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Benchmarking variational quantum eigensolvers for the square-octagon-lattice Kitaev model
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Quantum spin systems may offer the first opportunities for beyond-classical quantum computations of
scientific interest. While general quantum simulation algorithms likely require error-corrected qubits, there
may be applications of scientific interest prior to the practical implementation of quantum error correction. The
variational quantum eigensolver (VQE) is a promising approach to finding energy eigenvalues on noisy quantum
computers. Lattice models are of broad interest for use on near-term quantum hardware due to the sparsity of
the number of Hamiltonian terms and the possibility of matching the lattice geometry to the hardware geometry.
Here, we consider the Kitaev spin model on a hardware-native square-octagon qubit connectivity map, and
examine the possibility of efficiently probing its rich phase diagram with VQE approaches. By benchmarking
different choices of variational Ansatz states and classical optimizers, we illustrate the advantage of a mixed
optimization approach using the Hamiltonian variational Ansatz (HVA) and the potential of probing the system’s
phase diagram using VQE. We further demonstrate the implementation of HVA circuits on Rigetti’s Aspen-9
chip with error mitigation.

DOI: 10.1103/PhysRevResearch.5.033071

I. INTRODUCTION

In the context of quantum computation there is reason to
believe the quantum simulation of spin systems may offer
early results in the search for beyond classical computations
of real scientific interest [1]. Although beyond-classical cal-
culations that offer truly new insights into scientific problems
will likely require quantum error correction (QEC) [2,3], it
may be possible to find approachable questions of scientific
interest even before the advent of full QEC if we carefully
pair the computing hardware and problem. Lattice models
are a natural class of systems to consider in this regard, and
they also tend to have sparse Hamiltonian representations
that require fewer quantum resources than other Hamiltonian
models [4]. In this paper, we consider a spin model [5,6] that
maps naturally onto the square-octagon qubit connectivity of
a superconducting quantum processor and perform an open
study of the most efficient ways of finding the ground state
of this system using variational quantum algorithms based on
parametrized quantum circuits.

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

The near-term, so-called noisy intermediate scale quantum
(NISQ) [7–9] computing era is defined by the conditions
imposed by noisy quantum hardware. Decoherence errors
mandate the use of “shallow” quantum circuit programs, i.e.,
quantum circuits with a small number of consecutive opera-
tions on the qubit register array. Quantum noise also currently
limits the effective “width” of a circuit, which is governed by
the total number of qubits deployed. A wide circuit consists of
more quantum gates than a narrow circuit, and thus the gate
error rates effectively limit how wide a circuit could be before
the result becomes no longer useful with the decreasing circuit
fidelity.

The variational quantum eigensolver (VQE) [10–18] is
an algorithm that seeks to implement low-depth variational
Ansatz circuits to find eigenstates of complex many-body
Hamiltonians. Different approaches to VQE entail different
choices of Ansatz circuits, which take into account differ-
ent figures of merit. These can include reducing the circuit
depth, increasing the accuracy or wave-function fidelity, or
minimizing the number of variational parameters. To match
these varied goals, there are many different approaches which
include hardware efficient Ansätze (HEA) [13], adaptive An-
sätze [14,16,17,19–22], and Ansätze inspired by classical
simulations [13,17,23]. One particular Ansatz of interest is
the Hamiltonian variational Ansatz (HVA) [24]. This Ansatz
draws from ideas expressed by the quantum approximate
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FIG. 1. Lattice geometry. A square-octagon lattice with the Kitaev couplings is shown in (a). The Aspen-9 QPU is arranged with a square-
octagon connectivity shown in (b). Note that qubits 1 and 2 and qubits 15 and 16 are not connected due to a hardware issue. The Aspen-9
geometry allows us to pick an appropriate sublattice to simulate a square-octagon-lattice Kitaev model with open boundary conditions, for
example, the four-qubit setup in (c), the eight-qubit lattice in (d), and the 16-qubit lattice in (e). We also consider an eight-qubit setup with
periodic boundary conditions, shown in (f), to demonstrate VQE calculations of expectation values. The Jx (red), Jy (green), and Jz (blue)
couplings are assigned to each linkage.

optimization algorithm and adiabatic quantum computation
[25,26]. Recent work [27] suggests the HVA may be less
prone to problems with “barren plateaus” [28] and therefore
easier to optimize than the HEA (see, however, Ref. [29]).

Kitaev spin models [5,30,31], which are a family of
frustrated quantum spin models with bond-dependent inter-
actions, provide an intriguing testbed for NISQ quantum
simulation. Kitaev models can be defined on arbitrary trivalent
graphs and are appealing due to their exact solvability via a
mapping to free Majorana fermions [5]. Despite their simplic-
ity, they yield a rich variety of phases, including gapped Z2

and gapless U(1) spin liquids [32]. In a magnetic field, Ki-
taev models support non-Abelian Ising anyons [5], which (in
addition to the aforementioned Z2 spin-liquid phase) makes
them a promising platform for topological quantum compu-
tation [33–35]. Kitaev-like models are predicted to arise in
spin-orbit-coupled Mott insulators [36], and a plethora of ma-
terials candidates exist [31]. Putative signatures of spin-liquid
physics have been observed in neutron scattering [37,38] and
thermal transport measurements [39,40].

In realistic systems, the desired “Kitaev interactions”
compete with more mundane (e.g., Heisenberg) interactions
and external magnetic fields, all of which spoil the Kitaev
model’s exact solvability and often favor magnetically or-
dered ground states. One therefore must resort to numerical
methods [41–55], such as exact diagonalization (ED), tensor-
network techniques like the density-matrix renormalization
group [56–58], and Monte Carlo [59,60], to study the ground-
state phase diagram. Thus, Kitaev models provide a useful
benchmark for near-term quantum algorithms for the study of
interacting quantum systems.

In this paper, we focus on the Kitaev model on the square-
octagon lattice [6,61], which maps natively with minimal
compilation overhead onto Rigetti’s Aspen architecture fea-
turing 32 transmons with a square-octagon topology on the
Aspen-9 chip used in this paper [62–64]. This native mapping
makes the quantum simulation of the square-octagon Kitaev

model a potential NISQ application of the Aspen-9 quan-
tum processing unit (QPU) to carry out quantum computing
calculations without full QEC. We will benchmark the vari-
ational Ansätze and optimization algorithms to determine the
ground state of the Kitaev model with and without a magnetic
field. Supported by the results of classical simulations, we
will illustrate a mixed optimization approach using both a
local optimizer and a nonlocal optimizer started with multiple
initial values. This opens up the possibility of using VQE
calculations to probe the phase diagram of the Kitaev model in
the presence of a magnetic field or other perturbations away
from the solvable limit. Together with an experimental test
run of classically optimized VQE circuits on the QPU, this
paper provides insights into the appropriate VQE approach
for further VQE experiments with a system size beyond the
capability of classical computation.

This paper is organized as follows. In Sec. II A, we review
the Kitaev model on the square-octagon lattice and its phase
diagram in the presence of a magnetic field. This is followed
by a review of VQE approaches in Sec. II B. We discuss our
methodology for investigating the circuit Ansätze (Sec. III B)
and optimizers (Sec. III C), and for implementing the clas-
sically optimized circuits on Aspen-9 with noise mitigation
(Sec. III E). The results of the paper are then discussed in
Sec. IV.

II. BACKGROUND

A. Square-octagon-lattice Kitaev model

The ferromagnetic Kitaev model on the square-octagon
lattice has the Hamiltonian

HK = −Jx

∑

x bonds

XiXj − Jy

∑

y bonds

YiYj − Jz

∑

z bonds

ZiZ j, (2.1)

where Jx,y,z > 0 and we partition the nearest-neighbor bonds
of the lattice into x, y, and z sets depending on their orientation
[see Fig. 1(a)], and {Xi,Yi, Zi} are the Pauli matrices for site
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FIG. 2. Phase diagram. Schematic phase diagram of the Kitaev
model (2.2) on the square-octagon lattice as a function of spin ex-
change anisotropy J⊥/Jz with J⊥ ≡ Jx = Jy and magnetic field in
[111] direction h[111]. It includes gapped toric code phases (TCz,
TCxy) that are stable with respect to small fields, the gapless line
(GL) at J⊥/Jz = 1/

√
2, and a phase with non-Abelian (nA) Majorana

excitations that emerges in field above the gapless line. At large mag-
netic fields the system enters a spin-polarized paramagnetic phase.
The red circles denote the different representative model parameter
points that are studied in our benchmark simulations.

i. Like the original honeycomb-lattice version, the Kitaev
model HK on the square-octagon lattice is exactly solvable by
mapping to free fermions [6]. To move beyond the exactly
solvable limit and explore the rich phase diagram emerging in
finite magnetic field (see Fig. 2), we consider the model

H = HK +
∑

i

(hxXi + hyYi + hzZi ), (2.2)

where �h = (hx, hy, hz ) is the magnetic field. This Hamiltonian
and variants thereof have been studied in Refs. [6,61,65–69]
using a variety of methods, and the general features of its
phase diagram are well understood.

At zero field, the model features two gapped Z2 spin-liquid
phases, which we dub TCz and TCxy. The TCz phase can be
understood perturbatively in the limit J2

z � J2
x + J2

y , where an
effective Hamiltonian equivalent to the well-known toric code
[70] emerges [6,61]. The TCxy phase can be understood in
the opposite limit J2

x + J2
y � J2

z , where perturbation theory
yields [61] a Hamiltonian equivalent to the so-called Wen-
plaquette model [71], which is in turn equivalent to the toric
code [72,73]. In both TC phases, the model has Z2 topological
order and supports Abelian anyonic excitations with nontrivial
mutual statistics; nevertheless, the phases are distinct [61,67].
A critical line separating these two gapped phases appears at
J2

z = J2
x + J2

y .

At small but finite field, the TC phases persist [66], as is
expected due to the gapped nature of these phases. Provided
that none of hx,y,z = 0, the gapless line at J2

z = J2
x + J2

y gives
way to a gapped phase with non-Abelian Majorana excitations
[6]. At large field, the system enters a trivial spin-polarized
paramagnetic phase. The phase diagram of the square-octagon
Kitaev model in a field has been studied in Refs. [6,65,66],
but a detailed understanding of the location of all transitions
is lacking. A schematic of the phase diagram for Jx = Jy =
J⊥ in a [111]-oriented field �h = h[111](1, 1, 1)/

√
3 is shown in

Fig. 2.
In the following, we focus on a number of representative

points in the phase diagram, which are highlighted in Fig. 2
and defined in Table I. The table also includes the exact
ground-state energies for these parameters that are obtained
using ED, which we will use to benchmark our VQE results.
We consider lattices with open boundary conditions shown in
Figs. 1(b)–1(d) for the benchmarks.

B. VQE

VQE algorithms prepare the eigenstates of the system
Hamiltonian H by optimizing the cost function associated
with a trial state |ψ (�θ )〉, which is prepared by a parametrized
circuit Ansatz U (�θ ) such that |ψ (�θ )〉 = U (�θ )|0〉, where |0〉 is
a chosen reference state [11,13]. To prepare the ground state,
the VQE algorithm minimizes, using a classical optimizer, the
energy of the trial state, i.e.,

E (�θ ) = 〈ψ (�θ )|H |ψ (�θ )〉. (2.3)

The cost function is measured on the QPU, and the result is
fed into the classical optimizer, making the VQE a hybrid
quantum-classical approach. Several different approaches are
possible for calculating excited states [10,12,16,74]. One ap-
proach is to minimize a modified cost function including the
overlaps with the lower-energy eigenstates determined in the
previous iterations [75,76].

Similar to other variational algorithms, the output of VQE
only approximates the eigenstates of H , and the quality of the
solution depends on the choice of Ansatz. The true ground
state cannot be expressed by the trial state |ψ (�θ )〉 if an in-
appropriate Ansatz is chosen, resulting in an approximated
energy much higher than the true ground-state energy. The
success of VQE algorithms hence strongly depends on the

TABLE I. Definition of studied model parameter values. This table contains the model parameter values that are used in our benchmark
simulations below. They correspond to positions in the phase diagram in the toric code phase without a magnetic field (TCz) and with a
magnetic field (TCz + h), on the gapless line (GL) and above the gapless line in a magnetic field (GL+h). The ground-state energy Eg is
determined by ED for the four-qubit setup (N = 4), the eight-qubit lattice (N = 8), and the 16-qubit lattice (N = 16) with open boundary
conditions shown in Figs. 1(b)–1(d).

Model parameters Ground-state energy Eg

Label Jx Jy Jz hx hy hz N = 4 N = 8 N = 16

TCz 0.1 0.1 1 0 0 0 −1.0100 −4.0100 −8.0250
TCz+h 0.1 0.1 1 0.05√

3
0.05√

3
0.05√

3
−1.1723 −4.2476 −8.5002

GL 1√
2

1√
2

1 0 0 0 −1.4142 −4.4721 −9.3002

GL+h 1√
2

1√
2

1 0.05√
3

0.05√
3

0.05√
3

−1.5831 −4.7011 −9.7008

033071-3



ANDY C. Y. LI et al. PHYSICAL REVIEW RESEARCH 5, 033071 (2023)

circuit Ansatz. Optimizing a generic HEA is a challenging task
for several reasons, including barren plateaus [28] and sensi-
tivity to the optimizer metaparameters [77]. The challenge of
optimization grows even bigger with the rapidly increasing
number of variational parameters with the system size. The
HVA, built using rotations generated by Hamiltonian terms,
has been suggested to be a more efficient option than HEA in
certain cases [27], as has been observed in several numerical
simulations [77–79]. Later in this paper, we will compare the
effectiveness of these two Ansätze in preparing the ground
state of the square-octagon Kitaev model with 8 and 16
qubits.

The choice of classical optimization algorithm plays an
important role in VQE implementations as well. Picking an
inappropriate optimizer results in a slow convergence rate
(and thus a longer QPU runtime), if it ever converges to a
sufficiently good minimum at all [77,80–82]. We will also
benchmark the efficiency of a few optimizers using the Kitaev
model to provide some insights into the VQE optimization
strategy.

III. METHODOLOGY

A. Overview of approach

In the following sections we review our theoretical and
experimental approaches to studying VQE simulations of the
Kitaev model. Our paper first aims, via classical simulations,
to understand the modeling requirements for obtaining dif-
ferent phases of the Kitaev model with various Ansätze and
optimizers, and then tests these approaches on present-day
quantum hardware. In this paper, we classically simulate the
quantum programs using PYQUIL [83], CIRQ [84], and QISKIT

[85], and we execute classically optimized quantum circuits
on Rigetti’s Aspen-9 QPU.

B. VQE Ansatz

The QPUs are initialized in a chosen reference state |0〉
with all physical qubits being at zero in the computational
basis. The Ansatz trial state |ψ (�θ )〉 = U (�θ )|0〉 is prepared by
two classes (HVA and HEA) of parametrized circuit Ansätze
U (�θ ) to be discussed in this section.

We construct the HVA using the Kitaev couplings Jx, Jy,
and Jz in Eq. (2.1), and the magnetic fields hx, hy, and hz in
Eq. (2.2). The HVA represented by the unitary matrix U (�θ )
has L layers such that

U (�θ ) = UHVA(�θL )UHVA(�θL−1) · · ·UHVA(�θ1). (3.1)

Each layer UHVA(�θ�) consists of the exponentiation of the
Kitaev couplings and the magnetic fields multiplied by the
parameters �θ� such that

UHVA(�θ�) = e−iθ�;6
∑

i Zi e−iθ�;5
∑

z bonds ZiZ j

× e−iθ�;4
∑

i Yi e−iθ�;3
∑

y bonds YiYj

× e−iθ�;2
∑

i Xi e−iθ�;1
∑

x bonds XiXj . (3.2)

The two-qubit gate count Nb of each HVA layer scales
linearly with the number N of qubits. (For an infinite square-
octagon lattice, Nb = 3

2 N .) The Aspen-9 connectivity shown

in Fig. 1(b) is natively the square-octagon lattice. One HVA
layer can then be executed with Nb ∼ N CPHASE gates sup-
ported natively by Aspen-9 [64]. If we execute the circuit on a
QPU with a different two-dimensional connectivity, an over-
head of O(N ) SWAP gates will be required for implementing
the HVA. Although this overhead does not change the overall
gate complexity O(N ) of the HVA implementation, it can still
be quite demanding for NISQ devices. Using the Aspen-9
QPU with the native connectivity thus provides a significant
advantage in the near term.

There are six parameters for each HVA layer, independent
of the system size N . This makes the optimization of the
HVA straightforward to analyze with increasing system size.
We can make a rough estimate of how many times the cost
function has to be evaluated based on the results on smaller
lattices with a similar number of layers. Nonetheless, if the
ground state of a larger system exhibits longer-range entangle-
ment, more layers will typically be needed to achieve the same
degree of accuracy as in a smaller system. Hence, the required
number of layers and the total number of parameters depend
on the system size, and usually can only be determined by
testing. This makes the prediction nontrivial especially when
we consider small lattices in Fig. 1 with noticeable finite-size
effects.

Other than HVA, we consider the HEA which is widely
used in NISQ applications [13,86,87]. The general principle
of the HEA is to construct circuit Ansätze using the native
gates supported by the QPU, and hence different specific
forms of the HEA are constructed targeting different QPUs.
For Aspen-9, the native gate set consists of the XY gate [63],
the CPHASE and CZ gates [64], as well as the single-qubit
gates RZ (θ ) and RX (kπ/2) with k = ±1, 2. Moreover, the
QUIL programming language [83] and its accompanying op-
timizing compiler QUIL-C [88] on the Rigetti stack [89] admit
parametric compilation, which allows for the Ansatz to be
compiled only once, so that the numerical values of the Ansatz
parameters are only updated at runtime, without the need of
incurring the compilation overhead at every step of the opti-
mization process. This allows for faster execution times and
feedback loops between the quantum and classical processors
in the hybrid computation.

Roughly speaking, a HEA usually consists of layers of
parametrized single-qubit rotations and two-qubit gates to
create entanglement between qubits. Adopting this idea with
respect to the Aspen-9 native gate set and its connectivity, we
consider two Ansätze, namely, the HEA-CZ using CZ gates
and single-qubit rotation gates, and the HEA-XY using XY

gates and single-qubit rotation gates. Here, we focus on the
native two-qubit gates (CZ and XY) and slightly relax the na-
tive restriction on the single-qubit gates since the single-qubit
gates have a much lower error rate than the two-qubit gates.
The unitary representation U of an N-layer HEA is given by

U (�θ ) =UHEA(�θL ) · · ·UHEA(�θ1)U0(�θ0). (3.3)

Here, the layer U0 preparing each qubit in an arbitrary unen-
tangled state is given by

U0(�θ0) =
∏

i

RZ,i(θ0;1,i )RX,i(θ0;0,i ). (3.4)
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TABLE II. Classical optimization algorithms and the different
types of optimizers tested for the VQE algorithm. These include
gradient-free, gradient-based, and nonlocal optimizers, and a genetic
algorithm. We use the SCIPY [90] implementation for BFGS and dual
annealing, a FORTRAN implementation developed by Powell [91,92]
for BOBYQA, the PYCMA [93] implementation for CMA-ES, and a
PYTHON implementation developed by Gomez-Dans [94] for SPSA.

Optimizer Gradient-free Genetic Local

BFGS × × �
BOBYQA [91] � × �
CMA-ES [95] � � ×
Dual Annealing [96] � × ×
SPSA [97] × × �

Note that an arbitrary single-qubit rotation is represented by
the gate sequence RZ RX RZ . The rightmost RZ can be omitted
here since the qubits are initialized in the zero state and
RZ |0〉 just gives an irrelevant global phase. The other layers
UHEA then entangle the qubits using the two-qubit gates. For
HEA-CZ, we have

UHEA(�θ�) =
∏

j,k∈G

RZ, j (θ�;4,( j,k) )RZ,k (θ�;3,( j,k) )

× RX, j (θ�;2,( j,k) )RX,k (θ�;1,( j,k) )CZ j,k,

where G represents the hardware-native connectivity. Simi-
larly, for HEA-XY, we have

UHEA(�θ�) =
∏

j,k∈G

RZ, j (θ�;6,( j,k) )RZ,k (θ�;5,( j,k) )

× RX, j (θ�;4,( j,k) )RX,k (θ�;3,( j,k) )

× RZ, j (θ�;2,( j,k) )RZ,k (θ�;1,( j,k) )XY j,k (θ�;0,( j,k) ).

Once again, the sequence RZRX RZ represents an arbitrary
single-qubit rotation. For HEA-CZ, since Rz commutes with
CZ, the first Rz can be combined with the last Rz in the
previous layer. UHEA(�θ�) thus requires two fewer single-qubit
gates for HEA-CZ than for HEA-XY.

In the present case, with the native connectivity being the
same as the lattice geometry, the number of two-qubit gates
of the HEA scales as N , which is the same as for the HVA,
as expected. On the other hand, the number of parameters per
layer also scales linearly with N , in contrast to the constant
scaling of the HVA. The much larger number of parameters
makes the HEA more expressive especially when a small
number of layers is used. However, this also makes the HEA
hard to scale up since optimizing a large number of parameters
is challenging for nonconvex cost functions.

C. Optimizers

The cost function associated with VQE algorithms is in
general nonconvex with many local extrema. Similar to opti-
mizing other classical nonconvex cost functions, it is typically
hard to decide on an efficient optimizer a priori [98]. To make
our benchmark less dependent on a specific choice of the
optimizer, we will test the list of optimizers shown in Table II.
This list consists of a few well-known gradient-free algo-

rithms (BOBYQA, CMA-ES, dual annealing), gradient-based
optimizers (SPSA, BFGS), nonlocal optimizers (CMA-ES,
dual annealing), and a genetic algorithm (CMA-ES). Even
though this is far from a comprehensive list, we can gain
insight into how different types of optimizers work for our
specific VQE cost function.

We compute the gradients needed for the gradient-based
optimizers by finite-difference methods, which require an ad-
ditional measurement of the cost function using the QPU for

each gradient ∂〈E (�θ )〉
∂θ j

. This makes the cost of running these
gradient-based optimizers larger than for the gradient-free
algorithms, making them suboptimal given the limited clock
rate of present-day QPUs. More efficient quantum algorithms
to evaluate gradients have attracted great interest recently
[99–102]. For instance, the parameter-shift rule allows the
gradients to be evaluated with an analytic expression without
introducing overhead in circuit depth or circuit width [101].
The analytical evaluation will improve the performance of the
optimization with noise. However, using the parameter-shift
rule for the HVA Ansatz requires a generator decomposition
[103], which makes the number of required expectation-value
measurements scale with the system size N (compared to con-
stant scaling for finite-difference methods). Other algorithms
usually require ancilla qubits and/or extra gate operations, and
thus are challenging to implement on NISQ devices. Nonethe-
less, once QPUs with better gate fidelities and coherence
properties are available, further studies will be required to
revisit these results and strike a balance between quantum
resource requirements and optimization efficiency.

D. Determining energy gap by VQE

The energy gap between the ground state and the first
excited state is a useful quantity in probing the system’s phase
diagram. VQE algorithms can obtain excited states by modi-
fying the cost function with an additional term penalizing the
overlap between the trial state and the lower-energy state ob-
tained previously [76]. In particular, to determine the energy
gap, we use the following cost function to determine the next
excited state beyond the ground state:

C(�θ ) = 〈ψ (�θ )|H |ψ (�θ )〉 + p|〈ψ (�θo;0 )|ψ (�θ )〉|2, (3.5)

where p is the penalty weight and �θo;0 are the optimal
parameters corresponding to the ground state previously
determined by VQE. The overlap can be experimentally de-
termined on QPUs by executing the circuit corresponding to
U †(�θo;0 )U (�θ )|0〉 and then measuring the population of the
zero state |0〉. The penalty weight p is chosen to be larger
than any relevant energy gaps, and we choose it to be 0.3 in
our numerical experiment.

E. Experiment and noise mitigation

We run preoptimized HVA circuits with one layer (HVA-1)
on four- and eight-qubit sublattices of Rigetti’s Aspen-9 QPU.
The variational optimization of the HVA is first performed
on a classical simulator, and the circuits are then run on
the QPU for the optimal choice of parameters. While this
approach circumvents the hybrid quantum/classical computa-
tion, it nevertheless serves as a benchmark for how well the
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quantum processor performs in proof-of-concept experiments.
For comparison, recent state of the art results for many body
Hamiltonian simulations have opted for either purely classical
optimization instead of a VQE step [104] or running their
algorithms on smaller numbers of qubits [23,105].

We perform digital zero-noise extrapolation (ZNE)
[106–108] by first exaggerating the errors in the circuit by
replacing a subset of CZs by an odd multiple of them. We
choose such subsets to increase the total CZ count in the circuit
by a factor of λ. For each scale factor λ, we run 25–100 (four
qubits) and 100 (eight qubits) different circuit implementa-
tions for 1000 shots each. For the four-qubit case, we pick
λ = 1, 1.3, 1.6, 2, 2.3. The bare HVA-1 circuit, with six CZs,
corresponds to λ = 1.0. To obtain λ > 1.0, we note that the
exponentials of each of the two-local terms (XX , YY , and ZZ)
are compiled to two CZs, along with a few one-qubit gates.
For λ = 1.3, we replace the first of the two CZs compiling
the exponential of the XX term with three CZs, then again
for the YY and ZZ terms, then take the average of all three
types of circuits to get an estimated expectation value of the
cost Hamiltonian. For λ = 1.6, we replace both the CZs with
three CZs each, once for each of the three two-local terms. For
λ = 2.0, we replace both CZs in the XX term, and the first
of the two CZs in the YY term with three CZs each for one
experiment, and for another we replace both CZs in the ZZ
term and the second of the two CZs in the YY term with three
CZs each. Finally, for λ = 2.3, we perform three experiments,
in which we replace the CZs in the XX and YY , XX and ZZ ,
or YY and ZZ exponentials with three CZs each.

For the eight-qubit case, we choose λ = 1, 1.5, 2, 3, 5. For
λ = 1, we have a total of 16 CZs, two for each of the edges. For
λ = 1.5, we run 25 different circuits for each of the scenarios
where we replace (a) every CZ in the XX links with three
CZs, (b) every CZ in the YY links with three CZs, (c) every
CZ in two of the four ZZ links with three CZs, and (d) every
CZ in the remaining two of the four ZZ links with three
CZs. For λ = 2, we run 50 different circuits for each of the
scenarios where we replace (i) every CZ in the XX and YY
links with three CZs and (ii) every CZ in the ZZ links with
three CZs. For λ = 3 (λ = 5), we simply take 100 different

circuits where we replace every CZ in the circuit with three
(five) CZs.

For each of the circuit implementations in each scale factor
family, we estimate the cost function (2.3) by measuring the
expectation values of all Pauli strings given in (2.2). Each of
these expectation values associated with N qubits is deter-
mined experimentally by applying suitable single-qubit gates
to transform any Pauli X or Pauli Y to Pauli Z followed by
a projective measurement over the computational basis. The
measured probability distributions are subjected to readout
errors which can be mitigated as follows. The readout errors
can be modeled by the classical Markovian process [109]
described by the equation

pread = R pprepared. (3.6)

Here, R is the 2N × 2N confusion matrix that relates the
probability distribution pprepared of the prepared state without
readout error and the probability distribution pread experimen-
tally measured with readout error. Each element of R can be
interpreted as the conditional probability of measuring the
bitstring xread given that the bitstring xprepared is prepared. In
our experiment, R is estimated by preparing a bitstring, then
computing the fraction of each of 2N bitstrings from 10 000
shots to estimate the conditional probabilities, then repeating
this procedure for all 2N bitstrings. By inverting R, we obtain
a readout error mitigated estimate of the probability of out-
comes of all bitstrings using

pprepared = R−1 pread. (3.7)

In turn, these lead to readout-error-mitigated estimates of the
cost function (2.3) in each of the 100 circuits for any given
family associated with a scale factor. We then average these
expectation values over all 100 circuits to produce a single
value representing the family of circuits associated with a
given scale factor. These representative values are then plotted
against the scale factors, and a polynomial fit is found to ex-
trapolate to the λ = 0 (zero noise) limit to obtain an estimate
of the cost function mitigated for both gate and readout errors.

For the eight-qubit case, we also perform randomized
compilation [110] to twirl the physical error channels into

FIG. 3. HVA with one layer on eight qubits. The Hamiltonian variational Ansatz (HVA) with one layer on eight qubits splits into
commuting blocks. The first block corresponds to the operation e−iα̃

∑
q Xq e−iα

∑
(i, j)∈X links XiXj , the second to e−iβ̃

∑
q Yq e−iβ

∑
(i, j)∈Y links YiYj , and

the third to e−iγ̃
∑

q Zq e−iγ
∑

(i, j)∈Z links ZiZ j . For the circuit shown here, we used X links = {(q0, q1), (q2, q3)}, Y links = {(q0, q3), (q1, q2)},
and Z links = {(q0, q4), (q1, q5), (q2, q6), (q3, q7)}. To execute this circuit, we map qubits (q0, q1, q2, q3, q4, q5, q6, q7) to qubits
(12, 25, 26, 11, 13, 24, 27, 10), respectively, on Aspen-9 shown in Fig. 1(b).
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FIG. 4. Twirled CZ used to compile a CNOT. Every use of the CNOT gate in Fig. 3 is compiled to a native CZ with some single-qubit gates.
Assuming that the major source of noise lies in the two-qubit gates, we apply random Pauli operators before every use of the CZ, and then
apply another pair of Pauli operators in order to twirl the noise channel associated with the CZ into a stochastic Pauli channel. The relationship
between the indices a, b, c, d ∈ {0, 1, 2, 3} (denoting respectively the Pauli operators {I, X,Y, Z}) is given in Eq. (3.8). The subscripts c and
t on the Pauli matrices refer to “control” and “target” qubits. All three circuits depicted above are logically equivalent, but generally lead to
different noise characteristics.

stochastic errors to improve the result. In the HVA, the ex-
ponential of every two-body term can be compiled using two
native CZs. Before each CZ gate, we apply random Pauli op-
erators σ a

c σ b
t , where a, b = 0, . . . , 3 and the subscripts c and

t denote the control and target qubits, respectively. After ap-
plying the CZ unitary � = |0〉〈0|c ⊗ It + |1〉〈1|c ⊗ Zt [111],
we apply Pauli operators σ c

c σ d
t such that σ c

c σ d
t = �σ a

c σ b
t �†.

Following Ref. [106], this is given by

c = a + b(3 − b)(3 − 2a)/2,

d = b + a(3 − a)(3 − 2b)/2. (3.8)

This noise tailoring makes the errors more well behaved and
better suited for error mitigation techniques such as ZNE
[106,112–114]. A schematic circuit for the HVA with one
layer on an eight-qubit sublattice is shown in Fig. 3. The
twirling operation is depicted in Fig. 4.

For twirled experiments we take point estimates of the
expectation values for many circuit implementations for each
scale factor and feed them into a Bayesian linear regression
model implemented in TURING.JL [115] with Gaussian pri-
ors for slope and intercept and a truncated-at-zero Gaussian
prior for the variance, and we run Markov chain Monte Carlo
(MCMC) until well converged. Hyperparameters of the priors
were all set to mean zero and standard deviation 1000 (i.e., no
prior information or preference over the reasonable range of

the parameters), but these hyperparameters had negligible im-
pact on the posterior distribution so long as they were not set
to effectively exclude the region of the observed data. MCMC
was run with a no U-turn sampler [116] for 104 iterations, we
exclude the first 3000 to exclude any warmup period, and for
all runs we had an effective remaining sample size >1000. For
untwirled experiments, we follow the same basic procedure
but incorporate shot noise for each circuit implementation
by performing a Bayesian bootstrap [117] over the shot data
to produce an estimate and uncertainty for the expectation
value from each circuit implementation. We then feed those
estimates and uncertainties into the Bayesian linear regression
defined above.

IV. RESULTS

A. State vector simulations

We test the optimizers listed in Table II using the cost
function (2.3) associated with the four-layer HVA for the
eight-qubit and 16-qubit lattices shown in Fig. 1 and the
parameter choice (GL + h) in Table I. This cost function has
24 parameters to be optimized. The results using a state vector
simulator are summarized in Table III.

BFGS and BOBYQA are susceptible to local extrema and
their performance highly depends on the initial choice of the
parameters. We employ a multiple-initial-condition strategy

TABLE III. Optimizer performance with state vector simulator. We test the optimizers with eight qubits and 16 qubits using a four-layer
HVA and the (GL+h) parameter set. We employ a multiple-initial-values strategy to BFGS and BOBYQA to avoid the local optimizers being
trapped at a bad local extreme. The lowest energy is reported for the multiple-initial-values strategy. While the genetic algorithm (CMA-ES)
is less susceptible to local extrema, a multiple-initial-values strategy with a smaller iteration cutoff also improves its performance. SPSA and
dual annealing converge slowly and reach the maximum iteration (cutoff). Note that the error in energy is the difference between the optimized
energy and the ground-state energy computed by ED.

Qubits Optimizer Error in energy Cost function evaluations

8 BFGS, 501 initial values 0.00094 Mean, 5352; max, 10865
16 BFGS, 501 initial values 0.02672 Mean, 5569; max, 10186
8 BOBYQA, 501 initial values 0.00045 Mean, 1099; max, 1920
16 BOBYQA, 501 initial values 0.01744 Mean, 1255; max, 3049
8 CMA-ES 0.00015 43290
16 CMA-ES 0.04036 49335
8 CMA-ES, 80 initial values 0.00005 Mean, 20528; max, 83590
16 CMA-ES, 80 initial values 0.01327 Mean, 27504; max, 73138
8 Dual annealing 0.00252 100000 (cutoff)
16 Dual annealing 0.04634 100106 (cutoff)
8 SPSA 0.04500 100000 (cutoff)
16 SPSA 0.08145 100000 (cutoff)
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FIG. 5. Noiseless optimization with BOBYQA and CMA-ES. The cost function associated with the four-layer HVA and the parameter set
(GL + h) is optimized by BOBYQA (red) with 501 random initial values and CMA-ES (blue) with 80 random initial values. For both (a) eight
qubits and (b) 16 qubits, BOBYQA converges faster than CMA-ES. The error distribution of the optimized solutions (see insets showing the
error in energy associated with each solution optimized by BOBYQA and CMA-ES) shows that the solutions of CMA-ES give overall better
results but are also less consistent. The mixed usage of the two optimizers provides a complementary cross-check of their results.

and randomly pick 501 initial parameter values to start with.
In general, the number of initial values required for a good
result will increase with the number of parameters of the cost
function. BOBYQA gives a smaller error in energy compared
to BFGS in both eight-qubit and 16-qubit tests, and BOBYQA
also converges much faster than BFGS, which requires the
costly computation of gradients by finite-difference methods.
The other local optimizer, SPSA, is less susceptible to local
extrema due to its stochastic nature. However, its convergence
is slow and will require many iterations in order to achieve
good accuracy. Among the local optimizers, BOBYQA with
multiple initial values gives the best performance in terms of
both the accuracy of the result and the speed of convergence.

CMA-ES and dual annealing are nonlocal optimizers that
are able to escape from local extrema. Table III shows that
both optimizers converge toward a minimum with energy
close to the exact value even starting from just one initial
value. CMA-ES consistently converges faster among the two.
Obtaining the best performance from CMA-ES requires fine
tuning of the optimizer metaparameters, which depends on
the neighborhood of the initial value and is challenging to
determine a priori. To avoid becoming overly sensitive to the
choice of metaparameters, we also employ a multiple-initial-
value strategy with 80 random initial values. For our VQE
application, the CMA-ES optimization with multiple initial
values consistently shows improvement over that with a single
initial value.

To benchmark different Ansätze, we employ both
BOBYQA with 501 random initial values and CMA-ES with
80 random initial values and report the better result from the
two methods. Different Ansätze (and different layer numbers)
result in vastly different cost function landscapes and numbers
of parameters. A mixed usage of different optimization algo-
rithms, which is widely used in black-box optimization, helps
us better navigate through the vast varieties of cost functions.
In Fig. 5, we study the noiseless optimization for each opti-
mizer with different initial values. For both eight-qubit and
16-qubit cases, CMA-ES needs more cost function evalua-
tions to converge, as expected for a nonlocal optimizer. As
indicated by the error distribution of the optimized solutions
shown in the insets of Fig. 5, some optimization runs with
CMA-ES give the best result but others can be far off. The runs

also converge to different optimized parameters with the two
different optimizers and also different initial values, revealing
a complex energy landscape with many local minima. This
makes the inclusion of the BOBYQA results helpful, since it
allows us to crosscheck the optimizations. A similar conclu-
sion can be made by resampling the distribution shown in the
insets of Fig. 5 to investigate the error as a function of the
number of initial values of optimization. As shown in Fig. 6,
the CMA-ES optimizer gives a better result than BOBYQA
after a sufficient number of initial values are used. Hence,
BOBYQA serves as a useful cross-check for an insufficient
number of initial values. We expect that VQE optimization
carried out on QPUs will also benefit from this approach of

FIG. 6. Error as a function of the number of initial parameter
values for the BOBYQA and CMA-ES optimizers. The error de-
creases with increasing number of initial values. CMA-ES converges
faster compared to BOBYQA at the price of a much higher number
of cost function evaluations per initial value. The performance of
CMA-ES exceeds that of BOBYQA after a threshold number of
initial values. The performance of both methods improves gradually
beyond that threshold. We resample the error distribution shown in
Fig. 5 to obtain this result. Each data point in this plot is obtained
by averaging the minimum energies of 50 different random choices
of initial values. The statistical error (not shown) is negligible except
for the leftmost CMA-ES data point, and this is consistent with the
fact that CMA-ES is unreliable with a small number of initial values.
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FIG. 7. Ansatz benchmark by state vector simulation. The three different Ansätze are optimized with respect to three different setups,
(a) four-qubit lattice with (GL +h), (b) eight-qubit lattice with (GL +h), (c) 16-qubit lattice with (GL +h), and (d) eight-qubit lattice with
(TCz+h). The HEA-CZ (red pluses) and the HEA-XY (black crosses) show a bigger error in energy compared to that of the HVA (green
squares) except for the four-qubit case. This performance difference is mainly due to the difficulty in optimizing the two HEAs with a large
number of parameters, as suggested by the minimal improvement of the error when increasing the number of layers of the HEAs.

mixed optimizers with multiple initial values, especially when
the QPUs’ clock rate becomes sufficiently high to support a
large number of cost function evaluations.

We apply this mixed optimization approach to optimize the
three different Ansätze (HVA, HEA-CZ, and HEA-XY) with
different numbers of layers using a state vector simulator. To
make our observation more representative, we run the opti-
mization test with three different setups, namely, four-qubit
(GL+h), eight-qubit (GL+h), 16-qubit (GL+h), and eight-
qubit (TCz+h) (see Table I for the parameter values). Except
for the simple four-qubit case, the results in Fig. 7 show that
the HVA in general outperforms the other two HEAs when
a deeper Ansatz is used to reduce the error in energy. The
main reason for the HEAs’ worse performance is due to the
extreme difficulty in the optimization, which is directly related
to the barren plateau phenomenon [28]. The number of param-
eters increases rapidly for HEAs; for example, the four-layer
HEA-XY for 16 qubits has 536 parameters. This makes it
excessively challenging to scale up the VQE with HEAs to
larger circuit depths and system sizes. This is also revealed
by the fact that two HEAs show nearly no improvement with
increasing number of layers in Fig. 7. Hence, the VQE using
HVA will be a more promising approach toward quantum
advantage for the square-octagon-lattice Kitaev model.

The optimization approach and the HVA Ansatz can be
used to probe the phase diagram of the model. We demon-

strate this potential by determining the single-spin expectation
values and static spin-spin correlators in Fig. 8 for an eight-
qubit lattice with periodic boundary conditions as shown in
Fig. 1(f). We choose this lattice structure and boundary con-
dition so that the system’s behavior is less susceptible to
boundary effects. Note that the lattice contains four x, y, and
z bonds each. To adapt to this different setup, we have to in-
crease the number of layers of the HVA Ansatz to 8 to achieve
reasonable accuracy. To characterize the system’s properties
as a function of Hamiltonian parameters, we measure the
averages of the single-site expectation values 〈X 〉, 〈Y 〉, and
〈Z〉 over all sites, as well as the averages of the correlators
Cαα = 〈α jαk〉 − 〈α j〉〈αk〉 (α = X,Y, Z) over all pairs of sites
for which Jα �= 0. While this small system does not exhibit the
exact same phase transitions shown in Fig. 2 for large lattices
in the thermodynamic limit, the same set of measurements
can be used to study the phase diagram of larger systems.
Increasing J⊥ with a fixed h[111], the eight-qubit lattice shows
an increasing average value of 〈Z〉 while 〈X 〉 and 〈Y 〉 remain
close to zero. Note that the asymmetry between 〈Z〉 and 〈X 〉
or 〈Y 〉 at J⊥/Jz = 1 is due to the asymmetry in the lattice
geometry. Meanwhile the average correlators Cαα all increase
gradually from zero as J⊥ grows. This behavior is captured
by the VQE optimization results (data points) as compared
to the simulation using ED (dashed lines). One can observe
a small deviation between the VQE and ED results for CZZ
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FIG. 8. Expectation values determined by VQE for an eight-
qubit periodic lattice. The VQE results (data points) are consistent
with those obtained from ED (dashed lines). Here, the single-qubit
expectation values 〈X 〉, 〈Y 〉, and 〈Z〉 are averaged over all qubits,
and the correlators Cαα = 〈α jαk〉 − 〈α j〉〈αk〉 (α = X,Y, Z) are av-
eraged over the qubit pairs for which Jα �= 0. The VQE results are
determined using an eight-layer HVA Ansatz with the optimization
using 480 initial values for CMA-ES and 3001 initial values for
BOBYQA, and the expectation values are calculated using the op-
timized parameters corresponding to the lowest energy among all
optimized solutions. We use the parameters Jz = 1 and hx = hy =
hz = 0.05/

√
3.

at J⊥/Jz = 0.5. This could be improved by increasing the
number of layers used with the tradeoff of higher resource
requirements in the optimization.

The phase diagram can also be probed by searching for
parameter values where the energy gap between the ground
and first excited states closes. By adding the overlap with
the ground state to the VQE cost function as discussed in
Sec. III D, we determined the excited-state energies using
the same HVA Ansatz and optimization approach. For the
eight-qubit periodic lattice, we determine the optimal param-
eters �θo;0 corresponding to the ground states for different
values of J⊥ using the eight-layer HVA Ansatz as discussed
in the previous paragraph. For excited states, we optimize
the modified cost function in (3.5) with the same eight-layer
HVA Ansatz. For the optimization, we use CMA-ES with 960
(J⊥ = 0.5, 1/

√
2) and 480 (J⊥ = 1) random initial values, and

BOBYQA with 6001 (J⊥ = 0.5, 1/
√

2) and 3001 (J⊥ = 1)
random initial values. We double the number of initial values
for J⊥ = 0.5, 1/

√
2 as an attempt to improve the accuracy of

the excited-state energies determined by the optimization.
The ground- and excited-state energies determined by

VQE are shown in Fig. 9. To better visualize the results,
we offset the energy shown in the figure by the ground-state
energy E0,ED determined using ED. We also plot the ED result
(Ej,ED where j = 0, 1, . . . , 5) for up to the fifth excited state
for comparison. As expected, the VQE results (red crosses) for
the ground-state energy are consistent with the ED result (red
dashed line) with a small energy error. On the other hand, the
excited-state energies (blue pluses) determined by VQE are
closest to those of the third excited state instead of the nearly
degenerate first and second excited states (except for J⊥ = 1
where the first three excited states are close to each other).

FIG. 9. Excited-state and ground-state energies determined by
VQE for an eight-qubit periodic lattice. The ground-state energies
E0,VQE (red crosses) and the first excited-state energies E1,VQE (blue
pluses) determined by VQE are compared to the low-lying energy
spectrum (dashed lines) determined by ED. VQE correctly predicts
the qualitative result of the closing of the energy gap near J⊥ = Jz.
However, the excited-state energies determined by VQE are closest
to the third excited state instead of the nearly degenerate first and
second excited states. We use the parameters Jz = 1 and hx = hy =
hz = 0.05/

√
3.

This means that while the VQE result still qualitatively pre-
dicts the closing of the energy gap, it does not give the correct
energy gap between the ground state and the first excited state.
We tried multiple values of p and observed a similar difficulty
in getting to the lower-energy excited states. Future study of
alternative Ansätze better tailored to the excited states will be
needed to improve the accuracy.

B. Simulations with shot noise

It is crucial to take the shot noise into consideration when
running variational algorithms on QPUs. If too many mea-
surement shots are requested, the long runtime may be beyond
the QPU capacity. If too few shots are requested, the stronger
noise may induce undesirable barren plateaus to the cost func-
tion landscape [118]. Investigating optimization strategies that
tolerate a small number of shots is important for practical
applications of the variational algorithms [77].

In this subsection, we evaluate the energy in the simula-
tions with a finite number of shots and then test the optimizers
listed in Table II once again with the noisy cost function.
This allows us to examine the robustness of our optimization
approach in the presence of the shot noise. We run the test
with 8000 shots using the cost function associated with the
four-layer HVA for the eight-qubit lattice and the parameter
choice (GL + h) to facilitate the comparison with the noiseless
results. The results are summarized in Table IV. To make
the effect of the shot noise clear, we determine the energy
Enoisy measured with shot noise and its noiseless counterpart
Enoiseless obtained using a state vector simulator for the op-
timized parameters obtained by minimizing the noisy cost
function. The error (Enoiseless − E0) from the exact ground-
state energy E0 shows the performance of the VQE since this
quantity is directly related to how close the optimized state
is to the ground state. The measured deviation (Enoisy − E0)
gives us additional information regarding the performance of
the optimizers in the presence of the shot noise.
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TABLE IV. Optimizer performance with shot noise for eight qubits. We test the optimizers with 8000 measurement shots and eight qubits
using a four-layer HVA and the (GL+h) parameter set similar to the noiseless case. A modified version of BOBYQA, BOBYQA-noisy,
is introduced to better handle the noisy cost function. Using the optimized parameters obtained by minimizing the noisy cost function, we
determine the energy Enoisy measured with shot noise and its noiseless counterpart Enoiseless obtained using a noiseless state vector simulator.
The standard deviation of 100 energy evaluations with 8000 shots is about 0.02 for the optimized parameters obtained by these optimizers.
Note that Enoisy can be lower than E0 due to the shot noise.

Optimizer Enoiseless − E0 Enoisy − E0 Cost function evaluations

BFGS, 501 initial values 0.45069 0.42052 Mean, 747; max, 1994
BOBYQA, 501 initial values 0.27485 0.21843 Mean, 471; max, 610
BOBYQA-noisy, 501 initial values 0.07989 −0.00453 Mean, 3532; max, 4004
CMA-ES 0.02416 −0.06462 37570
CMA-ES, 80 initial values 0.01610 −0.07125 Mean, 21042; max, 52000
Dual annealing 0.04534 −0.01631 60101
SPSA 0.00612 0.00879 100000 (cutoff)

BFGS shows significantly worse performance compared to
the noiseless case. The errors introduced by the shot noise are
amplified by the small finite step size used by finite-difference
methods to compute gradients. The amplified errors make the
BFGS much more likely to be trapped. Using analytical meth-
ods to determine the gradients directly through measurements
[99,102] could avoid the amplification and would be impor-
tant when implementing BFGS (and similar gradient-based
methods) on QPUs.

The performance of BOBYQA is also worse than that in
the noiseless case. This observation is consistent with previ-
ous results indicating that BOBYQA typically requires further
modifications to optimize the noisy cost function [119]. Here,
we adopt one of the simplest modifications to increase the
number of interpolation points from (2n + 1) to (n + 1)(n +
2)/2 where n is the number of parameters. The modified
version, BOBYQA-noisy, gives a much improved result as
expected. Note that the negative measured deviation suggests
that the measured energy associated with the optimized pa-
rameters is lower than the exact ground-state energy, which
is only possible due to the shot noise. This means that the

FIG. 10. Eight-qubit optimization with shot noise using
BOBYQA-noisy and CMA-ES. The cost function associated with
the four-layer HVA and the parameter set (GL + h) is optimized
by BOBYQA-noisy (green) with 501 random initial values and
CMA-ES (blue) with 80 random initial values. Similar to the
noiseless optimization, BOBYQA-noisy converges faster than
CMA-ES but the solutions of CMA-ES give overall better results as
shown by the optimized energy distribution (see insets).

optimization has converged within the limits set by shot noise.
(The standard deviation of 100 energy evaluations with 8000
shots is ≈0.02 for all optimized parameters.)

CMA-ES and dual annealing, together with BOBYQA-
noisy, have a negative measured deviation for the optimized
parameters. (The measured energy is lower than the ground-
state energy due to the shot noise.) Among the three
optimizers, CMA-ES has the best performance ranked by
the error determined by the state vector simulator. Figure 10
suggests that this superior performance is related to the ability
to converge to a better solution by CMA-ES than that by
BOBYQA-noisy with the cost of a larger number of cost
function evaluations. While CMA-ES may still converge to
a poor solution for some initial values, a significant portion
of the optimization trajectories converges to solutions close to
the ground state. This also suggests the mixed optimization
approach is still useful in this noisy case with the BOBYQA-
noisy serving as a cross-check of the CMA-ES result.

SPSA shows the best performance among the optimizers
being tested. In particular, the error (0.006 12) associated with
its optimized parameters is even smaller than the noiseless
optimization performed by SPSA with an error of 0.045 00.
This result should not be overinterpreted since these are just
two specific optimization trajectories. Nonetheless, this re-
sult suggests that the performance of SPSA may be less

FIG. 11. Lattice geometry with periodic boundary conditions.
The Jx (red), Jy (green), and Jz (blue) couplings are assigned to each
linkage. The qubits at the edge are connected by Jz coupling to the
one on the other side of the lattice. In particular, for the periodic
boundary conditions, the following qubit pairs are Jz coupled: (a) (0,
5), (3, 6), and (4, 7); (b) (0, 7), (5, 10), (6, 9), and (8, 11); (c) (8, 11),
(9, 14), (10, 13), and (12, 15).
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TABLE V. Optimizer performance with shot noise using SPSA.
We test the optimizers with various measurement shots and qubits
using a one-layer HVA and the (TCz) parameter set. We use the
same definition of the error (noiseless) and measured deviation as in
Table IV. The standard deviation of 100 noisy energy evaluations is
evaluated at the optimal parameters determined by the optimization.
All optimizations have a cutoff of cost function evaluation at 10000.

Standard
Error Measured deviation of 100

Qubits Shots (noiseless) deviation noisy evaluations

8 8192 0.06977 −0.00246 0.00440
12 4096 0.00191 0.00406 0.00756
16 2048 0.14701 −0.01185 0.01103

susceptible to shot noise, and it would be useful to include
SPSA to the mixed optimization approach together with other
optimizers for VQE with shot noise.

We further explore the performance of SPSA with various
magnitudes of shot noise and lattices shown in Fig. 11 with
periodic boundary conditions, and SPSA converges within the
shot noise limit. QPU experiments are more difficult to be car-
ried out with these lattices since the overhead of SWAP gates to
simulate the periodic boundary conditions will be substantial
for the existing QPU’s connectivity. Nonetheless, boundary
effects on these lattices are less significant compared to those
of the lattices with open boundary conditions. It is thus inter-
esting to investigate numerically how the SPSA performs for
these lattices. We summarize the results in Table V associated
with one-layer HVA and the TCz parameter set for the eight-
qubit, 12-qubit, and 16-qubit lattices shown in Fig. 11. We
decrease the number of shots for larger lattices since sampling

is computationally expensive for large lattices. Similarly, to
limit the required computational resources, we fix the cutoff
of the number of cost function evaluations to be 10 000, which
is one tenth of that used in the main text. In general, the SPSA
optimizer converges to a good solution within the limits set
by shot noise. The error of the optimized solution determined
using a noiseless state vector simulator spans a much wider
range of values for different setups. Further studies with more
systematic choices of the number of shots and other lattice and
parameter setups will be useful to understand the spread of the
errors while SPSA shows a similar level of convergence.

C. QPU experiment

The experimental method has been described in Sec. III E.
As discussed there, we perform a proof-of-concept experi-
ment using the HVA with one layer on four-qubit and eight-
qubit sublattices of Aspen-9 consisting of qubits (10, 11, 12,

13, 24, 25, 26, 27); see Fig. 1(b). A schematic HVA-1 circuit
for eight qubits is depicted in Fig. 3; in order to execute this on
Aspen-9, we identify qubits (q0, q1, q2, q3, q4, q5, q6, q7) with
qubits (12, 25, 26, 11, 13, 24, 27, 10), respectively, on Aspen-
9. To perform digital ZNE, we increase the total CZ count in
the circuit by various scale factors and the expectation values
measured at each scale factor are mitigated for readout errors.
To improve the results for the eight-qubit case, we twirl the
corresponding circuits with random Pauli operators to tailor
the noise into a stochastic channel, which may allow ZNE to
work better.

Figure 12 plots the Hamiltonian expectation values in the
classically optimized variational state for various scale fac-
tors, and the zero-noise limit is extrapolated via Bayesian
linear regression. (For the eight-qubit case, the final two scale

FIG. 12. QPU experiments of optimized HVA circuits (twirled and untwirled) on Aspen-9 with digital ZNE and readout error mitigation.
The x axis represents the scale by which the total CZ count in the circuit is increased. QPU data are plotted as the mean and standard deviation
of the distribution over expectation values for circuit implementations. A line of best fit is obtained via Bayesian linear regression, and we plot
the expectation value of the posterior distribution and a 95% confidence ribbon. The Hamiltonian expectation value, plotted on the y axis, is
then extrapolated from the regression to the x = 0 limit to obtain a fitted noiseless estimate with the depicted uncertainty. (a) The four-qubit
experiment for various ZNE scale factors uses the HVA-1 Ansatz with no (Pauli) twirling. The results extrapolate to roughly −1.3623 (±0.1896,
which is within roughly one standard deviation of the true eigenvalue of −1.583). There are one to three circuits for each scale factor (plotted
with jitter on the x axis for better visibility) for raw and mitigated expectations, representing several different ways to implement the scaling
factor. (b) For the eight-qubit experiment, the QPU data points corresponding to scale factors of 3 and 5 are dominated by noise and are not
used for ZNE. The results extrapolate to ≈−1.36 (with a standard deviation of about 0.054) which is deviated from the best value of about
−4.23 that the one-layer HVA can produce.
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factors are omitted from the extrapolation because the noise
in the system overwhelms any meaningful patterns one could
exploit in the extrapolation scheme beyond a scale factor of 2.)
The four-qubit experiment gives the extrapolated energy to be
−1.3623 ± 0.1896 which is within one standard deviation of
the one-layer-HVA best value −1.5217 and, roughly speak-
ing, the true ground-state energy −1.5831. The eight-qubit
circuit involves more two-qubit gates and a larger infidelity is
expected. Anticipating the larger error to be mitigated, we per-
form randomized compilation or Pauli twirling to improve the
performance of ZNE as explained in Sec. III E. However, even
with the additional twirling, we find the extrapolated value
for the expectation value to be about −1.36 (with a standard
deviation of about 0.054), which is far from the best value of
about −4.23 that the one-layer HVA can produce in noiseless
simulation. This shows that the execution of a one-layer HVA
circuit for eight qubits, which contains 16λ CZ gates for scale
factor λ � 1, is close to the QPU coherence time. We note
that two-qubit gates were executed sequentially in this paper,
and parallel execution may lead to an improvement of the
results. The relatively large discrepancy between the optimal
value obtained on the QPU versus the exact energy suggests
the presence of systematic shifts in the gate parameters when
they are executed on the QPU. This may be mitigated when
performing the optimization entirely on the QPU. Although
this is a proof-of-concept experiment, it motivates the use
of sophisticated error mitigation techniques along with better
gate fidelities to achieve better results on the QPU in the
future.

V. CONCLUSION

In this paper, we investigated and benchmarked the appro-
priate Ansätze and optimization strategies to find the ground
state of the square-octagon-lattice Kitaev model with a VQE
approach, and demonstrated the ability to determine the sys-
tem’s properties in different parameter regimes using VQE.
We showed that the HVA generally outperforms the two HEAs
using CZ or XY gates in the entangling layers. The HEAs
require an expensive optimization process due to their rapidly
increasing number of parameters with system size and circuit
depth, and the unstructured nature of HEAs also makes them
susceptible to barren plateaus. The HVA is associated with a
relatively easy optimization and is thus better suited to the
QPU experiments. The VQE solutions with HVA allow us
to probe static expectation values and the energy gap as a

function of Hamiltonian parameters, making it possible to
probe the phase diagram using VQE. We also conducted an
experimental test to run classically optimized four-qubit and
eight-qubit HVA circuits on the Aspen-9 QPU. With the help
of readout error mitigation and ZNE, the four-qubit experi-
ment gives a result roughly within one standard deviation of
the true ground-state energy. For the eight-qubit experiment,
the wider and deeper circuit increases the infidelity of the re-
sults. There, we observe a substantial difference from the state
vector simulation even with the additional randomized com-
pilation. This suggests that extra error mitigation techniques
and performing the VQE optimization directly on the QPU
would be required to extract useful results from the QPU for
the future implementation of Kitaev-model VQE experiments.

Multiple optimization algorithms have been tested to opti-
mize the cost function associated with our VQE application.
We find that a mixed usage of different optimizers with mul-
tiple initial values gives a much more consistent and better
result than just using one specific optimizer with one initial
value. In particular, a local optimizer (BOBYQA) mixed with
a nonlocal optimizer (CMA-ES) is shown to be an appropriate
strategy for VQE calculations of the Kitaev model. SPSA is
also a useful addition to the optimization with shot noise.
Although we performed our tests with the noiseless simu-
lator and simulation with shot noise, we expect that QPU
experiments will also benefit from this approach as long as
the QPU’s clock rate is high enough to support the required
number of cost function evaluations.
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