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Currently most progress on quantum secret sharing suffers from rate-distance bound, and thus the key rates are
limited. In addition to the limited key rate, the technical difficulty and the corresponding cost together prevent
large-scale deployment. Furthermore, the performance of most existing protocols is analyzed in the asymptotic
regime without considering participant attacks. Here we report a measurement-device-independent quantum
secret-sharing protocol with improved key rate and transmission distance. Based on spatial multiplexing, our
protocol shows it can break rate-distance bounds over network under at least ten communication parties.
Compared with other protocols, our work improves the secret key rate by more than two orders of magnitude
and has a longer transmission distance. We analyze the security of our protocol in the composable framework
considering participant attacks and evaluate its performance in the finite-size regime. In addition, we investigate
applying our protocol to digital signatures where the signature rate is improved more than 107 times compared
with existing protocols. We anticipate that our quantum secret-sharing protocol will provide a solid future for
multiparty applications on the quantum network.
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I. INTRODUCTION

A network with quantum resources has benefits in both
computing enabled by quantum computation [1–6] and secure
communication enabled by quantum key distribution [7,8].
Apart from quantum key distribution, in the realm of quantum
communication quantum secret sharing (QSS) [9–13] is also
important in constructing a secure quantum network with
network applications ranging from secure money transfer to
multiparty quantum computation.

Secret sharing is a key cryptographic primitive under-
lying a secure network. Secret sharing was first conceived
independently by Blakely [14] and Shamir [15]. It takes
both the reliability and secrecy of information into account
with practical applications ranging from the management of
cryptographic keys, decentralized voting, to a component for
secure multiparty computation. In secret sharing, a designated
party, called the dealer, divides the secret into shares and
distributes them to each player in a way that only autho-
rized subsets of players can reconstruct the secret while all

*These authors contributed equally to this work
†hlyin@nju.edu.cn
‡zbchen@nju.edu.cn

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

other subsets gain nothing whatsoever. The dealer can select
a threshold size for authorized subsets. For instance, in an
(n, k)-threshold scheme, any k (k � n) of n players can col-
laborate to recover the secret, while any subset with less than
k players remains ignorant.

Classical secret sharing is vulnerable and no longer se-
cure in the face of eavesdroppers equipped with quantum
computers. Fortunately, such threats can be overcome by
resorting to quantum technology. One can apply quan-
tum key distribution links sharing secure keys between
two legitimate users [16–24] to establish point-to-point
secret keys, which restricts the efficiency in a fully con-
nected quantum network. Alternatively, multipartite entangled
states—particularly the Greenberger-Horne-Zeilinger (GHZ)
entangled states [25,26]—can be used to realize QSS for
achieving an advantage over the repetitive use of quantum
key distribution links [27]. The first QSS protocol was pro-
posed by Hillery et al. using GHZ state for three participants
[9]. This QSS protocol is not secure in the face of partici-
pant attacks [28]. After this protocol, progress in QSS with
multipartite entanglement has been made both in protocols
[29–31] and experiments [32–34] in the past two decades.
The problem is directly preparing and distributing multipar-
tite states is challenging in practice and limits key rates and
transmission distance. Therefore, the protocol to distribute
postselected GHZ entanglement was proposed to avoid the
requirement of entanglement preparation beforehand [35]. Al-
though the measurement-device-independent (MDI) protocol
needs no entanglement resource, with the increasing number
of users, the protocol is limited since the efficiency decays
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exponentially. In addition, the security of QSS protocol in
Ref. [35] is not completely analyzed due to the ignorance
of participant attacks. To conclude, currently most QSS
protocols suffer from decaying transmission efficiency and
incomplete security analysis, and thus they are still unpractical
for large-scale deployment and application.

To fill the gap of existing protocols, we propose an effi-
cient and practical MDI-QSS protocol based on MDI quantum
communication protocols [18,19,35] and spatial multiplexing
and adaptive operation used in all-photonic quantum repeater
[36] and adaptive MDI quantum key distribution [37]. The
results show that our QSS protocol enhances the key rate as
the twin-field quantum key distribution does [20,38,39]. In
terms of security, our protocol is immune to all detection-side
attacks, which is important for practical quantum communi-
cation [40,41]. To be specific, the transmission efficiency of
our protocol remains unchanged when the number of com-
munication parties increases. Our QSS protocol can break
rate-distance bounds [42] over network under at least ten
communication parties when equipped with the GHZ analyzer
composed of linear optical elements [43]. Compared with
other protocols, our work improves the secret key rate by
more than two orders of magnitude and has a longer trans-
mission distance within an experimentally feasible parameter
regime. On the other hand, we analyze the security of our
protocol in the composable framework considering participant
attacks. Based on the security analysis, we also evaluate the
performance of our protocol in the finite-size regime. Further-
more, we explore applying our QSS protocol as a subroutine
to digital signatures, which is a vital primitive in protecting
the integrity of data against forgery. The digital signatures
with our MDI-QSS outperform other quantum counterparts of
digital signatures with more than 107 times enhancement in
signature rate. We believe our protocol manifests the potential
to be an important building block for quantum networks.

II. QUANTUM SECRET-SHARING PROTOCOL

Here we consider an n-party QSS protocol where the ith
user is denoted by Ai (i = 1, . . . , n). We designate A1 as
the dealer dividing and distributing the secret among n − 1
players (A2, . . . , An) and consider an (n − 1, n − 1)-threshold
QSS protocol. The schematic diagram of our QSS protocol is
shown in Fig. 1.

Before transmitting quantum signals, the dealer A1 estab-
lishes a bipartite key with each player to authenticate the
classical channel and a joint key as a seed for privacy am-
plification.

(1) Each user generates M single-photon states that are
randomly selected from eigenstates of the Z and X basis. For
instance, one selects from {|H〉, |V 〉, (|H〉 + |V 〉)/

√
2, (|H〉 −

|V 〉)/
√

2} when using polarization encoding. He then trans-
mits the M single-photon states to the central relay simultane-
ously using spatial multiplexing. The spatial multiplexing can
be realized by using techniques in fiber optical communica-
tion such as multicore fiber, multimode fiber, mode-division
multiplexing, and fiber bundles.

(2) The central relay performs QND measurements to con-
firm the arrival of single-photon states from (A1, . . . , An).

FIG. 1. Schematic diagram of our QSS protocol. In our protocol,
each user generates M single-photon states selected from eigenstates
of the Z and X basis randomly and transmits all M states to the
untrusted central relay through the quantum channel with spatial
multiplexing. The untrusted central relay performs QND measure-
ments to confirm the arrival of single-photon states. The confirmed
photons are routed to the GHZ analyzer via optical switches and
the GHZ projection is performed. Each user keeps the information
of states that are successfully projected onto the GHZ state and
performs classical postprocessing.

(3) After the QND measurements, the confirmed photons
from every user form a group and are routed to the GHZ
analyzer via optical switches. The central relay then performs
GHZ projection measurement on the group. Each user should
successfully transmit at least one single photon through QND
measurements. Otherwise, this trial is considered to be failed.

(4) The central relay announces the group information and
the GHZ projection results. Each Ai keeps information of
states that are successfully projected onto the GHZ state and
discards the rest.

(5) All n − 1 players (A2, . . . , An) announce their prepar-
ing bases for the remaining trials in any order. If the preparing
bases of all n − 1 players or any single player corresponding
to the complementary subset of the remaining n − 2 players
are consistent with the dealer’s choice, this round is kept.

(6) The process is repeated until m rounds in the X ba-
sis have been kept for key generation and k rounds in the
Z basis have been kept for parameter estimation. Then the
dealer calculates the correlation between himself and each
single player. If the correlations are below a certain level, the
protocol aborts.

(7) If the correlation test passes, the dealer obtains the raw
key and proceeds with error correction leaking a maximum of
leakEC bits of information. To verify the correctness, all n par-
ties compute and compare a hash of length log2(1/εc) bits by
applying a random universal2 hash function to the raw keys.
The protocol aborts if the hash of A1 does not coincide with
that of n − 1 players. If the error correction passes, the dealer
conducts privacy amplification using universal2 hashing and
obtains the final keys.

III. SECURITY ANALYSIS

The security analysis of QSS is quite complex due to the
existence of inner malicious parties exploiting the order of
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announcing the measurement bases and outcomes [27]. The
original QSS protocol [9] consider this problem and can be
completely broken [28,44]. In Ref. [44], the dishonest player
(say Charlie) intercepts all the GHZ photons from the dealer
and establishes Bell entanglement between himself and the
other player. Once Charlie obtains the knowledge of other
players’ measurement bases, he can learn their measurement
outcomes as well through Bell entanglement. Furthermore,
Charlie can ensure the round will be kept if the dealer chooses
the same basis as him and recreates the dealer’s information.
As a result, the whole protocol is broken while Charlie re-
mains undetected. Qin et al. provided a general result of the
necessary and sufficient conditions under which Charlie can
attain all the information without being detected [28].

To address the participant attacks, Kogias et al. proposed
to treat the measurements announced by the players as an
input or output of an uncharacterized measuring device and
the dealer as a trusted party with trusted devices. Then the
security of QSS can be connected with one-sided device-
independent quantum key distribution, which has been proven
unconditionally secure [31]. Similarly, Refs. [45–48] applied
the security proof of standard quantum key distribution with
trusted devices in both discrete and continuous variable QSS.
Walk et al. stated the essential part of the security proof in
Ref. [31] was excluding the potential malicious parties from
parameter estimation [27]. As a comparison, in Ref. [45], the
dealer randomly selects a set of potential malicious parties and
includes them in parameter estimation. However, the potential
malicious parties are forced to make announcements first. In
our QSS protocol, we follow Refs. [27,31] as shown in (5)
and (6) of our protocol to prevent dishonest participants.

We introduce some useful definitions in the following de-
scription. In general, the dealer’s final key S can be quantum
mechanically correlated with a quantum state held by the ad-
versary, and such a state is described by the classical-quantum
state

ρS,EUj =
∑

S

p(S)|S〉〈S| ⊗ ρS
E ,Uj

, (1)

where the sum is over all possible strings and ρS
E ,Uj

is the
joint state of the eavesdropper and the jth untrusted subset
given S. In our work, we consider a general adversary, which
is able to perform any operations permitted by quantum laws
rather than a specific adversary model performing concrete
attacks. By untrusted subset, we mean the subset formed by
any n − 2 players. Thus we have n − 1 untrusted subsets in
total in our QSS protocol. p(S) is the probability of the state
|S〉〈S| ⊗ ρS

E ,Uj
presenting in the ρS,EUj . Ideally, a QSS proto-

col is secure if it is correct and secret. The correctness means
the dealer’s bit strings S are identical to the bit strings Splayer

recreated from all n − 1 players, i. e. S = Splayer. The secrecy
requires ρS,EUj = ∑

S
1
|S| |S〉〈S| ⊗ σEUj , which means the joint

system of the eavesdropper and the jth untrusted subset is
decoupled from the dealer. However, these two conditions can
never be met perfectly. In practice, we call a QSS protocol εc

correct if

Pr(S �= Splayer) � εc. (2)

We call a QSS protocol εs secret if

max
j

{
ppassD

(
ρS,EUj ,

∑
S

1

|S| |S〉〈S| ⊗ σEUj

)}
� εs, (3)

where D(·, ·) is the trace distance and ppass is the probability
that the protocol does not abort. The maximization is over all
n − 1 untrusted subsets since the dealer must take worst-case
estimates for the secrecy. A QSS protocol is called εsec secure
with εsec � εs + εc if it is εc correct and εs secret.

Similar to quantum key distribution [49], the extractable
amount of key l for a εc-correct and εs-secret QSS is

l = min
j

H ε
min(X|EUj ) − leakEC − log2

1

εcε̄2
+ 2, (4)

where H ε
min(X|EUj ) is the conditional smooth min-entropy

characterizing the average probability that the eavesdropper
and dishonest parties guess the dealer’s raw key X correctly
using optimal strategy and leakEC is the amount of informa-
tion leakage of error correction. ε and ε̄ are positive constants
proportional to εs. For a realistic scenario, the computable key
length of QSS is

l = m

[
q − max

j
h
(
E

AAj

Z + μ
(
E

AAj

Z , ε′))]
(5)

− leakEC − log2
4

εcε̄2
,

where μ(λ, ε) =
(1−2λ)AG

m+k j
+

√
A2G2

(m+k j )2
+4λ(1−λ)G

2+2 A2G
(m+k j )2

,with k j (< k) being

the number of parameter estimation rounds between the dealer
and the complementary single player of the jth untrusted
subset, λ being the error rate observed in parameter estima-
tion, A = max{m, k j}, and G = m+k j

mk j
ln m+k j

2πmkjλ(1−λ)ε2 . E
AAj

Z is
the marginal error of the correlation test. q is a constant that
quantifies the complementary of the two preparing bases. We
give a full proof and analysis of the extractable key length in
Appendix A.

IV. PERFORMANCE

In this section, we evaluate the performance of our QSS
protocol. We introduce a benchmark used in our investigation
and analyze the performance of our protocol under both the
asymptotic and finite-size regime. In the end, we utilize our
QSS as a key generation solution to an essential cryptographic
primitive—digital signatures and investigate the signature rate
of signing a document.

A. Asymptotic performance of MDI-QSS

In the asymptotic limit, we follow the key rate formula
presented in Ref. [35]. To be specific, Fu et al. proposed the
secret key rate of MDI-QSS for the first time [18,19,35,37,
50–53]

RQSS = QX [1 − h(EZ ) − f h(EX )], (6)

where QX is the gain of the X basis, the probability of suc-
cessful GHZ state projection when preparing a single photon
in the X basis, and EX (EZ ) is the bit (phase) error rate.
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h(x) = −x log2 x − (1 − x) log2(1 − x) is the binary Shannon
entropy function. f is the inefficiency of error correction.

The gain QX is defined as the efficiency of successfully
generating postselected GHZ entanglement when preparing a
single photon in the X basis. Specifically, we have QX = N̄

M ,
where N̄ is the average number of successful GHZ projection
formed by photons using M multiplexing. If we denote the
total efficiency of both GHZ projection and the channel from
any ith user to the central node as ηtot, and M multiplex-
ing is used, then N̄ ∼ Mηtot . Therefore, we have QX ∼ ηtot.
The approximate relation can be converted to an equation
QX = ηtot under the asymptotic limit (M → ∞). We prove
this equation when n = 3 in Appendix C. To guarantee that
more than one entanglement is generated on average, the
multiplexing number should satisfy M � η−1

tot , which implies
that N̄ ∼ Mηtot � 1.

In this simulation, we use efficiency ηsps to describe
the probability of the single photon source generating sin-
gle photons and set ηsps = 0.9 [54]. We consider the GHZ
analyzer based on linear optical elements [43] capable of
identifying two of the n-particle GHZ states. We present the
detailed working of the analyzer in Appendix B. Photons
travel through optical fiber channels whose transmittance is
determined by

√
ηchannel = exp(− l

latt
), where the attenuation

distance latt = 27.14 km and l is the distance from any ith
user to the GHZ analyzer. QND measurements are required
to confirm the arrival of photons and the success probability
of QND measurements is denoted by pQND. To simplify the
simulation, we consider a QND measurement for a single
photon based on quantum teleportation [55] with ideal pa-
rameters where we have pQND = 1/2. The active feed-forward
technique is needed to direct the arrived photons to the GHZ
analyzer via optical switches. We assume the active feed-
forward costs time τa = 67 ns [56], which is equivalent to
a lossy channel with the transmittance ηa = exp(−τac/latt ),
where c = 2.0 × 108 ms−1 is the speed of light in an optical
fiber. Single photon detectors in the GHZ analyzer are char-
acterized by an efficiency of ηd = 0.93 and a dark count rate
of pd = 1 × 10−9 [57], by which we can estimate the success
probability of GHZ projection in the X (Z ) basis QGHZ

X (Z ). Based
on the aforementioned assumption on experiment parameters,
we analytically estimate the gain with

QX = QGHZ
X · pQND · √

ηchannel · ηsps · ηa. (7)

See Appendix D for the concrete process of estimation of the
marginal bit error rates and phase error rate.

Before analyzing the performance of our protocols, we dis-
cuss the limitations on quantum communication over network
and provide a benchmark for our protocol. A general method-
ology allowing us to upper bound the two-way capacities
of an arbitrary quantum channel with a computable single-
letter quantity was devised in Ref. [42], which determines
the fundamental rate-loss tradeoff affecting any quantum key
distribution protocol. In this way, for the lossy channel, they
proved that the two-way quantum capacity and the secret-
key capacity are − log2(1 − η), which is the maximum rate
achievable by any optical implementation of point-to-point
quantum key distribution. This bound sets the limits of point-
to-point quantum communications and provides precise and
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FIG. 2. Key rates of our QSS and direct transmission bounds.
We show key rates of our protocol and corresponding bounds under
different numbers of communication parties (n = 3, 10 from top to
bottom). In the figure, key rates of our protocol and bounds are
plotted with solid and dash-dotted lines, respectively. The fiber trans-
mission distance denotes the distance between any ith party and the
central relay.

general benchmarks for quantum repeaters. For quantum com-
munications over network scenarios, bounds have also been
established under different scenarios [58,59]. In Ref. [60], the
methodology used in Ref. [42] is extended to a more complex
communication scenario including quantum broadcast chan-
nel, quantum multiple-access channel, and all-in-all quantum
communication, where multiple senders and/or receivers are
involved. Later, Das et al. provided a unifying framework to
upper bound the key rates of both bipartite and conference
settings with different scenarios including broadcast, multiple
access, interference channels, and more general network sce-
narios [61].

In our work, to investigate the performance of our protocol,
we consider a rate benchmark in a case where the untrusted
central node is removed and all n users are linked by a star
network similar to that in Ref. [62]. In such a scenario, a
selected user performs quantum key distribution with other
users n − 1 times to establish bipartite secret keys with the
same length due to the network symmetry. According to the
secret-key capacity, the asymptotic rate is − log2(1 − η) with√

η being the transmittance between any ith user and the
central node. The selected user can XOR all n − 1 key strings
to conduct secret sharing. The final key length is equal to the
keys’ lengths obtained using quantum key distribution. There-
fore, in this scenario, the key rate is bounded by − log2(1−η)

n−1 .
We call this bound the direct transmission bound. It should be
noted that the above scenario does not necessarily yield the
highest key rate in secret sharing.

In Fig. 2, we plot the key rates of our QSS as well as direct
transmission bounds with different numbers of communica-
tion parties. We present key rates and bounds with n = 3, 10
users from top to bottom using solid and dash-dotted lines, re-
spectively. Our protocol breaks the direct transmission bounds
because of the spatial multiplexing and adaptive operations. A
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FIG. 3. Comparison of key rates of QSS from our work, original
MDI-QSS [35], continuous variable (CV) QSS [46], and twin-field
(TF) differential phase shifting (DPS) QSS [12]. We plot the key
rates of the protocols when n = 3. Different colored lines are used to
denote different protocols. The fiber transmission distance denotes
the distance between any ith party and the central relay.

polynomial scaling of efficiency with distance can be realized
for at least ten users over the network while the bounds atten-
uate greatly as n increases.

To further investigate the performance of our work, we
evaluate the key rate of our protocol and that of other preced-
ing QSS protocols over a quantum network under the same
experimental parameters. In Fig. 3, we plot the key rate of our
QSS protocol, original MDI-QSS [35], continuous variable
(CV) QSS [46], and twin-field (TF) differential phase shifting
(DPS) QSS [12] with n = 3. We can directly conclude from
Fig. 3 our work can achieve a longer transmission distance
of more than 300 km and increase the secret key rate by at
least two orders of magnitude at long distances compared
with other QSS protocols. Though TF DPS QSS achieves
a similar transmission distance and slope to our work, the
TF DPS QSS protocol only works with three communication
users and cannot be easily and directly extended to scenarios
when n is more than three. The CV QSS protocol can reach no
more than 140 km. One can observe that CV QSS outperforms
our work at shorter distances because CV protocols adopt the
coherent state as information carrier, which is more robust to
channel loss. As a result, the signals can always be detected,
which means the gain of CV protocol is always unity. The CV
QSS protocol is asymmetric where the dealer measures the
Gaussian signals from the users while our QSS is symmetric
in the quantum phase of the protocol. Therefore, the CV QSS
is not as flexible as our QSS to deploy in the quantum network.

B. Performance of QSS in finite-size regime

We investigate the performance of our QSS protocol in the
finite-size regime with the same parameters introduced in the
asymptotic scenario. Wse fix εc = 10−15 corresponding to a
realistic hash tag size in practice [63]. In our QSS protocol,
for simplicity, we assume the information leakage during error
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FIG. 4. Secret key rate of our QSS as a function of distance in
finite-size regime. We consider the secret key rate of QSS with n =
4, 6, 8 shown in different colors. In this simulation, we fix the total
number of signals to be 1012. The fiber transmission distance denotes
the distance between any ith party and the central relay.

correction to be leakEC = f h(EX ), where f = 1.1, h(x) is the
binary Shannon entropy, and EX is the error rate in the X basis.
Then following Eq. (5) we can obtain the result in finite-size
regime.

In Fig. 4, we plot the secret key rate of our QSS protocol as
a function of the distance between any ith user and the central
relay. We can view that our QSS can transmit more than
100 km, 60 km, and 30 km when n = 4, 6, 8, respectively.
These transmission distances can cover the intra- and intercity
deployment of the quantum network. On the other hand, with
the all-photonic nature of our QSS protocol, our work is feasi-
ble and can be implemented with state-of-the-art technology.
Combining these two factors, our results are meaningful to the
practical deployment of a quantum network. The slope of the
curve is observed to differ with different values of n, which
stems from the secret key rate here counts the probability of
all users choosing the same basis, which scales exponentially
with n.

In the above two sections, we investigate our protocol
under a model consisting of single photon sources, QND
measurements, optical switches, and the GHZ analyzer based
on linear optical elements. Our protocol can be improved with
other techniques. For instance, our protocol can be improved
by utilizing the complete GHZ analyzer, which can identify all
2n GHZ states, such as GHZ state analysis taking into account
nonlinear processes [64,65] or entangled-state analysis for
hyperentangled photon pairs [66,67]. On the other hand, in
step (3) from Sec. II, large-scale optical switches are needed
to route the photons into the GHZ analyzer, which may affect
the transmittance and cause unwanted loss. Thus, future effort
should be made towards realizing the protocol with reduced
scale optical switches and one possible way is utilizing a
Hadamard linear optical circuit together with single-mode
on/off switches [37]. Techniques in MDI quantum key dis-
tribution [41,68] can be applied in our QSS to further improve
practicality.
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C. Key generation solution for quantum digital signatures

Digital signatures, as an important cryptographic primi-
tive, promise the authenticity, integrity, and nonrepudiation of
information processing, which have been applied in various
areas such as financial transactions, software distribution, and
block chain. The security of classical digital signatures is
based on the complexity of mathematical problems. While
the quantum counterpart of digital signatures, called quantum
digital signatures (QDSs), guarantees security via the laws
of quantum physics. Since the first QDS protocol, which
is challenging in the experiment, progress has been made
to improve the practicality of QDS [69–71]. However, the
existing protocols suffer from low signature rate and are
unpractical when signing multibit documents. Yin et al. pro-
posed a QDS protocol capable of signing long documents
with information-theoretic unconditional security [72]. The
QDS protocol builds a perfect bit correlation of three users
with an asymmetric key system and realizes an efficient QDS
together with completely random universal2 hash function and
one-time pad. Our QSS is capable of generating perfect key
correlations between any n users, which naturally fits well in
the framework of such QDS protocol. Furthermore, our proto-
col has great potential and capability of large-scale application
of such QDS in the future quantum network. Thus here we
investigate the performance of applying our QSS protocol as
a subroutine in the key distribution process of Ref. [72].

We start with briefly introducing this QDS protocol. For
convention, let Alice be the signer with Bob and Charlie as
the receiver. Before generating and verifying digital signa-
tures, perfect key correlations XA = XB ⊕ XC (YA = YB ⊕ YC )
should be realized among Alice, Bob, and Charlie, where
Xi (Yi ) (i = A, B,C) denotes secret keys held by each user.
QSS can achieve such correlations and thus our QSS protocol
provides a natural solution to the key generation process.
After obtaining the keys, Alice generates digital signatures of
an arbitrary document through completely random universal2

hash function and one-time pad and transfers the signed doc-
ument to Bob. Bob transmits his key bit strings and the signed
document to Charlie. Bob and Charlie verify the digital signa-
tures and if both of them accept the signed document we can
say this is a successful signing. For more technical details,
Ref. [72] can be referred to.

We investigate the performance of QDS protocol in
Ref. [72] using our QSS to generate perfect key correlations.
It is further compared with the experiment result of QDS
protocol with quantum states exchanged forward in Ref. [73],
which is shown in Table I. For the calculation of QDS using
our QSS, we assume the order of the irreducible polynomial to
be 128, which indicates a security bound about 10−34 [72] and
set the system clock frequency to be 1 MHz. In order to have
a direct comparison between the two protocols, in Table I we
calculate and list the signature rate of signing a document with
the size of 106 bits, which indicates the amount of documents
signed per second. From the comparison, we can easily con-
clude that the QDS protocol with keys generated by our QSS
outperforms the QDS in Ref. [73] with a better signature rate

TABLE I. Performance of QDS protocol using our QSS and QDS
with quantum states exchanged forward in Ref. [73]. The perfor-
mance of the QDS protocols is evaluated by the signature rate of
signing a document with the size of 106 bits. We assume the system
clock frequency to be 1 MHz. NaN means no digital signatures can
be generated. The unit of signature rate is times per second (tps).

Distance (km) Signature rate (tps)

QDS [72] with our QSS 20 162
50 93

QDS in [73] 20 7.3 × 10−6

50 NaN

and longer distance. Our QSS shows great practicality when
used in QDS protocol.

V. CONCLUSION AND OUTLOOK

In this work, we propose an MDI-QSS protocol for
quantum network applications. Our QSS can break the rate-
distance bound with the GHZ analyzer based on linear optical
elements under at least ten network users. By comparing our
work with the key rate of recent QSS works, we show the
superiority of our work by improving the key rate by more
than two orders of magnitude and achieving longer transmis-
sion distances. The security of our QSS taking the participant
attacks into account is analyzed in the composably secure
framework. Based on the security analysis, we provide a
computable key length in the finite-size regime. Furthermore,
we consider applying QSS to another important crypto-
graphic primitive, QDS. The result shows that QDS with our
MDI-QSS protocol as a subroutine possesses significantly
higher efficiency compared with preceding QDS. Based on the
result of this work, we can anticipate a wide and flexible usage
of our work in multiparty applications of the secure quantum
network.

Here we remark on possible directions for future work. In
conventional quantum repeater protocols [74–77], quantum
memories are necessary to be entangled with photons and
to preserve entanglement at least until receiving heralding
signals of successful entanglement swapping. Here time mul-
tiplexing from quantum memories’ preserving entanglement
enables the enhancement in transmission efficiency. On the
other hand, all-photonic quantum repeater protocol [36], re-
quiring no matter qubit quantum memories and demonstrating
polynomial scaling of efficiency with distance, was proposed.
The all-photonic scheme utilizes cluster states to realize a
polynomial scaling with distance, which is in fact a result of
spatial multiplexing. Therefore, with such spatial multiplex-
ing idea, we can develop other protocols apart from quantum
communication with enhanced efficiency. On the other hand,
secret sharing can be useful in constructing protocols such as
Byzantine consensus and federated learning. Our work can
be applied to these protocols as a subroutine for improved
efficiency and security against eavesdroppers with quantum
computer. In addition, our work can be further developed to
give anonymity to users [78] over quantum network for more
complex application scenarios.

033077-6



BREAKING THE RATE-DISTANCE LIMITATION OF … PHYSICAL REVIEW RESEARCH 5, 033077 (2023)

ACKNOWLEDGMENTS

We gratefully acknowledge the supports from the
National Natural Science Foundation of China (No.
12274223), the Natural Science Foundation of Jiangsu
Province (No. BK20211145), the Fundamental Research
Funds for the Central Universities (No. 020414380182), the
Key Research and Development Program of Nanjing Jiangbei
New Area (No. ZDYD20210101), the Program for Innovative
Talents and Entrepreneurs in Jiangsu (No. JSSCRC2021484),
and the Program of Song Shan Laboratory (Included in the
management of Major Science and Technology Program of
Henan Province) (No. 221100210800-02).

APPENDIX A: SECURITY PROOF

In this Appendix, we provide detailed process to prove
the security of our QSS protocol and show how to get the
computable key length Eq. (5).

Security proof of QSS

As we have introduced in Sec. III, a QSS protocol is secure
if it is correct and secret. The correctness means the dealer’s
bit strings S are identical to the bit strings Splayer recreated
from all players. The secrecy requires the joint system of the
eavesdropper and the jth untrusted subset is decoupled from
the dealer. However, these two conditions can never be met
perfectly. In practice, we call a QSS protocol εc correct if it
satisfies Eq. (2) and εs secret if it satisfies Eq. (3). A QSS pro-
tocol is called εsec secure with εsec � εs + εc if it is εc correct
and εs secret. Therefore, to prove the εsec security of a QSS
protocol, we should prove the εc correctness and εs secrecy
of our QSS. In the following, we prove the εc correctness and
εs secrecy of our QSS in Theorem 1 and Theorem 2. Based
on these two theorems, we can guarantee the εsec security of
our QSS protocol and thus finish the security analysis of our
protocol in the composable framework.

Theorem 1. The QSS protocol defined in Sec. II is εc

correct.
Proof. In step (7) of QSS, all n parties compute and

compare a hash of length log2(1/εc) by applying a random
universal2 hash function to raw keys X and Xplayer. If the
hash value disagrees, the protocol aborts. According to the
property of universal2 hash function [79], the probability that
two hash values coinciding—if X and Xplayer are different and
the hash function is chosen uniformly at random from the
family—is at most 2�log2 εc � εc. Therefore, it is guaranteed
that Pr(S �= Splayer) � Pr(X �= Xplayer) � εc. �

To prove that our QSS protocol is εs secret, we introduce
the quantum leftover hashing Lemma [80].

Lemma 1. If Alice uses a random universal2 hash function
to map the raw key X to the final key S and extracts a string
of length l , then for any positive ε

D

(
ρS,E ,

∑
S

1

|S| |S〉〈S| ⊗ σE

)
�

√
2l−H ε

min (X|E ′ )−2 + 2ε,

(A1)

where E is a finite or infinite dimensional system of Eve and
E ′ summarizes all information Eve obtained including the

classical communication. Now we can prove the εs secrecy
of our QSS protocol.

Theorem 2. The QSS protocol defined in Sec. II is εs secret
if the key length l satisfies

l = m

[
q − max

j
h
(
E

AAj

Z + μ
(
E

AAj

Z , ε′))]
(A2)

− leakEC − log2
4

εcε̄2
,

where

μ(λ, ε) =
(1−2λ)AG

m+k j
+

√
A2G2

(m+k j )2 + 4λ(1 − λ)G

2 + 2 A2G
(m+k j )2

(A3)

with k j (< k) being the number of parameter estimation
rounds between the dealer and the complementary single
player of the jth untrusted subset, λ being the error rate
observed in parameter estimation, A = max{m, k j} and G =
m+k j

mk j
ln m+k j

2πmkjλ(1−λ)ε2 . ε and ε̄ are positive constants propor-
tional to εs.

Proof. To fit in our QSS protocol, the Eve’s system in
the quantum leftover hashing Lemma includes both eaves-
dropper and the jth untrusted party Uj . By choosing ε =
(εs − ε̄)/(2ppass) with ε̄ > 0 and

l = H ε
min(X|EU ′

j ) + 2 − 2 log2
ppass

ε̄
, (A4)

we have

ppassD

(
ρS,EUj ,

∑
S

1

|S| |S〉〈S| ⊗ σEUj

)
� εs. (A5)

By taking the maximum over all j, we can reach a εs-secret
QSS protocol. Furthermore, using the fact that log2 ppass < 0,
we choose the key length

l = H ε
min(X|EU ′

j ) + 2 − 2 log2
1

ε̄
(A6)

to ensure a εs-secret QSS protocol. Now we present how
to obtain key length in Eq. (5). During error correction the
amount of leakEC + log2(1/εc) bits of information about the
dealer’s raw key X are revealed and we have [49]

H ε
min(X|EU ′

j ) � H ε
min(X|EUj ) − leakEC − log2

1

εc
. (A7)

All that remains is to lower bound the conditional smooth min-
entropy and this can be achieved by using entropic uncertainty
relation [81]

H ε
min(X|EUj ) + H ε

max(Z|Cj ) � mq, (A8)

where Cj is the complementary trusted player of untrusted
subset Uj and q is the preparation quality quantifying the
incompatibility of two measurements [49,81]. From Eq. (A8),
we can lower bound the conditional smooth min-entropy us-
ing the smooth max-entropy H ε

max(Z|Cj ) characterizing the
correlations between Z and Cj . There is only one single
player in Cj and we can apply the result of quantum key
distribution [82]

H ε
max(Z|Cj ) � mh

[
E

AAj

Z + μ
(
E

AAj

Z , ε′)], (A9)
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FIG. 5. Schematic of Greenberger-Horne-Zeilinger (GHZ) an-
alyzer based on linear optical elements. {Ai}i=1,...,n: input modes;
PBS: polarizing beam splitter, which transmits |H〉 and reflects |V 〉
polarizations; HWP: half-wave plate used to conduct a 45◦ rotation
of polarization. DiH/DiV means detecting the ith mode in the Z basis.

where ε = ε′/√ppass and

μ(λ, ε) =
(1−2λ)AG

m+k j
+

√
A2G2

(m+k j )2 + 4λ(1 − λ)G

2 + 2 A2G
(m+k j )2

. (A10)

λ is error rate observed in parameter estimation, A =
max{m, k j}, and G = m+k j

mk j
ln m+k j

2πmkjλ(1−λ)ε2 . In summary, the
extractable key length given by Eq. (5) guarantees the εs

secrecy of our QSS protocol, which completes the proof. �

APPENDIX B: GHZ ANALYZER BASED ON LINEAR
OPTICAL ELEMENTS

The GHZ analyzer based on linear optical elements [43], as
shown in Fig. 5, is composed of just polarizing beam splitters
(PBSs) and half-wave plates (HWPs) and can identify two
of the n-particle GHZ states. We now explain how n-particle
GHZ state |	±

0 〉 = 1/
√

2(|HHH〉 ± |VVV 〉) evolves in such
analyzer.

Suppose that n particles of |	±
0 〉 enter the GHZ analyzer

shown in Fig. 5 each one through mode Ai, respectively, and
we express the input state using creation operator as

∣∣	±
0

〉 = 1√
2

(|H〉A1n
± |V 〉A1n

)
= 1√

2

(
aH†H†

A1An
± aV †V †

A1An

)|0〉A1n
.

(B1)

Here aX†
Ai

(X = H,V ; i = 1, . . . , n) represents the creation op-
erator with X polarization from mode Ai and |0〉 is vacuum
state. The polarizing beam splitter transmits |H〉 and reflects
|V 〉 polarization, where a phase of π

2 will be added on the
output state. Therefore, we can find how |	±

0 〉 evolves right

TABLE II. Different clicks to identify |	+
0 〉 and |	−

0 〉. In this
table, we show the corresponding clicks on V to identify |	+

0 〉 and
|	−

0 〉 when n is odd and even.

n is odd n is even

|	+
0 〉 even number of clicks odd number of clicks

|	−
0 〉 odd number of clicks even number of clicks

after n photons pass through PBS and before they enter HWP:∣∣	±
0

〉 PBS−→ 1√
2

(
aH†

1 . . . aH†
n ± i2n−2aV †

1 . . . aV †
n

)|0〉1

= 1√
2

(
aH†

1 . . . aH†
n ± (−1)n−1aV †

1 . . . aV †
n

)|0〉1,

(B2)

where i is the imaginary unit and aX†
k (X = H,V ; k =

1, . . . , n) represents the creation operator with X polarization
in Mode k shown in Fig. 5. From Eq. (B2), one can observe
n-fold coincidences, which distinguishes |	±

0 〉 from other
n-particle GHZ states.

Furthermore, after passing through the HWP, we can obtain

1

2(n+1)/2

[(
aH†

1 + aV †
1

)(
aH†

2 + aV †
2

)
. . .

(
aH†

n + aV †
n

)
± (−1)n−1

(
aH†

1 − aV †
1

)(
aH†

2 − aV †
2

)
. . .

(
aH†

n − aV †
n

)]|0〉12,

(B3)

from which we can identify |	+
0 〉 and |	−

0 〉. Because of the
existence of factor (−1)n−1 in Eq. (B3), in the following we
will discuss different criteria to identify |	+

0 〉 and |	−
0 〉 when

n is odd or even.
To be specific, when n is odd, |	+

0 〉 evolves into the fol-
lowing state:

1

2(n+1)/2

[(
aH†

1 + aV †
1

)(
aH†

2 + aV †
2

)
. . .

(
aH†

n + aV †
n

)
+ (

aH†
1 − aV †

1

)(
aH†

2 − aV †
2

)
. . .

(
aH†

n − aV †
n

)]|0〉12, (B4)

while |	−
0 〉 evolves into

1

2(n+1)/2

[(
aH†

1 + aV †
1

)(
aH†

2 + aV †
2

)
. . .

(
aH†

n + aV †
n

)
− (

aH†
1 − aV †

1

)(
aH†

2 − aV †
2

)
. . .

(
aH†

n − aV †
n

)]|0〉12. (B5)

From Eq. (B4) [Eq. (B5)], we can conclude that only products
of creation operators with even (odd) number of V polar-
ization remains, which corresponds to even (odd) number of
{DiV }i=1,...,n being clicked. When n is even, it is evident that
different clicks corresponding to |	+

0 〉 and |	−
0 〉 exchange

compared to clicks when n is odd. For easier reference, we
summarize the aforementioned results in Table II.

APPENDIX C: GAIN UNDER ASYMPTOTIC LIMIT

According to Sec. IV A, we state that under asymptotic
limit the gain can be written as

QX = QGHZ
X · pQND · √

ηchannel · ηsps · ηa. (C1)

In this Appendix, we present a derivation of Eq. (C1).
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Before the derivation, for simplicity, we denote pQND ·√
ηchannel · ηsps · ηa as η, which represents the success proba-

bility of photon arrive at the GHZ analyzer. We first recall the
definition of the gain QX = N̄/M and consider the calculation
of N̄ . From the definition of N̄ , we have

N̄ =
M∑

n=0

nPn|M , (C2)

where Pn|M is the probability when n groups are successfully
projected on GHZ states with M multiplexing and can be
expressed as

Pn|M =
M∑

l=n

Bn|l
(
QGHZ

X

)
pl|M . (C3)

Bn|l (p) = Ck
M pk (1 − p)M−k with p = QGHZ

X is a binomial dis-
tribution representing the probability of n successful GHZ
measurements conditioned on the existence of l groups. Here
Ck

M = (M
k ). pl|M = 3Bl|M (η)[

∑M
k=l Bk|M (η)]2 − 2[Bl|M (η)]3 is

the probability of not less than l single photons from all
three parties with M multiplexing. By utilizing lBl|M (p) =
M pBl−1|M−1(p) for l > 0 and Bk|M (p) = (1 − p)Bk|M−1(p) +
pBk−1|M−1 for 0 < k < M [37], considering the asymptotic
behavior of the maximum of binomial distribution, we have

lim
M→∞

N̄ = QGHZ
X

M∑
l=0

l pl|M = MQGHZ
X · η. (C4)

Therefore, we have

QX = lim
M→∞

N̄

M
= QGHZ

X · η

= QGHZ
X · pQND · √

ηchannel · ηsps · ηa. (C5)

APPENDIX D: ESTIMATION OF THE SUCCESS
PROBABILITY OF GHZ MEASUREMENT AND BIT

(PHASE) ERROR RATE

In this Appendix, we give the calculation of the gain and bit
(phase) error rate of our protocol. We start with recalling the
classical part of the preceding MDI-QSS [35]. After step (4)
of our protocol, {Ai}i=1,..,n+1 postselect the events where they
prepare the states with the same basis through an authenticated
public channel. One should note that when all n + 1 users
choose the X basis and the state is projected onto |	−

0 〉, A1 will
perform a bit flip on his classical bit. Finally, all users estimate
parameters through experiment and extract keys after classical
error correction and privacy amplification. In the following
we provide an explicit description of the calculation of QGHZ

X (Z )
and EZ (X ).

We first consider the calculation of QGHZ
Z and EZ . For

simplicity, we introduce some notations as follows. x0 refers to
the probability of DiH/V clicking when vacuum state is in the
ith mode. x1C(E ) refers to the probability of correct (erroneous)
click when the single-photon state is in the ith mode. Here
the correct click means DiH (V ) clicks when |H〉(|V 〉) is input
state and the meaning of erroneous click is DiH (V ) clicks when
|V 〉(|H〉) inputs. x2C(E ) refers to the probability of correct
(erroneous) click when two photons are in the ith mode. It is

FIG. 6. The arrangement of |V 〉 photons and possible vacancies.
We use blue and orange circles to denote |V 〉 photons and vacan-
cies. When inserting |H〉 photons into fixed |V 〉 photons, we first
determine the number of vacancies and then determine the number of
|H〉 in each vacancy. Finally we obtain a distribution of input photon
state.

easy to calculate the probability of successful GHZ projection
when n users prepare state with perfect bit correlation in the
Z basis, i.e., |HH〉 and |VV 〉. By considering the evolution of
|HH〉 and |VV 〉 in the GHZ analyzer shown in Fig. 5, we have

QnH = QnV = (x1C + x1E )n, (D1)

where QnH (QnV ) is the success probability of GHZ projection
when |HH〉 (|VV 〉) inputs.

Now we consider how to estimate Q(n−k)H,kV (k � 1), the
sum of the gain when the input state owns k photons in V
polarization. We limit k � n/2 since for k > n/2 we have
Q(n−k)H,kV = QkH,(n−k)V due to the symmetry. The calculation
of Q(n−k)H,kV can be solved as a counting problem since the
gain is different under various input arrangements in the fol-
lowing way. At first, we need to determine the distribution
of |V 〉 photons in n modes. We assume that |V 〉 photons are
fixed and the other |H〉 photons are inserted into them, which
is shown in Fig. 6. Such insertion can be finished in two
steps. First, determine the number of vacancies where the |H〉
photons will be inserted into. Then we decide the number of
|H〉 photons in each vacancy and we can get a distribution
of input photons. One should note that for the GHZ analyzer
used in this paper, choosing the leftmost vacancy in Fig. 6 is
the same as choosing the rightmost vacancy. As a result, when
two vacancies are chosen at the same time, they should be
viewed as a single one vacancy. We denote the number of all
possible distributions when there is l vacancies in k photons in
|V 〉 as gk (l ) and the corresponding success probability of GHZ
projection as f (l ). Then we have the following expression:

Q(n−k)H,kV = 1

2n

k∑
l=1

gk (l ) f (l ), (D2)

where gk (1) = n and for l �= 1

gk (l ) =
[

1

(l − 1)!
(Cl

k+1 − Cl−2
k−1) + 1

l!
Cl−1

k−1

]
(n − k − 1)!

(n − k − l )!
.

(D3)

In addition, we have

f (l ) = 2l (x2C + x2E )l xl
0(x1C + x1E )n−2l . (D4)

Here and in the following we define Cn
m = (m

n ). We now make a
remark on critical situation. When n is even and l = k = n/2,
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we have

g n
2

(
n

2

)
= 2(n − k − 1)!

(l − 1)!(n − 2k)!
. (D5)

In summary, we present the following expression:

QGHZ
Z = 2QnH +

n−1∑
k=1

Q(n−k)H,kV . (D6)

According to the definition of errors under Z basis, we have

EZ = 1

QGHZ
Z

n−1∑
k=1

Q(n−k)H,kV . (D7)

Now we consider the gain QGHZ
X and phase error rate EX . Due

to the equality of density matrix, we can directly conclude
that QGHZ

X = QGHZ
Z . To estimate the phase error rate, we need

to calculate the success probability of projection on |	+
0 〉 and

|	−
0 〉, respectively. We decompose states prepared in X basis

into Z basis and aforementioned methods can be used. We
summarize the following results according to the evaluation
of the states in the GHZ analyzer.

First we consider the situation when there is even number
of |−〉 photons. If n is odd, Q

	+
0

even (Q
	−

0
even), the success proba-

bility of projection on |	+
0 〉 (|	−

0 〉) can be given by

Q
	+

0
even = 1

4n−1

(n−1)/2∑
i=0

(n−1)/2∑
k=0

C2i
n C2k

n x2k
1E xn−2k

1C + 1

2n

(n−1)/2∑
k=1

k∑
l=1

gk (l ) f (l ),

Q
	−

0
even = 1

4n−1

(n−1)/2∑
i=0

(n−1)/2∑
k=0

C2i
n C2k+1

n x2k+1
1E xn−2k−1

1C + 1

2n

(n−1)/2∑
k=1

k∑
l=1

gk (l ) f (l ). (D8)

If n is even, we have

Q
	+

0
even = 1

4n−1

n/2−1∑
i=0

n/2∑
k=0

C2i+1
n C2k

n x2k
1E xn−2k

1C + 1

2n

n/2∑
k=1

k∑
l=1

gk (l ) f (l );

Q
	−

0
even = 1

4n−1

n/2−1∑
i=0

n/2−1∑
k=0

C2i+1
n C2k+1

n x2k+1
1E xn−2k−1

1C + 1

2n

n/2∑
k=1

k∑
l=1

gk (l ) f (l ). (D9)

Then we consider the situation when there is odd number of |−〉 photons. If n is odd, Q
	+

0
odd and Q

	−
0

odd can be given by

Q
	+

0
odd = 1

4n−1

(n−1)/2∑
i=0

(n−1)/2∑
k=0

C2i+1
n C2k

n x2k+1
1E xn−2k−1

1C + 1

2n

(n−1)/2∑
k=1

k∑
l=1

gk (l ) f (l );

Q
	−

0
odd = 1

4n−1

(n−1)/2∑
i=0

(n−1)/2∑
k=0

C2i+1
n C2k+1

n x2k
1E xn−2k

1C + 1

2n

(n−1)/2∑
k=1

k∑
l=1

gk (l ) f (l ),

(D10)

If n is an even number, we have

Q
	+

0
odd = 1

4n−1

n/2∑
i=0

n/2−1∑
k=0

C2i
n C2k+1

n x2k+1
1E xn−2k−1

1C + 1

2n

n/2∑
k=1

k∑
l=1

gk (l ) f (l );

Q
	−

0
odd = 1

4n−1

n/2∑
i=0

n/2∑
k=0

C2i
n C2k

n x2k
1E xn−2k

1C + 1

2n

n/2∑
k=1

k∑
l=1

gk (l ) f (l ),

(D11)

Based on the results above and the definition of error under X basis, we can express the phase error rate as

EX =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1

2nQGHZ
X

n/2∑
m=0

C2k
n Q

	−
0

even +
n/2−1∑
m=0

C2k+1
n Q

	+
0

odd, n is even,

1

2nQGHZ
X

(n−1)/2∑
m=0

C2k
n Q

	−
0

even +
(n−1)/2∑

m=0

C2k+1
n Q

	+
0

odd, n is odd.

(D12)

Finally using the above equations we can estimate the key rate of our QSS.
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