0|2�� and

should be equal to the following form:

|C′|2 = [2N〈|μ+|2〉{1 + e− δ�2

8 τx
2

cos(ωxτx )}]−1, (17)

by imposing the normalization condition of
∑Nv−1

v′=0 ρ
(1)
ionv′v′ =

1. We define the number of vibrational states as Nv and
express the absolute square average of the transition dipole
as 〈|μ+|2〉 = 1

Nv

∑Nv−1
v′=0 |μ+v′ |2. We also utilize the relation

�ωv′ − �ωv′′ = ωv′ − ωv′′
. When the delay τx is equal to zero

or, equivalently, a single XUV pulse is irradiated, ρ (1)
ionv′v′′ (τx =

0) is reduced to the following simple formula:

ρ
(1)
ionv′v′′ (0) = μ+v′

μ∗+v′′

Nv〈|μ+|2〉 e− 1
2δ�2 (ωv′−ωv′′

)2

e− δ�2

8 {φ̈(ωv′−ωv′′
)}2

.

(18)

We find from Eq. (16) [from Eq. (18)] that the off-diagonal
elements of ρ

(1)
ionv′v′′ (τx ) can survive for τx > 0 (for τx = 0)

only if the bandwidth δ� is sufficiently large to satisfy the

033083-5



YASUO NABEKAWA AND KATSUMI MIDORIKAWA PHYSICAL REVIEW RESEARCH 5, 033083 (2023)

condition δ� � |ωv′ − ωv′′ | and the GDD φ̈ is sufficiently
small to satisfy the condition |φ̈(ωv′ − ωv′′

)| � δ�−1. The
off-diagonal elements disappear under the opposite extreme
condition of a narrow bandwidth or large GDD, resulting
in the mixed state losing coherence. This conclusion simply
implies that the vibrational state in the 1sσg state is coherent
only when the pulse duration of the XUV pulse is sufficiently
shorter than the principal vibrational period.

In fact, we identify the asymptotic forms of ρ
(1)
ionv′v′′ (0)

under the two extreme conditions mentioned above.
Setting φ̈ = 0 and δ� → ∞, the Gaussian function

e− 1
2��2 (ωv′−ωv′′

)2

approaches unity independently of
v′, v′′, and thus ρ

(1)
ionv′v′′ (0) → μ+v′

μ∗+v′′
/(Nv〈|μ+|2〉)

or ρ̂
(1)
ion (0) → μ : μ†, where we define the normalized

vector μ ≡ (μ0, μ1, . . . , μNv−1)T /
√

Nv〈|μ+|2〉 satisfying
μ† · μ = 1 to describe the matrix ρ̂

(1)
ion (0). Apparently, the

state of H+
2 is pure and the e− ⊗ H+

2 system is coherent under
this extreme condition because ρ̂

(1)
ion (0) is expressed as a sum

of only one outer product of the vector μ; thus, the von
Neumann entropy is S = −1 · log2(1) = 0 and the purity is
Pu = μ†ρ̂

(1)
ion (0)μ = 1.

On the other hand, the product of the Gaussian functions
on the right-hand side of Eq. (18) leads to δv′v′′ when δ� is
reduced to zero or |δ�φ̈| approaches infinity; thus, we obtain
the following asymptotic form of ρ

(1)
ionv′v′′ (0):

ρ
(1)
ionv′v′′ (0) → δv′v′′ |μ+v′ |2/(Nv〈|μ+|2〉)

= δv′v′′ pv′ (δ� → 0 or |δ�φ̈| → ∞), (19)

where pv′ = |μ+v′ |2/(Nv〈|μ+|2〉) is the transition probability
from the ground vibrational state in the X 1�+

g state of the
neutral H2 to the v′th vibrational state of the 1sσg state of H+

2 .
The reduced density matrix ρ

(1)
ionv′v′′ (0) is a diagonal matrix,

and thus the square of the reduced density matrix is also di-
agonal, whose v′v′′ element is given by ρ̂

(1)2

ionv′v′′ (0) = δv′v′′ p2
v′ .

Therefore, we evaluate S = −∑Nv−1
v′=0 p2

v′ log2(p2
v′ ) > 0 and

Pu = ∑Nv−1
v′=0 p2

v′ < 1, resulting in the mixed state of H+
2 and

the entanglement of the e− ⊗ H+
2 system. When we approxi-

mate μ+v′
as proportional to the overlap integral between the

ground vibrational state wave function in the X 1�+
g state of

the neutral H2 and the v′th vibrational state wave function in
the 1sσg state of H+

2 , we obtain S � 3 and Pu � 0.2, respec-
tively, under this extreme condition. Using Eq. (16), we can
qualitatively evaluate the evolution of the entanglement upon
changing the delay between the two XUV pulses τx. When the
delay τx is sufficiently larger than the pulse duration so as to
satisfy |δ�τx| � 1, the second and third terms in the square
brackets of Eq. (16) can be neglected and the reduced density
matrix ρ

(1)
ionv′v′′ (τx ) is simplified to

ρ
(1)
ionv′v′′ (τx ) → μ+v′

μ∗+v′′

2Nv〈|μ+|2〉e− 1
2δ�2 (ωv′−ωv′′

)2{1 + ei(ωv′ −ωv′′
)τx },

(φ̈ = 0 and |δ�τx| � 1). (20)

FIG. 2. (a) Evolution of the purity of the reduced density matrix
ρ

(1)
ionv′v′′ (τx ) upon changing the delay between the XUV pulse pair.

(b) Evolution of the von Neumann entropy of ρ
(1)
ionv′v′′ (τx ). One of the

local maxima and one of the local minima are indicated with arrows.

We set the GDD to zero to assume a Fourier limit XUV
pulse pair to obtain Eq. (20). The purity is given by

Pu =
Nv−1∑
v′=0

Nv−1∑
v′′=0

pv′ pv′′e− 1
δ�2 (ωv′−ωv′′

)2

× cos2{(ωv′ − ωv′′
)τx/2}, (21)

meaning that the state of H+
2 is pure when (ωv′ − ωv′′

)τx/2
is equal to an integer multiple of π for any v′-v′′ pair. This
requirement is the same as the condition that τx coincides with
the revival time of the vibrational wave packet Trev, which is
approximately 280 fs for the vibrational wave packet in the
1sσg state of H+

2 . The evolutions of the purity and the von
Neumann entropy are indeed both similar to the evolution
of the vibrational wave packet as shown in Figs. 2(a) and
2(b). We assumed a pair of XUV Fourier limit pulses with
a bandwidth of 2.25 eV and a center angular frequency of
21.8 eV, both of which were the same values adopted in
Ref. [18], to calculate Pu and S in these figures. We observe
from Figs. 2(a) and 2(b) that Pu and S are both modulated,
mainly with a period of vibrational motion of ≈17 fs, and
we also find that Pu is maximized and S is minimized, when
τx = 0 and τx � Trev, 2Trev. Note that the maximum value of
Pu does not reach unity and the minimum value of S does not
fall to zero because δ� is large but finite.

III. TWO-PHOTON INTERACTION

A. General form of the state vector

We analyze the third term in Eq. (A20) in Ap-
pendix A to express the state vector involving the two-photon
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excitation/ionization process defined as

|� (2)(R; t )〉 ≡
(

1

ih̄

)2 ∫ t

t0

dt1

∫ t1

t0

dt2e
Ĥ (R)

ih̄ (t−t1 )V̂ (t1)e
Ĥ (R)

ih̄ (t1−t2 )V̂ (t2)e
Ĥ (R)

ih̄ (t2−t0 )|�(R; t0)〉. (22)

We assume the initial state to be the ground vibrational state in the ground electronic state of a general molecule M, |�0
g (R)〉,

and the final state to be the e− ⊗ M+ system, |� (2)
i (R; t )〉, which is proportional to the superposition of |�+v′

β (R)〉|ψcβ
(ωe)〉 with

respect to β, v′, and ωe, as was adopted in the previous section. Placing the approximate resolution of identity expressed as
Eq. (2) in front of V̂ (t1) and in front of V̂ (t2), the state vector is divided into two parts: |� (2)

i (R; t )〉 = |� (2)
i0 (R; t )〉 + |� (2)

i+ (R; t )〉,
where we respectively define the first and second terms on the right-hand side of this equation as

∣∣� (2)
i0 (R; t )

〉 ≡ − 1

h̄2

∫ t

t0

dt1

∫ t1

t0

dt2

∫
d3MR1

∫
d3MR2e

Ĥ (R)
ih̄ (t−t1 )

× P̂+(R, R1)V̂ (t1)e
Ĥ (R1 )

ih̄ (t1−t2 )P̂(R1, R2)V̂ (t2)e
E0

g
ih̄ (t2−t0 )

∣∣�0
g (R2)

〉
, (23)

∣∣� (2)
i+ (R; t )

〉 ≡ − 1

h̄2

∫ t

t0

dt1

∫ t1

t0

dt2

∫
d3MR1

∫
d3MR2e

Ĥ (R)
ih̄ (t−t1 )

× P̂+(R, R1)V̂ (t1)e
Ĥ (R1 )

ih̄ (t1−t2 )P̂+(R1, R2)V̂ (t2)e
E0

g
ih̄ (t2−t0 )

∣∣�0
g (R2)

〉
. (24)

The state vector of |� (2)
i0 (R; t )〉 in Eq. (23) coincides with the transition from the initial state to the excited states of the neutral

molecule with one-photon absorption followed by ionization by the absorption of one more photon, while that of |� (2)
i+ (R; t )〉 in

Eq. (24) describes the two-photon ionization and transition via the ground and excited states of the molecular ion. Substituting
Eqs. (A8) and (A17) into Eqs. (23) and (24), and respectively approximating t → ∞ and t0 → −∞ for the upper and lower
limits in the time integrals, we can rewrite these formulas as follows:

∣∣� (2)
i0 (R; t )

〉 = − 1

h̄2

∑
γ

∑∫
v′′

∫ ∞

0
dω′

e

∣∣�+v′′

γ (R)
〉 |ψcγ

(ω′
e)〉 e−i(ω+v′′

γ +ω′
e )t eiω0

gt0

×
∑

β

∑∫
v′

μ+v′′v′
γ β (ω′

e)μv′
βg

∫
dt1

∫
dt2θ (t1 − t2)E (t1)E (t2)ei(ω+v′′

γ +ω′
e−ωv′

β )t1 ei(ωv′
β −ω0

g )t2 , (25)

∣∣� (2)
i+ (R; t )

〉 = − 1

h̄2

∑
γ

∑∫
v′′

∫ ∞

0
dω′

e

∣∣�+v′′

γ (R)
〉 |ψcγ

(ω′
e)〉 e−i(ω+v′′

γ +ω′
e )t eiω0

gt0

×
∑

β

∑∫
v′

μ+v′′+v′
γ β μ+v′

βg (ω′
e)

∫
dt1

∫
dt2θ (t1 − t2)E (t1)E (t2)ei(ω+v′′

γ −ω+v′
β )t1 ei(ω+v′

β +ω′
e−ω0

g )t2 , (26)

where we neglect the energy transfer between the continuum
electronic states, allowing us to apply the approximation∫

d3MR
〈
�+v′′

γ (R)
∣∣ 〈

ψcγ
(ω′′

e )
∣∣μ̂∣∣ψcβ

(ω′
e)

〉 ∣∣�+v′

β (R)
〉

� δ(ω′′
e − ω′

e)
∫

d3MR
〈
�+v′′

γ (R)
∣∣μ̂+∣∣�+v′

β (R)
〉

≡ δ(ω′′
e − ω′

e)μ+v′′+v′
γ β (27)

to obtain Eq. (26). We introduce the Heaviside step function
θ (t ) in Eqs. (25) and (26). The dipole moment μ+v′′+v′

γ β in
Eq. (26) is regarded as the transition amplitude from the β-
electronic and v′th nuclear state in a molecular ion (v′ may
be a continuum if the states of the molecular ion involve
dissociation) to the γ -electronic and v′′th nuclear state in a
molecular ion, while the dipole moment μ+v′′v′

γ β (ω′
e) in Eq. (25)

is the transition amplitude from the β-electronic and v′th
nuclear state in the neutral molecule to the γ -electronic and
v′′th nuclear state in the molecular ion accompanying the

continuum electron with a KE of h̄ω′
e. Other dipole moments

have already been defined in Sec. II A.

B. Two-photon ionization/dissociation of the H2 molecule

We can use Eqs. (25) and (26) to obtain the general form of
the autocorrelation or cross-correlation function of the XUV
pulse involving the molecular response, as already stated in
Ref. [19]. We do not, however, give further details of the
autocorrelation function in the main text of this paper to
focus on the probing process of the vibrational wave packet
in the 1sσg state of H+

2 by the UV pulse irradiation providing
the second photon, although we give a brief explanation in
Appendix B. We consider only the process described using
Eq. (26) because the probe is implemented via the excitation
of the ground electronic state within a molecular ion generated
by the ionization with the first photon.

To adjust the state vector |� (2)
i+ (R; t )〉 to the state of the

e− ⊗ H+
2 system, we impose somewhat intentional approxi-

mations on Eq. (26). First, we include only the dipole moment
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from the 1sσg state to the 2pσu state of H+
2 and discard

other dipole moments from the summation for the electronic
states

∑
β and

∑
γ , because we expect the magnitude of the

1sσg → 2pσu dipole moment to be much larger than those
of other dipole moments from our past experimental results
[20–22]. This approximation might contradict the fact that we
actually observed H+ fragments via the transition to the 2pπu

state when the probe was an XUV APT [22]. We also found
the autocorrelation signal of the APT on the H+ fragment
with high KEs [23], which originated from the nonresonant
contribution of the small dipole moments accumulated. Nev-

ertheless, we also know that the yield of the H+ fragment via
the 2pσu state by absorbing a UV photon was significantly
larger than those through other dissociation pathways involv-
ing the absorption of an XUV photon. Thus, we simplify the
situation by adopting the approximation mentioned above.
As the 2pσu state is dissociative, we replace the quantum
number v′′ with κ ′′ to express the continuum variable, and the
symbol

∫∑
v′′ is reduced to the simple integral

∫ ∞
κ0

dκ ′′, where
h̄κ ′ ≡ h̄κ ′′ − h̄κ0 is the KER of the 2pσu state and h̄κ0 is the
constant energy of the dissociation limit. Then, Eq. (26) is
reduced to

∣∣� (2)
i+ (R; t )

〉 = − 1

h̄2

∫ ∞

0
dκ ′

∫ ∞

0
dω′

e

∣∣�+
2pσu

(R; κ ′ + κ0)
〉 |ψc(ω′

e)〉 e−i(κ ′+κ0+ω′
e )t

×
∑
v′

μ+v′
2pσu

(κ ′)μ+v′
1sσg

(ω′
e)S

(
κ ′ + κ0 − ω+v′

, ω+v′ + ω′
e − ω0

g; τx, τu
)
, (28)

where we define the transition dipole moment from the ground electronic-vibrational state of H2 to the v′th vibrational state in
the 1sσg state of H+

2 accompanying the continuum electron with a KE of h̄ω′
e as μ+v′

1sσg
(ω′

e) and that from the v′th vibrational state

in the 1sσg state to the 2pσu state with a KER of h̄κ ′ as μ+v′
2pσu

(κ ′). Note that we express the energy of the 2pσu state as h̄(κ ′ + κ0)

so as to describe the KER as h̄κ ′. The constant phase factor eiω0
gt0 is omitted. We show the potential curves of the electronic

states in Fig. 3 for easy understanding of the relation among the energies involved on the right-hand side of Eq. (28). The photon
energies of the XUV and UV pulses are depicted as vertical arrows. The continuum energies of a photoelectron and the KER of
the H + H+ system are also similarly depicted.

We express the double time integration amplitude as S(�1,�2; τx, τu) in Eq. (28), which is defined as

S(�1,�2; τx, τu) ≡
∫

dt1

∫
dt2θ (t1 − t2)E (t1)E (t2)ei�1t1 ei�2t2 . (29)

We explicitly show the τx and τu delays of the electric fields described in Eq. (A19). The energy h̄�1 = h̄κ ′ + h̄κ0 − h̄ω+v′
is

the excitation energy in H+
2 , and h̄�2 = h̄ω′

e + h̄ω+v′ − h̄ω0
g coincides with the total energy required to generate a continuum

electron with a KE of h̄ω′
e by ionization.

Substituting Eq. (A19) into Eq. (29), we can rewrite S as S = Sux + Sxu + Suu + Sxx, where the amplitude Sux is defined as the
following time-ordered integration amplitude:

Sux(�1,�2; τx, τu) ≡
∫

dt1

∫
dt2θ (t1 − t2)Eu(t1 − τu)Ex(t2; τx )ei�1t1 ei�2t2 . (30)

Other terms are obtained by replacing Eu(t1 − τu)Ex(t2; τx ) with Ex(t1; τx )Eu(t2 − τu), Eu(t1 − τu)Eu(t2 − τu), and
Ex(t1; τx )Ex(t2; τx ) in Eq. (30). We restrict ourselves to considering only the amplitude Sux(�1,�2; τx, τu) because this term
mainly contributes to the double time integration amplitude under the resonant excitation condition from the 1sσg state to the
2pσu state upon the UV field irradiation, as shown later.

Using the Fourier representation of the Heaviside step function θ (t ) = ∫
d�θ̃ (�)e−i�t (the coefficient 1

2π
is omitted from

the formula of the inverse FT defined in Sec. II A), we obtain the formula Sux(�1,�2; τx, τu) = ∫
d�θ̃ (�1 − �)Ẽu(�)Ẽx(�1 +

�2 − �; τx )ei�1τu = ∫
d�θ̃ (�1 − �)Ãu(� − ωu)Ãx(�1 + �2 − � − ωx; τx )ei�1τu , where we adopt the Fourier amplitudes of the

field envelopes defined in Eqs. (5) and (6). Substituting the explicit form of θ̃ (�) = − 1
2iπ P

1
�

+ 1
2δ(�) into this equation, we

have

Sux(�1,�2; τx, τu) = − 1

2iπ
P

∫
d�

Ãu(�1 − ωu − �)Ãx(�2 − ωx + �; τx )e−i�τu

�
ei�1τu

+ 1

2
Ãu(�1 − ωu)Ãx(�2 − ωx; τx )ei�1τu

≡ − 1

2iπ
P

∫
d� f (�)ei�1τu + 1

2
Ãu(�1 − ωu)Ãx(�2 − ωx; τx )ei�1τu , (31)

where the symbol P denotes the principal value integral (PVI)
of f (�). We examine the asymptotic behavior of the PVI by

assuming that Ãu(�) and Ãx(�) are modeled with a simple
analytical form such as the nth power of the Lorentz function,
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namely, Ãu,x(�) ∝ { �2

δ�2
u,x

+ 1}−n. Although the temporal en-
velope may not be a realistic form, this model of the Fourier
amplitude is convenient for qualitatively evaluating the PVI.
The PVI of the Gaussian function with the analytical form is
derived in Appendix B.

By replacing � with a complex variable z, we can im-
plement a closed contour integral on the complex plane.
When τu and τu − τx are both positive and significantly
larger than the pulse durations of both fields, δ�−1

u,x,
the contribution of the semicircle contour in the lower
half of the complex plane approaches zero as its radius
approaches infinity. A schematic of the contours rele-
vant to the PVI estimation is shown in Fig. 10(b) in
Appendix B. The closed contour is composed of the PVI
on the real axis, the semicircle contour with an infinitesimal
radius surrounding zero in the lower half of the complex
plane, and the infinite-radius semicircle contour in the lower
half of the complex plane, which are indicated as Cz− ,
Cε− , and CR− in Fig. 10(b) in Appendix B, respectively.

As the contributions from the poles in the closed con-
tour are proportional to τu

me−δ�u,xτu , or τu
me−δ�u,x (τu−τx ), both

of which are close to zero under the imposed condition,
the value of the closed contour integral is approximately
zero. At the same time, the contribution from the semi-
circle contour with the infinitesimal radius should be iπ
times the residue at z = 0 [iπResz=0{ f (z)}] because the
direction of the contour integral is counterclockwise. As
a result, we obtain P

∫
d� f (�) + iπResz=0{ f (z)} � 0, or

P
∫

d� f (�) � −iπResz=0{ f (z)}, for τu � δ�−1
u,x and τu −

τx � δ�−1
u,x, which we call the large-delay condition. The

situation is reversed when the delays are negative and
τu � −δ�−1

u,x and τu − τx � −δ�−1
u,x. We have to choose

the closed contour in the upper half of the complex
plane, then we find that P

∫
d� f (�) � iπResz=0{ f (z)}.

We evaluate Resz=0{ f (z)} = Ãu(�1 − ωu)Ãx(�2 − ωx; τx )
by assuming that z = 0 is a simple pole of f (z);
thus, the resultant asymptotic form of the amplitude
Sux(�1,�2; τx, τu) in Eq. (31) is estimated to be the following
form:

Sux(�1,�2; τx, τu) �
{

Ãu(�1 − ωu)Ãx(�2 − ωx; τx )ei�1τu for τu � δ�−1
u,x and τu − τx � δ�−1

u,x

0 for τu � −δ�−1
u,x and τu − τx � −δ�−1

u,x

. (32)

Because the argument in Ãu is equal to �1 − ωu = κ ′ + κ0 −
ω+v′ − ωu, the carrier photon energy of the UV pulse must be
nearly equal to the excitation energy from the 1sσg state to the
2pσu state in H+

2 or, simply, the resonant excitation is manda-
tory to obtain a substantial magnitude of Sux(�1,�2; τx, τu).
In addition, from the argument in Ãx, the carrier photon energy
of the XUV pulse must be larger than the ionization energy so
as to realize �2 − ωx = ω′

e − {ωx − (ω+v′ − ω0
g )} � 0 in the

region ω′
e > 0. These two requirements for the carrier photon

energies of the UV and XUV pulses are natural and do not
require consideration of the theoretical model in detail, but
they are significant in obtaining a reasonable approximation of
S(�1,�2; τx, τu) � Sux(�1,�2; τx, τu) by neglecting Sxu, Suu,
and Sxx. The amplitude Sxu is obtained by interchanging t1 and
t2 on the right-hand side of Eq. (30), which is equivalent to the
exchange of �1 and �2 and the sign change of � → −� on
the right-hand side of Eq. (31). Therefore, we find that Sxu is
finite only in the region of negative τu and τu − τx with large
magnitudes and it contains the factor Ãu[ω′

e − {ωu − (ω+v′ −

ω0
g )}]Ãx(κ ′ + κ0 − ω+v′ − ωx; τx ). The carrier photon energy

of the UV pulse is lower than the ionization energy, and thus
ω′

e − {ωu − (ω+v′ − ω0
g )} cannot become zero whenever ω′

e
is positive. As a result, the magnitude of Sxu is negligibly
small compared with that of Sux. For the same reason, we can
neglect the amplitude Suu. The contribution of the amplitude
Sxx cannot be neglected only for the reason mentioned above.
Actually, we successfully measured the vibrational motion of
an H+

2 molecule by detecting the H+ ions emerging upon
XUV excitation in a past experiment [22]. However, this mea-
surement was possible only when the intensity of the XUV
pulse was sufficiently high. Thus, we impose the condition
that the contribution of the amplitude Sxx is small compared
with that of the amplitude Sux due to the low intensity of the
XUV pulse.

We rewrite the right-hand side of Eq. (28) by replacing
S with Sux and substituting Eq. (32) under the large-delay
condition

∣∣� (2)
i+ (R; t )

〉 = − 1

h̄2

∫ ∞

0
dκ ′

∫ ∞

0
dω′

e|�+
2pσu

(R; κ ′ + κ0)〉 ∣∣ψc(ω′
e)

〉
e−i(κ ′+κ0+ω′

e )t
∑
v′

μ+v′
2pσu

(κ ′)

× μ+v′
1sσg

(ω′
e)Ãu(κ ′ + κ0 − ω+v′ − ωu)Ãx

(
ω+v′ + ω′

e − ω0
g − ωx; τx

)
ei(κ ′+κ0−ω+v′

)τu . (33)

We obtain the R′-R′′ element of the second-order den-
sity matrix expressing the ionization and excitation process,
ρ̂

(2)
i+ (R′, R′′; t ), as

ρ̂
(2)
i+ (R′, R′′; t ) ∝ ∣∣� (2)

i+ (R′; t )
〉 〈

�
(2)
i+ (R′′; t )

∣∣. (34)

We normalize ρ̂
(2)
i+ (R′, R′′; t ) so as to satisfy

Tr
{
ρ̂

(2)
i+

} =
∫

d3Rρ̂
(2)
i+ (R, R; t )

= |C+|2
∫

d3R
〈
�

(2)
i+ (R; t )

∣∣� (2)
i+ (R; t )

〉 = 1 (35)
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FIG. 3. Energy diagram related to Eq. (28). The potential energy
curve of the X 1�+

g state in H2, and those of the 1sσg and 2pσu states
in H+

2 , are shown as labeled black curves. The photon energy of the
XUV pulse pair is indicated as the length of the pair of blue-violet
vertical arrows labeled h̄ωx , and that of the UV pulse is also indicated
as the length of the cyan vertical arrow labeled h̄ωu. The length
of the gold arrow labeled h̄ωe and that of the pink arrow labeled
h̄κ are equivalent to the energy of the continuum electron and the
KER of the H + H+ system, respectively. The energy level of the
ground vibrational state in the X 1�+

g state of H2 is labeled h̄ω0
g on

the right axis. The energy levels of the v′th vibrational state and the
dissociation limit in H+

2 are also labeled h̄ω+v′
and h̄κ0 on the right

axis, respectively. The gray shaded area on the X 1�+
g potential curve

is the intensity profile (square) of the ground vibrational function in
the X 1�+

g state; immediately above this, the intensity profile of the
wave packet projected onto the 1sσg potential curve is depicted in a
similar manner. The wave packet on the 1sσg potential curve evolving
after ≈10 fs is depicted as the gray shaded area at an internuclear
distance of ≈160 pm.

when we need to evaluate the purity or von Neumann entropy
of the reduced density matrix.

C. Joint measurement of the KE of an electron
and the KER of a H + H+ system

We confirm that the state vector |� (2)
i+ (R; t )〉 in Eq. (33) or

the density matrix ρ̂
(2)
i+ (R′, R′′; t ) in Eq. (34) is appropriate by

verifying that the joint probability of simultaneously detecting
an electron with a KE of h̄ωe and a proton with a KE of h̄κ/2
calculated from |� (2)

i+ (R; t )〉 or ρ̂
(2)
i+ (R′, R′′; t ) is consistent

with that demonstrated in Ref. [4]. An observable for this joint
measurement Ô(R, R′; κ, ωe) may be the projection operator

to the state |�+
2pσu

(R; κ + κ0)〉|ψc(ωe)〉 e−i(κ+κ0+ωe )t when we
assume the projective measurement, and thus we define

Ô(R, R′; κ, ωe) ≡ ∣∣�+
2pσu

(R; κ + κ0)
〉 |ψc(ωe)〉 〈ψc(ωe)|

× 〈
�+

2pσu
(R′; κ + κ0)

∣∣ (36)

as the observable. The JES P(κ, ωe) is proportional to
Tr{Ô(κ, ωe)ρ̂ (2)

i+ (t )}, which is identical to the following equa-
tion:

P(κ, ωe) ∝
∫

d3R
∫

d3R′ 〈ψc(ωe)| 〈
�+

2pσu
(R′; κ + κ0)

∣∣ρ̂ (2)
i+

× (R′, R; t )
∣∣�+

2pσu
(R; κ + κ0)

〉 |ψc(ωe)〉

=
∣∣∣∣
∫

d3R〈ψc(ωe)|〈�+
2pσu

(R′; κ + κ0)
∣∣� (2)

i+ (R; t )
〉∣∣∣∣

2

∝
∣∣∣∣∣
∑
v′

μ+v′
2pσu

(κ )μ+v′
1sσg

(ωe)Ãu(κ+κ0−ω+v′−ωu)Ãx

× (
ω+v′ + ωe − ω0

g − ωx; τx
)
e−iω+v′

τu

∣∣∣∣∣
2

, (37)

where we have inserted Eq. (33) into the second line to
obtain the last line in Eq. (37). The overall phase factor
e−i(κ+κ0+ωe )t eiκτu does not influence the joint probability; thus,
P(κ, ωe) in Eq. (37) is independent of the present time t .
We apply the approximation in Eq. (13) to μ+v′

1sσg
(ωe) � μ+v′

,
which is independent of ωe. The transition dipole moment
of μ+v′

2pσu
(κ ) is obtained as follows. Substituting γ = 2pσu,

+v′′ = κ , and β = 1sσg into Eq. (27), we find

μ+v′
2pσu

(κ ) =
∫

d3R
〈
�2pσu (κ + κ0; R)

∣∣μ̂+∣∣�+v′

1sσg
(R)

〉
=

∫
d3Rφ∗

2pσu
(κ; R)φ+v′

1sσg
(R)

〈
ψ+

e2pσu
(R)

∣∣μ̂+∣∣ψ+
e1sσg

(R)
〉
,

(38)

where φ2pσu (κ; R) is the dissociative nuclear wave function
in the 2pσu state. We also approximate the electronic dipole
moment 〈ψ+

e2pσu
(R)|μ̂+|ψ+

e1sσg
(R)〉 as proportional to |R| in the

following calculations. The Fourier amplitude of the envelope
of the XUV pulse pair is described as Ãx(ω+v′ + ωe − ω0

g −
ωx; τx ) = Ãx[ωe − {ωx − (ω+v′ − ω0

g )}]{1 + ei(ωe+ω+v′−ω0
g )τx }.

Substituting the Fourier amplitudes of the XUV pulse pair
and the UV pulse into Eq. (37), we can obtain the joint energy
spectrum P(κ, ωe) at a delay between the two XUV pulses
of τx and a delay of the UV pulse from the first XUV pulse
of τu. In accordance with Ref. [4], we adopt the form of
the cos2( t

T ) function as temporal amplitude envelopes of the
XUV pulse pair and the UV pulse with full width at half
maximum pulse durations of 690 as and 2.4 fs of the intensity
envelope, δtFWHM, respectively, where T is proportional to
δtFWHM, T = δtFWHM

2υ
, and υ = cos−1(2− 1

4 ). The carrier photon
energy of the XUV pulse pair h̄ωx and that of the UV pulse
h̄ωu are determined to be 21.76 and 3.1 eV, respectively.

We show the resultant JES, P(κ, ωe), of finding an electron
with a KE of h̄ωe and a H + H+ system with a KER of h̄κ

at τx = 12.1 fs and τu = 242 fs in Fig. 4(a). In this figure,
the photoelectron spectra in the entire KER spectral range
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FIG. 4. (a) JES, P(κ, ωe), of finding an electron with a KE of h̄ωe and a H + H+ system with a KER of h̄κ at τx = 12.1 fs and τu = 242 fs.
(b) Evolution of the KE spectrum of an electron upon scanning τu jointly measured with a H + H+ system with a KER of 1.8 eV. (c) Magnitude
square of the FT of the joint KE spectrogram shown in Fig. 4(b). Magnified views in the Fourier frequency ranges of [0.163 eV, 0.255 eV]
and [0.340 eV, 0.463 eV] are exhibited. The difference frequencies between the adjacent vibrational states and those between the next adjacent
vibrational states are indicated as labels of fvv′ above the ticks on the top axis and the grids with dotted lines.

of the H + H+ system exhibit modulation with a period of
0.34 eV, which is equivalent to hτx

−1, and it presents a visible
feature similar to a trilobite’s back in the h̄ωe and h̄κ ranges
of Fig. 4(a). These characteristics are in good agreement with
those appearing in Fig. 1(a) in Ref. [4]. Note that the minima
and maxima of the h̄ωe and h̄κ ranges of Fig. 4(a) coincide
with those of Fig. 1(a) in Ref. [4], even though the units are
different.

We also show the evolution of the joint KE spectrum of
electrons at τx = 12.1 fs upon changing τu when h̄κ is set to
1.8 eV in Fig. 4(b). Temporal modulations with a period of
approximately 21 fs are clearly observed in this figure, while
the peak KE positions of the modulations linearly shift with
respect to the delay τu, resulting in a fishnetlike structure.
We verify that the temporal modulation emerges from the
vibrational wave packet of H+

2 by FT of the delay-joint KE
spectrogram (DJKS) in Fig. 4(b). The magnitude square of
the FT spectrogram indeed exhibits discrete peaks located at
the difference frequencies between the adjacent vibrational
states in the left panel of Fig. 4(c) and those between the next
adjacent vibrational states in the right panel of the same figure.

The specific characteristics demonstrated in Figs. 4(b) and
4(c) are the same as those shown in Figs. 1(b) and 1(c) in
Ref. [4], and thus we conclude that our analytical model of
the state vector described as Eq. (33) is a reasonably good ap-
proximate solution of the TDSE that reproduces the composite
system consisting of a continuum electron and a H + H+
system.

By virtue of the analytical form in Eq. (37), we expect
that the computational cost of calculating the DJKS will
be reasonably low compared with that required for the nu-
merical integration of the TDSE, and thus we can calculate

FIG. 5. (a) DJKS of an electron obtained by integrating DJKSs
with KERs from 1.14 to 2.86 eV with an increment of 0.02 eV.
(b) (Red curve) Line profile of the DJKS shown in (a) at an elec-
tron KE of 6.18 eV, the position of which is indicated as a red
dotted horizontal line in (a), and (blue curve with shaded area)
line profile of the DJKS shown in Fig. 4(b). (c) (Red curve) Line
profile of the DJKS shown in (a) at a delay of 131 fs, the po-
sition of which is indicated as a red dotted vertical line in (a),
and (blue curve with shaded area) line profile of the DJKS shown
in Fig. 4(b).

033083-11



YASUO NABEKAWA AND KATSUMI MIDORIKAWA PHYSICAL REVIEW RESEARCH 5, 033083 (2023)

multiple DJKSs under different conditions within a few
minutes.

Taking advantage of the low computational cost, we accu-
mulate DJKSs by changing the KER of the H + H+ system to
find the resolution required for the actual KER measurement.
The resultant DJKS is shown in Fig. 5(a). We calculated 87
DJKSs in the KER range from 1.14 to 2.86 eV with an incre-
ment of 0.02 eV, in which the visible JES is involved as shown
in Fig. 4(a), and added all the DJKSs to obtain the DJKS
in this figure. We cannot find a notable difference between
the DJKS shown in Fig. 4(b) and that shown in Fig. 5(a).
The similarity of the two spectrograms is also confirmed by
comparing their line profiles at a specific electron KE and
a specific delay of the UV pulse. We show the profile of
the joint probability of detecting an electron with a KE of
6.18 eV at a KER of 1.8 eV upon changing the delay of the

UV pulse as the blue curve with a shaded area in Fig. 5(b),
which is very similar to that obtained by integrating the KER,
shown as the red curve in the same figure. The KE spectral
profile at a delay of 131 fs with a KER of 1.8 eV, shown
as the blue curve with a shaded area in Fig. 5(c), is also
almost identical to that with an integrated KER. Therefore,
it is reasonable to conclude that we do not need to resolve
the KER of the H + H+ system, and that we only need to
detect an H+ ion in coincidence with a KE-resolved elec-
tron to acquire the DJKS. This is advantageous for designing
an actual ion spectrometer used in the experiment because
it must only distinguish the mass/charge ratio of the frag-
ment ion.

The analytical form of the JES in Eq. (37) is also beneficial
for finding the reason why the fishnetlike structure appears in
the DJKS spectrogram. We rewrite Eq. (37) as

P(κ, ωe) ∝
∑
v′v′′

qv′
q∗v′′

e−i(ω+v′ −ω+v′′
)τu{1 + ei(ωe+ω+v′−ω0

g )τx }{1 + e−i(ωe+ω+v′′ −ω0
g )τx }

= 2
∑
v′

|qv′ |2[1 + cos
{(

ωe + ω+v′ − ω0
g

)
τx

}] + 8
∑
v′>v′′

|qv′
q∗v′′ | cos

(
�ω+v′v′′

τu − �ω+v′v′′ τx

2
− �φv′v′′

)

× cos

{(
ωe + ω+v′ − ω0

g

)τx

2

}
cos

{(
ωe + ω+v′ − ω0

g

)τx

2
− �ω+v′v′′ τx

2

}
, (39)

where we define qv′ ≡ μ+v′
2pσu

(κ )μ+v′
1sσg

(ωe)Ãu(κ − {ωu + ω+v′ − κ0})Ãx[ωe − {ωx − (ω+v′ − ω0
g )}], �ω+v′v′′ ≡ ω+v′ − ω+v′′

, and

�φv′v′′ ≡ arg qv′ − arg qv′′
.

We restrict ourselves to considering the P(κ, ωe) originating from only two vibrational states with vibrational numbers of
v′ = 5 and v′′ = 6 because the most pronounced vibrational frequency in the DJKS spectrogram is f56 as shown in Fig. 4(c). We
also assume that q5 is approximately the same as q6 and described as the real number q. Then, the JES P(κ, ωe) in Eq. (39) may
be simplified to

P(κ, ωe) ∼ 2q2[2 + cos(τxωe + φX ) + cos(τxωe + φX − �ω+56τx )]

+ 8q2 cos

(
�ω+56τu − �ω+56 τx

2

)
cos

(
τx

2
ωe + φX

2

)
cos

(
τx

2
ωe + φX

2
− �ω+56 τx

2

)
, (40)

where we define φX ≡ τx(ω+5 − ω0
g ). The first three terms in

the square brackets in Eq. (40) express an electron spectrum
exhibiting the interference of two sinusoidal functions with
the same period τx and a phase difference of �ω+56τx, which
is independent of the delay of the UV pulse τu. The last term
in Eq. (40) specifies the evolution of the electron spectrum
upon changing τu. We examine how the characteristic of the
modulation in the DJKS spectrogram is altered by adopting
special values of τx. First, we assume τx to be approximately
equal to π/�ω+56 ≈ 10 fs, namely �ω+56τx ≈ π . The sinu-
soidal modulations in the square brackets are canceled out and
the DJKS in Eq. (40) is reduced to the simple formula

P(κ, ωe) ∼ 4q2{1 + sin(�ω+56τu) sin(τxωe + φX )}. (41)

We notice from Eq. (41) that the amplitude of the spec-
tral interference fringes is modulated in accordance with
sin(�ω+56τu), and thus the phases of the spectral modulation
at �ω+56τu = (2n − 1)π , (n = 1, 2, . . . ), where the visibility
of the spectral interference fringes is maximized, are flipped
by π compared with the phases at �ω+56τu = 2nπ , where
the visibility of the spectral interference fringes is also max-

imized. This characteristic of the DJKS can be clearly seen
in Figs. 4(b) and 5(a), and it is the origin of the fishnetlike
structure, although τx slightly deviates from 10 fs.

The characteristic of the DJKS is changed by fix-
ing �ω+56τx ≈ 2π (τx ≈ π/�ω+56 ≈ 20 fs). The DJKS in
Eq. (40) is transformed to

P(κ, ωe) ∼ 4q2{1 + cos(�ω+56τu)}{1 + cos(τxωe + φX )}.
(42)

The spectral interference fringes described as 1 + cos(τxωe +
φX ) are only altered in their magnitude upon changing τu and
do not exhibit the phase flip of the fringes.

We confirmed these characteristics at τx ≈ 10 and 20 fs
by calculating DJKSs in accordance with Eq. (37), as shown
in Figs. 6(a) and 6(b). We accumulated DJKSs in the KER
region between 1.14 and 2.86 eV and substituted 10.3 fs for
τx to obtain Fig. 6(a) and 20.6 fs for τx to obtain Fig. 6(b),
respectively. We can again observe a fishnetlike structure in
Fig. 6(a) and confirm that this structure originates from the π

phase shift of the interference fringes of the joint KE spectral
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FIG. 6. DJKSs of the electron obtained by integrating DJKSs with KERs from 1.14 to 2.86 eV with an increment of 0.02 eV. (a) DJKS
when 10.3 fs is substituted into τx , which is the delay between the two XUV pulses. The joint KE spectral profiles of the electron at τu = 131
and 141 fs are depicted as a red curve and a blue curve with a shaded area in the right panel, respectively. (b) DJKS when 20.6 fs is substituted
into τx . The joint KE spectral profiles of the electron at τu = 271 and 281 fs are depicted as a red curve and a blue curve with a shaded area in
the right panel, respectively.

profile upon an increment of τu of π
�ω+56 ≈ 10 fs, shown as

the red curve and the blue curve with a shaded area in the
right panel of this figure. In contrast, in Fig. 6(b), each peak
of the joint KE spectral profile is modulated at the same time
in accordance with the advance of τu without changing the
phase of the fringes. Actually, the joint KE spectral profile at
τu = 271 fs almost vanishes in the entire KE region, while
that with interference fringes fully emerges at τu = 281 fs,
respectively, shown as the red curve and the blue curve with
a shaded area in the right panel of this figure. Thus, we
conclude that the simplified form of P(κ, ωe) in Eq. (40) is
feasible for analyzing the periodicity and phase in the spectral
modulations in DJKS spectrograms.

The visibility of the periodic modulation is maximized
around τu ≈ 140 fs in Fig. 6(a), and around τu ≈ 280 fs in
Fig. 6(b). The period of the visibility enhancement is ≈280 fs
in both figures. These features cannot emerge from the sim-
plified form of P(κ, ωe) in Eq. (40) because they are related
to the anharmonicity of the vibrational energies, and thus the
periodic modulations originating from �ω+v′v′+1 other than
�ω+56 must be considered. Actually, the vibrational wave
packet at the time around an integer multiple of the revival
time Trev is localized if the vibrational wave packet is created
by the irradiation of a single XUV pulse, and thus the vibra-
tional wave packet should be initially localized. This situation
is similar to that applied to calculate the DJKS spectrogram
in Fig. 6(b). The second XUV pulse is irradiated around the
time when the vibrational wave packet created with the first
XUV pulse returns to the inner turning point only after the one

round trip of the vibrational wave packet; thus, the vibrational
wave packet is not significantly delocalized. Then the first
quasilocalized vibrational wave packet is synthesized with
the localized vibrational wave packet created with the second
XUV pulse at the inner turning point. Therefore, the synthe-
sized vibrational wave packet evolves in a similar manner to
the first vibrational wave packet, resulting in enhanced visi-
bility at every Trev owing to the localization of the vibrational
wave packet at every Trev.

In contrast to the condition of the synthesized vibrational
wave packet mentioned above, the first vibrational wave
packet should be located around the outer turning point when
the second XUV pulse is irradiated at τx ≈ 10 fs and the
second vibrational wave packet is created at the inner turning
point. The resultant synthesized vibrational wave packet is
similar to the single vibrational wave packet that evolves after
time Trev

2 . Therefore, the first enhancement of the visibility
of the fringes in the DJKS spectrogram takes place around
τu ∼ Trev

2 , as shown in Fig. 6(a), due to the localization of the
synthesized vibrational wave packet.

D. Degrees of entanglement after UV pulse irradiation

Because the density matrix of the system involving the
interaction with the UV pulse, ρ̂

(2)
i+ (R′, R′′; t ), is described by

Eqs. (33) and (34), the κκ ′ element of the reduced density
matrix of the H + H+ system, ρ

(2)
ion (κ, κ ′; τx, τu), is given by

the following form:

ρ
(2)
ion (κ, κ ′; τx, τu) ∝

∫ ∞

0
dωe

∫
d3R

∫
d3R′ 〈�+

2pσu
(R; κ + κ0)

∣∣ 〈ψc(ωe)|ρ̂ (2)
i+ (R, R′; t )|ψc(ωe)〉 ∣∣�+

2pσu
(R′; κ ′ + κ0)

〉
∝

∑
v′v′′

Mv′ (κ; τu)ρ (1)
ionv′v′′ (τx )M∗

v′′ (κ ′; τu), (43)
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FIG. 7. (a) Real part of the reduced density matrix of the 2pσu state of the H + H+ system ρ
(2)
ion (κ, κ ′; τx = 0, τu) calculated using Eq. (43).

The bandwidths of the single XUV pulse and the UV probe pulse are both assumed to be 38 meV, which is smaller than the energy difference
between the v′ + 1th and v′th (v′ � 14) vibrational states in H+

2 . Each tick of the v′th vibrational number at each KER position equivalent to
h̄(ωu + ω+v′ − κ0 ) is indicated on the top and right axes. The color scale at the peak of (v′, v′) = (6, 6) is intentionally saturated to enhance
the weak amplitudes of other peaks. (b) JES, P(κ, ωe), of finding an electron with a KE of h̄ωe and a H + H+ system with a KER of h̄κ . Each
tick of the v′th vibrational number at each KER position equivalent to h̄(ωu + ω+v′ − κ0) is indicated on the top axis. The position of a tick
indicating the v′th vibrational number on the right axis coincides with h̄{ωx − (ω+v′ − ω0

g )}.

where ρ
(1)
ionv′v′′ (τx ) is given by Eq. (9) and Mv′ (κ; τu) is defined

as

Mv′ (κ; τu) ≡ μ+v′
2pσu

(κ )Ãu(κ + κ0 − ω+v′ − ωu)e−iω+v′
τu .

(44)

The purity or the von Neumann entropy of ρ
(2)
ion (κ, κ ′; τx, τu)

indicates the degree of entanglement between the state of a
continuum electron and the 2pσu state of a H + H+ system.

We first examine a trivial example of entanglement by
imposing a single narrow-bandwidth XUV field to diagonalize
ρ

(1)
ionv′v′′ (τx = 0), as was given by Eq. (19), and also imposing a

narrow-bandwidth UV field, the Fourier amplitude of which,
Ãu(� − ωu), may be approximated as δωÃu0δ(� − ωu). Then,
the reduced density matrix can be simplified to

ρ
(2)
ion (κ, κ ′; τx = 0, τu)

∝ δ(κ − κ ′)
∑
v′

∣∣μ+v′
2pσu

(κ )
∣∣2

pv′δ(κ − κv′ ), (45)

where κv′ is defined as κv′ ≡ ωu + ω+v′ − κ0. The reduced
density matrix is τu independent, is diagonal, and exhibits
discrete peaks at κ = κv′ , as shown in Fig. 7(a), even though
ρ

(2)
ion (κ, κ ′; τx = 0, τu) in this figure is calculated by assuming

a finite (but narrow) bandwidth of the XUV and UV pulses.
Therefore, we can determine that a continuum electron and a
H + H+ system are entangled after the irradiation of the UV
pulse. The purity and the von Neumann entropy are estimated
to be 0.385 and 1.87, respectively. In fact, the JES, P(κ, ωe),
shown in Fig. 7(b) clearly exhibits discrete diagonal peaks,
which approximately map the states of an H + H+ system
onto the state of a continuum electron. When we find an
electron with a KE of 6.4 eV, we can determine the KER

of a H + H+ system departing from the detected electron
to be 1.66 eV without directly measuring the KER. When
we apply the attosecond XUV pulse pair for photoionization
and the few-femtosecond UV pulse for dissociation, as was
adopted to calculate the JES in Fig. 4(a), the characteristic of
the reduced density matrix drastically changes. We show the
purity Pu and von Neumann entropy S of the reduced density
matrix, ρ

(2)
ion (κ, κ ′; τx, τu), upon changing the delay of the UV

probe pulse τu as a black solid curve with shaded areas in
Figs. 8(a) and 8(b), respectively. We adopted a delay τx of zero
between the XUV pulses to calculate these quantities. We also
chose the delay times between the XUV pulses of 280.6 and
561.4 fs, where the von Neumann entropy of the reduced den-
sity matrix exhibits a local maximum and a local minimum,
respectively, only after the irradiation of the XUV pulse pair,
shown as the arrowed tags in Fig. 2(b). The resultant purities
and von Neumann entropies of the reduced density matrices
are depicted as the green solid curve and violet solid curve in
Figs. 8(a) and 8(b), respectively.

We find that the purity and von Neumann entropy for
τx = 0 fs (black solid curve with shaded areas) are similar to
those for τx = 561.4 fs (violet solid curve). This is because
the vibrational wave packet created upon the irradiation of
the second XUV pulse is spatially and coherently superposed
with the wave packet revived and localized around the inner
turning point after the delay time of 561.4 fs from the birth of
the wave packet upon the irradiation of the first XUV pulse.
Readers are reminded that the approximated formula of the
state vector given by Eq. (33) is valid only under the condition
that τu − τx is much larger than the pulse durations of the
XUV and UV pulses, and thus we do not expect the purity and
von Neumann entropy in the region of τu − τx � 10 fs to be
correct.
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FIG. 8. (a) Evolution of the purity of the reduced density matrix,
ρ

(2)
ion (κ, κ ′; τx, τu), upon changing the delay of the UV probe pulse.

(b) Evolution of the von Neumann entropy of ρ
(2)
ion (κ, κ ′; τx, τu). The

origin of the delay axis is adjusted to the time delay of the second
XUV pulse, τx . The reduced density matrices after the photoion-
ization, ρ

(1)
ionv′v′′ (τx ), with τx of 0 fs (black solid curve with shaded

areas), 280.6 fs (green solid curve), and 561.4 fs (violet solid curve)
are adopted, respectively, to calculate the reduced density matrix,
ρ

(2)
ion (κ, κ ′; τx, τu), given by Eq. (43). The von Neumann entropy of

ρ
(1)
ionv′v′′ (τx ) exhibits a local maximum and minimum at times τx =

280.6 and 561.4 fs, respectively, shown as arrowed tags in Fig. 2(b).

In the case of τx = 280.6 fs, the vibrational wave packet
created upon the irradiation of the first XUV pulse is revived
and localized around the outer turning point, and the von
Neumann entropy of ρ

(1)
ionv′v′′ (τx ) exhibits a local maximum

upon the irradiation of the second XUV pulse at this time, as
indicated with an arrowed tag in Fig. 2(b). The evolutions of
the purity and von Neumann entropy of ρ

(2)
ion (κ, κ ′; τx, τu) with

τx = 280.6 fs are depicted as solid green curves in Figs. 8(a)
and 8(b), respectively. Modulations with a period of ≈11 fs
clearly appear in both curves, and the modulation amplitudes
are significantly larger than those emerging in the black and
violet curves. We cannot specify the concrete reason for these
characteristics of the green curves at present, even though
the vibrational motion of the synthesized wave packet might
be one of the origins. We show the magnitudes of the re-
duced density matrices with τx = 0 fs and τx = 280.6 fs in
Figs. 9(a)–9(d) to find the alterations of visible features when
the von Neumann entropy S (the purity Pu) changes from one
of the local minima (local maxima) to one of the local maxima
(local minima) during the scanning of τu. By setting τx to
zero, the XUV pulse pair is reduced to a single XUV pulse.
Under this ionization condition, the von Neumann entropy
falls into the first local minimum at τu = 21 fs as shown
in Fig. 8(b). The reduced density matrix uniformly spreads
over the region of the off-diagonal elements, as shown in
Fig. 9(a), and thus it is reasonable for this reduced density

matrix to show high coherence, demonstrated by a low S of
4.67 × 10−3 and a high Pu of 0.999. The reduced density
matrix changes to a structure with the appearance of a four-
leaf clover, in which the upper right leaf is enhanced, when
the von Neumann entropy reaches the next local maximum by
adjusting τu to 24.6 fs, as shown in Fig. 9(b). The increase of
S to 0.630 and the reduction of Pu to 0.734 might be caused
by a moderate concentration of the reduced density matrix in
the region around the diagonal elements, whereas these values
of S and Pu are far from the extremes of 1.87 and 0.385
obtained from the reduced density matrix shown in Fig. 7,
which clearly reveals the features of entanglement. As a result,
we expect that the H + H+ system is partially entangled with
a continuum electron at this moment.

It is worth investigating the visible feature of the reduced
density matrix ρ

(2)
ion (κ, κ ′; τx, τu) under the condition that the

coherence of the reduced density matrix ρ
(1)
ionv′v′′ (τx ) is maxi-

mally lost by setting τx = 280.6 fs, because ρ
(2)
ion (κ, κ ′; τx, τu)

regains coherence with S of 2.57 × 10−2 and Pu of 0.995
when τu = 421.8 fs (τu − τx = 141.4 fs). In fact, we ob-
serve a homogeneous distribution of the magnitude of
ρ

(2)
ion (κ, κ ′; τx, τu) in Fig. 9(c), which might be one of the typ-

ical forms of the pure density matrix, as already exhibited in
Fig. 9(a). This feature is transformed to the peculiar structure
resembling a flying fenghuang, which directs its enriched tail
to the bottom-left corner, when 328.2 fs is substituted into
τu (τu − τx = 47.8 fs), as shown in Fig. 9(d). The enriched
tail, slightly enhanced body, and weak head are aligned on
the diagonal line, while the wings with flight feathers are
embedded in the off-diagonal regions. We suppose that the
parts on the diagonal line promote the mixture of the reduced
density matrix, resulting in S = 0.911 and Pu = 0.590.

The analysis of the reduced density matrices after the
irradiation of the UV pulse mentioned above is somewhat
abstract, and it is not apparent how to evaluate S or Pu
from the measured quantities in the experiment. Nevertheless,
the analytical form of the reduced density matrix given by
Eq. (43) is beneficial for understanding how the coherence
among the multiple optical pulses is involved in the composite
system of a continuum electron and an H + H+ system.

IV. SUMMARY AND PROSPECTS

We have formulated the time-dependent perturbative solu-
tions of the TDSE involving the states in the neutral molecule
M system and those in the e− ⊗ M+ system interacting with
the coherent optical pulse sequence via dipoles. By adapting
the solutions to the H2 and e− ⊗ H+

2 systems and imposing
the resonant excitation condition, we have successfully ob-
tained analytical formulas describing the state vectors and
density matrices that can reproduce the JES and DJKS spec-
trograms calculated by numerical integration of the TDSE in
the preceding studies. Owing to the low computational cost
of using the resultant analytical formulas, we have found that
the JES can be acquired without resolving the KER of the
H + H+ system in the actual experiment because the structure
of the modulation on the DJKS spectrogram is not signifi-
cantly changed by accumulating many DJKS spectrograms
with different KERs in the calculation. We have explained,
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FIG. 9. Magnitudes of reduced density matrices |ρ (2)
ion (κ, κ ′; τx, τu)| at specific values of τx and τu. (a) τx = 0 fs and τu = 21 fs set to locally

minimize the von Neumann entropy S. (b) τx = 0 fs and τu = 24.6 fs set to locally maximize S. (c) τx = 280.6 fs and τu = 421.8 fs set to
locally minimize S. (d) τx = 280.6 fs and τu = 328.2 fs set to locally maximize S. The purity Pu and S are indicated at the bottom-left corner
of each figure.

by using the approximated formula of the DJKS spectrogram,
that the characteristic of the interference fringes on the DJKS
spectrogram originates from the alteration of the modulation
amplitude in accordance with the delay between the XUV
pulse pair. We also clarify how the off-diagonal elements of
the reduced density matrix, which describes the H+

2 generated
immediately after the irradiation of the XUV pulse, disap-
pear upon increasing the GDD of the XUV pulse. We have
analyzed the reduced density matrix describing the H + H+
system after the irradiation of the UV pulse by calculating the
purity and von Neumann entropy.

One of the most crucial issues in performing the exper-
iment to measure the JES and DJKS spectrogram is the
development of a light source that can deliver a coherent XUV
pulse pair and a UV pulse with finely adjustable delays among

the three pulses. To this end, we have already developed a
hybrid interferometer utilizing the HH pulse of a Ti:sapphire
laser pulse [24] as an input. In the hybrid interferometer, the
XUV HH pulse is spatially split into two replicas upon reflec-
tion near the boundaries of two parallel and closely configured
silicon beam splitter mirrors (SiBSs), whereas the UV third
harmonic (TH) pulse is also spatially separated from the XUV
HH pulse using a dichroic mirror set in front of the SiBSs.
The TH pulse is recombined with the XUV pulse pair behind
the SiBSs after passing through a delay line configured sim-
ilarly to a Mach-Zehnder-type interferometer. We confirmed
the feasibility of the hybrid interferometer for demonstrating
the coherence between the two XUV HH pulses and that
between the electronic states excited with the two XUV HH
pulses by observing Ramsey-type interference fringes with a
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period of 200 as emerging from the 2p excited state in a He
atom [25].

Another important issue is how to measure the JES of a
continuum electron and H + H+ system. We assume that the
coincidence measurement scheme of an electron and an ion
performed with existing technologies is suitable and sufficient
for measuring the JES. The magnetic-bottle multi-electron-
ion coincidence spectrometer developed by Matsuda et al. is
one of the most appropriate devices for such measurement
[26]. This device is basically composed of a time-of-flight
(TOF) electron spectrometer with a static magnetic field to
guide photoelectrons to a microchannel plate (MCP). The
remaining ions left behind the photoelectrons are accelerated
with electrodes, to which pulsed high voltages are applied
after the arrival of the photoelectrons at the MCP. A detec-
tion event of one electron can be utilized as a trigger of the
pulsed high voltage to the electrodes by reducing the target
gas density, so as to decrease the rate of electron detection to
less than one per laser shot. As a result, the ion that emits the
detected photoelectron can also be recorded in the same TOF
spectrum. This device played a crucial role in identifying that
the 4d−2 double core-hole state of a Xe atom generated by the
two-photon absorption of 91-eV photons made a major con-
tribution to the Xe4+ yield [27] and in resolving the transient
core-hole resonances in Kr [28].

We are now considering how to perform the actual ex-
periment by utilizing our interferometer and other devices,
and we hope to obtain an experimental demonstration of our
theoretical model in the future.
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APPENDIX A: TIME-DEPENDENT
PERTURBATION THEORY

1. Basis set

a. Neutral molecule

It is useful to adopt the eigenstates of the molecular
Hamiltonian as the basis set to expand the general states of
a molecular system in time-dependent perturbation theory.
When a molecule contains N electrons and M nuclei, the
Hamiltonian of this molecular system may be described as

H (R, r) = −
N∑

n=1

h̄2

2me

∂2

∂r2
n

−
M∑

m=1

h̄2

2Mm

∂2

∂R2
m

+ V (R, r),

(A1)

where the electron and nuclear coordinates are defined as
r = (r1, r2, . . . , rN ) and R = (R1, R2, . . . , RM ), respectively.
We specify the mass of the mth nucleus as Mm and that of
an electron as me. The potential term V (R, r) is composed of

the linear summation of the Coulomb potentials describing
the interaction between electrons, that between nuclei, and
that between electrons and nuclei. In accordance with the
conventional method [29], we assume that the wave function
�(R, r) satisfies the eigenequation

H (R, r)�(R, r) = E�(R, r) (A2)

and that �(R, r) can be expressed as a product of the wave
function of the electronic system N〈r|ψeα

(R)〉 = ψeα
(R, r)

specified by electronic quantum number α, which paramet-
rically depends on R, and the coefficient function φα (R); thus,
we write

�(R, r) = �α (R, r) = φα (R)ψeα
(R, r), (A3)

where E in Eq. (A2) is the total eigenenergy of the molecule
as a composite system of electrons and nuclei. The elec-
tronic wave function ψeα

(R, r) should satisfy the following
eigenequation for the electronic system:

−
N∑

n=1

h̄2

2me

∂2ψeα
(R, r)

∂r2
n

+V (R, r)ψeα
(R, r) = Veα

(R)ψeα
(R, r).

(A4)

The eigenenergy of electronic state α, Veα
(R), parametri-

cally changes with respect to R. We assume that the state
set |ψeα

(R)〉 is orthonormal to satisfy 〈ψeα
(R)|ψeβ

(R)〉 =∫
d3N rψ∗

eα
(R, r)ψeβ

(R, r) = δαβ .
By substituting Eq. (A3) into Eq. (A2) and per-

forming the adiabatic approximation [neglecting cross
terms involving different electronic states such as∫

d3N rψ∗
eα

(R, r)
∂ψeβ (R,r)

∂R ] and the BO approximation
[neglecting

∫
d3N rψ∗

eα
(R, r)Tnc(R)ψeα

(R, r)] [29], the
coefficient φα (R) should also satisfy the eigenequation

−
M∑

m=1

h̄2

2Mm

∂2φα (R)

∂R2
m

+ Veα
(R)φα (R) = Eφα (R), (A5)

and, thus, φα (R) should be regarded as a wave function of the
nuclei in the adiabatic potential Veα

(R).
Actually, the nuclear wave function should be classified by

quantum numbers depending on the degrees of the nuclear
motion; thus, we add a quantum number v to φα (R) and E
as a superscript and add α as a subscript to E to identify
the nuclear and electronic states, namely, φα (R) → φv

α (R) and
E → E v

α in Eq. (A5) and φα (R)ψeα
(R, r) → φv

α (R)ψeα
(R, r)

in Eq. (A3). The quantum number v may be discrete or con-
tinuous depending on the state of the nuclei. Note that the
eigenenergy E = E v

α in Eq. (A5), whose solutions express
the states of the nuclei, coincides with the total energy of the
composite system. As a result, Eq. (A2) is rewritten as

H (R, r)�v
α (R, r) = E v

α�v
α (R, r). (A6)

By imposing the orthonormal property on the nuclear wave-
function set, which is expressed as

∫
d3MRφv∗

α (R)φv′
α (R) =

δvv′ or δ(v − v′), the total wave-function set of the composite
system, �v

α (R, r) = φv
α (R)ψeα

(R, r) [or the state vector set
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|�v
α (R)〉 = φv

α (R)|ψeα
(R)〉], is also orthonormal:∫

d3MR
〈
�v

α (R)
∣∣�v′

β (R)
〉

=
∫

d3MRφv∗
α (R)φv′

β (R)
〈
ψeα

(R)
∣∣ψeβ

(R)
〉

= δαβ

∫
d3MRφv∗

α (R)φv′
α (R) =

{
δαβδvv′ , or
δαβδ(v − v′). (A7)

Thus, we define the projection operator on the neutral
molecule states as

P̂(R; R′) =
∑

α

∑∫
v

∣∣�v
α (R)

〉〈
�v

α (R′)
∣∣, (A8)

and its (r, r′) element is described as P(R, r; R′, r′) =∑
α

∫∑
v
�v

α (R, r)�v∗
α (R′, r′). The characteristic of the projec-

tion described as
∫

d3MR′P̂(R; R′)P̂(R′; R′′) = P̂(R; R′′) can
be confirmed by using the orthonormal property of the state
vector in Eq. (A7).

b. Molecular ion + continuum electron

After the ionization of the molecule, the molecular system
is composed of a molecular ion containing N − 1 electrons
and M nuclei, which may be described as a wave func-
tion �+(R, r+) and a continuum electronic wave function
ψcα

(ωe; R, r), where we describe the coordinates of N − 1
electrons in the molecular ion as r+ = (r1, r2, . . . , rN−1) and
the KE of the continuum electron as h̄ωe. Note that we cannot
actually specify which electron is detached upon ionization;
thus, we must consider all possible electron coordinates and
symmetries of the continuum electron when we adopt a more
rigorous model. Nevertheless, we have simplified the situation
because our aim is only to explore whether the total wave
function of a (molecular ion + continuum electron) composite
system may approximate the eigenfunction of the total Hamil-
tonian described in Eq. (A1).

To this end, we divide H (R, r) into two parts:

H (R, r) = H+(R, r+) + Hc(R, r) (A9)

where we define H+(R, r+) as

H+(R, r+)

≡ −
N−1∑
n=1

h̄2

2me

∂2

∂r2
n

−
M∑

m=1

h̄2

2Mm

∂2

∂R2
m

+ V +(R, r+), (A10)

and

Hc(R, r) ≡ − h̄2

2me

∂2

∂r2
N

+ Vc(R, r). (A11)

The potential denoted as V +(R, r+) in Eq. (A10) is a part that
is independent of the N th electron coordinate rN in V (R, r).
The remainder of V (R, r) is defined as Vc(R, r) which may be

written as Vc(R, r) = 1
4πε0

∑N−1
n=1

q2
e

|rn−rN | − 1
4πε0

∑M
m=1

Zmq2
e

|Rm−rN | .
The dielectric constant of vacuum, the charge of an electron,
and the charge number of the mth nucleus are denoted as ε0,
qe, and Zm, respectively. Because we consider a continuum
electron situated far from the molecular ion, we approximate

Vc(R, r) as the effective potential Vc(rN ):

Vc(R, r) ∼ Vc(rN ) = − 1

4πε0

q2
e f (rN )

|rN | . (A12)

The function f (rN ) should be adjusted to mimic Vc(R, r) un-
der the conditions |rN | � |rn| (N > n) and |rN | � |Rm|. With
this approximation, the Hamiltonian Hc(R, r) is simplified
to Hc(rN ) = − h̄2

2me

∂2

∂r2
N−1

+ Vc(rN ), expressing a one-electron

system; thus, we assume the continuum electron function
ψcα

(ωe; rN ) to be independent of R and r+, and the continuum
electron function satisfies the following eigenequation:

Hc(rN )ψcα
(ωe; rN ) = h̄ωeψcα

(ωe; rN ). (A13)

We substitute quantum number α in the wave function in
Eq. (A13) to express the correlation with the electronic state
in the molecular ion identified by α. We also impose the
orthonormal property on ψcα

(ωe; rN ).
The molecular ion left behind the continuum electron is

governed by the Hamiltonian H+(R, r+) in Eq. (A10), the
form of which is equivalent to that of H (R, r) in Eq. (A1)
except that the number of electrons is reduced to N − 1.
Therefore, we constitute the wave function of the molecular
ion �+v′

α (R, r+) as a product of the nuclear wave func-

tion φ+v′
α (R) and the electronic wave function ψ+

eα
(R, r+),

�+v′
α (R, r+) = φ+v′

α (R)ψ+
eα

(R, r+), under the adiabatic and
BO approximations. The wave function of the molecular ion
satisfies an eigenequation similar to Eq. (A6) for the neutral
molecule as follows:

H+(R, r+)�+v′

α (R, r+) � E+v′

α �+v′

α (R, r+), (A14)

where E+v

α is the total energy of the molecular ion of the v′th
vibrational state in the α-electric state. We impose the normal-
ization and completeness conditions similar to Eqs. (A7) and
(A8) on the wave function �+v′

α (R, r+).
Under these approximated conditions, the product of the

wave function of the molecular ion �+v′
α (R, r+) and the wave

function of the continuum electron ψcα
(ωe; rN ) can be an

approximated eigenfunction of H (R, r) satisfying

H (R, r)�+v′

α (R, r+)ψcα
(ωe; rN )

� (
E+v′

α + h̄ωe
)
�+v′

α (R, r+)ψcα
(ωe; rN ), (A15)

because we have neglected the R dependence and r+
dependence in the wave function of the continuum elec-
tron ψcα

(ωe; rN ). Thus, we treat the wave function of

�+v′
α (ωe; R, r) ≡ �+v′

α (R, r+)ψcα
(ωe; rN ) as an eigenfunction

of the total Hamiltonian H (R, r) and impose orthonormality:

∫
d3MR〈�+v′

α (ω′
e; R)|�+v′′

β (ω′′
e ; R)〉

=
{

δαβδv′v′′δ(ω′
e − ω′′

e ), or

δαβδ(v′ − v′′)δ(ω′
e − ω′′

e )
. (A16)
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Then, the projection operator P̂+(R; R′) to the states involving
a molecular ion and a continuum electron is described as

P̂+(R; R′) =
∑

α

∑∫
v′

∫ ∞

0
dωe

∣∣�+v′

α (ωe; R)
〉〈
�+v′

α (ωe; R′)
∣∣,

(A17)

which is similar to Eq. (A8).

2. Perturbative solution of the TDSE

We assume that the TDSE of our model has the following
conventional form:

ih̄
∂

∂t
|�(R; t )〉 = {Ĥ (R) + V̂ (t )}|�(R; t )〉, (A18)

where the (r, r′) component of the molecular Hamiltonian
operator Ĥ (R) is described using H (R, r) in Eq. (A1) so
as to satisfy 〈r|Ĥ (R)|r′〉 = H (R, r)δ3N (r − r′). We adopt the
dipole interaction between the linear polarized electric field
of the coherent superposition of the incident optical pulses
involving a pair of XUV pulses and a UV pulse. Therefore,
the interaction Hamiltonian operator V̂ (t ) can be expressed
as V̂ (t ) = μ̂E (t ), where μ̂ is a dipole operator projected onto

the polarization direction and E (t ) is the complex amplitude
of the total electric field of the incident optical pulses. We
neglect the negative frequency part of the electric field con-
tributing to the photoemission accompanied by deexcitation
and recombination processes for simplicity, so that E (t ) is a
complex number and the magnitude of its FT exhibits peaks
only in the region where the frequency is positive. We specify
the form of E (t ) as

E (t ) = Ex(t ) + Ex(t − τx ) + Eu(t − τu)

= Ex(t ; τx ) + Eu(t − τu), (A19)

where Ex(t ) is the electric field of an XUV pulse and Ex(t −
τx ) is its replica with delay τx. The electric field of the UV
pulse with delay τu is expressed as Eu(t − τu). We also de-
fine Ex(t ; τx ) ≡ Ex(t ) + Ex(t − τx ) to simplify the following
equations.

According to the convention of the time-dependent pertur-
bation theory, we change the form of the TDSE using the
state vector in the interaction picture, implement successive
integration and substitution, and finally reconvert the state
vector into the Schrödinger picture. The resultant solution is

|�(R; t )〉 = e
Ĥ (R)

ih̄ (t−t0 )|�(R; t0)〉 + 1

ih̄

∫ t

t0

dt1e
Ĥ (R)

ih̄ (t−t1 )V̂ (t1)e
Ĥ (R)

ih̄ (t1−t0 )|�(R; t0)〉

+
(

1

ih̄

)2 ∫ t

t0

dt1

∫ t1

t0

dt2e
Ĥ (R)

ih̄ (t−t1 )V̂ (t1)e
Ĥ (R)

ih̄ (t1−t2 )V̂ (t2)e
Ĥ (R)

ih̄ (t2−t0 )|�(R; t0)〉 + . . . , (A20)

where |�(R; t0)〉 is the initial state vector at the initial time
t0. We focus on analyzing the second and third terms on the
right-hand side of Eq. (A20), which involve the one-photon
and two-photon interactions, respectively.

APPENDIX B: SPECIFIC FORMS OF TIME-ORDERED
INTEGRATION AMPLITUDE

1. Square Lorentz function

We evaluate the time-ordered integration amplitude,
Sux(�1,�2; τx, τu), given by Eq. (30) or Eq. (31) by assuming
specific forms of the envelope function of the XUV and UV
pulses. First, we apply the square of the Lorentz function
to both Ãu(�) and Ãx(�) with the same bandwidth of δ�,
namely,

Ãu,x(�) = Ã0u,x

(
�2

δ�2
+ 1

)−2

, (B1)

where we neglect the chirp in both pulses, and thus Fourier
limit pulses are assumed. The temporal profiles of the enve-
lope functions, Au,x(t ) = 1

2π

∫
d�Ãu,x (�)e−i�t , are given by

Au,x (t ) = δ�Ã0u,x

4
(δ�|t | + 1)e−δ�|t |. (B2)

The left-side and right-side time derivatives at t = 0 of the
time envelope function in Eq. (B2) are both zero and the enve-
lope function smoothly changes at t = 0. This property is sig-

nificantly different from the discontinuous time derivatives of
the double-sided exponential function obtained by the inverse
FT of the conventional Lorentz function. Because the Fourier
transform of the XUV pulse pair is described as the linear
summation of Ãx(� − ωx ) and Ãx(� − ωx )ei�τx , [Ẽx(�; τx ) =
Ẽx(�)(1 + ei�τx ) = Ãx(� − ωx )(1 + ei�τx )], we only evalu-
ate the contribution from the first XUV pulse, and we calculate
the time-ordered integration amplitude Sux(�1,�2; τu), which
is obtained by replacing Ãx(�2 − ωx; τx ) with Ãx(�2 − ωx )
on the right-hand side of Eq. (31). The contribution from the
τx-delayed XUV pulse is obtained by replacing τu with τu − τx

in Sux(�1,�2; τu) and multiplying by the phase factor ei�2τx .
Before evaluating Sux(�1,�2; τu), we symmetrize the pa-

rameters contained in the arguments of Ãu and Ãx so as to
clearly show the spectral peak difference of Ãu and Ãx and the
detuning from the resonance. The following two parameters
are introduced:

ω ≡ �1 + �2 − ωu − ωx

= ω′
e − {

ωu + ωx − (
κ ′ + κ0 − ω0

g

)}
, (B3)

� ≡ {(�1 − ωu) − (�2 − ωx )}/2

= {
(κ ′ + κ0 − ω+v′ − ωu)

− (
ω′

e + ω+v′ − ω0
g − ωx

)}
/2. (B4)

These parameters are graphically indicated in Fig. 10(a). The
parameter ω expresses the difference between the peak an-
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FIG. 10. (a) Schematic of the spectral amplitudes of an XUV pulse and a UV pulse. (b) Poles and contours relevant for calculating the PVI
of Eq. (B10). Poles of the integrand fSL(z) in Eq. (B11) are depicted as crossings. The closed semicircle contour adopted for calculating the
PVI of Eq. (B10) for τu > 0 in the lower half plane is labeled C−, which is composed of the two lines on the real axis excluding the origin,
named Cz− , the open semicircle around the origin with an infinitesimal radius, named Cε− , and the open semicircle with a radius of R, named
CR− . The closed semicircle contour for τu < 0 is also depicted in the upper half plane with a label of C+.

gular frequency of the spectral amplitude of the UV pulse
and that of the XUV pulse. The parameter � is the cen-
tral frequency of the product of the two spectral amplitudes
Ãu(�1 − ωu − �)Ãx(�2 − ωx + �). The resonance condition
is satisfied by adjusting � to zero. Note that ω should be
sufficiently small in order that the product of the two spec-
tral amplitudes makes a significant contribution to the PVI
owing to the sufficient spectral overlap. Therefore, the PVI
should be finite only in the region around ω ≈ 0 ⇔ ω′

e ∼
ωu + ωx − (κ ′ + κ0 − ω0

g ) from Eq. (B3), which is equivalent
to the condition that the KE of the continuum electron h̄ω′

e
must be approximately equal to the excess energy of two
photons after the excitation from the ground vibrational state
in the X 1�+

g state in H2 with energy h̄ω0
g to the 2pσu state

with energy h̄(κ ′ + κ0) in H+
2 , resulting in the description

of the energy conservation. Substituting this approximated
equation to Eq. (B4), we find that the approximated equa-
tion of � ∼ (κ ′ + κ0 − ω+v′

) − ωu should hold. The terms in
the parentheses on the right-hand side of this approximated
equation express the excitation energy from the v′th vibra-
tional state in the 1sσg state to the 2pσu state with energy
κ ′ + κ0 in H+

2 ; thus, −� can be regarded as the detuning of
the photon energy of the UV pulse from the excitation energy.
This is the reason why we identify the condition of � = 0 to
be the condition of resonance.

Using ω and �, the time-ordered integration amplitude
Sux(�1,�2; τu) is transformed to

Sux

(
� + ω

2
+ ωu,−� + ω

2
+ ωx; τu

)
e−i(�+ ω

2 +ωu )τu

= − 1

2iπ
T (�,ω; τu) + 1

2
Ãu

(
� + ω

2

)
Ãx

(
− � + ω

2

)
,

(B5)

where we define the PVI as

T (�,ω; τu)

≡ P
∫

d�
Ãu

(
� + ω

2 − �
)
Ãx

[
� − (

� − ω
2

)]
e−i�τu

�
(B6)

= P
∫

d�
Ãu(ω − �)Ãx(�)e−i�τu

� + (
� − ω

2

) e−i(�− ω
2 )τu . (B7)

Before we perform the integration in Eq. (B6) by substi-
tuting the square Lorentz function defined in Eq. (B1) into
Ãu(�) and Ãx(�) as one of the candidate-specific forms, we
present the asymptotic form of the amplitudes T (�,ω; τu)
and Sux(� + ω

2 + ωu,−� + ω
2 + ωx; τu) by utilizing Eq. (B7)

without assuming the specific forms of Ãu(�) and Ãx(�)
when the detuning is sufficiently large for the off-resonance
condition |�| � δ� to be satisfied. We can neglect the con-
tribution near the pole at � = −� + ω

2 in the PVI because
the magnitude of the numerator Ãu(� + ω

2 )Ãx(−� + ω
2 ) is

negligibly small due to the off-resonance condition. Thus,
the amplitude T (�,ω; τu) can be approximately equal to
�−1

∫
d�Ãu(ω − �)Ãx(�)e−i�τu e−i(�− ω

2 )τu , and the asymp-
totic form of the amplitude Sux(� + ω

2 + ωu,−� + ω
2 +

ωx; τu) may be written as

Sux

(
� + ω

2
+ ωu,−� + ω

2
+ ωx; τu

)

� − 1

2iπ

TFROGux (ω; τu)

�
e−i(ω+ωu )τu , (|�| � δ�), (B8)

where we define the amplitude TFROGux (ω; τu) as

TFROGux (ω; τu) ≡
∫

d�Ãu(ω − �)Ãx(�)e−i�τu . (B9)
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This amplitude TFROGux (ω; τu) coincides with the frequency-
resolved correlation amplitude between the two optical pulses,
Ãu(�) and Ãx(�), and it is utilized to retrieve the characteris-
tics of the optical pulses in the method of frequency-resolved
optical gating (FROG) [30,31]. Note that the amplitude Ãu(�)
may be replaced by Ãx(�) when we would like to express
the autocorrelation FROG of the XUV pulse. The correla-
tion trace between the two pulses is obtained by calculating∫

dω|TFROGux (ω; τu)|2, which is proportional to the ion yield
from a specific pathway of two-photon ionization. This is
the reason why we obtained the autocorrelation traces of the
XUV APT by observing the fragment ion yields from simple
molecules upon changing the delay between the two replicas
of the APT in our past experiments [19,32]. In fact, the asymp-
totic form of the double time integration amplitude in Eq. (B8)
is common for any electronic state whose quantum numbers
are summed on the right-hand side of Eq. (26) but whose
parameters � and ω are different in each electronic state.
Therefore, the autocorrelation trace should be distorted with
the molecular response function originating from Eqs. (25)
and (26), as we pointed out in Ref. [33] and the supplemental
document of Ref. [19].

We explore the exact form of T (�,ω; τu) by adapting the
spectral form in Eq. (B1) to Eq. (B6) as follows:

T (�,ω; τu) = δ�8Ã0u Ã0xP
∫

d� fSL(�) (B10)

where the integrand in the complex plane fSL(z) is defined as

fSL(z) ≡ e−izτu

z(z − Z+)2(z − Z−)2(z − Z∗+)2(z − Z∗−)2
(B11)

and the second-order poles Z± are given by

Z± = � ± ω

2
+ iδ�. (B12)

The integrand also contains a simple pole at z = 0. The po-
sitions of all poles are schematically shown in Fig. 10(b).
We perform the contour integral of fSL(z) in the complex
plane by choosing a closed semicircle contour C− to cal-
culate P

∫
d� fSL(�) for τu > 0, because | ∫CR− dz fSL(z)| →

0 and
∫

Cz−
dz fSL(z) → P

∫
d� fSL(�) when R → ∞ and

ε → 0; thus, we evaluate P
∫

d� fSL(�) = ∫
C−

dz fSL(z) −∫
Cε−

dz fSL(z). We also evaluate
∫

C+
dz fSL(z) for τu < 0 for a

similar reason. As a result, the PVI is described as the sum of
the residues as

P
∫

d� fSL(�) = −2iπ

[
θ (τu)

{
Res
z=Z∗+

fSL(z) + Res
z=Z∗−

fSL(z)

+ 1

2
Res
z=0

fSL(z)

}
− θ (−τu){ . . . }∗

]
,

(B13)

where {. . . }∗ denotes the complex conjugate of the terms in
the first curly brackets. The residues other than z = 0 always
contain the damping term of e−δ�|τu| or |τu|e−δ�|τu|; thus,
the right-hand side of Eq. (B13) approaches −iπ{θ (τu) −
θ (−τu)}Resz=0 fSL(z) when |τu| is much larger than δ�−1. The
situation is similar even when Z± are the nth poles and the
residues contain the damping terms of |τu|me−δ�|τu|, where m
is an integer ranging from zero to n − 1, as we have already
explained for Eq. (32) in Sec. III B.

Substituting the calculated results of the residues
into Eq. (B13) and using Eq. (B10), we can derive
− 1

2iπ T (�,ω; τu) as

− 1

2iπ
T (�,ω; τu) = − 1

2iπ
T

(
δ�s, 2δ�w;

η

δ�

)

= Ã0u Ã0x

[
θ (τu)

e−is|η|e−|η|

64

{
− ip(s,w)�(w; η) + 2q(s,w)ϒ(w; η)

{1 + (s − w)2}{1 + (s + w)2} + Zc(s; w) cos(w|η|) + Zs(s; w)

× sin(w|η|)
w

}
− θ (−τu)

eis|η|e−|η|

64
{. . . }∗

]
+ 1

2
Ã0u Ã0x {θ (τu) − θ (−τu)} 1

{(s + w)2 + 1}2{(s − w)2 + 1}2 ,

(B14)

where we define the nondimensional parameters s ≡ �
δ�

, w ≡ ω
2δ�

, and η ≡ δ�τu. The following formulas are used in Eq. (B14):

p(s; w) ≡ −(s + i)(s2 + 1) + (s − i)w2, (B15)

q(s; w) ≡ (s + i)2 − w2, (B16)

�(η; w) ≡ 2

[
(|η| + 1) cos(w|η|) + |η|(2|η| + 1)

sin(w|η|)
w|η| + |η|

w2

{
sin(w|η|)

w|η| − cos(w|η|)
}]

1

(1 + w2)2

+ 2

{
4 cos(w|η|) + 3|η| sin(w|η|)

w|η| − w sin(w|η|)
}

1

(1 + w2)3
, (B17)

ϒ(η; w) ≡
[
|η|{(−|η| + 1) + (|η| + 1)w2

} sin(w|η|)
w|η| − (2|η| + 1) cos(w|η|)

]
1

(1 + w2)2

−
{
|η|(1 − 3w2)

sin(w|η|)
w|η| + (3 − w2) cos(w|η|)

}
1

(1 + w2)3
, (B18)
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FIG. 11. Real (a) and imaginary (b) parts of the time-ordered integration amplitude Sux ( ω

2 + ωu,
ω

2 + ωx; τu) e−i( ω
2 +ωu )τu under the resonance

condition (� = sδ� = 0). The spectral envelopes of the UV and XUV pulses are both assumed to be square Lorentz functions with the same
bandwidth given by Eq. (B1).

Zc(s; w) ≡ 2

(w2 + 1)2

w2 + 2 + (s − 3i)2

(s + w − i)2(s − w − i)2 ,

(B19)

Zs(s; w) ≡ 4

(w2 + 1)2

{w2 + (s − i)2} + i(w2 − 1)(s − i)

(s + w − i)2(s − w − i)2 .

(B20)

The complex conjugate in the curly brackets in Eq. (B14) is
denoted as { . . . }∗. The terms in the square brackets on the
right-hand side of Eq. (B14) are reduced due to the expo-
nential damping factor of e−|η| when the delay |η| = δ�|τu|
is much larger than unity, and only the last term, which
is equal to 1

2 {θ (τu) − θ (−τu)}Ãu(� + ω
2 )Ãx(−� + ω

2 ), re-
mains. Therefore, the right-hand side of Eq. (B5) approaches
1
2 {1 + θ (τu) − θ (−τu)}Ãu(� + ω

2 )Ãx(−� + ω
2 ) for δ�|τu| �

1, which is equivalent to Eq. (32). Substituting Eq. (B14) into
Eq. (B5), we obtain the time-ordered integration amplitude.

We show the real and imaginary parts of the time-
ordered integration amplitude Sux(� + ω

2 + ωu,−� + ω
2 +

ωx; τu), which is calculated from Eqs. (B5) and (B14) under
the resonant condition of � = sδ� = 0, in Figs. 11(a) and
11(b), respectively. We excluded the periodic phase modula-
tion originating from e−i( ω

2 +ωu )τu in the calculation to clearly
show the alteration of the magnitude of the real part. In fact,
the real part gradually emerges around τu = 0 and retains a
constant value of unity as τu increases within the frequency
bandwidth of ∼δ�, whereas the imaginary part is exactly
equal to zero. The real part can be regarded as a step function
of τu with a gentle slope around τu = 0 and expresses the
sequential process caused after the irradiation of the XUV
pulse.

Because the form of Eq. (B14) is general, we can also
derive the asymptotic form of the time-ordered integra-
tion amplitude under the off-resonance condition, |�| � δ�

(|s| � 1), by neglecting the terms involving O(s−2) and

higher. As a result, we obtain the asymptotic form

− 1

2iπ
T (�,ω; τu) � iÃ0u Ã0x

e−isηe−|η|

64

�(w; η)

s

= − 1

2iπ

TFROGux (ω; τu)

�
, (B21)

where TFROGux (ω; τu) is obtained by substituting Eq. (B1) into
Eq. (B9):

TFROGux (ω; τu) = TFROGux

(
δ�w;

η

δ�

)

= 2πδ�Ã0u Ã0x

e−isηe−|η|

64
�(w; η), (B22)

The asymptotic form of Eq. (B21) is consistent with
Eq. (B8) derived without determining the specific forms of
Ãu(�) and Ãx(�). We calculate Sux(� + ω

2 + ωu,−� + ω
2 +

ωx; τu)e−i(�+ ω
2 +ωu )τu in Eq. (B5) using Eq. (B14) by setting

� = 2.5δ� to simulate the off-resonance condition, as shown
in Figs. 12(a) and 12(b). The structures of the images in these
figures are entirely different from those in Figs. 11(a) and
11(b). Different from the resonant condition, the amplitude
of the imaginary part is much larger than that of the real
part and they are both restricted only in the delay range at
around zero. The peak amplitude of the imaginary part is
less than 10% of that of the real part under the resonant
condition. The amplitude emerges only when the XUV and
UV pulses temporally overlap, and thus this result expresses a
nonsequential two-photon process independent of the molec-
ular effect originating from the time order of the two optical
pulses. In fact, the magnitude square of the amplitude shown
in Fig. 12(c), which is calculated from the real and imag-
inary parts in Figs. 12(a) and 12(b), is very similar to the
FROG image calculated from |TFROGux (ω; τu)|2 in Eq. (B22),
as shown in Fig. 12(d), and thus the spectral alteration of the
continuum electron upon a scanning delay τu mainly reveals
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FIG. 12. Real (a) and imaginary (b) parts of the time-ordered integration amplitude Sux (� + ω

2 + ωu,−� + ω

2 + ωx; τu) e−i(�+ ω
2 +ωu )τu

under the off-resonance condition (� = 2.5δ�). (c) Magnitude square of the time-ordered integration amplitude calculated from the amplitude
shown in (a) and (b). (d) FROG image calculated from |TFROGux (ω; τu)|2 in Eq. (B22). The spectral envelopes of the UV and XUV pulses are
both assumed to be square Lorentz functions with the same bandwidth given by Eq. (B1).

the characteristics of the optical pulses rather than those of the
dynamical evolution of a target molecule.

We suppose at present that the successful observation of the
autocorrelation signals of APTs on the ion fragments yielded
from nitrogen molecules [32] and acetylene molecules [19]
in past experiments was owing to the off-resonance condi-
tion resulting in nonsequential processes, and we attribute
the appearance of the vibration-motional signals of hydro-
gen molecular ions on H+ yielded from hydrogen molecules
[20–22] to the resonance in the excitation from the 1sσg state
to the 2pσu state in H+

2 , which was regarded as a sequential
process after photoionization, even though we utilized the
same light source to deliver a pair of APTs for the experiments
targeting these three kinds of molecule.

2. Gaussian function

When we assume the spectral envelopes of Ãu(�) and
Ãx(�) to be Gaussian functions such as

Ãu,x(�) = Ã0u,x e
− �2

δ�2
u,x , (B23)

the temporal profiles of the envelope functions are also the
following Gaussian function of time t :

Au,x(t ) = δ�u,xÃ0u,x

2
√

π
e− δ�2

u,x
4 t2

, (B24)
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FIG. 13. Real (a) and imaginary (b) parts of the time-ordered integration amplitude Sux ( ω

2 + ωu,
ω

2 + ωx; τu) e−i( ω
2 +ωu )τu under the resonance

condition (� = sδ� = 0). The spectral envelopes of the UV and XUV pulses are both assumed to be Gaussian functions with the same
bandwidth given by Eq. (B23).

where we define the bandwidths of the UV and XUV pulses
as δ�u and δ�x, respectively. We introduce the following
spectral peak difference ω and detuning � in a similar manner
to Eqs. (B3) and (B4):

ω ≡ �1 + �2 − ωu − ωx

= ω′
e − {

ωu + ωx − (
κ ′ + κ0 − ω0

g

)}
, (B25)

� ≡ αu(�1 − ωu) − αx(�2 − ωx )

= αu(κ ′ + κ0 − ω+v′ − ωu)

− αx
(
ω′

e + ω+v′ − ω0
g − ωx

)
, (B26)

where we define the coefficients αu ≡ δ�−2
u /(δ�−2

u + δ�−2
x )

and αx ≡ δ�−2
x /(δ�−2

u + δ�−2
x ) and the following bandwidth

of the envelope product δ�ux:

δ�ux ≡
(

1

δ�2
u

+ 1

δ�2
x

)− 1
2

. (B27)

Then, we find that the product of the two spectral amplitudes
can be rewritten in the form of Ãu(�1 − ωu − �)Ãx(�2 −
ωx + �) = Ã0u Ã0x e

− ω2

δ�2
u+δ�2

x e
− (�−�)2

δ�2
ux , and the time-ordered in-

tegration amplitude is expressed in terms of � and ω as

Sux(�1,�2; τu)e−i�1τu

= − 1

2iπ
T (�,ω; τu) + 1

2
Ã0u Ã0x e

− ω2

δ�2
u+δ�2

x e
− �2

δ�2
ux . (B28)

We use the relations �1 = αxω
αu+αx

+ �
αu+αx

+ ωu and �2 =
αuω

αu+αx
− �

αu+αx
+ ωx to find Eq. (B28). The amplitude

T (�,ω; τu) is given by

T (�,ω; τu) = Ã0u Ã0x e
− ω2

δ�2
u+δ�2

x P
∫

d�
e
− (�−�)2

δ�2
ux e−i�τu

�

= 2
√

π Ã0u Ã0x e
− ω2

δ�2
u+δ�2

x e− δ�2
ux

4 τu
2
e−i�τu

× D+

(
�

δ�ux
− i

δ�ux

2
τu

)
, (B29)

where we have introduced the Dawson function D+(x) =
e−x2 ∫ x

0 dx′ex′2
. Note that the � integral in Eq. (B29) can be

implemented after differentiating the integrand with respect
to τu to remove the pole at � = 0, and then we obtain a
Gaussian function of τu. The resultant Gaussian function of τu

is integrated again with the initial condition at τu = 0, which
is calculated by the Hilbert transform of the Gaussian function
of �. Accordingly, we obtain the equation on the right-hand
side of the last line in Eq. (B29).

To simulate the resonance condition, the amplitude
T (�,ω; τu) in Eq. (B29) is transformed to

T (� = 0, ω; τu)

= −iπ Ã0u Ã0x e
− ω2

δ�2
u+δ�2

x erf

(
δ�ux

2
τu

)
, (B30)

where we have used the relation e−s2
D+(−is) = −i

√
π

2 erf (s).
Substituting Eq. (B30) into Eq. (B28), the time-ordered inte-
gration amplitude becomes

Sux

(
αxω

αu + αx
+ ωu,

αuω

αu + αx
+ ωx; τu

)
e−i( αxω

αu+αx
+ωu )τu

= 1

2

{
erf

(
δ�ux

2
τu

)
+ 1

}
Ã0u Ã0x e

− ω2

δ�2
u+δ�2

x . (B31)

The time-ordered integration amplitude in Eq. (B31) is a
step function of τu with a gentle slope around τu = 0 and
exhibits the Gaussian distribution with respect to the peak
difference ω. These characteristics are consistent with the
general asymptotic formula in Eq. (32).
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FIG. 14. Real (a) and imaginary (b) parts of the time-ordered integration amplitude Sux (� + ω

2 + ωu,−� + ω

2 + ωx; τu) e−i(�+ ω
2 +ωu )τu

under the off-resonance condition (� = 2.5δ�). (c) Magnitude square of the time-ordered integration amplitude calculated from the amplitude
shown in (a) and (b). (d) FROG image calculated from |TFROGux (ω; τu)|2 in Eq. (B33). The spectral envelopes of the UV and XUV pulses are
both assumed to be Gaussian functions with the same bandwidth given by Eq. (B23).

When we consider the off-resonance condition that the de-
tuning |�| is much larger than δ�ux (|�| � δ�ux), we have to
classify the region of τu into two. In the region δ�ux|τu| � 1,
the inequalities δ�2

ux|τu| � δ�ux � |�| are satisfied, ensur-
ing that the conditions |�|

δ�ux
� 1 and |�|

δ�ux
� δ�ux

2 |τu| are both
satisfied. Thus, we neglect the imaginary part of the argument
in the Dawson function in Eq. (B29) and adopt the asymptotic
form D+(x) � 1

2x for a real variable of x with a large mag-
nitude [34]. We express the resultant asymptotic form of the
amplitude T (�,ω; τu) as follows:

T (�,ω; τu)

� 1

�

√
πδ�uxÃ0u Ã0x e

− ω2

δ�2
u+δ�2

x e− δ�2
ux

4 τu
2
e−i�τu

= 1

�
TFROGux (ω; τu)ei( αuω

αu+αx
− �

αu+αx )τu , (B32)

where the FROG amplitude TFROGux (ω; τu) is derived by sub-
stituting Eq. (B23) into Eq. (B9):

TFROGux (ω; τu)

= √
πδ�uxÃ0u Ã0x e

− ω2

δ�2
u+δ�2

x e− δ�2
ux

4 τu
2
e−i( αuω

αu+αx
− �

αu+αx
+�)τu .

(B33)

In the region δ�ux|τu| � 1, the Dawson function diverges with
increasing |τu|. Nevertheless, the decrease in the magnitude

by multiplying the Gaussian function e− δ�2
ux

4 τu
2

is more pro-
nounced than the divergence of the Dawson function. Thus,
we conclude that T (�,ω; τu) ≈ 0 for δ�ux|τu| � 1 and that
the asymptotic form in Eq. (B32) is still applicable. Substitut-
ing Eq. (B32) into Eq. (B28), we confirm that the resultant Sux

is consistent with the general asymptotic form in Eq. (B8).
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We show the real and imaginary parts of the time-ordered
integration amplitude, which is calculated from Eqs. (B28)
and (B29) under the resonance condition of � = 0, in
Figs. 13(a) and 13(b), respectively. We assume the bandwidths
of the UV and XUV pulses to be the same (δ�u = δ�x = δ�)
in this calculation for simplicity. The principal characteristics
of the images in these figures are the same as those of the
images in Figs. 11(a) and 11(b), namely, the steplike evolution
regarding the delay τu with a gentle slope around τu = 0 and
the localization within the frequency bandwidth in the real
part, with no contribution from the imaginary part.

The similarity of the images calculated from the Gaus-
sian spectral envelope functions to those calculated from the
square Lorentz spectral envelope functions is retained even
when the off-resonance condition is applied to Eq. (B29).
The real part of the time-ordered integration amplitude with
� = 2.5δ� shown in Fig. 14(a) exhibits significantly small

positive and negative peak magnitudes compared with the
peak magnitude of the imaginary part shown in Fig. 14(b),
although the peak magnitude is only ≈12.5% of the maximum
magnitude of the real part under the resonance condition.
The imaginary part is confined around the origin for both
the delay and frequency directions, in contrast to the constant
magnitude of the real part demonstrated in the large positive
delay range under the resonance condition. In addition, we
confirm that the approximated formula of Eq. (B32) is reason-
able by comparing the magnitude square of the time-ordered
integration amplitude and the magnitude square of the FROG
amplitude |TFROGux (ω; τu)|2, as shown in Figs. 14(c) and 14(d),
respectively.

Even though we do not present a general proof of the
approximated formula of Eq. (32), we show that this formula
is applicable for feasible analytical functions adopted as a
model of the spectral envelope of an optical pulse.
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