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Automated detection of symmetry-protected subspaces in quantum simulations
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The analysis of symmetry in quantum systems is of utmost theoretical importance, useful in a variety of
applications and experimental settings, and difficult to accomplish in general. Symmetries imply conservation
laws, which partition Hilbert space into invariant subspaces of the time-evolution operator, each of which is
demarcated according to its conserved quantity. We show that, starting from a chosen basis, any invariant,
symmetry-protected subspaces which are diagonal in that basis are discoverable using transitive closure on
graphs representing state-to-state transitions under k-local unitary operations. Importantly, the discovery of
these subspaces relies neither upon the explicit identification of a symmetry operator or its eigenvalues nor
upon the construction of matrices of the full Hilbert space dimension. We introduce two classical algorithms,
which efficiently compute and elucidate features of these subspaces. The first algorithm explores the entire
symmetry-protected subspace of an initial state in time complexity linear to the size of the subspace by closing
local basis state-to-basis state transitions. The second algorithm determines, with bounded error, if a given
measurement outcome of a dynamically generated state is within the symmetry-protected subspace of the state
in which the dynamical system is initialized. We demonstrate the applicability of these algorithms by performing
postselection on data generated from emulated noisy quantum simulations of three different dynamical systems:
the Heisenberg-XXX model and the T6 and F4 quantum cellular automata. Due to their efficient computability
and indifference to identifying the underlying symmetry, these algorithms lend themselves to the postselection of
quantum computer data, optimized classical simulation of quantum systems, and discovery of previously hidden
symmetries in quantum mechanical systems.
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I. INTRODUCTION

The analysis of symmetry is a central tool in physics and
has enabled some of the most profound discoveries in the
field. Noether’s theorem famously connects the symmetries
of a system’s action with conservation laws to which that
system’s equations of motion are subject [1]. Generally, the
analysis of symmetry, or the breaking thereof, allows one to
constrain theories [2], solve equations of motion more effi-
ciently [3], and identify phases of matter [4]. Applications of
symmetry analysis in quantum information include, but are
not limited to, quantum error correction [5], error mitigation
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on quantum hardware [6–10], and quantum machine learning
model design [11].

Quantum computing can efficiently simulate quantum
dynamics in regimes where classical simulation becomes im-
possible [12]. However, current quantum processors operate
in a regime severely constrained by noise, with error rates
not yet sufficiently below most error correction thresholds
[13]. Error mitigation will therefore be critical in the interim
before fault-tolerant architectures can be scaled [14–16]. In
recent work, and despite its limitations [17], the technique of
postselection has proven useful to mitigate errors and extract
useful results from quantum simulation experiments (see, e.g.,
[18–20]). Postselection works by identifying measured states
that could only have come from error processes and excluding
them from the statistics used to calculate output quantities.
The most obvious example is a conserved quantity such as
particle number. In such a case, any measured state that does
not preserve the conserved quantity must be the result of
errors. Due to the connection established by Noether, a more
fundamental way to describe postselection is with respect to
symmetry. According to this description, postselection works
by checking the eigenvalue of the simulation’s “fiducial” (i.e.,
initial) state under the symmetry operator against the cor-
responding symmetry operator eigenvalues (e.g., value of a
conserved quantity) of individual measurement results in the
dynamically generated output state of the simulation. If a
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particular measurement outcome registers a different eigen-
value under the symmetry operator than the fiducial state does,
then the measurement is a result of error and can be discarded.
This procedure is restricted in the scope of its application,
as symmetries of a quantum system and their corresponding
operators (i.e., conserved quantities) are typically either en-
gineered into the dynamics “by hand” or identified by clever
theoretical intuition.

While many physically relevant systems have well-
characterized symmetries, for a generic quantum system the
relevant symmetry operator(s) may not be obvious a priori
and may be difficult to identify. In this paper we treat quan-
tum cellular automata as one such case. Additionally, recent
research has revealed that symmetries of Floquet or discrete
time evolution can be different from symmetries in continu-
ous time evolution of the same Hamiltonian [21–24], which
further promotes the development of an automated technique
for identifying such symmetries. Various attempts to discover
symmetry have been pursued via density matrix methods [25],
brute force algorithms such as Algorithm 2 in [26], and data-
driven methods [27–29].

Being able to perform postselection in a manner that does
not require explicit identification of a symmetry operator
would greatly increase the technique’s applicability; this is
the subject of this paper. As a corollary, such an operator-free
method for error detection also enables additional applica-
tions such as more efficient classical simulation of quantum
systems via computational basis state reduction. For example,
particle number conservation in hardcore boson models can
be used both for postselection in quantum simulation and for
reducing the basis state set size from 2n to

(n
N

)
, where n is

the number of lattice sites and N the number of particles, in
classical simulations [30]. Interestingly, the identification of
symmetry or conserved quantities in some instances can make
classical simulation so efficient that it can obviate the need
for quantum computation altogether [31]. Finally, in certain
special cases, one may be able to infer the explicit form of a
symmetry operator by inspection of the reduced basis set.

In this paper we provide algorithms to efficiently make
use of symmetry in an operator-free manner. To do this,
our methods create the subspace of measurement basis states
which would share a conserved quantity of some commut-
ing symmetry operator that is diagonal in that measurement
basis, without needing to explicitly create that operator. We
call such a space a symmetry-protected subspace (SPS). In
the language of linear algebra, these are invariant subspaces
of the evolution operator; they are subspaces, determined by
the initial state, from which the evolution cannot escape. To
reap the benefits of symmetry we need to find only the SPS
of the initial state, not a conserved quantity, much less an
explicit symmetry. However, naively, to find an SPS we need
to actually evolve the system in the full Hilbert space, which
is exponentially large in the number of qubits (particles, spins,
etc.). Sections III through V describe the formulation and
algorithms by which we avoid this exponential scaling, but
here we provide a nontechnical overview.

First, note that most Hamiltonians and resulting unitary
evolution operators are built from a number of local operators.
For example, the Heisenberg-XXX model described below
consists only of nearest-neighbor interactions. So, at some

level, we have an intuition that the dynamics, thus the SPSs,
should be derivable, like the unitary operator itself, from a
combination of local operations, and that local operations are
inherently less computationally expensive to work with. This
is indeed the case, as shown below. With this in mind, we
focus on unitary operators which are composed of a tractable
number of local operators.

Next, note that to say that a wave function is in a symmetry-
protected or invariant subspace is to say that it is and remains
throughout dynamic evolution a linear combination of basis
states in that subspace and that subspace alone. And if we
care only about finding the subspace, we do not need to keep
track of the actual linear combination (i.e., both the basis
vectors and their amplitudes) but only the basis vectors. This
“binarization” of the evolution is critical, because it allows
us to adopt a graph-theoretic framework that is vastly more
efficient for finding and searching SPSs.

This also leads to an important restriction in our work;
using our methods, we can automate only the discovery of
symmetry which is diagonal in a chosen basis. We work in
the computational Z basis throughout this paper, though ex-
tensions to other bases are of course possible by rewriting the
time evolution operators in the new basis and performing the
same procedure we describe below. Our automated methods
should thus be viewed as a tool to find symmetry-protected
subspaces within a given basis (if, of course, they exist), and to
potentially improve classical and noisy quantum simulations
based on those discovered subspaces. However, they still re-
quire an intelligently guessed initial basis as a starting point.
For the problems we consider in this work, the computational
basis is sufficient to derive novel results, though more com-
plex choices can be required in other cases.

With this caveat in mind, once the basis is chosen we
create an undirected and unweighted graph, called the state
interaction graph, which describes all possible state-to-state
transitions over a single application of a unitary evolution
operator. The transitive closure of this graph fragments the
Hilbert space of the system, represented in a particular mea-
surement basis, into a cluster graph, whose subgraphs are each
a symmetry-protected subspace.

Our main results are two classical algorithms that ef-
ficiently construct and work within these subspaces. Both
algorithms require the construction of a mathematical object
which we call the basis state string edit map, which efficiently
describes the interactions of basis vectors through a unitary
operator by examining only edits to the bit strings which
represent those basis vectors; this procedure is described for a
single local operator in Algorithm III.1. The first, Algorithm
IV.1, uses “transitive closure” on local operations to explore
and explicitly construct the full SPS of an initial state, which
enables the partition of the Hilbert space into a set of disjoint
SPSs. This algorithm scales linearly in both the number of
local operators from which the global operator is constructed
and the size of the SPS, which is a huge improvement over
the exponential scaling of the naive “full evolution” approach.
However, because the SPS itself can be exponentially large
(albeit with an asymptotically smaller prefactor), the second
algorithm, Algorithm V.1, finds a path of local operations
through a set of SPS graphs from an initial to final (i.e.,
measured) state to determine if they lie within the same SPS
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(and thus the final state is valid). This algorithm scales as the
number of local operations raised to a small integer power
(that can be tuned for accuracy and performance) times the
length of the path, thus completely eliminating any exponen-
tial scaling.

This paper is structured as follows. In Sec. II we define
symmetry-protected subspaces and the three quantum systems
that will serve as our “exemplars” throughout. In Sec. III we
outline our novel graph theoretical approach to quantum simu-
lations; in practice, Secs. III A–III B do not need to be applied,
as they are only theoretical foundations for our work, while
Sec. III C describes the construction of the aforementioned ba-
sis state string edit map. Section IV discusses the algorithm for
computing an entire symmetry-protected subspace. Section V
provides a more efficient algorithm to verify if two states exist
within the same symmetry-protected subspace. For the reader
primarily interested in applying the algorithms, Sections III C,
IV, and V are the most relevant. Finally, we demonstrate the
effectiveness of symmetry-protected subspaces to mitigate er-
ror in quantum simulations on a classical emulator in Sec. VI.

II. PRELIMINARIES

A. Symmetry-protected subspaces

Consider a quantum system undergoing unitary evolution
according to the operator U (t ) for a time t . The operator U (t )
can represent continuous time evolution, but also includes
other cases, such as discrete time evolution. We say that U (t )
is invariant under the action of an operator S if [S,U (t )] = 0
for all times t . In this instance, S is a symmetry operator. For
a basis in which S is diagonal, states can be labeled by their
eigenvalues under the action of S: S|s, b〉 = s|s, b〉, where b
is some other (set of) label(s), which could represent, for
example, a computational basis state integer encoding or a
many-body eigenvalue. Suppose now that we initialize the dy-
namics in a state of definite s: |ψ s

0〉 = ∑
b αs

b|s, b〉, and evolve
under U (t ). Given the commutativity of the symmetry and
evolution operators, the action of the symmetry operator on
the output state is S[U (t )|ψ s

0〉] = U (t )S|ψ s
0〉 = U (t )s|ψ s

0〉 =
s[U (t )|ψ s

0〉], indicating that the eigenvalue s is conserved un-
der the evolution for all time. Our methods identify states that
would share an eigenvalue under S without explicitly knowing
S. To do this, we use the notion of a symmetry-protected
subspace, also known as an invariant subspace, which we
define below.

Definition 1 (Symmetry-Protected Subspace). Let Hd be a
Hilbert space of dimension d spanned by an orthonormal set
of basis vectors, B(Hd ) = {|b〉}. A subspace G ⊆ Hd , which
is spanned by a subset of B(Hd ), is a symmetry-protected
subspace of unitary operator U (t ) if and only if a projection
onto G, PG = ∑

b∈G |b〉〈b|, obeys the commutation relation
[PG,U (t )] = 0.

Note that while our definition emphasizes the connection
to symmetries, an SPS, as defined above, is indeed an invari-
ant subspace according to the usual definition [32], which is
simply that ∀|g〉 ∈ G, U (t )|g〉 ∈ G, because if |g〉 ∈ G,

U (t )|g〉 = U (t )PG|g〉 = PG[U (t )|g〉] ∈ G, (1)

where we have used the commutativity of PG and U (t ) and
the fact that by definition the result of applying PG to anything

is in G. Another consequence of Def. 1 is that if a particular
basis state is not in G, then the transition matrix element to
that state from any state in G is strictly zero.

Lemma 0.1. Let |g〉 ∈ G be an arbitrary element of a
symmetry-protected (i.e., invariant) subspace G of an evo-
lution operator U (t ) and let |b〉 ∈ B(Hd ) be a basis vector
outside of G, |b〉 /∈ G. Then 〈b|U (t )|g〉 = 0 for any time t .

Proof. Using Def. 1, 〈b|U (t )|g〉 = 〈b|U (t )PG|g〉 =
〈b|PGU (t )|g〉 = [PG|b〉]†U (t )|g〉 = 0, since the projection
operator onto G annihilates states outside of G.

In Sec. IV we present an algorithm that prescriptively con-
structs a subspace, denoted G|ψ0〉, of a particular initial state,
|ψ0〉. We also show in the corresponding theorem, Thm. 1,
that subspaces so constructed share the property described
in Lem. 0.1, which relies on Def. 1 for its proof. Hence,
G|ψ0〉 constructed according to the procedure in Sec. IV are
symmetry-protected subspaces.

Similar to that of the symmetry operator S, the com-
mutation relation involving PG also identifies a dynamical
invariance, since for any |g〉 ∈ G, PG[U (t )|g〉] = [U (t )|g〉].
That is, the state U (t )|g〉 is an eigenvector of the projector
with eigenvalue 1. Therefore, while the projector PG does
not identify conserved symmetry eigenvalues, it does indicate
when such an eigenvalue exists. In Sec. III, we will show
how discovering PG, rather than S directly, empowers our
algorithms to discover underlying invariances.

B. Quantum simulations

The general form for unitary evolution operators we as-
sume is

U (t ) = Oop

[
p∏

j=1

m∏
i=1

Ui(τ j )

]
, (2)

where t is the total duration of evolution, Oop denotes some
operator ordering, such as time ordering, and p is the number
of time steps used to evolve to t . Each Ui(τ j ) acts locally on
k-qubits and is parameterized by a real time coordinate τ j ,
with m k-local operators used to describe the n-qubit system.
Evolution unitaries of the form in Eq. (2) can evolve over dis-
crete time, where each τ j is finite, or discretized-continuous
time, where each τ j is (ideally infinitesimally) small in order
to minimize Trotter error.

In the instance where a k-local Hamiltonian, H = ∑
i hi, is

known, Eq. (2) results from the local dynamics governed by
the hi via the Trotter-Suzuki formula [33], and p corresponds
to the number of Trotter steps. We refer to the operator U as
the relevant quantum system and examine the dynamics and
associated symmetry-protected subspaces of three exemplary
systems.

1. Heisenberg-XXX

The one-dimensional Heisenberg-XXX model for n spin-
1/2 particles with nearest-neighbor interactions is given by
the following Hamiltonian:

H =
n−2∑
i=0

XiXi+1 + YiYi+1 + ZiZi+1, (3)
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where Xi,Yi, and Zi are Pauli operator acting on spin i. The
model conserves total spin in the Z basis, represented by the
operator

Sz =
n−1∑
i=0

Zi, (4)

as well as the correspondingly defined operators Sx and Sy.
Quantum simulation of the Heisenberg model on a digital
quantum processor can be achieved via exponentiation and
Trotterization of Eq. (3). In such quantum simulation exper-
iments, one usually picks one or a number of qubit bases in
which to measure. The symmetry operators Sx,y,z can be used
to mitigate errors in the all-qubit X,Y, Z measurement bases,
respectively, via postselection. In the context of classical sim-
ulation of the XXX model, the symmetries can be used to
constrain the number of basis states included in the dynamics.

2. T6 quantum cellular automata

The one-dimensional T6 quantum cellular automata (QCA)
rule has recently come to interest within the context of quan-
tum complexity science as a dynamical small-world mutual
information network generator [20] and a QCA Goldilocks
rule [34]. Its discrete-time unitary update can be derived from
a parent Hamiltonian, but it is more natural to define the
system by specifying the simulation unitary for a discrete time
t = p, directly:

U (T6; t ) = Ot ime
op

[
p∏

j=1

n−1∏
i=3,5,...

Ui(τ j )
n−1∏

i=2,4,...

Ui(τ j )

]
,

Ui(τ j ) =
1∑

α,β=0

P(α)
i−1 ⊗ (Hi )

δα+β,1 ⊗ P(β )
i+1, (5)

where P(α)
i = |αi〉〈αi| for α = 0, 1 is the projection operator

onto the corresponding state of qubit i, Hi is the Hadamard
operator, and δα+β,1 is the Kronecker delta function. At each
time step, a Hadamard is applied to a qubit only if exactly one
of its neighbors is in the |1〉 state (i.e., α + β = 1) and does
nothing otherwise. It has a known Z basis symmetry related to
domain-wall conservation:

S =
n∑

i=0

ZiZi+1, (6)

where it should be understood that indices i = 1, . . . , n refer
to dynamical, computational qubits while the indices i = 0
and i = n + 1 refer to nondynamical qubits fixed to the |0〉
state.

3. F4 quantum cellular automata

The one-dimensional F4 QCA with nearest- and next-
nearest-neighbor connectivity is another Goldilocks rule [34].
It is also most easily specified by its simulation unitary for
discrete-time duration t = p:

U (F4; t ) = Otime
op

[
p∏

j=1

U (τ j )

]
, (7)

where if the time step index, j, is even

U (τ j=even) =
∏

i=2,5,8,...

Ui(τ j )
∏

i=3,6,9,...

Ui(τ j )
∏

i=4,7,10,...

Ui(τ j ),

(8)
and if j is odd, then

U (τ j=odd) =
∏

i=3,6,9,...

Ui(τ j )
∏

i=2,5,8...

Ui(τ j )
∏

i=4,7,10,...

Ui(τ j ).

(9)
In either case,

Ui(τ j ) =
1∑

α,β,γ ,ω=0

Pα
i−2Pβ

i−1(Hi )
δα+β+γ+ω,2 Pγ

i+1Pω
i+2. (10)

Equation (10) applies a Hadamard to a qubit if exactly two out
of its neighbors or next-nearest neighbors are in the |1〉 state.
There are no analytically known symmetries for this rule. As
shown in Fig. 3 in Sec. IV C, our methods discover previ-
ously unknown, symmetry-protected subspaces, indicating a
hitherto hidden symmetry of the system.

III. GRAPH THEORY APPROACH TO QUANTUM
SIMULATIONS

In this section we show how graph theory coupled with
transitive closure discovers symmetry-protected subspaces.
We describe how to “binarize” interactions between basis
states through the dynamical system by discarding amplitude
and phases to solely highlight i f such an interaction exists, de-
scribing these interactions as transitive relations, and finding
the states connected by a transitive relation to form the SPSs
of the system.

Directly, this method still requires unitary matrix multi-
plication in Hilbert space to establish basis state interactions
through the dynamical system. Thus, to apply our methods,
we need an efficient way to describe state-to-state interactions.
We do this by creating a structure we call a string edit map LU

for a unitary operator U , which relies on the observation that
quantum systems are typically structured by local interactions.
This string edit map returns the basis states available through
any operations of a single local unitary operator on a single
basis state in near-constant time complexity, allowing us to
inexpensively find basis vectors available in local quantum
dynamics.

This section will proceed as follows: in Sec. III A we first
define the concept of a state interaction graph, whose edges
indicate nonzero amplitudes on transitions between measure-
ment basis states in the quantum simulation. Next, in Sec. III B
we show how transitive closure on this graph creates a cluster
graph, which we call the closed state interaction graph, whose
complete subgraphs are symmetry-protected subspaces. Fi-
nally, in Sec. III C we show how this closed interaction graph
can efficiently return the set of all measurement basis states
seen by a unitary operator on a single state via the construction
of the string edit map LU for a unitary operator U .

A. State interaction graph

We begin by defining the state interaction graph DU for a
unitary operator U over a Hilbert space basis B(Hd ) = {|b〉}
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(a) (b) (c)

FIG. 1. Example construction of the state interaction graph DUTrot and corresponding symmetry-protected subspaces for the one-
dimensional, four-site hopping unitary in Eq. (12). Multiqubit states are ordered as |q0q1q2q3〉. One Trotter approximation for the unitary,
UTrot, is given in Eq. (13), where it should be understood that right-most operators act first. For graphical clarity we omit loops, with the
understanding they are always implied. (a) State interaction graph DUTrot . Nodes represent the different four-bit strings, and edges occur where
matrix elements of UTrot are nonzero. Note the presence of five disconnected subgraphs. In practice we treat each of these edges as undirected.
(b) Transitive closure of DUTrot resulting in the closed state interaction graph, which in this case corresponds exactly to the state interaction
graph for the hopping unitary: DUHop = D+

UTrot
. Each disconnected subgraph in DUTrot has become a disconnected complete graph in D+

UTrot
.

(c) Each complete graph in DUHop = D+
UTrot

corresponds to a symmetry-protected subspace Gs, where s denotes that SPS’s conserved quantity.

In this example, the subspace indices correspond to eigenvalues under particle number conservation, S = ∑3
i=0

1
2 (1 − Zi ).

(we sometimes shorten this notation to just B) and showing
how to construct it. For now we leave the form of U general
and will specify particular forms when necessary.

Definition 2 (State Interaction Graph). Given a basis B
and a unitary operator U , define a vertex set V ≡ B
and an undirected edge set E ≡ {(|b〉 ↔ |b′〉) ∀ |b〉, |b′〉 ∈
B | 〈b′|U |b〉 �= 0}. Then the state interaction graph is defined
by the ordered tuple DU ≡ (V, E ). In other words, the basis
states of B are assigned to vertices (nodes) in the interaction
graph and edges are created between vertex states only where
the matrix element of the evolution unitary between the two
states is nonzero.

Strictly speaking, DU should be a directed graph, where an
edge points from |b〉 to |b′〉 if 〈b′|U |b〉 �= 0 and from |b′〉 to
|b〉 if 〈b|U |b′〉 �= 0. However, for a symmetry operator S and
time-dependent simulation unitary U (t ), one can show that
[S,U (t )] = 0 ⇐⇒ [S,U †(t )] = 0, meaning that symmetries
of the evolution operator, and their associated protected sub-
spaces, are invariant under time reversal. To remain consistent
with this observation, we treat every directed relationship
〈b′|U |b〉 �= 0 ⇒ (|b〉 → |b′〉) as an undirected edge (|b〉 ↔
|b′〉). This treatment is equivalent to assuming that the true, di-
rected state interaction graph corresponding to Def. 2 always
has a cycle that leads back to every node, such as is the case in
Fig. 1(a). Formally, we assume that if there is an edge (|b〉 →
|b′〉) ∈ DU , there also exists a path {|b′〉 → · · · → |b〉} ⊆ DU .
This global cyclicity assumption enables us to use the notion
of transitive closure in Sec. III B, and subsequently, in an
uncomplicated manner that respects the time-reversal invari-
ance of the resulting subspaces. It is justified on two points:
(1) most simulation unitaries have a very regular, repetitive
structure so that directed, acyclic state interaction graphs are
likely only to arise in extremely pathological instances and (2)
the failure of the global cyclicity assumption will only ever
result in the artificial enlargement of a symmetry-protected
subspace, and while such a failure leads to underconstrained

subspaces, which is bad for the efficacy of, e.g., postselection,
it will never result in the corruption of simulation fidelity by
overconstraining or throwing out good simulation data.

To construct DU , we use the following steps. First, choose
a set of Hilbert space basis vectors B(Hd ) = {|b〉}. Any
symmetry-protected subspaces that are discovered must be
formed by the basis vectors of this basis. In the context of
quantum simulation, B dictates the basis in which a quantum
computer will be measured. For example, parallel readout in
the computational Z basis will result in bit strings, Bcomp. =
{|0 . . . 00〉, |0 . . . 01〉, . . . , |1 . . . 11〉}, which are Pauli Z-string
eigenvectors. In the context of classical simulation, the basis
furnishes a representation for the d-dimensional vector of
complex amplitudes that stores the evolving many-body wave
function. When the evolution operator U (τ ) is applied to a
basis vector |b〉 for a single time-step the resulting state |ψ (τ )〉
has a basis vector decomposition

|ψ (τ )〉 = U (τ )|b〉 =
∑
b′∈B

|b′〉〈b′|U (τ )|b〉 =
∑
b′∈B

αb′ (τ )|b′〉,
(11)

where we suppress the time-ordering subscript j in τ j for sim-
plicity. With this decomposition for each |b〉 ∈ B, we create
the state interaction graph DU of the operator U (τ ): for each
pair |b〉, |b′〉 such that αb′ (τ ) �= 0 in Eq. (11), we add an edge
(|b〉 ↔ |b′〉) to DU . If one has a direct d × d matrix repre-
sentation of U (τ ) on-hand, then the adjacency matrix for DU

can be read off directly as AU = bit[bit[U (τ )] + bit[U †(τ )]],
where if an entry in U (τ ) or U †(τ ) becomes nonzero for
any value of t , its complex value is replaced by 1 under the
operation bit[· · · ]. This adjacency matrix can be formed, for
example, by directly exponentiating a d × d Hamiltonian ma-
trix with a time parameter. In practice, however, constructing
or storing an entire evolution unitary in memory is costly,
since the size of Hilbert space d grows exponentially in the
number of qubits n in the simulation: d = 2n. Indeed, one
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of the main advantages of digital quantum simulation is the
ability to break global evolution unitaries into sequences of
local unitaries, at the expense of introducing error, which are
then implemented as quantum gates. Therefore, being able to
extract symmetry-protected subspaces from consideration of
local operations, rather than from the global unitary they may
approximate, is of clear benefit.

Towards this end, Fig. 1(a) shows the state interaction
graph DUTrot for one, potentially very bad depending on θ ,
Trotter approximation to the one-dimensional, four-qubit hop-
ping unitary

UHop(θ ) = eiθ
∑2

i=0(XiXi+1+YiYi+1 )/2. (12)

We take the Trotterization to be

UTrot(θ ) = iSWAP01(θ ) × iSWAP12(θ ) × iSWAP23(θ ),
(13)

where it should be understood that rightmost operators are
applied first, and multiqubit states are ordered as |q0q1q2q3〉.
Notice that each iSWAPi,i+1(θ ) is parameterized by an arbi-
trary θ , and as such we expect each iSWAP operation to be
a fractional operation that leaves some residual state behind,
i.e., the operator has an identity component. The system is
small enough that the state interaction graph can be checked
by hand in this case, and the main observation to be made is
that it is comprised of four disjoint subgraphs, each contain-
ing only transitions between states of fixed particle number
(i.e., number of |1〉s), and that all nodes in each subgraph
have a path to all other nodes in the subgraph. The zero-
and four-particle states are isolated, while the one-, two-,
and three-particle states form directed, incomplete, isolated
subgraphs. As we will see, this “incompleteness” feature
is a pathology of the Trotter approximation which will be
rectified in Sec. III B via transitive closure. It is also worth
noting that constructing the state interaction graph using the
Trotter-approximated unitary is not yet useful, since on a
classical computer it currently still requires the storage and
evolution of a 2n-dimensional wave function. We will demon-
strate the utility of constructing state interaction graphs from
component k-local operators in Sec. III C.

B. Defining symmetry-protected subspaces
with transitive closure

Suppose we have states |b〉 and |b′′〉, such that 〈b′′|U |b〉 =
0 and 〈b′′|UU |b〉 �= 0. This requires a transitive relation:
〈b′′|UU |b〉 = ∑

b′∈B〈b′′|U |b′〉〈b′|U |b〉, because |b〉 must first
transition to an intermediate state |b′〉 to reach its fi-
nal destination at |b′′〉. Therefore, in our state interaction
graph DU , as defined in Def. 2, there are edges (|b〉 →
|b′〉), (|b′〉 → |b′′〉) ∈ DU which will have the same transitive
relation encoded in the path {|b〉 → |b′〉 → |b′′〉} ⊆ DU .
We use this duality to make the assumption that if the
edges (|b〉 → |b′〉), (|b′〉 → |b′′〉) ∈ DU , the transition ampli-
tude 〈b′′|UU |b〉 �= 0.

There are cases where the amplitudes of the states can-
cel, due to destructive interference, and break this transitive
property on the level of individual basis state to basis state
interactions. By ignoring the amplitudes of the basis states, we
run the risk of including states in the subspace which would

be removed via destructive interference. This risk comes with
the benefit of efficiently knowing which states are reachable
in the quantum simulation, and for our applications it does
not add any error to a simulation, as it does not break the
underlying commuting subspace projection operator PG; the
subspaces are simply not as restrictive as they could be. See
Appendix A for a proof. This also allows one to define the
symmetry-protected subspaces to be for any parametrization
of the simulation unitary.

The transitive property exists for every state |b〉 in DU , so
we can take the transitive closure of the state interaction graph
to create a closed state interaction graph D+

U . The transitive
closure of an edge set E is a transitively closed edge set
E+, where every pair of states |b〉, |b′〉 ∈ E which can be
associated by any transitive relation, in other words can be
connected by a path {|b〉 → · · · → |b′〉} ⊆ E , has an edge
(|b〉 → |b′〉) ∈ E+ [35].

Definition 3 (Transitively Closed State Interaction Graph).
Let DU = (V, E ) be a potentially nonclosed state interaction
graph for unitary U and basis B. Define V + ≡ V to be
the closed state interaction graph vertex (node) set and
E+ to be the state interaction graph edge set. An edge,
(|b〉 ↔ |b′〉) ∈ E+, exists in this edge set if and only if there
is a path between |b〉 and |b′〉 in DU , {|b〉 ↔ · · · ↔ |b′〉} ⊆ E .
The transitively closed state interaction graph is then defined
as D+

U ≡ (V +, E+).
Because the original interaction graph represents single-

operator state-to-state transitions, any two basis states which
can discover each other through the quantum evolution have
an edge in D+

U ; in other words,

∃ t s.t . 〈b′|U (t )|b〉 �= 0 ⇒ (|b〉 ↔ |b′〉) ∈ D+
U , (14)

for some time or operator exponent t . The transitive closure
of an undirected, unweighted graph is a cluster graph, or a set
of complete subgraphs; as discussed at the end of Sec. III A,
we treat the graph DU as undirected just for this purpose. The
transitive closure of the state interaction graph for the Trot-
terized unitary in Fig. 1(a) can be seen in Fig. 1(b), which in
this case turns out to be state interaction graph for the original
hopping unitary, or D+

UTrot
= DUHop . As with DUTrot , within each

complete subgraph, total particle number is conserved.
If there is an edge (|b〉 ↔ |b′〉) ∈ D+

U , then |b〉 and |b′〉
lie in the same cluster of nodes within D+

U and thus share
a conserved quantity of the underlying unknown symmetry.
This cluster graph structure also makes it apparent that if a
wave function is initialized as a linear combination of vectors
in one subgraph G of D+

U : |ψ0〉 = ∑
b∈G αb|b〉, it will remain

in that subgraph through its time evolution:

|ψ (t )〉 = U (t )|ψ0〉 =
∑
b′∈G

αb′ (t )|b′〉 ∀ t . (15)

Therefore, each complete subgraph G within D+
U is a

symmetry-protected subspace. We will formally prove that
transitive closure on the state interaction graph can give an
SPS with Thm. 1 in Sec. IV A.

D+
U can be represented as a list of disjoint sets of nodes,

where each set has implied all-to-all connectivity. This set
construction can be seen for the hopping unitary in Fig. 1(c).
Here the index, s, of each subset, Gs counts the number of
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conserved particles. Formally, we can define the associated
symmetry-protected subspaces by constructing their projec-
tion operators according to Def. 1: PG = ∑

b∈G |b〉〈b|.

C. Basis state string edit map

We now have a method to identify symmetry-protected
subspaces using the language of graph theory. However, actu-
ally computing these subspaces still requires the construction
and manipulation of vectors and matrices in an exponentially
large Hilbert space. Recall, though, that the systems of interest
are defined by Hamiltonians composed of local operations
U = ∏

i Ui where each Ui is k-local, meaning it involves only
k of the n total qubits in the system, and where in general we
will have k � n. In this section we describe our mechanism
for using this fact to build up SPSs efficiently with what we
call the basis string edit map, denoted L. This map enables
computation of subspaces using only k-local operations on ba-
sis state vectors, so the computational complexity of operation
with this map scales with k instead of n.

Definition 4 (Basis String Edit Map). Let Ui(t ) be a uni-
tary operator that acts for a time t nontrivially on k of n qubits,
Qk (i) ⊆ {q0, . . . , qn−1}. The basis string edit map LUi maps a
basis state |b〉 to the set of basis states {|b′〉} to which |b〉 can
evolve after an arbitrary amount of time under Ui(t ). Formally,
LUi (|b〉) = {|b′〉 | ∃ t 〈b′|Ui(t )|b〉 �= 0}.

We can apply this construction to any unitary operator,
including any k-local Trotter decomposition. Given a unitary
operator which is a product of local operators U = ∏

i Ui, we
form the set of local operators used in the Trotter decompo-
sition, {Ui}. Then a basis string edit map can be formed for
any subset of operators from {Ui}, as long as every operator
Ui ∈ U is included in at least one string edit map. We will use
the decomposition

L ≡ {LUi : Ui ∈ U }, (16)

which has one string edit map for each local operator in the
Trotter decomposition.

In Def. 4 we have deliberately left out the exact space upon
which LUi acts. When operating on states in a basis B with LUi ,
when dim(LUi ) < dim(B), we will call LUi a “substring edit
map.” When dim(LUi ) = dim(B), we refer to it as a “string
edit map” or “full string edit map.”

For example, in the hopping unitary UHop given in Eq. (12),
we can define LUHop which would give LUHop (|0100〉) =
G1 where G1 is in Fig. 1(c). In practice, the exact ex-
ponentiation of the Hamiltonian is unavailable, so more
usefully, we take the Trotterization of Eq. (12) given by
Eq. (13), and define string edit maps for the local iSWAP
operators, LTrot = {LiSWAP0,1(θ ),LiSWAP1,2(θ ),LiSWAP2,3(θ )}. In
Eq. (13) each local operator Ui = iSWAPi,i+1(θ ) would gener-
ate the corresponding edit map LiSWAPi,i+1(θ ), which operate as,
e.g., LiSWAP1,2(θ )(|0100〉) = {|0010〉, |0100〉}. Here we have
written the operators as acting on the full 2n-dimensional
Hilbert space and highlighted in bold the qubits that are
part of the 2k-dimensional subset of this space upon which
LiSWAP1,2(θ ) acts. This k-local string edit map does not require
information about any states besides those at the relevant
indices, 1 and 2 in this case.

Algorithm III.1 Create a string edit map LUi .

Require: Local unitary Ui, orthonormal basis Bi = {|b〉}
Ensure: Dim(Bi ) = Dim(Ui ) = 2k and Col(Ui ) = Col(Bi )

AUi ← bit[Ui] + bit[U †
i ] � Add U †

i to make the adjacency
matrix undirected

A′
Ui

← bit[A2
Ui

]
while A′

Ui
�= AUi do

AUi ← A′
Ui

A′
Ui

← bit[A2
Ui

]
end while
for |b〉 ∈ Bi do

for |b′〉 ∈ Bi do
if AUi [|b〉, |b′〉] = 1 then

LUi (|b〉) ← LUi (|b〉) ∪ |b′〉
end if

end for
end for
returnLUi

Algorithm III.1 creates LUi by taking transitive closure of
the adjacency matrix AUi of DUi via Boolean matrix multipli-
cation [36]. This algorithm requires O(23k ) time to compute
LUi , O(2k ) space to store it, and O(1) time to use LUi .

Algorithm III.1 is computationally trivial to compute for
small unitary operators (k = 2 in the iSWAP example), but
very expensive for the large unitary operators encountered in
quantum simulations. Throughout the rest of this paper, we
will use LUi defined on small k to compute our subspaces in
order to keep a small overhead (thus, in our terminology, we
will always be talking about “substring edit maps”).

The object L lets us create a version of the state interaction
graph from Def. 2 which we call the string interaction graph
DL; this construction compactly shows the state-to-state in-
teractions in the algorithms presented in Sec. IV and V. The
mapping itself is defined as L(|b〉) ≡ {Li(|b〉) : Li ∈ L}.

Definition 5 (String Interaction Graph). Let DL be a
graph defined by an ordered tuple DL ≡ (VL, EL) and L ≡
{LUi : Ui ∈ U } for some Trotterized unitary U = ∏

i Ui. The
vertex set is then given by VL ≡ B(Hd ), and the edge set is
given by EL ≡ {(|b〉 ↔ |b′〉) : |b〉, |b′〉 ∈ B and |b′〉 ∈ L(|b〉)}.

While edges in DU can capture the action of multiple op-
erators at once, each edge in DL is the action of only a single
operator; therefore, if DU ≡ (V, E ) is the state interaction
graph and DL ≡ (V, EL) is the string interaction graph, then
EL ⊆ E . Later we will show with the proof in Appendix B
for Thm. 1 that despite this inequality, the transitive closure
of the graph D+

L is equivalent to the transitively closed state
interaction graph D+

L ≡ D+
U .

IV. ALGORITHM: CREATING THE
SYMMETRY-PROTECTED SUBSPACE

OF AN INITIAL STATE

We now turn to the construction of the entire symmetry-
protected subspace of a given initial state using k-local
substring edit maps and transitive closure, a construction con-
sistent with the observation that if a symmetry exists locally
everywhere in a quantum circuit, then it will also manifest
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FIG. 2. This figure shows how we can incrementally build the symmetry-protected subspace for U = ∏2
i=0 iSWAPi,i+1(θ ). (a) A single un-

closed symmetry-protected subspace, or a subgraph of DL for an iSWAP network. All operations LTrot = {LiSWAP0,1(θ ),LiSWAP1,2 (θ ),LiSWAP2,3(θ )}
which are nonidentity on each node are shown as an edge. Notice the similarities between this graph and the s = 2 subgraph of Fig. 1(a): both
have the same vertex set, but the edge set of DL is a subset of the edge set in DU . (b) Follow the recursion relation in Eq. (17) to iteratively
build the symmetry-protected subspace G|1100〉, starting from |ψ0〉 = |1100〉. Even though the graph in (a) is not equivalent to the graph in
Fig. 1(a), their transitively closed graphs are equivalent, as can be seen by the vertices covered by the red line.

globally [37]. The algorithm by which we do so works by
establishing a recurrence relation for computing new states,
associated by symmetry protection to the initial state, in the
simulation. This recurrence relation furnishes an efficient way
to compute the transitive closure of select subgraphs of the
entire Hilbert space, with no extraneous information. For
a unitary simulation operator decomposed into enumerated
local operations, U (τ j ) = ∏m

i=1 Ui(τ j ), where each Ui(τ j ) is k-
local, we will show that a symmetry-protected subspace G|ψ0〉
of the initial state |ψ0〉 costs O((m + 1) × |G|ψ0〉|) to compute,
where m is the number of k-local operators in a single discrete
time-step of the simulation, and O(|G|ψ0〉|) to store with a
breadth-first search [38]. We will give the algorithm for the
case where the initial state |ψ0〉 is a single measurement basis
state (i.e., a product state). If |ψ0〉 is a linear combination
of measurement basis vectors, the algorithm can be repeated
for each basis vector in the sum; this does not impact the
asymptotic performance of the algorithm, as it only makes the
computed subspace bigger.

We enumerate every state in a symmetry-protected sub-
space by transitively closing subgraphs created by the local
basis substring edit maps established in Sec. III C, which
return a set of basis states evolved to by their corresponding
unitary operators in O(1) when operating on a single basis
state. We recursively build the subspace by checking the set
of substring edit maps L ≡ {LUi : Ui ∈ U } on each new state,
until none are added. This process can be seen as the tran-
sitive closure of a subgraph of the graph DL. For UTrot in
Eq. (13), Fig. 2(a) shows an example of the subgraph of DL

corresponding to the action of each LiSWAPi,i+1(θ ) ∈ LTrot start-
ing from the initial state |ψ0〉 = |1100〉 (self-edges are ignored
as elsewhere in the paper).

A. Recurrence relation

To find the symmetry-protected subspace of an initial
state, we begin by computing the string edit map for each
k-local unitary, L ≡ {LUi : Ui ∈ U }. Next, we check the
set of measurement basis strings generated by operating
with each substring edit map on the initial state, notated
L(|ψ0〉) ≡ {Li(|ψ0〉) : Li ∈ L}. We define the set T 1

|ψ0〉 ≡
{|ψ0〉} ∪ L(|ψ0〉). Then, for each new state |φ〉 ∈ L(|ψ0〉),
we check operations under the substring edit maps: T 2

|ψ0〉 =
L(T 1

|ψ0〉) ≡ {L(|φ〉) : |φ〉 ∈ L(|ψ0〉)}. This process repeats un-
til no new states are found through the following recurrence
relation:⎧⎪⎨

⎪⎩
T 1

|ψ0〉 ← {|ψ0〉} ∪ L(|ψ0〉) base case

T i+1
|ψ0〉 ← T i

|ψ0〉 ∪ L(T i
|ψ0〉) recursive case

T i+1
|ψ0〉 = T i

|ψ0〉 stop condition

. (17)

The stop condition activates if no new states are found, that
is, when additional operations drawn from L do not unveil
any new states. Steps 0–4 in Fig. 2(b) show how the recur-
rence relation manifests for the input state |ψ0〉 = |1100〉 and
the set of substring edit maps generated from the Trotteri-
zation in Eq. (13). Once Eq. (17) reaches the stop condition
T i+1

|ψ0〉 = T i
|ψ0〉 and returns, we define the symmetry-protected
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subspace G|ψ0〉 to which the state |ψ0〉 belongs via

G|ψ0〉 ≡ T i+1
|ψ0〉 , (18)

where the definition “≡” in Eq. (18) should be taken to mean
“all basis states in T i+1

|ψ0〉 viewed as nodes in a complete graph.”
We can create the Kleene Closure of the set of substring edit
maps, denoted L�, which is the set of all finite concatenations
of substring edit maps, including the identity. Any arbitrary
string of substring edit maps L� applied to |ψ0〉 will result in
a state in G|ψ0〉, by its definition. Hence, one can write

L�(|ψ0〉) = G|ψ0〉. (19)

We now state our main result.
Theorem 1. Let U (t ) = Oop[

∏p
j=1

∏m
i=1 Ui(τ j )] be a

quantum simulation unitary of duration t acting on n
qubits as in Eq. (2), divided into p time steps, where
each Ui(τ j ) is k-local and is time step parameterized by
τ j , and some operator ordering (such as time ordering) is
specified. Let LUi be the string edit map corresponding to
any available parametrization of Ui(τ j ) and the set of such
maps L ≡ {LUi : i ∈ {1, . . . , m}}. Let B(H2n ) ≡ {|b〉} be
the basis in which computations (measurements) are being
performed classically (quantumly). Then, given an input
state |ψ0〉, expressed in the basis B, if |b〉 /∈ G|ψ0〉, where
G|ψ0〉 is constructed according to Eqs. (17) and (18), then
〈b|U (t )|ψ0〉 = 0.

For a proof, see Appendix B. Note that for 〈b f |U (t )|ψ0〉
to vanish under these conditions, G|ψ0〉 must satisfy Def. 1 as
demonstrated in Lem. 0.1. In other words, for G|ψ0〉 to be able
to exclude particular basis states for arbitrary evolution times,
it must be a symmetry-protected subspace. Note that Thm. 1
immediately provides two corollaries.

Corollary 1 (Postselection). For simulation on an ide-
alized, noise-free quantum computer, if |b f 〉 /∈ G|ψ0〉 then
||〈b f |U (t )|ψ0〉||2 = 0. Hence, if the state |b f 〉 is measured in
the output of a noisy quantum device, it can be assumed that
the state arose as a result of error and may be discarded.

Corollary 2 (Global Subspace). We assumed a Trotterized
form for U (t ) in the statement and proof of Theorem 1.
However, we can formally recover the corresponding global
simulation unitary by taking the limit p → ∞ where τ j =
jt/p in the time-ordered case and τ j = t/p ∀ j when time
ordering is unnecessary (such as when the Hamiltonian is
time-independent). Nothing in the proof of Theorem 1 relies
upon the finiteness of p or discreteness of the corresponding
time differential t/p. Therefore, our result holds for global
simulation unitaries as well. This implies that one can reduce
the resource requirements in classical simulations of U (t ) by
only evolving basis states |b〉 ∈ G|ψ0〉.

B. Pseudocode

With an understanding of the recurrence relation in
Eq. (17) and how it can compute symmetry-protected sub-
spaces, we present an algorithm which can enumerate these
subspaces using a breadth-first search. Breadth-first search
to enumerate an entire graph (V, E ) has computational com-
plexity O(|V | + |E |). In our implementation, there are |G|ψ0〉|
vertices and we check for m edges at each vertex, giv-
ing O(m × |G|ψ0〉|) edges in the entire graph. Thus, our

Algorithm IV.1 Enumerate symmetry-protected subspace G|ψ0〉
with a breadth-first search.

Require: String edit maps L of the simulation operator,
initial state |ψ0〉
G ← {|ψ0〉}
Let Q be a first-in-first-out queue
Q.enqueue(|ψ0〉)
while Q �= ∅ do

|b〉 ← Q.dequeue()
for |b′〉 ∈ {LUi (|b〉) : LUi ∈ L} do

if |b′〉 /∈ G then
G ← G ∪ |b′〉
Q.enqueue(|b′〉)

end if
end for

end while
return G|ψ0〉 ← G

breadth-first search to enumerate the symmetry-protected sub-
space is O(|G|ψ0〉| + m × |G|ψ0〉|) = O((m + 1) × |G|ψ0〉|)

Algorithm IV.1 uses the set G, which is eventually the
symmetry-protected subspace, to track which states have al-
ready been added to the queue Q during the runtime of the
algorithm and prevent them from being checked more than
once. If this set uses the hash of the basis state’s bit strings,
insertion and search will be average case O(1). Getting the
set of single-operator transitions T 1

|b〉 is O(m), where m is the
number of unitary operators in the system, for a single state
|b〉; while not all m substring edit maps will provide an edge,
as many might act as identity on the state |b〉, each string
edit map must still be checked. This set is computed for each
state discovered, and each state discovered is never added to
the queue Q more than once, which confirms our original
complexity analysis of O((m + 1) × |G|ψ0〉|).

This algorithm computes a set equivalent to that described
by Eq. (17). See Appendix B for a proof that this set is a
symmetry-protected subspace.

C. Usage and limits

As stated in Sec. I, postselection for quantum simulations is
the aim of our methods. In order to perform postselection with
the algorithm from this section, the entire symmetry-protected
subspace G|ψ0〉 must be known, and each measurement |b f 〉 is
verified via {|b f 〉 ∈ G|ψ0〉 assumed no error

|b f 〉 /∈ G|ψ0〉 known error.
(20)

Because this requires the computation of the entire sub-
space, it can still become computationally intractable. As
mentioned in Sec. I, we benchmark this algorithm against the
Heisenberg-XXX, T6 QCA, and F4 QCA quantum simula-
tions. The computationally limiting factor of this algorithm
is the size of the symmetry-protected subspace, as it has
time complexity O((m + 1) × |G|ψ0〉|) and spatial complexity
O(|G|ψ0〉|). See Fig. 3 for a depiction of the size of the sub-
spaces, up to 17 qubits. Figure 3(c) is especially significant
because, as alluded to in Sec. II B 3, this model previously
had no known conservation laws, but these data show the
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FIG. 3. The number of states in symmetry-protected subspaces
for each model with n qubits (implying Hilbert space dimension
d = 2n) up to n = 17 qubits on a log2 scale. Each blue dot is the
size of an individual subspace, and the black line is the average SPS
dimension for the current system size. (a) Heisenberg-XXX. (b) T6

QCA. (c) F4 QCA, which has no known symmetry operator.

partitioning of Hilbert space into symmetry-protected sub-
spaces. By examining Fig. 3, we can see that the worst case
of each subspace size, max({|G|}), is log2(max({|G|})) ≈
log2(|Hd |) − k when the model is comprised of k-local op-
erations. The important thing to see is that the size of
symmetry-protected subspaces still scales exponentially in the
worst and average cases; while smaller than the full Hilbert
space, they are only linearly smaller. We address this stop to
postselection with another algorithm in Sec. V.

V. ALGORITHM: VERIFICATION OF A SHARED
SYMMETRY-PROTECTED SUBSPACE

Because the worst-case size of a symmetry-protected sub-
space is still exponential in the number of qubits, Alg. IV.1
is only applicable at relevant system sizes for simulations
where G|ψ0〉 is not exponentially large. Thus, to generalize the
usability of symmetry-protected subspaces to any simulation,
we present an alternative algorithm in this section that uses an

efficient, but greedy, heuristic. Instead of computing the entire
exponentially large SPS, this method performs an efficient
search for a path of substring edit maps to connect the initial
state |ψ0〉 and a measured state |b f 〉 in the graph DL. The
heuristic nature of this algorithm means that it produces only
approximate results (albeit with a degree of approximation
that can be continuously improved at the cost of more time
complexity), and since its runtime scales favorably, it can be
used to check the output of quantum simulations well beyond
the scale where other classical methods become intractable.

Naive search algorithms in a graph traditionally use a
breadth-first search from an initial vertex [39], which is
what we described in Alg. IV.1 to enumerate the symmetry-
protected subspace through transitive closure; as stated, this is
too computationally expensive in many cases.

Our greedy algorithm works as follows: Following all
edges (application of the set of substring edit maps L) from
a state generates a set of possible states accessible from that
state. Working both forward from |ψ0〉 and backward from
|b f 〉, we have found a path when steps from both directions
lead to a shared element. To detect whether this has happened,
we use a simple observation about ordered sets: two sets are
the same set if they have the same minimal (or maximal)
element. A natural order for sets of quantum computational
basis states (i.e., binary strings) is just the integer they en-
code. So our greedy algorithm works by building two sets
(one starting from the initial state and one from the mea-
sured state) and comparing them; these sets are subsets of
the symmetry-protected subspace corresponding to the initial
and final states. If these sets have any common elements
(which we check in constant time by looking at their minimal
elements), then we have found a path connecting the initial
and measured state, and they occupy the same SPS.

In our methods, postselection’s accept or reject decision is
made by checking for a measurement result in the symmetry-
protected subspace of the initial state. Using the rationale
outlined above, we can declare with certainty that two states
share a SPS when their paths collide. On the other hand,
if the two paths terminate in dissimilar minima we assume
the initial and measured states inhabit disjoint subspaces. We
say “assume” because the accuracy of our heuristic differs
depending on the simulation; when the locally minimal choice
at each step from either state does not build a path to the
true minimum element, the two states may build distinct paths
while occupying the same SPS.

A. Searching in the string interaction graph

This algorithm builds a single branch, following local
minima in depth-limited breadth-first searches, from a single
starting vertex in the DL graph, where each vertex |b〉’s edge
set is given by L(|b〉).

Throughout this section we use the integers encoded by
the bit strings b of basis states |b〉 ∈ B(H2n ), which provides a
natural ordering to states. Let the function min(A) on a set of
states A return the state with the smallest encoded integer in
that set:

min(A) = |b〉 s.t . b � b′, ∀ |b′〉 ∈ A. (21)
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To find the minimal element of the symmetry-protected sub-
space, we start with an element |b0〉 = |ψ0〉 or |b f 〉 and build
a set towards the minimum of G|b0〉, notated min(G|b0〉), with
locally optimal decisions. At each step |bcurr〉 in the search, we
compute T μ

|bcurr〉 from Eq. (17), which is a breadth-first search to
depth μ, or every state in Lμ(|bcurr〉). Then the starting point
for the next step, |bnext〉, is the state with the smallest binary
encoded integer in T μ

|bcurr〉, notated min(T μ

|bcurr〉). Repeat until the
set T μ

|bcurr〉 does not offer a state smaller than |bcurr〉. Let this
process be represented by the recursive function χ :

χ (|bcurr〉, μ) =
{|bcurr〉 if|bcurr〉 = min(T μ

|bcurr〉)
χ (min(T μ

|bcurr〉), μ) otherwise .

(22)
To reiterate, because each step is given by applications of
the substring edit maps, χ (|b0〉, μ) and |b0〉 must share a
symmetry-protected subspace, i.e., χ (|b0〉, μ) ∈ G|b0〉. There-
fore, when χ (|ψ0〉, μ) = χ (|b f 〉, μ) there must be a sequence
of substring edit maps between |ψ0〉 and |b f 〉; i.e., there is a
path {|ψ0〉 ↔ · · · ↔ |b f 〉} ⊆ DL and |b f 〉 ∈ L∗(|ψ0〉), which
is an equivalent statement to |b f 〉 ∈ G|ψ0〉.

When both searches conclude in the true minimal ele-
ment of their corresponding symmetry-protected subspaces,
χ (|ψ0〉, μ) = min(G|ψ0〉) and χ (|b f 〉, μ) = min(G|b f 〉), we
can conclude with certainty that the states do or do not
inhabit the same subspace if χ (|ψ0〉, μ) = χ (|b f 〉, μ) or
χ (|ψ0〉, μ) �= χ (|b f 〉, μ). However, if either search does not
conclude in their targeted minimal state, our conclusions
can be wrong. Suppose |b f 〉 ∈ G|ψ0〉, which means that
min(G|ψ0〉) = min(G|b f 〉), but the search result χ (|b f 〉, μ)
finds a false minima of G|b f 〉, meaning χ (|b f 〉, μ) �=
min(G|b f 〉). When postselecting with our procedure under
these conditions, state |b f 〉 would be wrongly rejected because
the underlying assumption for this heuristic, that χ (|b0〉, μ) =
min(G|b0〉), is wrong. In practice, the true minimal element
of the symmetry-protected subspace is unknown; thus, the
assertion that χ finds the minimum is always an assumption.

Consequently, if the result of the two searches is a colli-
sion, χ (|ψ0〉, μ) = χ (|b f 〉, μ), we know the two states must
share a symmetry-protected subspace, even if the searches
are at a false minima. If the two searches do not find
a common element, we assume the initial and measured
states occupy separate symmetry-protected subspaces. As
such, measurement outcomes that lie within the initial state’s
symmetry-protected subspace can be rejected. Thus, each
measurement |b f 〉 is verified with{

χ (|b f 〉, μ) = χ (|ψ0〉, μ) assumed no error
χ (|b f 〉, μ) �= χ (|ψ0〉, μ) assumed error . (23)

Formally, we can state that the protected subspace formed by
χ around an initial state |ψ0〉 is

P′
G =

∑
b

|b〉〈b| s.t . χ (|b〉, μ) = χ (|ψ0〉, μ), (24)

which is approximately equal to the true symmetry-protected
subspace, PG ≈ P′

G.
The confidence of this assumption depends on the quantum

system being studied and the depth μ of the local breadth-first
searches. Thus, we present arguments to support it for our
three exemplar systems: Heisenberg-XXX, T6 QCA, and F4

QCA as they are outlined in Sec. II B. For the Heisenberg-
XXX model this assumption is always correct at μ = 1:
systems whose substring edit maps L are isomorphic to
nearest-neighbor SWAP substring edit maps LSWAP, such as
the Heisenberg-XXX model, provably find min(G|b0〉) using
χ (|b0〉, μ = 1), as shown in Appendix C 1. We also numeri-
cally find that χ (|b0〉, μ = 2) is exact for the T6 QCA model.
Out of our three studied systems the F4 QCA demonstrates
the worst accuracy: χ (|b0〉, μ = 9) still returns false minima,
which potentially causes a false rejection. In Sec. V C 1 we
analyze these properties of the T6 and F4 QCAs more closely.
In Sec. VI C we show that postselection is still effective when
χ causes a false rejection to occur.

The computational performance of this method is also
model-dependent. Let Depth denote the depth of our search, or
the number of intermediate states traversed to [calls to the sec-
ond line in Eq. (22)] before finding a locally optimal vertex.
This means the sequence of substring edit maps between |b0〉
and χ (|b0〉, μ) is length O(μ × Depth), and the computational
complexity of Eq. (22) is O(mμ × Depth).

Because the reliability and computational complexity of
this postselection method varies, before applying the algo-
rithm to a given quantum simulation, benchmarks should be
performed on a small version of the system to understand the
local search depth μ required to obtain reliable results.

B. Pseudocode

Here we describe the algorithm, Alg. V.1, to find the
minimum binary encoded state in the symmetry-protected
subspace of a given basis state. This algorithm starts at a

Algorithm V.1. Greedy pathfinding to the minimum binary en-
coded state.

Require: Path starting state |b0〉, substring edit maps L,
search limiting integer μ

|bnext〉 ← |b0〉, |bcurr〉 ← null
while |bcurr〉 �= |bnext〉 do

T|bcurr〉 ← {|bcurr〉, |bnext〉}
|bcurr〉 ← |bnext〉
Let Q be a queue
Q. enqueue(|bcurr〉, 0) � Each element in Q is tuple

representing (state, depth)
while Q �= ∅ do � Breadth-first search centered

around |bcurr〉
|b′〉, η ← Q.dequeue()
if η = μ then break � Reached the depth limit
else

for |b′′〉 ∈ {LUi (|b′〉) : LUi ∈ L} do
if |b′′〉 /∈ T|bcurr〉 then

Q.enqueue(|b′′〉, η + 1)
T|bcurr〉 ← T|bcurr〉 ∪ |b′′〉

end if
end for

end if
end while

|bnext〉 ← min(T|bcurr〉)
end while
returnχ (|b0〉, μ) = |bcurr〉
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state |b0〉 and follows the local minima of limited breadth-
first searches in an attempt to find the set’s minimal element,
resulting in χ (|b0〉, μ).

Notice that the innermost while loop is borrowed from
Alg. IV.1 to compute each T μ

|bcurr〉, where |bcurr〉 is the cur-
rent best minimum state. This time the queue Q uses the
ordered tuple (|b′〉, η) as its elements, where |b′〉 is the cur-
rent, unchecked, state in the breadth-first search and η is the
number of edges (i.e., depth) that |b′〉 is away from the current
optimal solution |bcurr〉. Each node checked in this loop has
O(m) new edges, and we check a maximum depth of μ,
giving the inner loop computational complexity O(mμ). The
set T μ

|bcurr〉 is checked for every node traversed to in the search,
and our search traverses to Depth elements, which is how we
arrive at an overall complexity of O(mμ × Depth) to compute
χ (|b0〉, μ)

To postselect with Alg. V.1, run it once for |ψ0〉 to
get χ (|ψ0〉, μ), again for each measurement |b f 〉 to get
χ (|b f 〉, μ), and check the results in Eq. (23).

As an aside, if all states computed in the search, T μ

|bcurr〉, are
cached with the result of their search, subsequent executions
of the algorithm can be preempted with their previously cal-
culated result if a state is found inside the cache.

C. Benchmarking data for Algorithm V.1

This subsection presents benchmark data for Alg. V.1
that demonstrates its practical applicability for our exam-
ple systems. These benchmarks include heuristic reliability
and search depth. We supplement these data with proofs or
explicit analytical forms when possible. When this is not
possible, we instead rely on extrapolation from the data to
inform the asymptotics of these quantities. We find that for
the Heisenberg-XXX model, the heuristic is provably exact
(Appendix C 1) and the search depth has an explicit equa-
tion (Appendix C 2), while the T6 and F4 QCA models rely
on data-driven intuition for these quantities.

1. Search reliability

If searching for the minimal element from |b0〉 = |ψ0〉 or
|b f 〉 fails, because χ (|b0〉, μ) �= min(G|b0〉), then it is possible
to falsely assume that two states occupy disjoint subspaces.
As such, we examine the reliability of the searching function
χ on each exemplar system.

In the Heisenberg-XXX model, the base case for χ , as
described in Eq. (22), activates only at a state which is always
the minimum binary-encoded state in the symmetry-protected
subspace. This is because the set of substring edit maps
for the Heisenberg-XXX system is isomorphic to the set of
substring edit maps for the nearest-neighbor SWAP network:
LHeisXXX = LSWAP. Appendix C 1 proves that χ at μ = 1 is
exact for LSWAP.

Because the T6 QCA and F4 QCA do not have SWAP-
isomorphic substring edit maps, we do not have any available
proofs for their exactness, and instead rely on simulating χ

for these models. The results of this are in Fig. 4, where
for the T6 and F4 QCA models we plot the proportion of
states |b〉 in the computational Z basis Bcomp(Hd ) such that
χ (|b〉, μ) �= min(G|b〉) for each n ∈ [k, 17].

First, notice Fig. 4(a), which shows search failures for the
T6 QCA model; while μ = 1 causes most searches to fail as

FIG. 4. The proportion of states in the computational Z basis
|b〉 ∈ Bcomp(Hd ), where χ (|b〉, μ) �= min(G|b〉) when computed with
Alg. V.1, called “failed searches,” at different system sizes n, for
each μ used. (a) T6 QCA. At μ = 2, Alg. V.1 becomes exact for this
system. (b) F4 QCA. High μ can still fail, but does asymptotically
better for μ � 5.

n increases, μ = 2 causes every search to succeed for every
n in the domain. Thus, it we can assume that the heuristic for
Alg. V.1 is accurate for this model and that χ (|b〉, μ = 2) =
min(G|b〉), ∀|b〉 ∈ B.

Next, notice Fig. 4(b), which shows search failures for the
F4 QCA model; we use μ = 1, 3, 5, 7, 9, and find that χ can
fail even with high μ. We see that μ = 1, 3 sees majority
failures over the domain, that μ = 5, 7, 9 has bounded failure
≈0.05, and that no μ completely removes failures.

This metric determines only the reliability of χ , not the re-
liability of postselecting with χ . This is because, as discussed
previously in Sec. V A, two searches can fail and obtain the
same false minima, χ (|ψ0〉, μ) = χ (|b f 〉, μ) �= min(G|ψ0〉) =
min(G|b f 〉), i.e., two failed searches can still successfully iden-
tify that the states share a conserved quantity. Therefore, the
search reliability shown in Fig. 4 should be seen as an upper
bound on the error caused by the heuristic.

Sections VI B and VI C explore this reliability further in the
context of postselection on noisy quantum data. In the context
of postselection, we find that even small μ = 3 is acceptable
for the F4 QCA, as the most likely measurement outcomes
also share false minima with the initial state. We discuss this
observation more with the data that support it in Sec. VI C.

2. Search depth

The time performance of Alg. V.1 is heavily dependent on
the length of the path taken. The asymptotic worst case of
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FIG. 5. The longest path, denoted Depth, taken at each system
size n for the models (a) Heisenberg-XXX. (b) T6 QCA. (c) F4 QCA.

the search depth is system-dependent, being identified as n2/4
for the Heisenberg-XXX model in Appendix C 2, and closer
to O(n ln(n)) for the T6 QCA and O(n log10(n)) for the F4

QCA by observing the largest search depth for the algorithm
at small n, shown in Fig. 5. In this figure we find the largest
path length at each system size for each relevant μ. For the
T6 model, shown in Fig. 5(b), search depth becomes longer
as the parameter μ increases, indicating that false minima
are avoided. For the F4 model, shown in Fig. 5(c), the search
depth becomes shorter as μ increases; this is because higher
μ means more edges are traversed at each step in the search,
and thus less depth is needed in the search overall.

These path lengths, combined with the μ found in
Sec. V C 1, results in the computational complexity of
Alg. V.1 on a single state being Heisenberg-XXX is O(mn2),
T6 QCA is O(m2n ln(n)), and F4 QCA is O(mμn log10(n)). The

μ exponent is left in the F4 QCA computational complexity
because, as shown in Sec. V C 1, we find no value of μ that
guarantees that a search finds the minimal element, and thus
expect μ to vary depending on the symmetry-protected sub-
space occupied for the simulation. As we can see in Fig. 4(b),
μ � 5 is mostly sufficient.

VI. POSTSELECTION IN EMULATED NOISY
SIMULATIONS

To demonstrate the power of our algorithm, we perform
automated postselection on simulated quantum computations
with noise. We perform discretized time evolutions with
our exemplar systems, the Heisenberg-XXX, T6 QCA, and
F4 QCA models, and show that our postselection meth-
ods restructure noisy measurement probability distributions
to be closer to the one found in an ideal simulation. We
first run the simulation without errors via U (t )|ψ0〉, con-
structing the measurement distribution at each time step.
Next, we repeated the simulations with depolarizing noise
injected after each layer of gates with independent probability
ε/3 = 0.005, 0.01, 0.02, 0.05 of Xi,Yi, Zi on each qubit i. See
Appendix D 1 for more noise model details. We use Kullback-
Liebler divergence [40] to quantify the distance between
the ideal and noisy measurement distributions constructed at
each measurement layer, with and without postselection using
Alg. V.1 and the symmetry check in Eq. (23).

We observe a significant increase in accuracy of the data
when using our postselection methods without adding cir-
cuit runs, even in simulation subspaces which have imperfect
pathfinding.

A. Methods

We simulate discrete time evolution, and for each discrete
time step a sequence of measurements is used to construct a
probability distribution. Let P(p) be the measurement distri-
bution of the wave function after p Trotter steps, such that
P(p) ≈ |||ψ (p)〉||2 up to shot noise. We compare an ideal
simulation measurement distribution Pideal(p), a noisy simu-
lation without postselection Praw(p), and a noisy simulation
with postselection using Alg. V.1 at a given μ, Pps,μ(p).
Let P(p) be a normalized probability distribution constructed
by a sequence of M measurements after p Trotter steps,
and P(p, b) ≈ ||〈b||ψ (p)〉||2, which is the probability ampli-
tude of state |b〉 at that layer p, up to shot noise. We use
Kullback-Liebler divergence [40], defined for arbitrary prob-
ability distributions P and Q as

D(P(p), Q(p)) ≡
∑

b∈B(Hd )

P(p, b) ln

[
P(p, b)

Q(p, b)

]
, (25)

which measures the distance between two probability dis-
tributions, and use the following equation from [41] as a
simulation’s fidelity:

F (Psim(p), Pideal(p)) ≡ 1 − D(Psim(p), Pideal(p))
D(PIRN, Pideal(p))

, (26)
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FIG. 6. The fidelities F (Psim(p), Pideal(p)), Psim = Praw, Pps,μ=1, Pps,μ=2, PISPS of each model (rows) at errors ε/3 = 0.005, 0.01, 0.02, 0.05
(columns). There are 30 000 measurements at each Trotter step. The μ used is the smallest required to reach perfect shared subspace verification
under Alg. V.1. This figure shows that with postselection, model fidelity remains above random noise at least as long as p = 2 ∗ n.

where PIRN is the incoherent random noise probability distri-
bution

PIRN(b) ≡ 1

d
∀ |b〉 ∈ B(Hd ), (27)

which we expect to measure once noise has proliferated in the
computation. Equation (26) will return 1 if Psim = Pideal, and
0 if Psim = PIRN. We compute Eq. (26) at each measurement
layer in the computation, with Psim being either the raw data
Praw or the postselected data Pps.

We postselect by removing measurement results that fail
under Alg. V.1 and Eq. (23) and renormalizing the probability
distribution. If Praw(p) is the measurement distribution with
noise at step p of M measurements, Pps(p) is the postselected
measurement distribution, given by checking each state in
Praw(p) in Alg. V.1, at the same Trotter step p with measure-
ments Mkept � M.

B. Postselection with perfect symmetry-protected subspaces

We run a 15 qubit simulation of each of the three exem-
plar models, using initial conditions seen in the literature:
The antiferromagnetic state |ψ0〉 = |1010 . . . 101〉 for the
Heisenberg-XXX model, a single bit flip on the middle qubit
|ψ0〉 = |0 . . . 1 . . . 0〉 for the T6 QCA [20,34], and two bit
flips neighboring the center qubit |ψ0〉 = |0 . . . 101 . . . 0〉 for
the F4 QCA [34]. No false minima are seen past μ = 2 in
any of the simulations for these initial conditions, meaning
postselection functions as intended. The data use M = 30 000
measurements at each measurement layer and do not add any
measurements to replace error-victim circuit runs.

Results can be seen in Fig. 6. We observe that postselected
data approaches incoherent noise in the SPS of that simula-
tion’s initial state, which we define as

PISPS(b) ≡
{ 1

|G| |b〉 ∈ G

0 |b〉 /∈ G
. (28)

Because our simulation’s raw data converges to random noise,
which is a uniform probability distribution over the Hilbert
space, and postselection only removes measurement out-
comes, we should expect that the result of postselection is still
a uniform probability distribution, just over the symmetry-
protected subspace instead. In other words, we should observe
that

lim
p→∞F (Pps(p), Pideal(p)) ≈ F (PISPS(p), Pideal(p)) (29)

given enough measurements.

C. Postselection with incorrect symmetry-protected subspaces

We show that even in subspaces of the F4 QCA model
where Alg. V.1 has failures at high μ, which is equivalent
to false-positives mislabeling some basis vectors as outside
the symmetry-protected subspace, our methods mitigate more
errors than they introduce and thus still show promise for
NISQ quantum simulations.

We found 18 symmetry-protected subspaces of the F4 QCA
that had false minima at n = 15 with μ � 9 (henceforth called
incomplete subspaces) and ran simulations to p = 29 with
M = 10 000 measurements at each cycle, initialized in one
state from each rocky subspace. See Appendix D 4 b for a list
of these initial states. In these conditions, Alg. V.1 is highly
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FIG. 7. The maximum, minimum, mean, and standard deviation of the set of fidelities, {F}, generated by simulating the F4 QCA for an
initial condition in each of its incomplete subspaces at μ = 9 with postselected distributions Psim = Pps,μ=5, Pps,μ=7, Pps,μ=9, PSPS. Each Trotter
step has M = 10 000 measurements. The error rate is (a) ε/3 = 0.02 and (b) ε/3 = 0.0 or an ideal simulation.

likely to meet false minima and reject measurements that were
in the symmetry-protected subspace of the initial state. We
calculate F (Pps,μ(p), Pideal(p)) for each simulation, and run
our postselection method with μ = 5, 7, 9. See Fig. 7(a) for
the set of fidelities {F} at ε/3 = 0.02, compared to postse-
lection with the “Full SPS,” which is postselection using the
full symmetry-protected subspace, instead of the heuristic; in
the average case our postselection keeps the simulation data
above incoherent noise, even with lower μ. The worst-case
fidelity (in red) drops to the fidelity of incoherent noise, which
indicates that our methods offer improvement only on partic-
ular simulations. However, the mean (orange) and standard
deviation (orange bars) remain reliably higher than incoherent
noise, with the maximum fidelity keeping close to the ideal
simulation.

The other important observation is that our postselection,
which is using an inaccurate symmetry-protected subspace,
obtains a higher mean and maximum fidelity than postselec-
tion with a well-defined symmetry-protected subspace, with
fidelity lowering as μ increases. We theorize the reason for
this is as follows: if two states share a false minima with χ ,
they are likely close to each other in the string interaction
graph DL, and thus have a higher probability of transitions
between each other in the simulation. On the other hand, if a
measured state does not share a false minima with the initial
state, it is less likely to be observed in a simulation, but a noisy
simulation will artificially amplify the probability of that state.
The result is that postselection with the true SPS will accept
these artificially amplified results, where our false SPS will
coincidentally reject states that can possibly have this happen.

We also examine our postselection in a simulation absent
any error; this is to see how much a false rejection can degrade
a perfect computation. See Fig. 7(b) for postselection with an

error-free simulation. It can be seen that most fidelities remain
above ≈0.999, meaning most of the time this error-prone
postselection method will have minimal impact even on an
ideal simulation. The worst-case degraded fidelity is ≈0.992.

VII. DISCUSSION AND CONCLUSION

We introduce a graph theory interpretation of quantum time
evolution, which provides a theoretical framework through
which symmetry-protected subspaces can be constructed via
transitive closure. We identify that these invariant subspaces
are an operator-free method for characterizing symmetry in
the system, by indicating a conserved quantity of an initial
state as it is manipulated by the dynamical system without
needing to explicitly identify it. Along these lines, our ap-
proach complements recent work in open quantum systems
where symmetry-protected density matrices were constructed
without the knowledge of explicit symmetry operators [25],
and other work to identify symmetry operators from brute
force algorithms such as Algorithm 2 in [26], and machine
learning methods [27–29].

We observe that a symmetry-protected subspace can be
used to provide a smaller computational space, postselect
noisy quantum simulation data, or be analyzed to deduce
a symmetry operator. We identify postselection as a perti-
nent application and introduce two main classical algorithms
that elucidate the features of a quantum system’s symmetry-
protected subspaces. These algorithms employ a basis string
edit map, which is an efficient construction to provide the
local dynamics of an operator by focusing on the presence
or absence of basis vectors through its action.

The first algorithm uses transitive closure, calculated with
breadth-first search of these basis string edit maps, to enu-
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merate every state within the symmetry-protected subspace
of the initial state. Because postselection with this subspace
requires constructing the entire SPS, which can still be ex-
ponentially difficult in the number of spins, we provide a
second, polynomial-scaling algorithm. The second algorithm
attempts to find the smallest basis state (by binary-encoded
integer) in an SPS by following a locally optimal heuristic,
and establishing that a path of basis string edit maps exists
between an initial and final state if their respective searches
collide at any elements.

We conclude by demonstrating postselection using our
second algorithm, which shows that even when the raw
simulation data degrade to incoherent noise, our methods
effectively recover a probability distribution closer to an
ideal computation. Our methods are compatible with any
other error-mitigation technique compatible with postselec-
tion, such as zero noise extrapolation, and thus present a
further addition to a growing array of techniques to improve
noisy quantum computation [42].

We identify a few obvious extensions to this project. First,
if Alg. IV.1 concludes with certain classical resources, this
implies that the wave function can be stored with constant
overhead on those same resources; this could shrink the com-
putational memory requirements from the quantum regime to
the classical regime. Second, we speculate that more reliable
algorithms than Alg. V.1 may fulfill the same function; a
string-matching algorithm similar to Needleman-Wunsch [43]
with the basis string edit maps, instead of insert/delete/shift
edits, may fulfill this function.

This work also presents interesting results on postselection
that are worth further exploration. The first is the convergence
to incoherent noise within a symmetry-protected subspace;
this shows that, as expected, postselection will not converge to
an ideal computation, regardless of the additional circuit runs
to replace error-victim runs detected, as error will still have
proliferated within the the SPS. However, such incoherent
distributions still have significant complexity and nontrivial
structure (see, e.g., [20]), making them particularly interesting
in cases where the underlying symmetry is not analytically
known. The second is the observation that misidentifying
measurements within the SPS paradoxically results in a more
accurate computation than what results from full knowledge
of the SPS. The exact cause of this is up to speculation, and is
likely a problem-dependent effect, but is interesting in its own
right.

Finally, since the algorithms presented herein are speci-
fied with respect to a particular simulation or measurement
basis, our methods are currently constrained to discovering
subspaces that are protected either by a single symmetry gen-
erator in that basis or by a collection of Abelian generators,
which are diagonal (or have diagonal representations) in the
chosen basis. However, constraining many-body dynamics by
sets of non-Abelian generators often yields rich physics as
has been noted with respect to non-Abelian thermal states
[44], bipartite entanglement entropy growth [45], eigenstate
thermalization [46], and thermalization in finite-size quantum
simulators [47,48]. As such, extending our subspace detection
framework to subspaces that are protected by multiple non-
Abelian generators would be a fruitful direction for future
research.

Code is available at the public GitHub repository [49]. Data
are available upon reasonable request to the corresponding
authors.
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APPENDIX A: PROOF OF ACCEPTABLE MAXIMAL
COVERAGE IN SYMMETRY-PROTECTED SUBSPACES

Take the operator PG = ∑
b∈G|ψ0〉 |b〉〈b| to be the projection

operator for the symmetry-protected subspace of |ψ0〉:
[PG|ψ0〉 ,U ] = 0 (A1)

and suppose it has been constructed such that for each |b〉 ∈
G|ψ0〉, ∃ t s.t . 〈b|U (t )|ψ0〉 �= 0. Now suppose that the basis
vector |k〉 is never seen by time evolution of U , such that

〈k|U (t )|ψ0〉 = 0 ∀t . (A2)

If we include |k〉 and the symmetry-protected subspace of |k〉
in our protected subspace, such that G′ = G|ψ0〉 ∪ G|k〉, then
PG′ = PG|ψ0〉 + ∑

j∈G|k〉 | j〉〈 j|, and we get

[PG′ ,U ] = [PG|ψ0〉 + PG|k〉 ,U ] (A3)

= [PG|ψ0〉 ,U ] + [PG|k〉 ,U ] (A4)

= 0 (A5)

by Def. 1 of a symmetry-protected subspace for both G|ψ0〉
and G|k〉. This shows that if a state which is never seen by
the time evolution is included in the final symmetry-protected
subspace, the projection operator still commutes, and thus the
subspace still follows Def. 1.

APPENDIX B: PROOF OF THEOREM 1

We take |ψ0〉 ∈ B to be a product state. Due to linearity,
generalizing the proof to superposition states is trivial, given
that one interprets G|ψ0〉 as being the union of all symmetry-
protected subspaces of each of which corresponds to one
(or more) basis states in the superposition. For notational
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simplicity, and without loss of generality, we also assume an
implicit operator ordering Oop. Consider the transition ampli-
tude

〈b f |U (t )|ψ0〉 = 〈b f |
p∏

j=1

m∏
i=1

Ui(τ j )|ψ0〉

= 〈b f |
p∏

j=1

m∏
i=1

∑
|b j,i〉∈B

|b j,i〉〈b j,i|Ui(τ j )|ψ0〉,

(B1)

where in the second line of Eq. (B1) we have inserted the
identity operator 1 = ∑

|b j,i〉∈B |b j,i〉〈b j,i| after each k-local
unitary operator. Without loss of generality, we assume an
operator ordering to expand and rearrange the right-hand side
of Eq. (B1),

〈b f |U (t )|ψ0〉
=

∑
|bp,m〉∈B

〈b f |bp,m〉
∑

|bp,m−1〉∈B

〈bp,m|Um(τp)|bp,m−1〉 · · ·

· · ·
∑

|b1,1〉∈B

〈b1,2|U2(τ1)|b1,1〉〈b1,1|U1(τ1)|ψ0〉. (B2)

Next, we note that by the definition of the string edit map,
Def. 4, and the presence of the local transition amplitude
〈b1,1|U1(τ1)|ψ0〉 in Eq. (B2), we can rewrite

∑
|b1,1〉∈B

〈b1,2|U2(τ1)|b1,1〉〈b1,1|U1(τ1)|ψ0〉

=
∑

|b1,1〉∈LU1 (|ψ0〉)

〈b1,2|U2(τ1)|b1,1〉〈b1,1|U1(τ1)|ψ0〉

=
∑

|b1,1〉∈T 1
|ψ0〉

〈b1,2|U2(τ1)|b1,1〉〈b1,1|U1(τ1)|ψ0〉, (B3)

where in the third line of Eq. (B3) we have used the fact that
LU1 (|ψ0〉) ⊆ T 1

|ψ0〉 ⊆ B, which is to say, we can expand the
summation to run over T 1

|ψ0〉 by summing over terms where
the local transition amplitude is zero. By the same logic, we
can rewrite the second summation as∑

|b1,2〉∈B

(· · · ) =
∑

|b1,2〉∈LU2 (|b1,1〉) : |b1,1〉∈LU1 (|ψ0〉)

(· · · )

=
∑

|b1,2〉∈T 2
|ψ0〉

(· · · ),
(B4)

where again, we have simplified notation by noting that
{LU2 (|b1,1〉) : |b1,1〉 ∈ LU1 (|ψ0〉)} ⊆ T 2

|ψ0〉 and summing over
all additional states in T 2

|ψ0〉 to which the transition amplitude
is zero. Generally, one can rewrite summation ( j − 1)m + i as

∑
|b j,i〉∈B

(· · · ) =
∑

|b j,i〉∈T ( j−1)m+i
|ψ0〉

(· · · ). (B5)

We therefore write the full transition amplitude as

〈b f |U (t )|ψ0〉
=

∑
|bp,m〉∈T pm

|ψ0〉

〈b f |bp,m〉
∑

|bp,m−1〉∈T pm−1
|ψ0〉

〈bp,m|Um(τp)|bp,m−1〉

. . .
∑

|b1,1〉∈T 1
|ψ0〉

〈b1,2|U2(τ1)|b1,1〉〈b1,1|U1(τ1)|ψ0〉. (B6)

There are now two cases to consider. Let T �
|ψ0〉 be the iteration

at which the stop condition in Eq. (17) is activated. Ei-
ther T pm

|ψ0〉 = T �
|ψ0〉 ≡ G|ψ0〉, or else T pm

|ψ0〉 ⊂ T �
|ψ0〉. In either case,

|b f 〉 /∈ G|ψ0〉 ⇒ |b f 〉 /∈ T pm
|ψ0〉, which means that 〈b f |bp,m〉 =

0 ∀ |bp,m〉 ∈ T pm
|ψ0〉 and the full transition amplitude must

vanish. �

APPENDIX C: ANALYSIS OF ALGORITHM V.1

1. Proof of exactness for LSWAP isomorphic systems

We will show that for a system U which has LU = LSWAP,
iterative path creation with Eq. (22) (which is what Alg. V.1
computes) has only one stop condition when using μ = 1,
which is the binary encoded minima of the entire symmetry-
protected subspace.

Assume our simulation of n qubits has substring edit maps
LSWAP ≡ {LSWAP0,1 ,LSWAP1,2 , . . . ,LSWAPn−2,n−1}. We take |b0〉
to be the first state in the path, and it is a bitstring |b0〉 =
|{0, 1}n〉 such that

∑n−1
i=0 a†

i ai|b0〉 = s|b0〉. The smallest binary
encoding belonging to a state in the symmetry-protected sub-
space of |b0〉, which is the SPS encoding particle conservation
symmetry, will belong to the bit string min(G|b0〉) = |1s0n−s〉.
The bits are ordered left-to-right as least-to-most significant.

The string edit map LSWAPi,i+1 acting on its local basis set
Bi = {|00〉, |01〉, |10〉, |11〉} has the following mappings:

LSWAPi,i+1 (|00〉) = {|00〉},
LSWAPi,i+1 (|01〉) = {|10〉, |01〉},
LSWAPi,i+1 (|10〉) = {|01〉, |10〉},
LSWAPi,i+1 (|11〉) = {|11〉}.

(C1)

When applied to a n-qubit state represented as an n-character
bit string b, the mapping operates as, e.g.,

LSWAPi,i+1 (|b[0, i − 1]; 01; b[i + 2, n − 1]〉)

= |b[0, i − 1]; 10; [i + 2, n − 1]〉, (C2)

where the “;” symbol means string concatenation and “b[i, j]”
is the substring of b from characters at index i through j
(inclusive).

Given an incomplete search with χ (|b0〉, μ = 1), where
|bj〉 = min(T 1

|b j−1〉) is the most recent progression in the
search, the next state |bj+1〉 in the search is the smallest bit
string in LSWAP(|b j〉), given by |b j+1〉 = min(T 1

|b j 〉); this will
be LSWAPi,i+1 (|b j〉), where |b j[i + 1]〉 is the most significant bit
equal to |1〉 such that |bj[i]〉 = |0〉.

033082-17



ROTELLO, JONES, GRAF, AND KAPIT PHYSICAL REVIEW RESEARCH 5, 033082 (2023)

In other words, our heuristic dictates that we will only
choose LSWAPi,i+1 (|b j〉) when |b j[i, i + 1]〉 = |01〉. Therefore,
Alg. V.1 will continue until there is no substring “01” in
b j . For a bit string, the only configuration of bits that meets
this condition is b = 1s0n−s, which is the state min(G|b0〉).
Therefore, if Alg. V.1 halts, it must have found the min-
imum binary encoded state for that symmetry-protected
subspace. �

2. Max depth of search in LSWAP

Here we calculate the worst-case search depth for Alg. V.1
when using string edit maps LSWAP. Each time a new state
|b j+1〉 is traversed to with |b j+1〉 = min(T 1

|b j〉) from Eq. (22),
a “1” bit is swapped with a left-neighboring “0” bit, assuming
bits are least-to-most significant left to right. We count each
of these swaps as 1 step in the search, and this subsection will
show an analytical form for the most steps ever required for an
arbitrary bit string |b0〉 of length n to reach the stop condition
|1s0n−s〉, as defined at the beginning of Appendix C 1. That
section also shows that for the SWAP-isomorphic model we
always get χ (|b0〉, 1) = |1s0n−s〉. Note that, because μ = 1 is
used, the path length of edges in DL between |b0〉 and |1s0n−s〉
is equal to the search depth, because |Path| = μ × Depth =
Depth.

Suppose we have a symmetry-protected subspace of s
many “1” bits and n − s many “0” bits. The target state
min(G|b0〉) for a search with χ (|b0〉, 1) is min(G|b0〉) =
|1s0n−s〉. The longest path will start with |b0〉 = |0n−s1s〉,
since every other state is fewer SWAPs away from min(G|b0〉).

Each |1〉 state in |b0〉 requires n − s swaps to get to its
position in |1s0n−s〉; therefore, in a system of s “|1〉” states,
the search depth obeys the summation

Depth =
s∑

i=1

n − s, (C3)

which simplifies to

Depth = s(n − s). (C4)

This quantity is maximized at s = n/2, which results in
max(Depth) = n2

4 .

APPENDIX D: SIMULATION INFORMATION

Our simulations all follow the same template: we take an
initial state |ψ0〉, which is a Z basis vector prepared by single-
qubit Pauli-X gates. In our ideal simulations, we follow this
with p ∈ [0, 29] gate layers of gates to encode the dynamical
system, followed by a parallel readout of all qubits in the
Z basis with M measurements. This is shown in the circuit
diagram below, where |ψ0〉 is a computational basis state
prepared by a set of X gates, each U (τ j ) is a single layer of
the Trotterized circuit, at layer j, with parameters τ j . Once

the system has been simulated up to t layers, we measure M
times, and repeat for each p ∈ [0, 29]:

For a simulation with noise, we also added an “error layer”
E after each U (τ j ), such that U → UE . It is detailed below
in Appendix D 1.

1. Simulation noise model

We use symmetric single-qubit depolarizing noise with
probability ε/3 after each Trotter layer in the circuit. The
circuit diagram for this process at an arbitrary Trotter step j is

where a gate X (ε/3) is an X gate applied with probabil-
ity ε/3 and identity 1 applied with probability 1 − ε/3. In
practice, we simulate this with density matrices through the
following steps: if we have the wave function’s density matrix
ρ from the last application of the Trotterized circuit layer
U (τ j ), we apply the symmetric depolarizing noise with the
equation

ρ → (1 − ε)ρ + ε

3
XiρXi + ε

3
YiρYi + ε

3
ZiρZi (D1)

on each qubit i. As stated in Sec. VI, we use ε/3 =
0.005, 0.01, 0.02, 0.05.

2. Heisenberg-XXX

Here we give the simulation details for the Heisenberg-
XXX model, with Hamiltonian given in Sec. II B 1 and
simulation results in Sec. VI B.
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a. Circuit implementation

The k-local unitary used (k = 2) is Ui,i+1 =
iSWAPi,i+1(θ )ZiZi+1(θ ), or

where i is the complex coefficient when multiplied and the
qubit when indexed, using θ = 0.1. We then do an even-
and odd-layered Trotterization for one discrete layer of the
simulation. This Trotterization on n = 5 is

for a single discrete time step. We use the initial condition
|ψ0〉 = |101010101010101〉.

b. String edit maps

The string edit maps LHeisXXX for this simulation
are SWAP-isomorphic, with each local string edit map
LHeisXXXi,i+1 having the behavior

LHeisXXXi,i+1 (|00〉) = {|00〉},
LHeisXXXi,i+1 (|01〉) = {|01〉, |10〉},
LHeisXXXi,i+1 (|10〉) = {|01〉, |10〉},
LHeisXXXi,i+1 (|11〉) = {|11〉}.

(D2)

Each string edit [row in Eq. (D2)] obviously conserves S =∑i+1
j=i Z j .

3. T6 quantum cellular automata

Here we give the simulation details of the T6 quantum
cellular automata, with model details in Sec. II B 2 and simu-
lation results in Sec. VI B.

The k-local unitary used, (k = 3), is Ui = P(1)
i−1HiP

(0)
i+1 +

P(0)
i−1HiP

(1)
i+1 + P(1)

i−11iP
(1)
i+1 + P(0)

i−11iP
(0)
i+1 = ∑1

α,β=0 P(α)
i−1 ⊗

(Hi )δα+β,1 ⊗ P(β )
i+1, where Hi is the Hadamard gate. This unitary

is implemented with the circuit

We implement this as a global unitary, which is applied
once at each time step in the simulation by doing a parallel
layer of all gates Ui where i is even, then a layer of all gates
where i is odd.

We use only the initial condition |ψ0〉 =
|000000010000000〉.

a. String edit maps

The string edit maps LT6 conserve the domain wall, and
each local string edit map LT6i−1,i,i+1 has the behavior

LT6i−1,i,i+1(|000〉) = {|00〉},
LT6i−1,i,i+1(|001〉) = {|001〉, |011〉},
LT6i−1,i,i+1(|010〉) = {|010〉},
LT6i−1,i,i+1(|011〉) = {|001〉, |011〉},
LT6i−1,i,i+1(|100〉) = {|100〉, |110〉},
LT6i−1,i,i+1(|101〉) = {|101〉},
LT6i−1,i,i+1(|110〉) = {|100〉, |110〉},
LT6i−1,i,i+1(|111〉) = {|111〉},

(D3)

which conserves the symmetry operator S = ∑i+1
j=i−2 ZjZ j+1.

4. F4 quantum cellular automata

Here we give the simulation details of the F4 quantum
cellular automata, with model details in Sec. II B 3 and simu-
lation results in Sec. VI B and Sec. VI C.

The k-local unitary used (k = 5) is built on the local unitary

Ui =
1∑

α,β,γ ,ω=0

Pα
i−2Pβ

i−1(Hi )
δα+β+γ+ω,2 Pγ

i+1Pω
i+2, (D4)
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which we implement through quantum gates with the circuit

This local circuit is combined into a unitary applied at even
discrete time steps

U (τ j=even) =
∏

i=2,5,8,...

Ui(τ j )
∏

i=3,6,9,...

Ui(τ j )
∏

i=4,7,10,...

Ui(τ j ),

(D5)
and a unitary applied at odd discrete time steps

U (τ j=odd) =
∏

i=3,6,9,...

Ui(τ j )
∏

i=2,5,8...

Ui(τ j )
∏

i=4,7,10,...

Ui(τ j ).

(D6)
These unitaries on, for example, seven qubits have the circuit
diagrams

and

.
Notice that gates in the same product in Eq. (D5) and (D6),

for example, U4 and U7, commute because only their controls

overlap. To get to, for example, t = 4, our circuit would look
like

.

a. String edit maps

Previously, no symmetry was known for the F4 QCA. Be-
low we outline the nonidentity behavior of each local string
edit map LF4i:

LF4i(|00011〉) = {|00011〉, |00111〉},
LF4i(|00111〉) = {|00011〉, |00111〉},
LF4i(|01001〉) = {|01001〉, |01101〉},
LF4i(|01101〉) = {|01001〉, |01101〉},
LF4i(|01010〉) = {|01010〉, |01110〉},
LF4i(|01110〉) = {|01010〉, |01110〉},
LF4i(|11000〉) = {|11000〉, |11100〉},
LF4i(|11100〉) = {|11000〉, |11100〉},
LF4i(|10010〉) = {|10010〉, |10110〉},
LF4i(|10110〉) = {|10010〉, |10110〉},
LF4i(|10001〉) = {|10001〉, |10101〉},
LF4i(|10101〉) = {|10001〉, |10101〉}.

(D7)

Any state |b〉 which does not appear above will have the
behavior LF4i(|b〉) = {|b〉}. It should also be understood that
i is the middle qubit in the ordering above.

b. Initial conditions for simulations

We use a variety of initial conditions to test the imper-
fect path finding of Alg. V.1. Our initial condition |ψ0〉 =
|000000101000000〉, tested in Sec. VI B, has no false rejec-
tions (in other words perfect path finding) with μ = 2.

We also gather the set of symmetry-protected subspaces
which have failed paths at μ = 9, their average, best, and
worst fidelities are shown in Sec. VI C. We chose an arbitrary
state from each of these subspaces to be the initial condition;
the states are

|ψ0〉 ∈ {|001000011111111〉, |011100000001000〉,
|011110101011111〉, |011110000010001〉, |011101000001000〉,
|011000000101010〉, |001000011111111〉, |011100000001000〉,
|011110101011111〉, |011110000010001〉, |011101000001000〉,
|011000000101010〉, |111111101111100〉, |110111111110101〉,
|111111101010111〉, |111100010111110〉, |110111111010001〉,

|110101000000100〉}.
(D8)
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