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Computation of Green’s function by local variational quantum compilation
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Computation of the Green’s function is crucial to study the properties of quantum many-body systems such
as strongly correlated systems. Although the high-precision calculation of the Green’s function is a notoriously
challenging task on classical computers, the development of quantum computers may enable us to compute the
Green’s function with high accuracy even for classically-intractable large-scale systems. Here, we propose an
efficient method to compute the real-time Green’s function based on the local variational quantum compilation
(LVQC) algorithm, which simulates the time evolution of a large-scale quantum system using a low-depth
quantum circuit constructed through optimization on a smaller-size subsystem. Our method requires shallow
quantum circuits to calculate the Green’s function and can be utilized on both near-term noisy intermediate-scale
and long-term fault-tolerant quantum computers depending on the computational resources we have. We perform
a numerical simulation of the Green’s function for the one- and two-dimensional Fermi-Hubbard model up to
4 × 4 sites lattice (32 qubits) and demonstrate the validity of our protocol compared to a standard method based
on the Trotter decomposition. We finally present a detailed estimation of the gate count for the large-scale
Fermi-Hubbard model, which also illustrates the advantage of our method over the Trotter decomposition.
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I. INTRODUCTION

Simulation of quantum many-body systems is considered
one of the most promising tasks for which quantum com-
puters have a practical advantage over classical computers.
Simulating quantum many-body systems is relevant to many
scientific fields such as quantum chemistry, condensed mat-
ter physics, material science, and high-energy physics. Even
noisy intermediate-scale quantum (NISQ) devices [1] with a
few hundred to thousands of qubits are believed to outperform
classical computers in such quantum simulations, because of
the exponential scaling of the Hilbert space with the size of
the quantum system. For instance, the variational quantum
eigensolver (VQE) algorithm [2–5] enables us to compute the
energy eigenvalues and eigenstates of quantum many-body
systems on near-term NISQ devices.

Another important quantity to study the nature of quantum
many-body systems other than eigenvalues and eigenstates is
the Green’s function [6–8]. The Green’s function provides us
with much fundamental information about the quantum many-
body systems. The Green’s function is connected to various
physical observables. For instance, the diagonal component
of the Green’s function is equal to the particle density of
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the system. The spectral function, which is directly calcu-
lated by the Fourier transform of the Green’s function, gives
the dispersion relation of quasiparticles. This is crucial in-
formation for studying strongly-correlated systems such as
high-temperature superconductors [9]. The Green’s function
also tells us the dynamical response of the quantum many-
body systems under external perturbations, e.g., the linear
response theory is described based on the Green’s function
[10].

Many methods have been proposed in previous studies to
compute the Green’s function on quantum computers. They
are devised for either long-term fault-tolerant quantum com-
puters (FTQCs) or near-term NISQ computers. For FTQCs, it
has been proposed that the Green’s function can be computed
using quantum phase estimation [11–14], Trotter decompo-
sition of the time evolution operator [15,16], preconditioned
linear system solver based on block encoding [17], Gaus-
sian integral transformation by qubitization technique [18],
and linear combination of unitary operations [19]. All of the
above techniques generally require many high-fidelity qubits
and gate operations and are hence suitable for long-term
FTQCs. To circumvent such issues, various techniques that
are suitable for computing Green’s function on NISQ devices
with limited hardware resources have been developed. These
techniques include variational excited-states search methods
[20,21], generalized quantum equation of motion technique
[22], variational quantum simulation algorithm [20,23–25],
combination of VQE and variational linear equation solver
[26], coupled cluster Green’s function method [27], Krylov
variational quantum algorithm [28], and Cartan decomposi-
tion [29]. These variational methods can be executed on NISQ
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FIG. 1. Overview of the LVQC approach to computing the Green’s function of a quantum system with the lattice size L at time τ . First, we
optimize the cost function C(�θ ) and find an optimal parameter �θopt at a compilation size L̃(< L) on small-scale quantum computers or classical
computers. The compilation size L̃ ∝ τ is determined by the LR bound of the target system. The optimal parameter �θopt gives an optimized

circuit V (L̃)(�θopt ) that approximates the time evolution operator at size L̃, i.e., V (L̃)(�θopt ) ≈ e−iH (L̃)τ . Next, we compute the Green’s function on
a large-scale quantum computer by using the optimal parameter �θopt and the ground state |ψ0〉. This process is executed by implementing an
optimized circuit V (L)(�θopt ) that approximates the time evolution operator at size L, i.e., V (L)(�θopt ) ≈ e−iH (L)τ . A long-time-scale dynamics at
t = nτ (n ∈ N) can also be calculated by adopting (V (L)(�θopt ))n ≈ e−iH (L)nτ .

devices in a quantum-classical hybrid manner. However, it is
generally difficult to scale up these NISQ device techniques
to large-scale quantum simulations. This issue could hinder
NISQ devices from calculating the Green’s function for prac-
tically important large-scale quantum many-body systems. In
this paper, we propose a different approach to calculate the
Green’s function on quantum computers based on the lo-
cal variational quantum compilation (LVQC) algorithm [30],
which can bridge the gap between the methods for FTQCs
and NISQ devices. The LVQC is a variational quantum
algorithm to construct a low-depth quantum circuit that accu-
rately approximates the time evolution operator for large-scale
quantum many-body systems by optimizing the variational
quantum circuit on a smaller-scale subsystem. Since the for-
mulation of the LVQC relies mainly on the existence of the
Lieb-Robinson (LR) bound [31], it is applicable to the broad
class of quantum many-body systems with local interactions.
Specifically, the LVQC algorithm is implemented as follows.
First, we execute the local compilation protocol, in which we
optimize a low-depth variational quantum circuit to accurately
approximate the time-evolution operator of a small subsystem.
This optimization process may be executed by using NISQ
devices and classical optimizers or only classical simulators.
Then, we simulate the dynamics of a large-scale quantum
system whose size lies in a regime intractable with the NISQ

devices or the classical simulators. In this step, we use an
optimized variational quantum circuit that approximates the
time evolution operator of the large-scale quantum system,
which is constructed by adopting the optimized parameter
obtained in the local compilation process.

Our proposal is to compute the Green’s function of a
large-scale quantum many-body system in the time domain by
utilizing the approximate time evolution circuit constructed by
the above LVQC protocol (Fig. 1). The benefit of our LVQC-
based method is that it is valid to reduce the circuit depth
needed to accurately calculate the Green’s function on a broad
level of quantum computers from NISQ devices to FTQCs.
Reducing the circuit depth is crucial for NISQ devices (and
even for early FTQCs [32–37]) to complete the computation
within the coherence time and to alleviate the accumulation
of gate error. The reduction of the circuit depth is also es-
sential for ideal FTQCs to reduce the total simulation time.
We show the validity of our method by performing numerical
simulations of the Fermi-Hubbard model [38], which is the
simplest model of interacting fermions but is essential to study
the nature of strongly correlated electron systems. We also
estimate the gate count for quantum circuits to calculate the
Green’s function for the large-scale Fermi-Hubbard model
and illustrate the reduction of the gate count in our method.
Although we focus on the Fermi-Hubbard model in this paper,
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our LVQC-based method is applicable to compute the Green’s
function for a variety of quantum many-body Hamiltonian
with the LR bound.

The rest of this paper is organized as follows. In Sec. II, we
summarize the definition of the Green’s function and a method
to calculate the Green’s function on a quantum computer. In
Sec. III, we briefly review the LVQC algorithm. In Sec. IV, we
propose a protocol to calculate the Green’s function based on
the LVQC algorithm. In Sec. V, we demonstrate the validity
of the LVQC algorithm for computing the Green’s function
by performing numerical simulations of the one- and two-
dimensional Fermi-Hubbard model. In Sec. VI, we estimate
the computational resources needed to apply the LVQC al-
gorithm in large quantum systems. Finally, we discuss some
remarks on our results and conclude this paper in Sec. VII.

II. REVIEW OF GREEN’S FUNCTION AND ITS
CALCULATION ON QUANTUM COMPUTERS

In this section, we review the definition of quantities we fo-
cus on in this study, namely, the Green’s function, the spectral
function, and the density of states (DOS). We then explain
a general strategy to calculate them on quantum computers
based on the decomposition of the Green’s function into the
sum of outputs of specific quantum circuits, which was em-
ployed in various studies [15,16,20,24].

A. Definition of Green’s function and related physical quantities

For a fermionic system described by Hamiltonian H , the
retarded Green’s function at zero temperature is defined as

GR
a,b(t ) = −i�(t )〈ψ0|{eiHt cae−iHt , c†

b}|ψ0〉, (1)

where {A, B} = AB + BA denotes the anticommutator, �(t )
is the Heaviside step function, |ψ0〉 is the ground state of
Hamiltonian, and ca and c†

b are fermionic annihilation and
creation operators, respectively. The index a (= 1, 2, . . . , M )
of the operators ca, c†

a specifies the fermionic mode, where
M denotes the total number of fermionic modes. To discuss
the spectral function, we here set a = xσ , where x denotes
the spatial coordinate and σ = ↑,↓ denotes the spin of the
fermionic particle. Hereafter, we consider only the spin-
diagonal component of the Green’s function for simplicity.
Then, the Green’s function in the momentum space is defined
as

GR
kσ (t ) = 1

V

∑
x,x′

e−ik·(x−x′ )GR
xσ,x′σ (t ), (2)

where k denotes the momentum and V denotes the volume of
the system. Using GR

kσ (t ), the spectral function for fermions
of momentum k and spin σ is obtained as

Akσ (ω) = − 1

π
Im G̃R

kσ (ω). (3)

Here, G̃R
kσ (ω) is the Fourier transform of GR

kσ (t ),

G̃R
kσ (ω) =

∫ ∞

−∞
dtei(ω+iη)t GR

kσ (t ), (4)

where η(→ +0) is an infinitesimal positive number to ensure
the convergence of the integral. The spectral function is a

fundamental quantity in quantum many-body physics, which
contains information about the energy distribution in the mo-
mentum space [6–8]. More specifically, the peak location of
the spectral function in the (k, ω) space corresponds to the
dispersion relation of the quasiparticles and the height of the
peak describes the probability of finding a quasiparticle with
a specific momentum and energy. The spectral function is
related to the DOS as

ρσ (ω) = 1

V

∑
k

Akσ (ω). (5)

The DOS describes the number of energy states per unit vol-
ume that can be occupied by electrons. The DOS can be used
to estimate the band gap of solid materials, which is crucial
information for studying semiconductors and superconduc-
tors. In addition, many bulk properties of solid materials (e.g.,
specific heats, magnetic susceptibility, and conductivity) are
often described by the DOS. Both the spectral function and
DOS provide us with a lot of crucial information about the
electronic structure of materials and can be measured using
spectroscopic techniques, e.g., angle-resolved photoemission
spectroscopy [39] and scanning tunneling spectroscopy [40].

B. Quantum computation of real-time Green’s function

Here, we explain a general way to evaluate the Green’s
function on a quantum computer, on which our proposal in
Sec. IV is also based. The first step is to prepare the (ap-
proximate) ground state |ψ0〉 for a given Hamiltonian H . We
assume that this task can be accomplished with high accuracy
by utilizing quantum algorithms such as VQE [2–5] on near-
term NISQ devices or quantum phase estimation [41–43] on
long-term FTQCs. Although it may be possible to directly
compute Green’s function using long-term algorithms (e.g.,
quantum phase estimation [11–14] or Trotter decomposition
[15,16]) if we can prepare the ground state by quantum phase
estimation, our LVQC-based method will be still useful to
reduce the circuit depth and total simulation time. Next, we
decompose the fermionic operators ca, c†

a into a sum of Pauli
matrices as

ca →
∑

n

λ(n)
a P(n)

a , c†
a →

∑
n

λ(n)∗
a P(n)

a , (6)

where P(n)
a is tensor product of Pauli matrices. We can gener-

ally realize the decomposition (6) by adopting bosonization
techniques such as Jordan-Wigner encoding [44], Bravyi-
Kitaev encoding [45], and parity encoding [46]. From Eq. (6),
the retarded Green’s function (1) can be rewritten as

GR
a,b(t ) = −2i�(t )

∑
n,m

λ(n)
a λ

(m)∗
b K (n,m)

a,b (t ), (7)

where K (n,m)
a,b (t ) is defined as

K (n,m)
a,b (t ) = Re〈ψ0|eiHt P(n)

a e−iHt P(m)
b |ψ0〉. (8)

The problem is now reduced to evaluate the value of K (n,m)
a,b (t )

on a quantum computer. Since the exact time-evolution
operator e−iHt cannot be implemented on quantum com-
puters in general, we need to approximate e−iHt in terms
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|0 H • H

|ψ0 P
(m)
b V (θ) P (n)

a

FIG. 2. Quantum circuit to compute K (n,m)
a,b (t ) given by Eq. (8).

The upper line represents the ancillary qubit and the lower
line represents the qubits for the system of interest. The ex-
pectation value of Z measurement on the ancillary qubit yields
Re〈ψ0|V †(�θ )P(n)

a V (�θ )P(m)
b |ψ0〉, which is an approximate value of

K (n,m)
a,b (t ) when V (�θ ) ≈ e−iHt .

of native quantum gates. If we have such a quantum cir-
cuit V (�θ ) that approximates the time-evolution operator
e−iHt , we can compute the Green’s function by utilizing
the quantum circuit shown in Fig. 2. The repeated mea-
surement of the ancillary qubit yields the expectation value
Re〈ψ0|V †(�θ )P(n)

a V (�θ )P(m)
b |ψ0〉, which is approximately equal

to K (n,m)
a,b (t ) when V (�θ ) ≈ e−iHt . To obtain all components of

the Green’s function, such measurements should be performed
for Ncirc distinct quantum circuits, where Ncirc is the number
of all possible patterns of K (n,m)

a,b with respect to (a, b; n, m).
If we choose a fermion-to-qubit mapping that represents ca

and c†
a as linear combinations of two independent Pauli op-

erators (see Appendix A), we obtain Ncirc = 4M2 that can be
very large in large-scale quantum systems. Fortunately, such
difficulty can be mitigated at some level by considering the
symmetry of the target Hamiltonian H (see Appendix B).

III. LOCAL VARIATIONAL QUANTUM COMPILATION
ON FERMIONIC SYSTEMS

In this section, we explain LVQC proposed in Ref. [30].
LVQC enables us to determine the variational quantum circuit
that approximates the time evolution operator for the whole
system, V (�θ ) ≈ e−iHt , by using only the smaller subsystem(s).
Our strategy to calculate the Green’s function, which will
be explained in the next section, is to leverage the approx-
imate time evolution operator obtained by LVQC. We note
that although LVQC was already proposed in Ref. [30] for
general systems, its formulation was explained only for spin
systems. Our contribution in this section is to show explicit
procedures of LVQC for fermionic systems (e.g., how to take
the subsystems).

A. Setup

We consider a lattice � = {1, 2, . . . , L}, or a set of indices
of “sites”, and define two fermionic modes corresponding to
spin-up and spin-down (σ = ↑,↓) on each site. The annihila-
tion (creation) operators on the site i with spin σ is denoted
by ciσ (c†

iσ ). For simplicity, we assume the one-dimensional
lattice with the periodic boundary condition and the Hamilto-
nian is translationally invariant,

H (L)
f ,PBC =

L∑
i=1

hi,i+1, hi,i+1 = T i−1(h1,2), (9)

where T is a one-site translation operator T (ciσ ) = ci+1σ

with identifying i = L + 1 as i = 1 and h1,2 consists of even

numbers of the annihilation and creation operators on the sites
1 and 2. We note that hi, j conserves the parity of the number
of fermions and commutes with hk,l if i, j, k, l are mutually
different. Extensions to other lattices, dimensions, the range of
the interactions (as far as it is finite), and not-translationally-
invariant cases can be performed straightforwardly (see also
Appendix C).

We also consider a local subsystem �( j,L̃) consisting of L̃
sites centered at the site j,

�( j,L̃) = { j − L̃/2 + 1, . . . , j + L̃/2}. (10)

Since we assume the translation invariance, we take j = L̃/2
and denote

�(L̃) := �(L̃/2,L̃) = {1, 2, . . . , L̃}. (11)

The local subsystem Hamiltonian with the periodic boundary
condition for �(L̃) is defined as

H (L̃)
f ,PBC =

L̃∑
i=1

h̃i,i+1, h̃i,i+1 = T̃ i−1(h1,2), (12)

where the translation operator T̃ acts as T̃ (ciσ ) = ci+1σ with
identifying i = L̃ + 1 as i = 1. We note that H (L̃)

f ,PBC is the

same as the restriction of H (L)
f ,PBC on �(L̃) expect for the bound-

ary term h̃L̃,L̃+1.
To approximate the time evolution operator of the total

system U (L)
f (τ ) := e−iH (L)

f ,PBCτ for a fixed time τ , we consider

the (translationally-invariant) ansatz V (L)
f (�θ ) of the depth d in

the brick-wall structure,

V (L)
f (�θ ) :=

d∏
k=1

⎡
⎣
⎛
⎝L/2∏

i=1

V (k)
2i,2i+1(θ2k )

⎞
⎠
⎛
⎝L/2∏

i=1

V (k)
2i−1,2i(θ2k−1)

⎞
⎠
⎤
⎦,

(13)

where V (k)
i,i+1(θ ) acts nontrivially only on the sites i and i + 1,

conserves the parity of the number of fermions, and is transla-
tionally invariant with respect to i by identifying i = L + 1 as
i = 1 [i.e., V (k)

i,i+1(θ ) = T i−1(V (k)
1,2 (θ ))]. For example, V (k)

i,i+1(θ )

can be a fermionic rotational gate like eiθ
∑

σ (c†
iσ ci+1σ −c†

i+1σ ciσ ).
The number of the parameters �θ is 2d , �θ = (θ1, . . . , θ2d ).
Similarly, to approximate the time evolution operator of the

local Hamiltonian, U (L̃)
f (τ ) = e−iH (L̃)

f ,PBCτ , the local version of
the ansatz is defined as

V (L̃)
f (�θ ) =

d∏
k=1

⎡
⎣
⎛
⎝ L̃/2∏

i=1

Ṽ (k)
2i,2i+1(θ2k )

⎞
⎠
⎛
⎝ L̃/2∏

i=1

Ṽ (k)
2i−1,2i(θ2k−1)

⎞
⎠
⎤
⎦,

(14)

where Ṽ (k)
i,i+1(θ ) is translationally invariant with respect to i by

identifying i = L̃ + 1 as i = 1, i.e., Ṽ (k)
i,i+1(θ ) = T̃ i−1(V (k)

1,2 (θ )).

B. LVQC cost functions

The LVQC algorithm aims at approximating the time-
evolution operator of the L-sites system U (L)

f (τ ) by the

variational quantum circuit V (L)
f (�θ ). Here we introduce two

033070-4



COMPUTATION OF GREEN’S FUNCTION BY LOCAL … PHYSICAL REVIEW RESEARCH 5, 033070 (2023)

cost functions that measure the distance between two unitaries
Uf and Vf written in fermion operators.

Let us consider the Hilbert space generated by M fermionic
mode, i.e., HM = {|n1, . . . , nM〉 f = (c†

1)n1 . . . , (c†
M )nM |vac〉 |

nμ = 0, 1 (μ = 1, . . . , M )}, where |vac〉 is the vacuum state.
In our case of the spinful fermions on the lattice �, μ is a tuple
of the site and spin, (i, σ ), and M = 2L. For two unitaries
Uf ,Vf on HM , we define the Hilbert-Schmidt test (HST) cost
function

C f
HST(Uf ,Vf ) = 1 − 1

4M
|Tr(Uf V

†
f )|2. (15)

This cost function has two properties: (1) 0 � C f
HST(Uf ,Vf ) �

1 (positiveness), and (2) C f
HST(Uf ,Vf ) = 0 ⇔ Uf = eiφVf for

some φ ∈ R (faithfulness). Therefore, one can use this cost
function to find the approximation of Uf by minimizing it with
varying Vf .

We can rewrite the HST function by using the “fermion
Bell pair” between a doubled system, which consists of two
identical Hilbert spaces HM named A and B. The fermion Bell
pair between the system A and B is defined as∣∣� f

+,μ

〉
:= 1√

2

(|vac〉AμBμ
+ c†

Aμ
c†

Bμ
|vac〉AμBμ

)
(16)

|� f
+〉 :=

M⊗
μ=1

∣∣� f
+,μ

〉
, (17)

where Aμ(Bμ) represents the μ-th mode of the system A(B).
We can show

C f
HST(Uf ,Vf ) = 1 − |〈� f

+|(Uf ⊗ V ∗
f )|� f

+〉|2. (18)

Inspired by this expression, the second cost function we
consider is the local Hilbert-Schmidt test (LHST) cost func-
tion, defined as

C f
LHST(Uf ,Vf ) = 1

M

M∑
μ=1

C(μ), f
LHST(Uf ,Vf ), (19)

where

C(μ), f
LHST(Uf ,Vf ) = 1 − |〈� f

+,μ|(Uf ⊗ V ∗
f )|� f

+〉|2. (20)

C(μ), f
LHST(Uf ,Vf ) has the positiveness and faithfulness:

0 � C(μ), f
LHST(Uf ,Vf ) � 1 and C(μ), f

LHST(Uf ,Vf ) = 0 ⇔ Uf V
†
f =

eiφIμ ⊗ W , where Iμ is the identity operator for the mode μ, W
is a unitary acting on the modes 1, . . . , μ − 1, μ + 1, . . . , M,
and φ is some real number. These properties result in the
positiveness and faithfulness of the LHST cost function, 0 �
C f

LHST(Uf ,Vf ) � 1 and C f
LHST(Uf ,Vf ) = 0 ⇔ Uf = eiφVf

for some φ ∈ R.

C. LVQC algorithm

Roughly speaking, LVQC states that the optimization of
the local ansatz V (L̃)

f (�θ ) to the local time evolution operator

U (L̃)
f (τ ) in the local system of L̃ sites suffices to find the

parameters �θopt that approximates the time evolution in the
total system of L sites: U (L)

f (τ ) ≈ V (L)
f (�θopt ). The physics be-

hind LVQC is the existence of the Lieb-Robinson (LR) bound
[31], which dictates that any local observable cannot spread

out faster than a certain velocity under a local Hamiltonian.
For a local Hamiltonian H on the lattice � such as H (L)

f ,PBC
and local observables OX , OY , which consists of the even
number of fermionic operators and acts nontrivially on the
domains X,Y ⊆ � with normalization ‖OX ‖ = ‖OY ‖ = 1,
the LR bound is expressed as follows:

‖[eiHτ OX e−iHτ , OY ]‖ � Ce−[dist(X,Y )−vτ ]/ξ , (21)

where [P, Q] = PQ − QP is the commutator, τ is a fixed time,
dist(X,Y ) is the distance between the domains, and ‖ · ‖ de-
notes the operator norm. The LR velocity v, the length ξ , and
the coefficient C are constants with respect to L, determined
solely by the property of the local Hamiltonian H such as the
range of the interactions. The velocity v and the length ξ do
not depend on τ while C typically depends on τ [30].

For the translationally-invariant Hamiltonian on the one-
dimensional lattice defined above, a theorem of LVQC can be
stated as follows:

Theorem 1 (LVQC for translationally-invariant fermionic
systems). Consider fermionic systems of L sites and L̃ sites
and the Hamiltonians on them, H (L)

f ,PBC and H (L̃)
f ,PBC respectively

[Eqs. (9) and (12)]. Assume that the ansatzes on the two
systems has the form of Eqs. (13) and (14) with depth d . We
choose the compilation size L̃ as

L̃ � l0 + dH + vτ + 2d + 1, (22)

where l0 is a tunable parameter determining L̃, dH = O(L0) =
O(1) is the range of interaction, τ is a fixed time, and v is the
velocity of the system in the LR bound (21). Suppose that we
find optimal parameters �θopt by minimizing the HST or LHST
cost functions on the local system of L̃ sites, which satisfy

C f
LHST

(
U (L̃)

f (τ ),V (L̃)
f (�θopt )

)
< εLHST, (23)

C f
HST

(
U (L̃)

f (τ ),V (L̃)
f (�θopt )

)
< εHST, (24)

for some εLHST > 0 and εHST > 0. The following equa-
tions hold for the total system of L sites,

C f
LHST

(
U (L)

f (τ ),V (L)
f (�θopt )

)
� εLHST + 4εLR, (25)

C f
HST

(
U (L)

f (τ ),V (L)
f (�θopt )

)
� 2L(εHST + 4εLR ), (26)

where εLR = e−O(l0/ξ ) with ξ being the length scale appearing
in the LR bound [Eq. (21)].

This theorem indicates that we can employ the optimal
parameter set �θopt for the size-L̃ system to approximate the
time evolution operator of the size-L system as U (L)

f (τ ) =
e−iH (L)

f ,PBCτ ≈ V (L)
f (�θopt ) (recall the faithfulness of C f

LHST and

C f
HST). The proof of LVQC theorem was presented in Ref. [30]

for general spin systems, but the extension to fermionic sys-
tems is not so different since the proof depended mostly
on the existence of the LR bound and not on the nature of
the particles (spins, bosons, fermions). For completeness, we
describe the sketch of the proof and specific remarks on the
LVQC theorem for fermionic systems in Appendix C.

From Eqs. (25) and (26), we see that the error of the
LVQC protocol consists of two parts. The first one stems
from the limitation of the expressive power of the ansatz
V (L̃), denoted by εLHST and εHST. This error can be improved
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|0〉A1 H •

Uq

• H

|0〉A2 H • • H
...|0〉A2L̃

H • • H

|0〉B1

V ∗
q

|0〉B2
...|0〉B2L̃

|0〉A1 H •

Uq

• H

|0〉A2 H •
...|0〉A2L̃

H •
|0〉B1

V ∗
q

|0〉B2
...|0〉B2L̃

FIG. 3. (a) Quantum circuit for measuring the cost function C f
HST(U (L̃)

f (τ ),V (L̃)
f (�θ )) for the local L̃-sites fermionic system mapped into 2L̃

qubits. The probability to obtain the measurement outcome of all 0’s for 2L̃ qubits is equal to 1 − C f
HST(U (L̃)

f (τ ),V (L̃)
f (�θ )). (b) Quantum circuit

for measuring the cost function CLHST(U (L̃)
f (τ ),V (L̃)

f (�θ )) when using Jordan-Wigner transformation. In this circuit, only the qubits A1 and B1

are measured, and the probability to find both qubits in the state |0〉 is equal to 1 − C (1)
LHST(U (L̃)

f (τ ),V (L̃)
f (�θ )).

by using, for example, a more expressive ansatz, appropriate
initial parameters, and sophisticated classical optimizers in
the optimization. The second one is an intrinsic error owing
to the nature of the LR bound, denoted by εLR = e−O(l0/ξ ).
If we wish to achieve εLR < δ for a small number δ > 0, the
parameter l0 should be chosen as l0 > O(ξ log (1/δ)). In other
words, the compilation size L̃ should be taken as

L̃ � O(ξ log (1/δ)) + dH + vτ + 2d + 1. (27)

This implies that the compilation size L̃ grows only logarith-
mically with the desired precision of εLR. Also, it should be
noted that L̃ does not depend on L.

IV. OUR PROPOSAL TO CALCULATE
THE GREEN’S FUNCTION

Here we describe a concrete protocol how to use LVQC
to calculate the Green’s function of (translationally-invariant)
fermionic systems. When simulating the total system of L
sites H (L)

f ,PBC with the ansatz V (L)
f (�θ ), our quantum-classical

hybrid algorithm proceeds as follows.
(1) Define a local subsystem consisting of L̃ sites and

specify the local Hamiltonian H (L̃)
f ,PBC, its time evolution op-

erator U (L̃)
f (τ ) with τ being a fixed time, and the local ansatz

V (L̃)
f (�θ ).

(2) Optimize the parameters �θ to minimize the cost func-
tions C f

LHST(U (L̃)
f (τ ),V (L̃)

f (�θ )) or C f
HST(U (L̃)

f (τ ),V (L̃)
f (�θ )) by

using the local L̃-sites system.
(3) Utilize the ansatz of L sites with the optimized �θopt,

i.e., V (L)
f (�θopt ), in the calculation of the Green’s function.

More concretely, we approximate the time evolution operator
e−iHt of the L-site system in Eq. (8) (and Fig. 2) at t =
nτ (n = 0, 1, 2, . . .) as e−iH (nτ ) ≈ (V (L)

f (�θopt ))n and calculate
the Green’s function by using the L-sites system.

We have several remarks for these steps.
First, in the step 1, the compilation size L̃ and the fixed time

τ are set to sufficiently suppress the error εLR from the LR
bound in Eqs. (25) and (26). Although we do not know exact

values of the several numbers in the LR bound such as the
velocity v or the length ξ a priori, one can choose L̃ and τ just
by hand or by performing the benchmark calculation for the
smaller system l < L in practice. Moreover, since the LVQC
theorem gives only an upper bound of the error, it may be
possible to choose L̃, which does not satisfy Eq. (22) and still
have the small εLR in actual systems, as we will numerically
see in the next section. We note that at least we can suppress
the error εLR exponentially by increasing l0 or L̃.

Second, in the step 2, the cost functions
C f

LHST(U (L̃)
f (τ ),V (L̃)

f (�θ )) or C f
HST(U (L̃)

f (τ ),V (L̃)
f (�θ )) in

the local L̃-sites system must be computed during the
optimization. When using a quantum computer made of
qubits, we map the local system into 2 × 2L̃ = 4L̃ qubits
and obtain the qubit representations of U (L̃)

f (τ ) and V (L̃)
f (�θ ),

denoted as Uq and Vq respectively. The two cost functions can
be evaluated by quantum circuits depicted in Fig. 3 (when we
use mapping other than the Jordan-Wigner transformation,
the circuits must be slightly modified). We also add that we
can use the mixed cost function like

C f
α (Uf ,Vf ) = αC f

HST(Uf ,Vf ) + (1 − α)C f
LHST(Uf ,Vf )

(28)

with some 0 � α � 1 to alleviate the so-called barren plateau
problem [47].

Third, in step 3, we repeatedly apply the approximation
of the time evolution operator for τ , (V (L)(�θ ))n ≈ (e−iHτ )n =
e−iH (nτ ). The maximum number of n = 0, 1, 2, . . . depends on
the time scale at which we want to simulate and the noise level
of quantum hardwares to execute the quantum circuit in Fig. 2.
We provide a concrete estimate of the maximum number of n
for the fermion Hubbard model in Sec. VI.

V. NUMERICAL DEMONSTRATION
FOR FERMI-HUBBARD MODEL

In this section, we perform a numerical simulation of the
Green’s function using the LVQC algorithm. We consider
the Fermi-Hubbard model on a Lx × Ly lattice under periodic
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boundary condition

H (L) = −t
∑
〈i, j〉

1�i, j�L

∑
σ=↑,↓

(c†
iσ c jσ + H.c.)

+ U
L∑

i=1

ni↑ni↓ − μ

L∑
i=1

∑
σ=↑,↓

niσ , (29)

where ciσ (c†
iσ ) is the creation (annihilation) operator of a

fermion at site i(= 1, 2, . . . , L) with spin σ (= ↑,↓) on a
lattice having L(= LxLy) sites, 〈i, j〉 denotes neighboring
sites, and niσ = c†

iσ ciσ is the fermion density operator. The
parameters t , U , and μ represent hopping integral, on-site
Coulomb interaction, and chemical potential, respectively. We
set t = 1 throughout this paper. Note that the Fermi-Hubbard
Hamiltonian (29) is local and exhibits the LR bound [48],
and hence the LVQC algorithm is applicable. We map the
fermionic Hamiltonian (29) to the qubit one by adopting the
Jordan-Wigner transformation [44],

ciσ → 1
2

(
Xiσ + iYiσ

)
Z→

iσ −1,

c†
iσ → 1

2

(
Xiσ − iYiσ

)
Z→

iσ −1, (30)

where Xiσ , Yiσ , and Ziσ are the Pauli matrices at qubit iσ , and
Z→

i−1 ≡ ∏
k<i Zk . We use the so-called snaked-shaped configu-

ration where the qubits are ordered as i↑ = i(= 1, 2, . . . , L)
and i↓ = 2L + 1 − i(= 2L, 2L − 1, . . . , L + 1) as shown in
Fig. 4(a). The total number of qubits is N = 2L. Note that the
form of Eq. (30) is consistent with Eq. (6). Then, the Fermi-
Hubbard Hamiltonian in the qubit representation is described
as

H (L) = − t

2

∑
〈i, j〉

1�i, j�L

∑
σ=↑,↓

(
Xiσ Xjσ + Yiσ Yjσ

)
Z↔

iσ , jσ

+ U

4

L∑
i=1

Zi↑Zi↓ + 1

2

(
μ − U

2

) L∑
i=1

∑
σ=↑,↓

Ziσ , (31)

where Z↔
i, j is the Jordan-Wigner string defined as

Z↔
i, j =

⎧⎪⎪⎨
⎪⎪⎩

1 (i = j ± 1)∏
i<k< j Zk (i < j − 1)∏
i>k> j Zk (i > j + 1)

. (32)

To calculate the Green’s function of the Fermi-Hubbard model
by using the method described in Secs. II and III, we first
prepare the ground state of the model (29). In this paper, we
prepare the ground state by the exact diagonalization based
on the Lanczos algorithm. Then, we optimize the HST or
LHST cost functions with the so-called variational Hamil-
tonian ansatz [49,50] inspired by the Trotter decomposition
of the time-evolution operator. To efficiently construct the
variational Hamiltonian ansatz, we split the model (31) into
parts that consist of terms that are sums of commuting compo-
nents [51]

H (L) = − t

2

4∑
r=1

P(L)
tr + U

4
P(L)

U + μ

2
P(L)

μ , (33)

(a)

1

11 219 01

8 7 6 5

42

= 1 = 3

= 2

= 4

(b)

3

FIG. 4. (a) Illustration of how fermionic modes are mapped to
qubits under the Jordan-Wigner transformation in a 4 × 4 lattice
Fermi-Hubbard model. The numbers in the circles denote the site
index i. The blue solid (red dashed) line represents the order of
Jordan-Wigner encoding for spin-up (spin-down) fermions. (b) Illus-
tration of the four sets of the hopping terms. The blue solid (green
dashed) line represents the horizontal hopping terms with r = 1
(r = 3), while the orange dash-dotted (purple dotted) line represents
the vertical hopping term with r = 2 (r = 4).

where

P(L)
tr =

∑
σ

∑
〈i, j〉r

1�i, j�L

(
Xiσ Xjσ + Yiσ Yjσ

)
Z↔

iσ , jσ , (34)

P(L)
U =

L∑
i=1

(
Zi↑Zi↓ − Zi↑ − Zi↓

)
, (35)

P(L)
μ =

L∑
i=1

∑
σ=↑,↓

Ziσ , (36)

and 〈i, j〉r represents the horizontal (r = 1, 3) and vertical
(r = 2, 4) hopping network as shown in Fig. 4(b). Note that
the horizontal hopping term P(L)

t1,3
(the vertical hopping terms

P(L)
t2,4

) vanishes on a one-dimensional lattice with Lx = 1 (Ly =
1). We also note that although P(L)

μ and P(L)
U terms commute

each other, they are separated for the separation of the param-
eters in the ansatz as explained below. Then, we construct the
variational Hamiltonian ansatz as

V (L)
d (�θ ) =

d∏
k=1

[
eiθ (k)

1 P(L)
μ eiθ (k)

2 P(L)
U

4∏
r=1

eiθ (k)
3 P(L)

tr

]
, (37)

where d denotes the depth of the ansatz and �θ = {θ (k)
j=1,2,3} de-

notes the variational parameters. Considering the translation
symmetry of the model, we set all of the hopping terms P(L)

tr

to have uniform variational parameters θ
(k)
3 . In addition, we ar-

range two variational parameters θ
(k)
1 and θ

(k)
2 for P(L)

μ and P(L)
U

terms to ensure enough expressive power of the ansatz. Thus,
the total number of the variational parameters of the ansatz
(37) is 3d . Note that the ansatz (37) respects symmetries and
locality of the original fermionic Hamiltonian (29), and hence
the LVQC algorithm is applicable (see Appendix C).

Under the above setup, we perform numerical simulations
by classical computers with the fast quantum circuit library
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Case ( )(a)

(b) Case ( )

(c) Case ( )

FIG. 5. An illustration of the relation of the whole lattice size
L and the compilation size L̃. The blue-colored area represents the
compilation size. (a) L̃ = 2 × 1 in a L = 6 × 1 lattice. (b) L̃ = 2 × 2
in a L = 4 × 2 lattice. (c) L̃ = 2 × 2 in a L = 4 × 4 lattice.

Qulacs [52]. We compute the cost function C f
LHST for the

L̃x × L̃y lattice Fermi-Hubbard model based on the circuits
shown in Fig. 3, where the lattice size of the compilation is
denoted as L̃ = L̃x × L̃y. Note that we choose to train only
C f

LHST and not C f
HST because C f

HST is suggested to have an
apparent barren plateau issue [47]. Examples of taking the
compilation size L̃ are illustrated in Fig. 5. In Secs. V A and
V B, we show the numerical results of Green’s function and
spectral function obtained by using the LVQC algorithm with
the three patterns of compilation size shown in Fig. 5. To im-
plement the target unitary e−iH (L̃)τ , we utilize the (first-order)
Trotter decomposition

U (L̃)
d (τ ) =

(
e−i μ

2 P(L̃)
μ

τ
d e−i U

4 P(L̃)
U

τ
d

4∏
r=1

ei t
2 P(L̃)

tr
τ
d

)d

, (38)

with a sufficiently large depth d = 100. The cost functions are
minimized by using the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) method implemented in SciPy [53] with the maxi-
mum iteration set to 128. The initial parameter set �θ0 is chosen
so as to the initial ansatz V (L̃)

d (�θ0) becomes equivalent to the

Trotter decomposition with the same depth d , i.e., V (L̃)
d (�θ0) ≡

U (L̃)
d (τ ). Note that we can set the Trotter circuit (38) as the

initial ansatz because we arrange two variational parameters
θ

(k)
1 and θ

(k)
2 for P(L)

μ and P(L)
U terms in the ansatz circuit (37).

Using the optimized parameter set �θopt obtained by the above
local compilation procedure, the real-space Green’s function
GR

iσ,i′σ ′ (t ) is calculated based on Eq. (7). The momentum space
representation of the Green’s function GR

kσ (t ) is calculated
based on Eq. (2) replacing the spatial coordinate x with the site
index i. Then, the spectral function is obtained using Eq. (4).
To numerically evaluate the integral in Eq. (4), we first dis-
cretize the time domain as t = {0,�t, 2�t, . . . , Nt�t} with a
small time step �t and a large integer Nt . Then, approximate

FIG. 6. The history of optimization of the cost function
C f

LHST(U (L̃)
100 (τ ),V (L̃)

d (�θ )) at the compilation size L̃ = 2 × 1. The
parameters are set to be U = 10 and τ = 0.1. The blue dash-
dotted line, orange dashed line, and green solid line represent the
results for d = 2, 3, 5, respectively. The black dotted lines repre-
sent the corresponding cost function for the Trotter decomposition
C f

LHST(U (L̃)
100 (τ ),V (L̃)

d (�θ0 )) with various values of the depth d .

the integral in Eq. (4) by using the trapezoidal rule,

G̃R
kσ (ω) ≈ �t

2

(
f0 + 2

Nt −1∑
�=1

f� + fNt

)
, (39)

where

f� ≡ ei(ω+iη)��t GR
kσ (��t ). (40)

Here, we note that the total simulation time T = Nt�t has to
be very large to perform a high-precision calculation of the
spectral function or DOS in the metallic (i.e., gapless) regime
because the spacing in the frequency space is proportional
to 1/T . Therefore, we restrict our following numerical sim-
ulations to the insulating (i.e., gapped) regime with a large
value of U , in which the spectral function or DOS can be
simulated with high accuracy by employing a relatively small
T to the integral (39). We also set μ = U/2 and consider
the half-filling regime where the particle-hole symmetry is
preserved.

A. One-dimensional case

First, we show the numerical result for Case (I) shown
in Fig. 5(a). Figure 6 shows the history of the cost func-
tion C f

LHST(U (L̃)
100 (τ ),V (L̃)

d (�θ )) during the optimization at the
compilation size L̃ = 2 × 1 and time τ = 0.1 for d = 2
(blue dash-dotted line), d = 3 (orange dashed line), and
d = 5 (green solid line). For comparison, we show the
value of the cost functions for the Trotter decomposition,
i.e., C f

LHST(U (L̃)
100 (τ ),V (L̃)

d (�θ0)) = C f
LHST(U (L̃)

100 (τ ),U (L̃)
d (τ )), for

various values of the depth d (black dotted lines). For
each depth, C f

LHST(U (L̃)
100 (τ ),V (L̃)

d (�θ )) converges to the optimal
value, which is significantly smaller than that of the corre-
sponding Trotter decomposition. For example, the optimized
value of the cost function C f

LHST(U (L̃)
100 (τ ),V (L̃)

d (�θopt )) for

033070-8



COMPUTATION OF GREEN’S FUNCTION BY LOCAL … PHYSICAL REVIEW RESEARCH 5, 033070 (2023)

FIG. 7. (a) The Green’s function GR
k (t ) at k = 0 and (b) the DOS ρ(ω) for the one-dimensional Fermi-Hubbard model on a 6 × 1 lattice at

U = 10 and half-filling. The black lines and cyan dots represent the results of the exact diagonalization and the LVQC algorithm, respectively.
The LVQC algorithm is performed by optimizing the local cost function C f

LHST with the compilation size L̃ = 2 × 1, time τ = 0.1, and depth
d = 5. The Green’s function is calculated in the time domain t ∈ [0, 40] with the step τ = 0.1. We take η = 0.1 for the calculation of the DOS.

d = 5 is 1.80 × 10−9, which is smaller than that of the
depth-80 Trotter decomposition 5.31 × 10−9. This can also be
verified in terms of the average gate fidelity,

F̄ (U,V ) =
∫

ψ

dψ |〈ψ |V †U |ψ〉|2, (41)

= 1

D + 1

(
1 + 1

D
|Tr(V †U )|2

)
, (42)

where U and V are assumed to act on a D-dimensional space,
and the integral in Eq. (41) is taken over all states |ψ〉 chosen
according to the Haar measure. Using Eq. (42), we obtain that
the optimized ansatz with d = 5 has F̄ (U (L̃)

100 (τ ),V (L̃)
d (�θopt )) =

1 − 4.83 × 10−9, which is comparable to the average gate
fidelity of the depth-80 Trotter circuit F̄ (U (L̃)

100 (τ ),V (L̃)
80 (�θ0)) =

1 − 1.31 × 10−9. These results indicate that the number of
gates needed to accurately approximate the time evolution
operator at the compilation size L̃ = 2 × 1 is successfully
reduced to less than 5/80 = 1/16 compared to the Trotter
decomposition.

Next, we examine the Green’s function calculated using
the LVQC algorithm. Figure 7 shows the Green’s function
of the 6 × 1 lattice Fermi-Hubbard model obtained by the
LVQC (cyan dots) and exact diagonalization (black solid
line). The LVQC result is calculated by using the opti-
mal parameter set �θopt obtained by minimizing the local

cost function C f
LHST(U (L̃)

100 (τ ),V (L̃)
d (�θ )) at the compilation size

L̃ = 2 × 1 and time τ = 0.1 with the ansatz depth d = 5.
Note that the average gate fidelity of the optimized cir-
cuit V (L)

d (�θopt ) is still better than the corresponding Trotter
circuit even when the optimized ansatz extended to the
whole lattice size L = 6 × 1. Indeed, the average gate fidelity
of the LVQC circuit is F̄ (U (L)

100 (τ ),V (L)
d (�θopt )) = 1 − 6.62 ×

10−6 for d = 5, which is comparable to that of the depth-30
Trotter circuit F̄ (U (L)

100 (τ ),V (L)
30 (�θ0)) = 1 − 3.75 × 10−6. The

long-time-scale dynamics at the time t = nτ (n ∈ N) is cal-
culated by repeatedly applying the optimized circuit V (L)

d (�θopt )

as (V (L)
d (�θopt ))n ≈ e−iH (L)nτ . As shown in Fig. 7(a), the LVQC

algorithm nicely reproduces the exact Green’s function for
a long time scale up to t = 400τ . Consequently, the DOS,
which is obtained by the Fourier transform of the Green’s
function in the time domain [see Eq. (5)], is also well repro-
duced by the LVQC method as shown in Fig. 7(b).

Here, we investigate the accuracy of the LVQC algorithm
for computing the Green’s function. We first examine the
dependence of the accuracy on the depth of the ansatz d ,
which is essential to increase the expressive power of the
ansatz and reduce optimization errors εLHST and εHST. To see
the accuracy of the LVQC algorithm, we examine the absolute
error (AE) of the Green’s function

δGk(t ) = ∣∣GR,exact
k (t ) − GR,approx

k (t )
∣∣, (43)

where GR,exact
k and GR,approx

k are the exact and approximate
value of the Green’s function, respectively. Because of the
symmetry of the up and down spins in the Fermi-Hubbard
model, we consider only the up spin component of the Green’s
function, and spin index σ is omitted, i.e., GR

k (t ) ≡ GR
k↑(t ).

Figure 8(a) shows the AE of the Green’s function δGk(t ) at
t = τ and k = 0 as a function of the inverse of the depth d .
The exact value GR,exact

k is prepared by the exact diagonaliza-
tion, while the approximate value GR,approx

k is computed by
the LVQC method with �θ = �θopt (blue circles) or the corre-
sponding Trotter decomposition with �θ = �θ0 (grey diamonds).
As seen from Fig. 8(a), the AE δGk=0(τ ) of the LVQC
method is much smaller than that of the Trotter decomposition
in a wide range of d . For example, the value of δGk=0(τ )
of the LVQC method with d = 5 is 1.22 × 10−4, which is
about four times smaller than the corresponding value of
the Trotter decomposition 4.84 × 10−4. On the other hand,
the AE δGk=0(τ ) of the LVQC and Trotter decomposition
exhibit similar 1/d dependence and monotonically decreases
with increasing the depth d . The 1/d dependence for both
LVQC and Trotter decomposition are well fitted in the form
of α/d2 + β/d , where α and β are positive fitting parameters.
Note that the well-known scaling of O(1/d ) [54] for the
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FIG. 8. (a) The AE of the Green’s function δGk=0(τ = 0.1) and (b) the MAE of the spectral function δAk=0 for the one-dimensional
Fermi-Hubbard model on a 6 × 1 lattice at U = 10 and half-filling. The spectral function is calculated by the Fourier transformation of the
Green’s function GR

k (t ) at t ∈ [0, 50] with the step τ = 0.1. The broadening is taken as η = 0.1. The MAE is calculated by setting ωc = 15
and Nω = 1000. The blue dots represent the results obtained by the LVQC method with the compilation size L̃ = 2 × 1 and time τ = 0.1. The
optimization is performed for the local cost function C f

LHST. The grey diamonds represent the results obtained by the Trotter decomposition
of the time evolution operator for the 6 × 1 lattice. The blue dashed (grey dotted) line represents the fitting of the data of the LVQC (Trotter
decomposition) by a quadratic function y = αx2 + βx based on the non-linear least squares. The values of the coefficients α, β and the
coefficient of determination R2 are shown in the legend.

first-order Trotter decomposition just dictates the worst-case
upper bound in terms of the operator norm. Therefore, the
scaling of α/d2 + β/d for the AE δGk=0(τ ) of the Trotter
decomposition is not inconsistent with the well-known results
for the Trotter error. Indeed, some previous studies reported
that the error of the first-order Trotter decomposition scales
as O(α/d2 + β/d ) in some specific cases [55,56], although
the situations are different from this study. On the other hand,
we interpret that the AE of the LVQC method inherits the
scaling form α/d2 + β/d of the Trotter decomposition owing
to the similarity between the variational Hamiltonian ansatz
and the Trotter circuit. Here, we notice that the result of the
LVQC possesses β ≈ 0, and hence the scaling against d is
better than that of the first-order Trotter decomposition. This
might be caused by the fact that the optimization of the LVQC
protocol is performed to minimize the error of the first-order
Trotter circuit. Similar behavior is observed in the mean ab-
solute error (MAE) of the spectral function in the region of
ω ∈ [−ωc, ωc],

δAk = 1

2Nω + 1

Nω∑
n=−Nω

∣∣Aexact
k (ωn) − Aapprox

k (ωn)
∣∣, (44)

where 2Nω + 1 is the total number of data points, ωn =
ωcn/Nω, and Aexact

k (Aapprox
k ) is the exact (approximate) value

of the spectral function. Figure 8(b) shows the MAE of the
spectral function δAk at k = 0 as a function of the inverse
of the depth d . We take ωc = 15 and Nω = 1000. The exact
value Aexact

k is prepared by the exact diagonalization, while the
approximate value Aapprox

k is computed by the LVQC method
with �θ = �θopt (blue circles) or the corresponding Trotter de-
composition with �θ = �θ0 (grey diamonds). The MAE δAk=0

of the LVQC method is smaller than that of the Trotter de-
composition in a wide range of d . For example, the value of
δAk=0 of the LVQC method with d = 5 is 7.55 × 10−4, which

is about two times smaller than the corresponding value of
the Trotter decomposition 1.46 × 10−3. Note that the accu-
racy of the LVQC method in terms of δAk is not so good
as that in terms of δGk(τ ). This is due to the accumulation
of errors in a large time regime by repeatedly applying the
approximate time evolution operator. On the other hand, the
1/d dependence of the MAE δAk for both LVQC and Trotter
decomposition are well fitted in the form of α/d2 + β/d in
the same way as the AE δGk.

We also investigate the dependence of the accuracy on the
system size by fixing the compilation size L̃. Figure 9 shows
the AE δGk=0(τ ) as a function of the size of the lattice L.
Since the exact diagonalization of the full Hamiltonian H (L) is
a computationally hard task when the system size L is large,
the exact value GR,exact

k is substituted by the Trotter decompo-
sition with a sufficiently large depth d = 100. We see that the
AE δGk=0(τ ) of the LVQC method is much smaller than that
of the Trotter decomposition in a wide range of L. For exam-
ple, the value of δGk=0(τ ) of the LVQC method with L = 14
is 2.21 × 10−4, which is about four times smaller than the cor-
responding value of the Trotter decomposition 8.93 × 10−4.
In addition, we notice that the AE for both LVQC and Trotter
decomposition are hardly altered with increasing the system
size L. This can also be understood based on the similarity be-
tween the variational Hamiltonian ansatz of the LVQC method
and the Trotter decomposition. Owing to the existence of the
LR bound in the Fermi-Hubbard model, the Green’s function
GR

k (τ ) is considered as a local observable when the time τ

is sufficiently small. The Trotter decomposition can simulate
such a local observable with complexity independent of the
system size [57]. This is consistent with the L dependence of
the AE δGk(τ ) for the Trotter decomposition shown in Fig. 9
(grey diamonds). The results for the LVQC method (blue
circles) just inherit this property of the Trotter error owing to
the similarity between the variational Hamiltonian ansatz and
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FIG. 9. The AE of the Green’s function δGk=0(τ = 0.1) for the
one-dimensional Fermi-Hubbard model as a function of the lattice
size L. The parameters are set to be U = 10, d = 5, and τ = 0.1.
The blue dots represent the results obtained by the LVQC method,
in which the time evolution operator for the L × 1 lattice model is
prepared through the optimization of the local cost function C f

LHST

at the compilation size L̃ = 2 × 1. The grey squares represent the
results obtained by the Trotter decomposition of the time evolution
operator for the L × 1 lattice model.

the Trotter circuit. We also note that the L dependence of the
AE δGk(τ ) for the LVQC method is consistent with Eq. (25)
derived in Ref. [30], which states that the local cost function
describing the local error of the ansatz hardly increases when
the whole system size L is increased while the compilation
size L̃ is fixed.

B. Two-dimensional cases

Next, we show the numerical result for Case (II) and (III)
shown in Figs. 5(b) and 5(c). Figure 10 shows the history
of the cost function C f

LHST(U (L̃)
100 (τ ),V (L̃)

d (�θ )) during the opti-
mization at the compilation size L̃ = 2 × 2 and time τ = 0.1
for d = 2 (blue dash-dotted line), d = 3 (orange dashed line),
and d = 5 (green solid line). Similarly to the one-dimensional
case, for each depth, C f

LHST(U (L̃)
100 (τ ),V (L̃)

d (�θ )) converges to the
optimal value, which is significantly smaller than that of the
corresponding Trotter decomposition. For example, the value
of the local cost function C f

LHST(U (L̃)
100 (τ ),V (L̃)

d (�θ )) for d = 5
is 6.85 × 10−9, which is comparable to that of the depth-90
Trotter decomposition with 2.43 × 10−9. In addition, the op-
timized ansatz with d = 5 has F̄ (U (L̃)

100 (τ ),V (L̃)
d (�θopt )) = 1 −

2.40 × 10−8, which is comparable to the average gate fidelity
of the depth-80 Trotter circuit F̄ (U (L̃)

100 (τ ),V (L̃)
80 (�θ0)) = 1 −

2.80 × 10−8. These results indicate that the number of gates
needed to accurately approximate the time evolution operator
at the compilation size L̃ = 2 × 2 is successfully reduced to
about 5/90 = 1/18 compared to the Trotter decomposition.

The Green’s function and DOS of the 4 × 2 and 4 × 4
lattice Fermi-Hubbard model calculated using the LVQC al-
gorithm are shown in Figs. 11 and 12, respectively. The
LVQC algorithm is performed through the minimization of
the cost function C f

LHST(U (L̃)
100 (τ ),V (L̃)

d (�θ )) at the compilation
size L̃ = 2 × 2 and time τ = 0.1 with the ansatz depth d = 5.

FIG. 10. The history of optimization of the cost function
C f

LHST(U (L̃)
100 (τ ),V (L̃)

d (�θ )) at the compilation size L̃ = 2 × 2. The
parameters are set to be U = 10 and τ = 0.1. The blue dash-
dotted line, orange dashed line, and green solid line represent the
results for d = 2, 3, 5, respectively. The black dotted lines repre-
sent the corresponding cost function for the Trotter decomposition
C f

LHST(U (L̃)
100 (τ ),V (L̃)

d (�θ0 )) with various values of the depth d .

In the simulation of the 4 × 4 lattice model (Fig. 12), we
reduce the computational costs by using the symmetry of
the Hamiltonian (see Appendix B). In Fig. 11, we compare
the results of the LVQC algorithm with that of the Trot-
ter decomposition with a sufficiently large depth d = 100,
since the exact calculation of the Green’s function is a com-
putationally hard task for the 4 × 2 lattice Fermi-Hubbard
model. The LVQC algorithm nicely reproduces the almost
exact Green’s function and DOS of the 4 × 2 lattice Fermi-
Hubbard model. We also ensure that the average gate fidelity
of the optimized circuit V (L)

d (�θopt ) at L = 4 × 2 is better
than the corresponding Trotter circuit. Specifically, the op-
timized ansatz extended to the whole lattice size L = 4 ×
2 has F̄ (U (L)

100 (τ ),V (L)
d (�θopt )) = 1 − 1.04 × 10−7 for d = 5,

which is comparable to the average gate fidelity of the depth-
80 Trotter circuit F̄ (U (L)

100 (τ ),V (L)
80 (�θ0)) = 1 − 8.34 × 10−8. In

Fig. 12, we compare the results of the LVQC algorithm with
the exact value shown in Ref. [58], in which the DOS is
obtained by the Lanczos method. Note that the real-time
Green’s function is not computed in Ref. [58] because the
Lanczos method directly calculates the Green’s function in the
frequency domain. The LVQC algorithm nicely reproduces
the overall peak structure of the exact DOS of the 4 × 4
lattice Fermi-Hubbard model. Since the accuracy of the LVQC
method for computing the Green’s function is hardly altered
with increasing the system size (see Fig. 9), we expect that
the LVQC method is also valid for accurately calculating the
Green’s function of the classically-intractable size of lattice
more than 4 × 4 lattice.

Figure 13 shows the dependence of the accuracy of the
LVQC method on the depth of the ansatz d . We see that the
AE δGR

k (τ ) [Eq. (43)] and MAE δAk [Eq. (44)] at k = 0 of
the LVQC method is much smaller than that of the Trotter
decomposition in a wide range of d . For example, the value of
δGk=0(τ ) of the LVQC method with d = 5 is 4.12 × 10−5,

033070-11



SHOTA KANASUGI et al. PHYSICAL REVIEW RESEARCH 5, 033070 (2023)

FIG. 11. (a) The Green’s function GR
k (t ) at k = 0 and (b) the DOS ρ(ω) for the two-dimensional Fermi-Hubbard model on a 4 × 2 lattice at

U = 10 and half-filling. The cyan circles represent the results obtained by the LVQC algorithm, which is performed through the minimization
of the cost function C f

LHST on a 2 × 2 lattice with d = 5 and τ = 0.1. The black lines represent the almost exact results obtained by the Trotter
decomposition with the depth d = 100. The Green’s function is calculated in the time domain t ∈ [0, 40] with the step τ = 0.1. We take
η = 0.1 for the calculation of the DOS.

which is about three times smaller than the corresponding
value of the Trotter decomposition 1.43 × 10−4. The value
of δAk=0 of the LVQC method with d = 5 is 3.70 × 10−4,
which is about three times smaller than the corresponding
value of the Trotter decomposition 1.28 × 10−3. In addition,
the 1/d dependence of the AE δGR

k (τ ) and MAE δAk are well
fitted in the form of α/d2 + β/d for both LVQC and Trotter
decomposition. This result is the same as the one-dimensional
case (Sec. V A) and interpreted as that the LVQC method
inherits the scaling property of the Trotter error because of
the similarity between the variational Hamiltonian ansatz and
the Trotter circuit.

VI. RESOURCE ESTIMATION

In this section, we discuss the feasibility of the LVQC
method from the viewpoint of the computational resource. We

estimate the gate count and the number of shots needed to
compute the spectral function for a given precision. Unless
otherwise noted, we consider the Fermi-Hubbard model on
a two-dimensional square lattice under a periodic boundary
condition at half-filling. We also assume that the total number
of sites L is even and the compilation size is L̃ = 2 × 2.

Let the spectral function should be computed within the
precision ε. More precisely, MAE of the spectral function
[Eq. (44)] is bounded as δAk � ε. We also require the spectral
function to have enough resolution for any frequency. As
discussed in Ref. [20], this requirement is satisfied by setting
the times step �t and the total integration time T as

�t � π

�Emax
, T � 2π

�Emin
, (45)

where �Emax (min) is the largest (smallest) energy difference
between any two energy levels. We set these values so that

FIG. 12. (a) The Green’s function GR
k (t ) at k = 0 and (b) the DOS ρ(ω) for the two-dimensional Fermi-Hubbard model on a 4 × 4 lattice at

U = 10 and half-filling. The cyan circles represent the results obtained by the LVQC algorithm, which is performed through the minimization
of the cost function C f

LHST on a 2 × 2 lattice with d = 5 and τ = 0.1. The black dotted line in panel (a) is for visibility. The black line in panel
(b) represents the exact value of the DOS taken from Ref. [58]. The Green’s function is calculated in the time domain t ∈ [0, 40] with the step
τ = 0.1. We take η = 0.1 for the calculation of the DOS.
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FIG. 13. (a) The AE of the Green’s function δGk=0(τ = 0.1) and (b) the MAE of the spectral function δAk=0 for the two-dimensional
Fermi-Hubbard model on a 4 × 2 lattice at U = 10 and half-filling. The spectral function is calculated by the Fourier transformation of the
Green’s function GR

k (t ) at t ∈ [0, 50] with the step τ = 0.1. The broadening is taken as η = 0.1. The MAE is calculated by setting ωc = 15
and Nω = 1000. The blue dots represent the results obtained by the LVQC method with the compilation size L̃ = 2 × 2 and time τ = 0.1. The
optimization is performed for the local cost function C f

LHST. The grey diamonds represent the results obtained by the Trotter decomposition
of the time evolution operator for the 4 × 2 lattice. The blue dashed (grey dotted) line represents the fitting of the data of the LVQC (Trotter
decomposition) by a quadratic function y = αx2 + βx based on the non-linear least squares. The values of the coefficients α, β, and the
coefficient of determination R2 are shown in the legend.

Nt = T/�t is an integer. Then, the Fourier transform of
GR

kσ (t ) is discretized as Eq. (39). Let εdisc be the discretization
error.

Next, we consider AE (43) of the Green’s function. In the
LVQC method, the error consists of

δGk(t ) = ε′(t ) + εstat, (46)

where ε′(t ) and εstat denote the error coming from the infi-
delity of the time evolution operator and the statistical error,
respectively. Although ε′(t ) depends on the details of the
ansatz, qualitatively, it is expected to behave as follows. In
the LVQC method, the variational operator V is compiled for
a finite time-interval τ that is much smaller than T in general.
Therefore, the time evolution operator at t = Ntτ behaves as
U (t ) � (V + �V )Nt � V + Nt�V , where �V is the error of
the variational operator. This means that the error accumulates
linearly in time. Such behavior can be observed also in the
numerical results shown in Fig. 14, which indicates that the
AE of the Green’s function increases linearly over time. From
this observation, we assume that ε′(t ) is a linear function of t
as

ε′(t ) � kt, (47)

for some k > 0. In particular, ε′(t ) is upper-bounded by ε′(T ),
ε′(t ) � ε′(T ). Putting these quantities into the definition of
the spectral function and its MAE, we obtain

1

π
((ε′(T ) + εstat)Nt�t + εdisc) < ε. (48)

Below, we ignore εdisc since it is the order of (�t )2. We find
that the error of Green’s function should satisfy

ε′(T ), εstat �
πε

T
. (49)

FIG. 14. Time dependence of the AE δGk=0(t ) for the LVQC
method. The upper (lower) panel shows the result of the one-
dimensional 6 × 1 (two-dimensional 4 × 2) site lattice with the
compilation size L̃ = 2 × 1 (L̃ = 2 × 2). The parameter settings of
the upper and lower panels are the same as Figs. 7 and 11, respec-
tively. The grey lines represent the fitting of the data by a linear
function y = cx based on the least squares method. The values of
the coefficient c are shown in the legend.
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These inequalities for ε′(T ) and εstat provide lower bounds of
the gate count and the number of shots required, respectively.

First, we discuss how the inequality for ε′(T ) relates to the
gate count. While we have given a general argument so far,
we make several assumptions for ε′(t ) based on our numerical
simulation. The coefficient k in Eq. (47) is related to the depth
of the ansatz through the results shown in Fig. 13(a) that
relates ε′(t ) to d at t = τ = 0.1. Thus, we obtain

k = 10α

d2
+ 10β

d
, (50)

where α = 1.13 × 10−3 and β = 2.61 × 10−12. From the
condition Eq. (49), the depth of the ansatz should satisfy

d � 2α

β

1√
1 + 2παε/(5β2T 2) − 1

. (51)

We note that this requirement for d is quite conservative.
Indeed, Eq. (51) becomes d � 95 for ε = 10−3, T = 50 while
Fig. 13(b) indicates that d = O(1) is enough for the similar
accuracy.

The depth of the ansatz directly relates to the complexity of
the circuit to compute Green’s function shown in Fig. 2. Here,
we regard the Rz gate and CNOT gate as elementary gate sets
and count the number of these gates. The leading contribution
is V (�θ ). Recalling that a unitary operator whose form is e−iθP

contains one Rz gate and 2n CNOT gates if P is an n-qubit
Pauli string, the total number of Rz gate in V (L)

d is 13Ld and
that of CNOT gate is 4(4L3/2 + 7L − 4L1/2)d . The derivation
of this result is shown in Appendix D. The rest contribution
comes from controlled P(n)

a and P(m)
b gates. The number of

CNOT gates in these controlled gates is equal to the length of
P(n)

a and P(m)
b as a Pauli string. Without loss of generality, we

can set a = 1 due to the translation symmetry. Thanks to the
point group symmetry, the most distant site from a = 1 is the
point at the lower right corner of the square with side length
L/2 + 1 that is b = (L + L1/2 + 2)/2 when L/2 is even and
b = (L + L1/2)/2 when L/2 is odd. (See Appendix B 2 for the
spatial symmetry of the Fermi-Hubbard model on a square
lattice.) We adopt the former case below. Therefore, we obtain

NRz = 13LNt d, (52)

NCNOT = 4(4L3/2 + 7L − 4L1/2)Nt d + L + L1/2 + 2

2
. (53)

The number of shots required per an element of Green’s
function Nshots at a given time is straightforwardly estimated
as

Nshot ∼ 1

(πε/T )2
, (54)

due to the relation εstat ∝ 1/
√

Nshots. To compute the spectral
function, we need (

√
L + 2)(

√
L + 4)/4 independent ele-

ments of Green’s function (see Appendix B) and Nt -times
executions of the quantum circuit. Thus, the total number of
shots in the whole process reads

Ntot ∼ Nt (L + 6L1/2 + 8)

4(πε/T )2
. (55)

For instance, let us consider the LVQC method for an
L = 20 × 20 lattice, and say ε = 0.01. We also require the

same time resolution and interval as the simulation on the
4 × 2 lattice, which are τ = 0.1 and T = 50. Putting these
values into Eqs. (52), (53), and (55), we find a conservative
requirement of resources as

d � 30, (56)

NRz ∼ 7.8 × 107, (57)

NCNOT ∼ 2.1 × 109, (58)

Ntot ∼ 1.7 × 1011. (59)

The gate counts using the Trotter decomposition can be es-
timated in the same way by adopting α = 3.41 × 10−3 and
β = 3.47 × 10−5 in Eq. (51), and we get

dTrotter � 68, (60)

NTrotter
Rz

∼ 1.7 × 108, (61)

NTrotter
CNOT ∼ 4.7 × 109. (62)

The number of shots is the same as in the LVQC method since
it does not depend on α and β. Our results suggest that the
LVQC method is more practical than Trotter decomposition
regarding gate counts. We stress again that the estimation
of the gate counts and the number of shots here is a very
conservative one (upper bound) to ensure the accuracy of the
calculated Green’s function.

VII. DISCUSSION AND CONCLUSION

In this paper, we proposed an efficient method to compute
the Green’s function on quantum computers by utilizing the
LVQC algorithm. In the LVQC algorithm, we first execute the
local compilation procedure on small-scale quantum devices
or classical simulators and then approximately implements the
time evolution operator for a large-scale quantum many-body
system by a shallow-depth circuit. The Green’s function is
computed through the measurements of the time evolution
circuit prepared by the LVQC protocol. Since the LVQC al-
gorithm is useful to reduce the computational cost needed
to simulate quantum dynamics on a broad level of quantum
computers from NISQ devices to FTQCs, our method will be
valid to efficiently compute Green’s function for large-scale
quantum many-body systems in various stages of the quantum
computing era.

To see the validity of our LVQC-based method, we
performed numerical simulations for the one- and two-
dimensional Fermi-Hubbard model. We showed that the
LVQC-based method nicely reproduces the exact Green’s
function and DOS for both one- and two-dimensional cases.
In addition, we verified that our LVQC-based method can
compute the Green’s function more efficiently and accurately
compared to a standard approach in which the time evolu-
tion operator is implemented using the Trotter decomposition.
Specifically, by calculating the AE of the Green’s function
and the MAE of the spectral function, we showed that our
LVQC-based method is more accurate than the same-depth
Trotter decomposition in a wide range of parameter regimes.
The formal estimation of the gate count also indicates that
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our LVQC-based method has a practical advantage against
the Trotter decomposition. Although we focused on the one-
particle Green’s function at zero temperature throughout this
paper, our LVQC-based method can be straightforwardly ex-
tended to compute other quantities, such as Green’s function
at finite-temperature and linear response functions.

We here discuss some remarks on our method and numeri-
cal results. First, there is a limitation to the choice of the ansatz
in our LVQC-based method. As mentioned in Sec. III, for the
fermionic Hamiltonian, the LVQC algorithm works only when
the ansatz circuit is constructed in a form that preserves the
parity of the number of fermions. Note that the variational
Hamiltonian ansatz (37) adopted in Sec. V satisfies this re-
quirement. Equivalently, if we wish to compute the Green’s
function for the spin or bosonic Hamiltonian using the LVQC
algorithm, we have to adopt a local ansatz that is constructed
from only local gates. Therefore, we need to carefully choose
the ansatz considering the nature of the target Hamiltonian.
Second, we remark that our numerical results in Sec. V show
that the LVQC algorithm nicely reproduces the exact results
even though the compilation size L̃ is much smaller than the
lower bound given by Eq. (22). Here, we estimate the lower
bound of the compilation size for d = 5 and τ = 0.1, which
is the parameter set adopted in the numerical simulations in
Figs. 7, 11, and 12. Since the Fermi-Hubbard model (29)
is composed of the on-site interaction and nearest-neighbor
hopping, the range of interaction is dH = 1. Although the
value of velocity v is unclear, we can expect that vτ is not so
large for τ = 0.1 because v = O(1) in general. Hence, we can
estimate the lower bound of the compilation size as L̃ > 12
for d = 5 and τ = 0.1 from Eq. (22). On the other hand, the
results for the one-dimensional (two-dimensional) model in
Fig. 7 (Figs. 11 and 12) are obtained by setting L̃ = 2 (L̃ = 4),
which is smaller than the estimated lower bound. Therefore,
we can expect that Eq. (22) may overestimate the lower bound
of the proper compilation size. A more detailed analysis of
the relation between the error and the compilation size in the
LVQC algorithm is left for future work.

We believe that our paper will open an avenue for simulat-
ing the Green’s function for large-scale quantum many-body
systems, and encourage future research toward the realization
of quantum advantage for practical problems in condensed
matter physics, quantum chemistry, and material science.
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APPENDIX A: FERMION-TO-QUBIT MAPPING
AND MAJORANA FERMIONS

In this Appendix, we show that one can choose to describe
a fermion-to-qubit mapping in the following form:

ca → 1
2

(
P(1)

a + iP(2)
a

)
,

c†
a → 1

2

(
P(1)

a − iP(2)
a

)
, (A1)

where P(1)
a and P(2)

a are Pauli operators satisfying
{P(n)

a , P(m)
b } = 2δabδnm. Equation (A1) is a special case of

Eq. (6). To derive Eq. (A1), we describe the fermionic
operators in terms of Majorana fermions,

ca = 1
2

(
γ (1)

a + iγ (2)
a

)
,

c†
a = 1

2

(
γ (1)

a − iγ (2)
a

)
, (A2)

where γ (n)
a (n = 1, 2) are the Majorana operators. Since the

Majorana operators γ (n)
a obey a Clifford algebra as (γ (n)

a )† =
γ (n)

a and {γ (n)
a , γ

(m)
b } = 2δabδnm, they can be represented by

the Pauli matrices P(n)
a [59]. Thus, by setting γ (n)

a → P(n)
a in

Eq. (A2), we obtain Eq. (A1). Indeed, standard techniques
such as Jordan-Wigner encoding [44], Bravyi-Kitaev encod-
ing [45] and parity encoding [46] take the form of Eq. (A1).

APPENDIX B: SYMMETRY-BASED REDUCTION
OF MEASUREMENTS TO COMPUTE

THE GREEN’S FUNCTION

As discussed in Sec. II B, we can calculate the real-time
Green’s function by using the quantum circuit shown in Fig. 2,
whose measurement outcome gives the approximate value
of K (n,m)

a,b (t ) defined by Eq. (8). When the total number of

all possible patterns of K (n,m)
a,b with respect to (a, b; n, m) is

Ncirc, we need to perform such measurements for Ncirc distinct
quantum circuits to obtain all components of the Green’s
function. In this Appendix, we show that not all components
of K (n,m)

a,b (t ) are independent by considering the symmetry of
the target system. This indicates that we can compute all the
components of the Green’s function by measuring some dis-
tinct quantum circuits less than Ncirc. Note that this approach
is rigorously applicable only when the ansatz V (�θ ) commutes
with the corresponding symmetry operations of the original
fermionic Hamiltonian H .

1. General theory

Here, we demonstrate how a component of K (n,m)
a,b (t ) is

connected to other components by symmetry.

a. U(1) symmetry

First, we consider the U(1) symmetry, which leads to the
conservation of the particle number of the system. We here
assume that the fermion-to-qubit mapping is performed in the
form of Eq. (A1). Considering the inverse transformation of
Eq. (6), the measurement outcome K (n,m)

a,b (t ) defined by Eq. (8)
can be rewritten in terms of fermionic operators as

K (1,1)
a,b (t ) = Re〈(ca(t ) + c†

a(t ))(cb + c†
b )〉0,

K (2,2)
a,b (t ) = −Re〈(ca(t ) − c†

a(t ))(cb − c†
b )〉0,

K (1,2)
a,b (t ) = −iRe〈(ca(t ) + c†

a(t ))(cb − c†
b )〉0,

K (2,1)
a,b (t ) = −iRe〈(ca(t ) − c†

a(t ))(cb + c†
b )〉0, (B1)

where c(†)
a (t ) ≡ eiHt c(†)

a e−iHt and 〈· · · 〉0 ≡ 〈ψ0| · · · |ψ0〉. If the
Hamiltonian H preserves the U(1) symmetry,

〈ca(t )cb〉0 = 〈c†
a(t )c†

b〉0 = 0, (B2)
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is satisfied since the particle number of the system is pre-
served. From Eqs. (B1) and (B2), we obtain

K (1,1)
a,b (t ) = K (2,2)

a,b (t ) = Re〈ca(t )c†
b + c†

a(t )cb〉0,

K (1,2)
a,b (t ) = −K (2,1)

a,b (t ) = Re〈ca(t )c†
b − c†

a(t )cb〉0. (B3)

Thus, the number of independent combinations of (n, m) is
not 4 but 2, e.g., (1,1) and (1,2). Note that a similar result is
also obtained in Ref. [15].

b. Other symmetries

We can further reduce the number of independent compo-
nents of K (n,m)

a,b (t ) by considering symmetries other than U(1)
symmetry. Suppose the Hamiltonian H is invariant under a
symmetry operation R̂ as

[H, R̂] = 0. (B4)

Using Eqs. (B3) and (B4), we obtain

K (n,m)
a,b (t ) = Re〈eiHt (R̂caR̂−1)e−iHt (R̂c†

bR̂−1)〉0

+ ζnmRe〈eiHt (R̂c†
aR̂−1)e−iHt (R̂cbR̂−1)〉0, (B5)

where

ζnm =
{+1 for n = m,

−1 for n �= m.
(B6)

In the following, we apply Eq. (B5) to specific symmetries in
quantum many-body systems.

Time-reversal symmetry. Suppose that the fermionic opera-
tors are specified by a spin index σ (= ↑,↓), i.e., a = σ . Then,
time-reversal operation �̂ is defined as

�̂c↑�̂−1 = c↓, �̂c†
↑�̂−1 = c†

↓,

�̂c↓�̂−1 = −c↑, �̂c†
↓�̂−1 = −c†

↑. (B7)

For a time-reversal symmetric Hamiltonian (i.e., [H, �̂] = 0),
by setting R̂ = �̂ in Eq. (B5), we obtain

K (n,m)
↑,↑ (t ) = K (n,m)

↓,↓ (t ),

K (n,m)
↑,↓ (t ) = −K (n,m)

↓,↑ (t ). (B8)

Thus, the number of independent combinations of the spin
indices is not 4 but 2, e.g., (↑,↑) and (↑,↓).

Space group symmetry. The spatial symmetry of periodic
materials can be generally classified based on the space group
G. This means that the Hamiltonian is invariant under the
space group operations ĝ� ∈ G, i.e., [H, ĝ�] = 0. Suppose that
the transformation of the index a(= 1, 2, . . . , M ) under a
space group operation ĝ� is described by a permutation π�;

π� =
(

1 2 · · · M
π�(1) π�(2) · · · π�(M )

)
. (B9)

Then, the fermionic operators are transformed under the space
group operation ĝ� as

ĝ�caĝ−1
� = cπ�(a), ĝ�c†

aĝ−1
� = c†

π�(a). (B10)

From Eqs. (B5) and (B10), we obtain

K (n,m)
a,b (t ) = K (n,m)

π�(a),π�(b)(t ). (B11)

Note that the importance of considering the space group sym-
metry to reduce the resource for quantum simulation is also
pointed out for symmetry-adopted VQE [60].

Particle-hole symmetry. Suppose the index a denotes a site
index on a lattice model. When the lattice has a bipartite
structure composed of sublattices A and B, the particle-hole
transformation �̂ is defined as

�̂ca�̂
−1 = ηac†

a, (B12)

where

ηa =
{+1 for a ∈ A sublattice,
−1 for a ∈ B sublattice. (B13)

For particle-hole symmetric systems, Eqs. (B5) and (B12)
leads to

K (n,m)
a,b (t ) =

{
(1 + ηaηb)Re〈ca(t )c†

b〉0 for n = m,

i(1 − ηaηb)Re〈ca(t )c†
b〉0 for n �= m.

(B14)

This indicates that only the diagonal components of K (n,m)
a,b (t )

with respect to (n, m) is nonzero when the sites a and b
belong to same sublattices (i.e., ηaηb = 1). On the other hand,
only the off-diagonal components of K (n,m)

a,b (t ) with respect to
(n, m) is nonzero when the sites a and b belong to different
sublattices (i.e., ηaηb = −1).

2. Application to Fermi-Hubbard model

Next, we apply the above results to the Fermi-Hubbard
model used in our numerical simulations in Sec. V, and
demonstrate how to reduce the number of measurements
in calculations of the Green’s function. As seen from the
Hamiltonian (29), the fermionic mode in the Fermi-Hubbard
model is specified by the index of sites i(= 1, 2, . . . , L) and
spin σ (= ↑,↓), i.e., a = iσ and M = 2L. By adopting the
Jordan-Wigner encoding Eq. (30), we obtain Ncirc = 4M2 =
16L2. Now, we consider the symmetry of the Fermi-Hubbard
model. From Eq. (29), we see that the Fermi-Hubbard model
always preserves the U(1) symmetry and time-reversal sym-
metry. The particle-hole symmetry is preserved only at the
half-filling (i.e., μ = U/2) [38]. The detail of the space
group symmetry depends on the lattice structure. For a one-
dimensional lattice, the Hamiltonian is invariant under point
group operations of C2. On the other hand, the Hamiltonian is
invariant under point group operations of C4v (C2v) for a two-
dimensional square (rectangular) lattice with Lx = Ly (Lx �=
Ly). In addition to such point group operations, translation
symmetry is preserved under periodic boundary conditions.

For concreteness, let us consider a two-dimensional square
lattice under a periodic boundary condition. When the site
number L is even, the number of independent combinations
of site indices (i, j) under Eq. (B10) is (

√
L + 2)(

√
L + 4)/8.

By taking into account the results for U(1) symmetry (B3)
and time-reversal symmetry (B8), the number of circuits
needed to obtain all components of the Green’s function is re-
duced to 4 × (

√
L + 2)(

√
L + 4)/8 = (

√
L + 2)(

√
L + 4)/2

from 16L2. At half-filling, this is further reduced to (
√

L +
2)(

√
L + 4)/4 based on Eq. (B14). To summarize, in this case,

the Green’s function can be computed by performing mea-
surements for (

√
L + 2)(

√
L + 4)/4 distinct quantum circuits.

In the numerical simulation of 4 × 4 lattice Fermi-Hubbard
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model in Fig. 12, we reduced the computational costs by cal-
culating K (n,m)

a,b (t ) only for such independent components. We
justify such a procedure because the variational Hamiltonian
ansatz (37) almost preserves the symmetry of the original
Hamiltonian (29). Although the space group operations can
interchange the order of hopping terms eiθ (d )

3 P(r)
t in the ansatz

(37), we numerically confirmed that this has little or no effect
on the results of the Green’s function.

APPENDIX C: LOCAL VARIATIONAL QUANTUM
COMPILATION IN FERMIONIC SYSTEMS

The original paper of LVQC [30] treated qubit (spin) sys-
tems, and the applicability of LVQC to fermionic systems was
not explicitly discussed. In this section, we describe a sketch
of the proof of the LVQC Theorem 1 for fermionic systems in
Sec. III.

We consider a L-site and L̃-site fermionic systems with
the Hamiltonians H (L)

f ,PBC and H (L̃)
f ,PBC, respectively, described

in Sec. III. We assume the existence of the LR bound for
H (L)

f ,PBC in the form of Eq. (21), which is the case for general
fermionic systems with finite-range interactions. The LVQC
theorem can be proved by the following inequalities:

C(μ), f
LHST

(
U (L)

f ,V (L)
f

)
� C(μ), f

LHST

(
U (L′ )

f ,V (L)
f

)+ 2εLR, (C1)

C(μ), f
LHST

(
U (L′ )

f ,V (L)
f

) = C(μ), f
LHST

(
U (L′ )

f ,V (L̃)
f

)
, (C2)

for μ = (L′/2,↑), (L′/2,↓). Here, L′ (� L̃ < L) is defined
through a tunable parameter l0 as

L′ := 2(l0 + dH + vτ ), (C3)

where dH is the range of the interactions and v is the velocity
in the LR bound [Eq. (21)]. εLR is O(e−l0/ξ ), and U (L′ )

f =
e−iH (L′ )

f ,PBCτ is the time evolution operator of the translationally-
invariant Hamiltonian defined on the size-L′ system �(L′ )

[Eq. (11)]. We omit the arguments τ and �θ of U (L)
f ,U (L̃)

f and

V (L)
f ,V (L̃)

f respectively for brevity. In the following, we sketch
the proof of these two inequalities in order.

1. Derivation of (C1)

First, we show the inequality (C1), which says that we
can replace the time evolution operator U (L)

f with U (L′ )
f . By

following Appendix C of Ref. [61], one can transform the LR
bound (21) into∥∥(U (L)

f

)†
FjμU (L)

f − (
U (L′ )

f

)†
FjμU (L′ )

f

∥∥ � εLR, (C4)

εLR = C′
∫ ∞

L′/2−dH

dxe−(x−vτ )/ξ = e−O(l0/ξ ), (C5)

where jμ (= L′/2) is the site on which the mode μ is defined,
Fjμ is the fermionic operators acting on the site j, and C′
is some constant. We note that the derivation of the above
inequality in Ref. [61] was for bosonic (spin) systems. Still,
it also holds for fermionic systems because the derivation
relied on properties not specific to bosons, such as the triangle
inequality of the operator norm.

Another important observation to derive Eq. (C1) is that
the LHST cost function C(μ), f

LHST(Uf ,Vf ) [Eq. (20)] can be ex-
pressed by the expectation value of the projection operator,

�μ = |� f
+,μ〉〈� f

+,μ|, (C6)

for the state (Uf ⊗ V ∗
f )|� f

+〉 in the doubled system. Then, the
difference between the cost function is∣∣C(μ), f

LHST

(
U (L)

f ,V (L)
f

)− C(μ), f
LHST

(
U (L′ )

f ,V (L)
f

)∣∣
= ∣∣〈� f

+|(U (L)
f ⊗ V (L)∗

f

)†
�μ

(
U (L)

f ⊗ V (L)∗
f

)|� f
+〉

− 〈� f
+|(U (L′ )

f ⊗ V (L)∗
f

)†
�μ

(
U (L′ )

f ⊗ V (L)∗
f

)|� f
+〉∣∣.

From the definition of |� f
+,μ〉 [Eq. (16)], we can show

�μ = 1

2

((
1 − nAμ

)(
1 − nBμ

)+ a†
Aμ

a†
Bμ

+ aBμ
aAμ

+ nAμ
nBμ

)

= 1

2

4∑
i=1

FA
i FB

i

where n j = c†
j c j and FA(B)

i is the fermionic operator acting

on the system A(B) with a unit operator norm ‖FA(B)
i ‖ = 1.

Therefore, we obtain∣∣C(μ), f
LHST

(
U (L)

f ,V (L)
f

)− C(μ), f
LHST

(
U (L′ )

f ,V (L)
f

)∣∣
� 1

2

4∑
i=1

∥∥(U (L)
f

)†FA
i U (L)

f − (
U (L′ )

f

)†FA
i U (L′ )

f

∥∥
× ∥∥(V (L)

f

)†FB
i V (L)

f

∥∥
� 2εLR,

which is Eq. (C1).

2. Derivation of (C2)

Derivation of the inequality (C2) is completely parallel to
the original discussion of LVQC [30], so we describe it briefly
with remarking the points specific to fermionic systems. As-
suming the form of the ansatz [Eqs. (13) and (14)], we can
show that some parts of the fermionic gates in the ansatz V (L)

f
are canceled out in the calculation of the LHST cost function,

C(μ), f
LHST

(
U (L′ )

f ,V (L)
f

)
= 〈� f

+|(U (L′ )
f ⊗ V (L)∗

f

)†
�μ

(
U (L′ )

f ⊗ V (L)∗
f

)|� f
+〉.

Considering that the �μ is a sum of the local fermionic opera-
tors acting on the site jμ in the system A and B, the fermionic
gates outside the cause cone of �μ are canceled out because
of the unitary of the gates. Moreover, for the fermion Bell pair
defined in Eq. (17),

I ⊗ Vf |� f
+〉 = V ∗

f ⊗ I|� f
+〉 (C7)

holds for any fermionic operators Vf . We can “move” the
fermionic gate in the ansatz on the system A to the system
B, and the fermionic gates outside the causal cone of U (L′ )

f are
canceled out (see Fig. 4 of Ref. [30] for details). Because of
these two cancellations, we can show that the inequality (C2)
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holds for

L̃ � L′

2
+ 2d + 1 = l0 + dH + vτ + 2d + 1, (C8)

and 4d > L̃, by the exactly same discussion with Ref. [30].

3. Derivation of LVQC theorem for fermions

With two inequalities (C1) and (C2), one can show the
LVQC theorem for fermionic systems. The translational in-
variance of the system results in

C f
LHST

(
U (L)

f ,V (L)
f

)
= 1

2

(
C( j,↑), f

LHST

(
U (L)

f ,V (L)
f

)+ C( j,↓), f
LHST

(
U (L)

f ,V (L)
f

))
for any site j. For μ = (L′/2,↑), (L′/2,↓), the inequalities
(C1) and (C2) are utilized to show

C(μ), f
LHST

(
U (L)

f ,V (L)
f

)
� C(μ), f

LHST

(
U (L′ )

f ,V (L)
f

)+ 2εLR

= C(μ), f
LHST

(
U (L′ )

f ,V (L̃)
f

)+ 2εLR.

It is also possible to show

C(μ), f
LHST

(
U (L′ )

f ,V (L̃)
f

)
� C(μ), f

LHST

(
U (L̃)

f ,V (L̃)
f

)+ 2εLR (C9)

by the same argument to prove Eq. (C1), so we obtain

C(μ), f
LHST

(
U (L)

f ,V (L)
f

)
� C(μ), f

LHST

(
U (L̃)

f ,V (L̃)
f

)+ 4εLR, (C10)

which means Eq. (25). For the HST cost function, we combine
the inequality between the LHST and HST cost functions
proved in Ref. [47], C( f )

HST(Uf ,Vf ) � 2L · C( f )
LHST(Uf ,Vf ), and

Eq. (25). Then Eq. (26) holds.
We comment on the extension of the discussion in this

section to the cases without translational invariance as well as
general dimensions. As shown in Ref. [30], the original LVQC
theorem for spin systems can be extended to such cases, and
we expect that it still holds for fermionic systems. This is
because the proof did not rely on anything specific to spin
systems as we presented in this section.

APPENDIX D: DERIVATION OF THE GATE COUNT

In this section, we derive the number of Rz gates and
CNOT gates in the quantum circuit that approximates the time
evolution operator. As we see in Eq. (37), V (L)

d (�θ ) consists of

eiθP(L)
μ , eiθP(L)

U , and eiθP(L)
tr . We count the number of elementary

gates in these components one by one.
(1) eiθP(L)

μ By eiθP(L)
μ = ∏L

i=1

∏
σ=↑,↓ eiθZiσ , this operator

contains NspinL Rz gates and 2NspinL CNOT gates, where
Nspin = 2.

(2) eiθP(L)
U By

eiθP(L)
U =

L∏
i=1

eiθZi↑ Zi↓ e−iθZi↑ e−iθZi↓ , (D1)

this operator contains 3L Rz gates and 2(2 + 1 + 1)L = 8L
CNOT gates.

(3) eiθP(L)
tr (r = 1, 3) When r = 1, 3, we can write∏

r=2,4

eiθP(L)
tr =

∏
σ=↑,↓

∏
〈i, j〉h

∏
P=X,Y

eiθPiσ Ziσ +1···Pjσ , (D2)

where
∏

〈i, j〉h
means taking the product with respect to all

horizontal bonds. For instance, in a 4 × 4 lattice, (i, j) =
(1, 2), (2, 3), (3, 4), (4, 1), (5, 6), · · · . There are L horizontal
bonds in total. Thus, the above operator contains 2NspinL Rz

gates. The length of the Pauli string for a horizontal bond in
the bulk region is two while that is Lx at the boundary. Thus,
the number of CNOT gates is

4Nspin(2(Lx − 1)Ly + LxLy) = 4Nspin(3L − 2L1/2). (D3)

(4) eiθP(L)
tr (r = 2, 4) When r = 2, 4, we can write∏

r=2,4

eiθP(L)
tr =

∏
σ=↑,↓

∏
〈i, j〉v

∏
P=X,Y

eiθPiσ Ziσ +1···Pjσ , (D4)

where
∏

〈i, j〉v means taking the product with respect to all
vertical bonds. There are L vertical bonds in total. Thus, the
above operator contains 2NspinL Rz gates. To count the number
of CNOT gates, we clarify the length of Piσ Ziσ +1 · · · Pjσ as a
Pauli string. For a moment, we consider σ = ↑. Each vertical
bond is specified by a pair of sites whose indices are

( j − 1)Lx + i, ( j + 1)Lx − i + 1, (D5)

where 1 � i � Lx and 1 � j � Ly − 1 in the bulk region and

j, L − ( j − 1), (D6)

where 1 � j � Lx at the boundary. Thus, the length of the
Pauli string corresponding to this pair is 2(Lx − i + 1) in the
bulk region and L + 2 − 2 j at the boundary. Taking a summa-
tion of all vertical bonds, we get

Ly−1∑
j=1

Lx∑
i=1

2(Lx − i + 1) +
Lx∑
j=1

(L + 2 − 2 j) (D7)

= (Ly − 1)Lx(Lx + 1) + Lx(LxLy − Lx + 1) (D8)

= 2L3/2 − L. (D9)

The same argument yields the same result for σ = ↓. There-
fore, the number of CNOT gates in

∏
r=2,4 eiθP(L)

tr is given by

4Nspin(2L3/2 − L). (D10)

Summarizing (1)–(4), the total number of Rz gate in
V (L)

d (�θ ) per layer is 13L and that of CNOT gate is 4(4L3/2 +
7L − 4L1/2).
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