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Kinetic approaches are generally accurate in dealing with microscale plasma physics problems but are
computationally expensive for large-scale or multiscale systems. One of the long-standing problems in plasma
physics is the integration of kinetic physics into fluid models, which is often achieved through sophisticated
analytical closure terms. In this paper, we successfully construct a multimoment fluid model with an implicit fluid
closure included in the neural network using machine learning. The multimoment fluid model is trained with a
small fraction of sparsely sampled data from kinetic simulations of Landau damping, using the physics-informed
neural network (PINN) and the gradient-enhanced physics-informed neural network (gPINN). The multimoment
fluid model constructed using either PINN or gPINN reproduces the time evolution of the electric field energy,
including its damping rate, and the plasma dynamics from the kinetic simulations. In addition, we introduce a
variant of the gPINN architecture, namely, gPINN p, to capture the Landau damping process. Instead of including
the gradients of all the equation residuals, gPINNp only adds the gradient of the pressure equation residual as
one additional constraint. Among the three approaches, the gPINN p-constructed multimoment fluid model offers
the most accurate results. This work sheds light on the accurate and efficient modeling of large-scale systems,

which can be extended to complex multiscale laboratory, space, and astrophysical plasma physics problems.

DOI: 10.1103/PhysRevResearch.5.033079

I. INTRODUCTION

Microscale kinetic physics is crucial for accurately model-
ing many laboratory, space, and astrophysical systems [1-8].
Unfortunately, for large-scale systems, the first-principles
method, which is based on the direct numerical treatment of
the kinetic equations, frequently incurs computational costs
that are unaffordably expensive. To mitigate the computa-
tional cost of kinetic models, numerous attempts have been
made to incorporate kinetic physics into the fluid framework
that evolves a finite number of fluid moment equations con-
structed by taking velocity moments of the kinetic Vlasov
equation [9-11]. In the area of plasma physics, one profound
attempt is the Landau-fluid models pioneered by Hammett
and Perkins [12], who derived analytical closure relations for
the truncated plasma fluid equations by matching the exact
linear response associated with Landau damping in a colli-
sionless electrostatic plasma. A lengthy series of works have
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gone into devising variants of the fluid closures in different
regimes that greatly determine the validity and accuracy of the
resulting models [13]. Unfortunately, one major difficulty in
constructing the fluid closures in collisionless plasmas is that
it typically requires very nontrivial physical and mathematical
analyses applied to the specific regime. With the quick devel-
opment of artificial intelligence in the past decade, naturally,
the question arises: Can machine learning assist in complet-
ing this challenging task by exploring the kinetic simulation
data?

Indeed, using conventional artificial neural networks
(ANNs) for the discovery of fluid closures in collisionless
plasmas has been an active area of research. The earliest
attempt was perhaps made by Ma et al. [14], who trained a
multilayer perceptron (MLP), a convolutional neural network
(CNN), and a discrete Fourier transform (DFT) network to
learn the Hammett-Perkins closure. However, to the authors’
knowledge, this and the subsequent attempts relied on training
data from Landau-fluid simulations with a known closure re-
lation. Promising progress has been reported by Laperre et al.
[15], who used an MLP and a gradient boosting regressor to
synthesize a local mapping from local information to local
plasma pressure tensor and heat flux, using kinetic simula-
tion data of a two-dimensional (2D) magnetic reconnection
problem as the input. In their work, nonlocal closures were
not investigated, and the mapping differs from conventional
closure concepts where the plasma pressure is used as an
input.
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One common issue in applying the traditional ANN to
the discovery of physical relations is its strong reliance on
large datasets and slow convergence since the complex un-
derlying physical constraints are not properly imposed. As
a remedy, machine learning techniques and methods such as
symbolic regression [16,17], sparse regression [18-20], and
the physics-informed neural network (PINN) [21,22] have
been developed. In terms of theoretical plasma physics, some
attempts have been recently made by distilling the data and se-
lecting appropriate physical terms from a library of candidate
terms. For instance, Alves and Fiuza [23] explored sparsity-
based model-discovery techniques in Ref. [19] to discover
multifluid and magnetohydrodynamic equations from the ki-
netic simulation data. Modified PDE-Net (mPDE-Net, where
PDE refers to partial differential equation) has also been used
to discover multimoment fluid equations together with an
explicit heat flux closure from kinetic simulation data [24,25].
However, such library-based frameworks rely on predefined
candidate terms that are not always known or well under-
stood. Among these venues, PINN is possibly one of the most
influential examples. The physical partial differential equa-
tion (PDE) residuals are incorporated into the loss function of
the neural network as regularization, transforming the process
of solving PDEs into an optimization problem by constraining
the space of permissible solutions. Since its introduction by
Raissi et al. [21], PINN and its variants have been widely
applied to fluid dynamics, plasma physics, electromagnetics,
and many more areas [26-30]. One remarkable improvement
of PINN was made by Yu et al. [31], who added addi-
tional gradient loss terms to construct the gradient-enhanced
physics-informed neural network (gPINN) to improve the ac-
curacy for large-gradient shock-wave physics.

This work aims to explore the feasibility and effectiveness
of capturing the hidden fluid closure using PINN without
prescribing the form of the closure itself. A library of ex-
plicit candidate terms in the closure relations would not be
necessary. The key point here is to use the kinetic simula-
tion data that contain the complete closure information as
the training datasets and use fluid moment equations to con-
strain the training process. The trained neural network then
embeds the closure information implicitly and can be used to
close the multimoment fluid equation system and incorporate
desirable kinetic physics. As a first but critical step, we will
use the example of Landau damping in a collisionless, elec-
trostatic plasma, which is one of the most fundamental kinetic
processes in a variety of plasmas. We will explore the per-
formance of the original PINN and its variants, in particular,
the gradient-enhanced PINN (gPINN), in capturing the hidden
fluid closure that can reproduce the Landau damping process.
The results of this study could be extended to other more
complex problems and be combined with more sophisticated,
more general approaches.

II. METHODOLOGY
A. Physical model

Consider a collisionless plasma in the absence of a mag-
netic field; the dynamics of the plasmas are governed by the
Vlasov equation, which describes the evolution of the particle

distribution function in the phase space (r, v),
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where f,(r, vq, t) is the velocity distribution function of parti-
cle species s in a plasma, e;/m; is the charge-to-mass ratio of
the particle species s, and the operators V, = (9, 9y, 9;) and
Vy = (0y,, 8vy, d,, ) are the gradient operators in configuration
space and velocity space, respectively. For simplicity, we con-
sider a one-dimensional model in x — v, space. Additionally,
E.(x,1) is the self-induced electric field, which satisfies the
Poisson equation describing the electrostatic field:

E(x,1)=—V¢, @)
pp=-L. 3)
)

Here, ¢(x, t) is the electric potential, &g is the vacuum permit-
tivity, and p(x, t) denotes the charge density:

p=3 en, 4)

where e; and n, are the charge and number density of the
particle species s, respectively.

In general, Vlasov models tend to become more memory-
consuming and computationally demanding due to the high
dimensionality of phase space; so we consider fluid models
of plasma that involve only the evolution of macroscopic
quantities. Consequently, we obtain some macroscopic fluid
quantities by calculating the moments of f(x, vs, ) in the
velocity space and then extract the evolution of the moments
from the Vlasov simulation data. In detail, macroscopic fluid
quantities including the number density n,(x, t), the fluid ve-
locity u,(x, t), the pressure p,(x, t), and the heat flux g,(x, 1)
can be derived from the first three moment equations:

ng(x,t) = ffx(x, Vs, 1)d vy, %)
1
ng(x, 1)

pyCrat) = m / (0 — u)2fix, vy, vy, (7)

us(x,t) =

/ 0 fy (5, vy, 1)dlv, ©)

46, 1) = m / (W — u) fy(x, v v (8)

The set of multimoment fluid PDEs for electron species, e,
is expressed as follows (we drop the subscript, s, for the
variables hereafter for brevity):
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These are the electron continuity, momentum, pressure, and
Gauss’s law equations, respectively. Clearly, the update of the
lower-order moment equations (e.g., the pressure equation)

033079-2



DATA-DRIVEN MODELING OF LANDAU DAMPING BY ...

-

PHYSICAL REVIEW RESEARCH §, 033079 (2023)

/(a) Kinetic Data\

/(b) Training Dath

(c) Physics-Informed Neural Network

Equation Residuals

e =

M Nb(: & ]Vic
° N(lata

_ 0P | ~ 0P .00, 94
e3_6t+u3x+3pax+ax

=B
~ ax &9

€y

Residual Gradients

| 7
Gradients z 1ng(|ax€i|2 + |0ce:l®) j
=

Loss Function

= WEqEEq + WBC‘C’BC + WIC‘C’IC + wdataEdata
— —_—

L

gPINN

+w, L,

\

( (d) Prediction

n Prediction 4 Prediction

2 2
12
2
1 S
08 =
0 0
0 10 0

5-1
t(wpe)

E, Prediction

0.5 2 0.2
0 1 0
N 05 -0.2
0 0.4
10 0 10

5-1
t(wpe)

p Prediction

v

x (m/k)
x (w/k)

-

3
t(wpe) J

FIG. 1. Physics-informed neural network (PINN) architecture for the multimoment fluid model with an implicit fluid closure learned from
the kinetic simulation data. The whole procedure includes (a) kinetic simulation data generation, (b) sparse sampling of training data, (c) PINN
construction with the constraints of different moment equation residuals and their gradients, and (d) parameter prediction.

depends on the evolution of the next-higher-order moment
(e.g., the heat flux q); therefore a comprehensive multimoment
fluid model must include a closure relation to close the system
of equations. Because of the absence of the evolution of the
fourth-order moment equation (or the heat flux equation) in
the preceding equations, a closure relation for the heat flux g
is required for the multimoment fluid model.

B. PINN and gradient-enhanced PINN architectures

The schematic diagram of the whole architecture de-
picted in Fig. 1 includes four parts: Kinetic simulation data
generation [Fig. 1(a)], sparse sampling of the training data
[Fig. 1(b)], physics-informed neural network construction
[Fig. 1(c)], and parameter prediction [Fig. 1(d)]. Beginning
with the generation of kinetic simulation data by numeri-
cally solving the equations of the Vlasov-Poisson system,
as depicted in Fig. 1(a), we take snapshots of the velocity
distribution f(x, v,) in phase space at several time steps to
characterize these data. Secondly, for boundary and initial
conditions, all physical variables (n, u, p, q, E,) are sampled,
but only density n is also sparsely sampled from the simu-
lation data at the first few time steps as hypothetical known
observations to train the neural network as shown in Fig. 1(b)
(or Fig. 2). Finally, the neural network with multimoment
fluid equation residual constraints is built to recover and fore-
cast the number density 7i(x, t), the fluid velocity #i(x, t), the
pressure p(x,t), the heat flux §(x,t), and the electric field
E,(x, 1) across the entire spatial and temporal range [Figs. 1(c)
and 1(d)]. A schematic illustration of the proposed PINN and
gPINN, composed of a fully connected feedforward neural
network (FNN) with multiple hidden layers and a residual

network with the fluid moment equation and their gradient
constraints, is depicted in Fig. 1(c).

For the one-dimensional fluid model described by Egs. (9)—
(12) on a spatial domain 2 C R, we first define the multimo-
ment fluid system deduced from the kinetic simulation data
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FIG. 2. Left: Schematic diagrams of training data sampling from
the simulation domain. Right: From top to bottom, the kinetic sim-
ulation data of density n, velocity u, pressure p, heat flux ¢, and
electric field E,, respectively.
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as the set F(x, 1) = {n(x, 1), u(x,t), p(x, 1), q(x, 1), Ex(x, 1)}
and then construct a neural network with the trainable param-
eters @ to approximate the solution. The neural network as
a parametric function approximator can be represented by a
nonlinear function:

(A, 1), a(x, 1), plx, 1), G(x, 1), Ex(x, 1)}
=F(x,1:0), xeQ, t€[0,T], (13)

where 6 = {W, b} is the weight matrix and the bias vector.
We take the derivatives of F with respect to x and ¢ by ap-
plying automatic differentiation. PINN encodes professional
physical priors into the loss function. These physical priors,
which are expressed as a set of PDEs with appropriate initial
and boundary conditions, are highly condensed knowledge
of physical mechanisms that can inform the neural network.
Then we utilize the constraints implied by the PDEs, the
initial conditions, the boundary conditions, and some extra
measurements of the density n as labeled data to train the
neural network. The whole loss function is defined as follows:

Lpinn = wgqLEq + wecLBC
+ wicLic + Waa Ldatas (14)

where wgq, wpc, Wic, and wgya, are the weights of each loss
function, respectively. In this paper, we choose the weights
WEq = WBC = WIC = Wqaa = 1. In particular, we seek to min-
imize the residuals of the fluid moment equations, which are
given as follows:

on on o
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Here, e; denotes the continuity equation residual, e, denotes
the momentum equation residual, e; denotes the pressure
equation residual, and e4 denotes the Gauss’s law equa-
tion residual. Neq is the number of trained data for Lgq. In fact,
we want to conduct an inverse problem using PINN, where
the fluid closure is implicitly included in the neural network,
assuming that both the initial and boundary conditions are
known and sparsely sampled,

1 Noc 5 R
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Although the model inputs should ensure that there is
enough information for the neural network to accurately cap-
ture the governing equations of the system, the amount of
input information should be minimized. Therefore we only
sample the kinetic simulation data in the first few time steps
as labels (see Fig. 2) to allow the network to capture the fluid
closure that incorporates the kinetic effects. In this paper, only
the density » is sampled.

Ndulu

A 2

Lawa =—— Y _ 1A, 1;) = n(x, 1)),
Ndala =1

T
x;j€Q, t;€[0,1, t' < 5 (19)

Meanwhile, other studies have demonstrated that gPINN
improves the accuracy of PINN, especially when applied to
PDEs with steep gradients [31]. Thus we introduce gPINN
to capture the structures with large gradients. The main idea
of gPINN embeds the gradient information into the loss
function by enforcing that the derivatives of the moment equa-
tion residuals be the minimum. Assuming that the gradient of
the equation residual Ve exists, the loss function of gPINN is

Lepiny = WgqLeq + wacLre
+ wicLic + WdataLdata + WeLs. (20)

For the 1X 1V case, the additional loss term is
N, 4

1
Welg =503 ) wailldeeiCr, 1) + e, 1)),

8 j=1 i=l
x; €, t;€[0,T]. 21

The weight w, = {w,,, w,,, w,,, w,, } is an extra hyperparam-
eter in the gPINN architecture for optimization.

Conventional gPINN architectures incorporate the gradient
terms of all the equation residuals and add them to the loss
function [31]. In this paper, we make an attempt to only
include the gradient of a specific equation residual as the
additional constraint, which also reduces the computational
cost compared with the traditional gPINN. Here, we define a
variant of gPINN that only includes the gradient of the pres-
sure equation residual, namely, gPINNp. The idea of gPINNp
is motivated by the fact that the heat flux ¢ and the pressure p
are closely related in the residual e3 of Eq. (15).

II1. SIMULATION
A. Synthetic model setup
1. Kinetic simulation data generation

This section describes the kinetic Vlasov-Poisson simula-
tions used to generate the training data. The physical problem
under investigation is Landau damping in a collisionless, elec-
trostatic plasma. The initial setup consists of an immobile,
neutralizing ion background and two perturbation modes ap-
plied to the electron density,

ne.(x,t = 0) = no(1 4+ A cos (k1x) 4+ A, cos (kpx + ¢)),
(22)

ni(x,t =0) = ny, (23)
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TABLE I. Summary of the initial setup parameters.

k| kz A] A2 (;0

0.6 1.2 0.05 0.4 0.38716

where ng is the initial density of each species, k; and k, are
the wave numbers of the two modes, A; and A, are their
amplitudes, and ¢ is a random phase.

We use the open-source continuum Vlasov code GKEYLL
[32] for this study. The simulation employs a periodic con-
figuration domain, 0 < x < Zk—’l’, discretized to 128 cells, and
a plasma velocity space —6v,, < v, < 6V, with 128 cells.
A fixed time step size At = O.OOla)];e1 is used, and the sim-

ulation takes 10 000 steps before it stops at t = IOijel. The
numerical scheme being used is a discontinuous Galerkin
method with second-order serendipity polynomial bases [33].
The specific simulation parameters are summarized in Table I.

To construct the training datasets, the electron density #,
velocity u, pressure p, and heat flow g are extracted from the
phase-space data following Eqs. (5)—(8).

Here we want to point out that the damping rates of these
two modes are different; the mode with a short wavelength
predominates but decays fast, and the one with a long wave-
length of low energy decays slowly.

2. Deep neural network setup

Both PINN and gPINN involve neural network architecture
selection since it has a significant impact on the prediction
precision. The parameters of the neural network utilized are
shown in Table II. All of them were determined by trial and
error while taking into account the solution precision, conver-
gence, and computational efficiency.

The artificial neural network consists of the input layer,
the hidden layer, and the output layer. A hidden layer that
contains five layers and 50 neurons provides the most accu-
rate solutions. In addition, we choose this network structure
in order to reduce additional computational requirements or
overfitting. We choose a nonlinear activation function, Swish
[34], to retain information about the gradient of the data with
respect to the input variables (x and #). In each iteration of the
ADAM optimizer [35], the minibatch of data and the residual
points used to penalize the equation are processed and have a
size of 10 000. To avoid an unstable training process caused by
arapid change in the learning rate, we use a constant learning
rate of 0.01. In addition, we utilize weight normalization to
accelerate the training of PINN (and gPINN) [36].

Data sampling diagrams of the neural network are dis-
played in Fig. 2. The training data are composed of the
randomly sampled N, = 200 initial conditions and M, = 300
boundary points from the five quantities, i.e., n, u, p, g, and E,.
For the electron density n, we also sample a small set of points

from O to Zw;el as extra measurements, totaling Ngy, = 23 863
sampling points, which corresponds to a sampling rate of
approximately 3.125% within 1’ = 2w,

B. Data-driven modeling results

Based on the kinetic simulation data, we construct the mul-
timoment fluid model using PINN and gPINN, respectively.
When training is converged, the neural network simultane-
ously predicts the values of 7, i, p, §, and Ex for the whole
time period up to IOw;el. We use the integral of the electric

field square over the entire configuration space f |E|>dx to
evaluate the accuracy of PINN (and gPINN) on capturing the
Landau damping process.

Figure 3 shows the evolution of the electric field en-
ergy predicted by the PINN-constructed multimoment fluid
model over time and the temporal evolution of velocity phase-
space distribution f(x, v,) at several fixed time steps from
the kinetic simulation data. Based on the sparsely sampled
electron density n in the time period 0 < < Zw;el, the
PINN-constructed multimoment fluid model recovers and re-
constructs the electric field energy evolution during the time
period t = [0, IOa);el]. The predicted electric field energy os-
cillates and decays as time progresses, with wave peaks at
times t =0, 1.871w;e', 4.399a);e', 6.404w;g', and 8.3780);6'
(labeled as red dots), which agrees with the kinetic simulation
data. The evolution of the complicated velocity distribution
f(x,v,) in phase space from the kinetic simulation data at
these time steps (labeled as red dots) is depicted in the bottom
panels of Fig. 3. The good agreement between the kinetic
simulation data and PINN-generated data indicates that the
PINN-constructed multimoment fluid model is capable of ac-
curately representing the complicated evolution of the plasma
dynamics and capturing the Landau damping process even
without directly evolving the distribution function in the phase
space.

For quantitative assessment, we define the absolute error
(AE) as the evaluation metric, which is expressed as

AE(,y) = [§(x, 1) = y(x, 1), (24)

where AE(9, y) is defined as the difference between the out-
puts y(x, t) of the neural networks and the kinetic simulation
data y(x, t).

The introduction of equation residuals into the loss func-
tion [see Eq. (16)] is the most important component of our
scheme, while the equations provide the necessary physical
priors and serve as a road map for network optimization. It is
noteworthy that our method does not involve any explicit fluid
closure equations, but the fluid closure relation is implicitly
included in the neural network.

In Fig. 4(a), we compare the performances of the
PINN-constructed multimoment fluid model using different
combinations of moment equation residual as constraints [see

TABLE II. Parameter setting of PINN and gPINN (and gPINNp).

Numbers of layers and neurons within hidden layer

Optimizer

Learning rate Activation function Batch size

5 and 50

ADAM

0.01 Swish 10000
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FIG. 3. Top: The evolution of the electric field energy predicted by the multimoment fluid model constructed using PINN (green dashed
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Bottom: The velocity distribution f(x, v,) in phase space at these peak points (see red dots in the top panel).

Fig. 1(c) or Eq. (15)]. The goal is to determine the mini-
mum requirement to accurately capture the Landau damping
process. In more detail, the electric field equation residual
is always retained, and the number of equation residuals is
always 1 less than the number of network predictions. As
an example, PINN(n, u, E,) in Fig. 4(a) indicates the use
of continuity and momentum equation residuals, as well as
the electric field equation residual, while the model outputs
are 7, i, p, and E}. In order to compare and show more
clearly the differences between the results, we give the abso-
lute errors between the predictions using different numbers of
equation residuals and the kinetic simulation data. The overall
absolute error of PINN(#n, u, p, E;) is less than 1073, which is
smaller than the other two cases using fewer equation residu-
als, i.e., PINN(n, E,) and PINN(n, u, E,).

The results obtained by the PINN-constructed multimo-
ment fluid model in Fig. 4(a) without using the pressure
equation residual as a constraint have seriously deviated from
the true value (or the kinetic simulation data). Consequently,
we draw the conclusion that it is necessary to use at least the
first three moment equations as constraints and such a fluid
system contains five variables (n, u, p, g, and E,) to accurately
capture the Landau damping process. When this condition is
not satisfied, i.e., the number of constraints is less than the
minimum requirement, the PINN-constructed multimoment
fluid model is not able to capture the specific kinetic effects
due to the lack of sufficient input information. Meanwhile,
Fig. 4(a) also demonstrates that the results begin to deteriorate
at later stages, particularly in the wave troughs of the elec-
tric field energy curve, where large deviations are observed.
Therefore we adopt gPINN by adding the gradients of the
moment equation residuals, which has been demonstrated to
be more effective than PINN [31] when addressing similar
issues.

The performances of the PINN-constructed and gPINN-
constructed multimoment fluid models in capturing the
Landau damping process are compared in Fig. 4(b). Here, we
introduce a variant of gPINN, namely, gPINNp, which only
incorporates the gradient of the pressure equation residual as
an additional constraint, while the traditional gPINN includes
the gradients of all the equation residuals [see Fig. 1(c) or
Eq. (21)]. The idea of gPINNp is motivated by the fact that the
heat flux ¢ and the pressure p are closely related in the resid-
ual e3 of Eq. (15). Meanwhile, gPINNp is computationally
cheaper than the traditional gPINN with more constraints. In
both gPINN and gPINNp, the gradient weight w,; is a hyper-
parameter, filtered by the optimized tests with wy = 0.01 (i =
1,2, 3,4 for gPINN and i = 3 for gPINNp). In Fig. 4(b), the
absolute error of the electric field energy between predicted
and true values reaches 2.22 x 1073 using PINN, 2.00 x 107°
using gPINN, and 4.68 x 10~7 using gPINNp at the last
wave trough approximately at time ¢ = 9-50);@]- The multi-
moment fluid model constructed using standard gPINN fits
the kinetic simulation data better than that using PINN, while
the gPINNp-constructed multimoment fluid model provides
the most refined results, especially at later stages ¢t > Sa)p‘e'
when the electric field energy decays to relatively low values.
The finding that the gPINN p-constructed multimoment fluid
model has the best performance indicates that the evolution
of the heat flux ¢ heavily relies on the pressure p and its
gradients, consistent with the theoretical expectation [13].

In Fig. 5, we record the aggregate losses Lpmn and Lgpinn
of PINN and gPINNp during the whole training process, as
well as each component of the loss function. To filter out the
oscillations in the time series for the loss values, we employ
a centered moving average by sliding a window of length 100
iterations. Lpinn and Lepinn show a general downward trend,
with a gentle trend after 40 000 iterations, and they converge
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FIG. 4. Temporal evolution of electric field energy and absolute
error using (a) PINN and (b) gPINN with different moment equa-
tion residuals as constraints. The weights w,; = 0.01 (i =1,2,3,4)
and w3 = 0.01 are adopted for gPINN and gPINNp, respectively,
following hyperparameter tuning.

to roughly 107> after a total of 216 000 iterations. For the
definition of the loss function for PINN and gPINNp, see
Eqgs. (14) and (20), respectively. As for the training procedure,
all convergent results are obtained after 2 x 10° steps of itera-
tive optimization. Among various contributing components to
Lpmn and Lgpinn, the smallest is the data loss, Lga, followed
by the equation residual loss and the loss at initial conditions,
Lgq and Lyc, respectively. In contrast, the boundary condition
loss, Lgc, has the largest magnitude. For Lgpinn,, the contri-
bution of the gradient loss, £,, remains relatively small due
to its small weight w,, which is determined through hyper-
parametrization. This small contribution is critical, though, for
achieving better performance.

In Fig. 6, we present the temporal-spatial evolution of the
physical quantities predicted by the multimoment fluid mod-
els constructed using PINN, gPINN, and gPINN p, and the true
value from the kinetic simulation. The corresponding row in
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FIG. 5. History of the aggregate losses and loss of various com-
ponents of PINN (top) and gPINNp with wg = 0.01 (bottom). A
moving average filter with a moving window of length 100 time
iterations is used to smooth losses.

each column displays the relevant values for the density n,
velocity u, pressure p, heat flux ¢, and electric field E,, respec-
tively. As shown in Fig. 6, the PINN, gPINN, and gPINNp
architectures have the ability to accurately reconstruct and
predict those physical quantities with an implicit fluid clo-
sure included in the neural network. It is noteworthy that the
accurate prediction of these quantities only relies on sparse
sampling of a small fraction of the kinetic simulation data
(see Fig. 2). Most importantly, the neural network not only
captures the kinetic damping of integral electrostatic energy
but also reproduces the spatial-temporal profile of the physical
quantities.

Figure 7 depicts the relative errors (RE) of the predicted
quantities from the multimoment fluid models constructed
with PINN, gPINN, and gPINNp based on the definition
RE®,y) = |ﬁ("’izx;j§m|, where y(x,t) are the kinetic simu-
lation data and $(x, ) are the neural network outputs. All
physical quantities predicted by the three models are in good
agreement with kinetic simulation data. This particular com-
parison does not seem to clearly favor any neural network.
Note that the relative errors due to each run were computed
against the “true” solution frame by frame in time. Thus the
errors may be contaminated by the subtle phase errors of the
neural network predictions and do not necessarily reflect the
true performance of the models. Such anomalous errors would
be particularly distracting when computing relative errors in
quantities fluctuating near zero values, such as u, g, and E,,
since the denominator may vanish, making direct comparison
extremely difficult. Hence the relative errors of these terms are
not shown in Fig. 7. Nevertheless, based on previous analysis
and considerations, the gPINNp architecture exhibits superior
performance compared with the other architectures.

IV. CONCLUSION AND DISCUSSION

In conclusion, we construct multimoment fluid models
using PINN and gPINN, where the fluid closure is learned
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FIG. 6. Comparison of the predicted physical quantities (from the multimoment fluid models constructed using PINN, gPINN, and
gPINNp) with respect to the kinetic simulation data. Each panel from top to bottom shows the density n, velocity u, pressure p, heat flux

g, and electric field E,, respectively.

from the kinetic simulation data and is implicitly included
in the neural networks. The neural networks use the physical
constraints of the multimoment fluid equation residuals and
their gradients. In order to accurately capture the Landau
damping process, PINN and gPINN need to include the first
three moment equations (i.e., equations of n, u, and p) as con-
straints. Meanwhile, the PINN and gPINN architectures are
capable of accurately predicting all these physical quantities
concurrently.

In addition, we propose and explore a variant of gPINN,
namely, gPINNp. Unlike the traditional gPINN that uses the
gradients of all the moment equation residuals as additional
constraints, the gPINNp architecture only adopts the gra-
dient of the pressure equation as the additional constraint.
Compared with the results from the cases using PINN and
gPINN, the gPINNp-constructed multimoment fluid model

PINN Errors

x (n/k)
S = N =N

W)

gPINN Errors

—_—

o~
_
0 5 10 0 5 10

provides the most accurate predictions, especially at later
stages. The finding that gPINNp has the best performance
indicates that the evolution of the heat flux ¢ heavily relies on
the pressure p and its gradients, consistent with the theoretical
expectation.

In the future, we intend to expand the extrapolation ca-
pabilities of the neural networks in order to apply PINNs to
higher-dimensional and more intricate multiscale problems.
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