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Spatially heterogeneous learning by a deep student machine
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Despite spectacular successes, deep neural networks (DNNs) with a huge number of adjustable parameters
remain largely black boxes. To shed light on the hidden layers of DNNs, we study supervised learning by a
DNN of width N and depth L consisting of NL perceptrons with c inputs by a statistical mechanics approach
called the teacher-student setting. We consider an ensemble of student machines that exactly reproduce M sets
of N-dimensional input/output relations provided by a teacher machine. We show that the statistical mechanics
problem becomes exactly solvable in a high-dimensional limit which we call a “dense limit”: N � c � 1 and
M � 1 with fixed α = M/c using the replica method developed by Yoshino [SciPost Phys. Core 2, 005 (2020)]
In conjunction with the theoretical study, we also study the model numerically performing simple greedy Monte
Carlo simulations. Simulations reveal that learning by the DNN is quite heterogeneous in the network space:
configurations of the teacher and the student machines are more correlated within the layers closer to the
input/output boundaries, while the central region remains much less correlated due to the overparametrization
in qualitative agreement with the theoretical prediction. We evaluate the generalization error of the DNN with
various depths L both theoretically and numerically. Remarkably, both the theory and the simulation suggest
that the generalization ability of the student machines, which are only weakly correlated with the teacher in the
center, does not vanish even in the deep limit L � 1, where the system becomes heavily overparametrized. We
also consider the impact of the effective dimension D(�N ) of data by incorporating the hidden manifold model
[Goldt, Mézard, Krzakala, and Zdevorová, Phys. Rev. X 10, 041044 (2020)] into our model. Replica theory
implies that the loop corrections to the dense limit, which reflect correlations between different nodes in the
network, become enhanced by either decreasing the width N or decreasing the effective dimension D of the data.
Simulation suggests that both lead to significant improvements in generalization ability.
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I. INTRODUCTION

The mechanism of machine learning by deep neural net-
works (DNNs) [1] remains largely unknown. One of the
most puzzling points is the issue of overparametrization: su-
pervised learning by DNNs can work even in the regime
where the number of adjustable parameters is larger than
the data size by orders of magnitudes. This conflicts sharply
with the traditional wisdom of data modeling: for example,
one should avoid fitting 10 data points by a fitting func-
tion with 100 adjustable parameters, which is just nonsense.
However, empirically it has been found repeatedly that such
overparametrized DNNs can somehow avoid overfitting and
generalize well, i.e., they can successfully describe new data
not used during training. Uncovering the reason for this
peculiar phenomenon is a very interesting and challenging
scientific problem [2,3]. An important point to be noted is that
the effective dimension D of the data can be much smaller
than the apparent dimension N of the data. It has been shown
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in studies of shallow networks that the generalization ability
improves by increasing N/D due to a kind of self-averaging
mechanism [4–6]. However, the generalization ability of the
deeper system remains unexplained.

Statistical mechanics on neural networks has a long history
that dates back to the 1980’s [7–9]. Studies on the single
perceptrons [8,9] and shallow networks [4,10] have provided
many useful insights, and some progress has been made also
on deeper networks [11–14]. However, what is going on in the
hidden layers remains largely unknown. The first attempt to
uncover the black box was made in [15] by the present author
based on the replica method, and it predicted an unexpected
phenomenology of DNNs: spatially heterogeneous learning.
Unfortunately, the theory suffered from a serious problem
due to an uncontrolled approximation, and the validity of the
prediction remained elusive.

To understand the mechanism for the generalization ability
of deep networks, we study supervised learning by DNNs
considering the so-called teacher-student setting, which is
a canonical setting to study statistical inference problems
[16,17] by methods of statistical mechanics. We consider a
prototypical DNN of a rectangular shape with width N and
depth L consisting of NL perceptrons with c inputs, which
defines a mapping between an N-dimensional input vector
and an N-dimensional output vector (see Fig. 1). For the data,
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FIG. 1. Schematic picture of the multilayer perceptron network
of depth L and width N . In this example, the depth is L = 4. Each
arrow represents an M-component vector spin Si = (S1

i , S2
i , . . . , SM

i )
with its component Sμ

i = ±1 representing the state of a “neuron” in
the μth pattern.

we consider M pairs of input/output vectors provided by a
teacher machine, and we consider an ensemble of student
machines that exactly satisfy the same input/output relations
as the teacher. The phase-space volume of such an ensemble
is referred to as Gardner’s volume [8,9], which should be
very large for overparametrized DNNs. In fact, it is known
that gradient descent dynamics find such a machine without
going over barriers in the loss landscape [18–20]. In Fig. 2, we
show a schematic picture of the phase space of the machines.
If M is small, typically students will not find the teacher.
This situation would be regarded as a liquid phase. If M is
increased, a crystalline phase may emerge in which students
find the (hidden) crystal, i.e., the teacher. We also wish to
consider the impact of the effective dimension D of the data
by incorporating the hidden manifold model [10,21,22] in
our model. Using statistical mechanics methods, we wish to
investigate how different machines that satisfy the same set
of input/output boundary conditions become correlated with

FIG. 2. Schematic picture of the phase space of machines: the
gray box represents the set of all machines which can be generated
varying the parameters (e.g., synaptic weights) given a network struc-
ture. The yellow region represents the subspace in which machines
agree with the teacher’s machine for a given M set of training data.
Liquid phase: if the number of training data M is small, the subspace
is so large that the machines are typically widely separated and their
mutual overlap Q is typically zero. Crystalline phase: M is large
enough that machines have a finite overlap Q with respect to each
other.

each other in the hidden layers, and to evaluate their general-
ization ability, i.e., the ability of the students to reproduce the
teacher’s output against new input data not used in training.

The first attempt to tackle the statistical mechanics problem
of DNNs was made recently in [15] based on the replica
method in a high-dimensional limit with c = N = D � 1 and
M � 1 with fixed α = M/c. Unfortunately, it suffered from
an uncontrolled “tree” approximation, which is invalid for the
global coupling case c = N . In the present paper, we show
that the problem can be overcome in the limit N � c � 1,
which we refer to as the dense limit. As a result, we establish
an exactly solvable statistical mechanics model of DNNs that
has long been anticipated.

Using the exact solution of the model, which can be ob-
tained by the replica method developed in [15], we analyze the
key question of the generalization ability of DNNs, including
the overparametrized regime. We also show that the effect of
the finiteness of the width (apparent dimension of the data)
N and the effective dimension D similarly enhances loop
corrections, which induce correlations between distant layers.
In conjunction with the theoretical study, we also perform
extensive numerical simulations to examine the theoretical
predictions. We use the Monte Carlo method, which allows
more efficient exploration of the solution space compared with
the usual gradient descent algorithms.

The article is organized as follows. In Sec. II we summarize
the main results of this paper. In Sec. III we introduce our
model. We discuss the replica approach in Sec. IV and numer-
ical simulations in Sec. V. In Sec. VI we conclude the paper
with perspectives. In Appendix A we discuss a connection
between some layered spin-glass models and DNNs, and in
Appendix B we present some details of the replica theory.

II. SUMMARY OF RESULTS

Let us summarize the main results of this work. On the
theoretical side, we find the following:

(i) We establish an exactly solvable statistical mechanics
model of DNNs in the dense limit N � c � 1. The exact so-
lution of the model is obtained using the replica approach. It is
shown that the correction to the dense limit due to finiteness of
the width N can be expressed by loop corrections. Fortunately,
it turns out that the theoretical results presented in [15] are
essentially valid in the dense limit N � c � 1, although they
are unjustified for the global coupling c = N assumed there.

(ii) We show that the smallness of the effective dimension
D(< N ) of the hidden manifold model [21] enhances the loop
corrections. Thus the finite dimension D effect is predicted to
be similar to the finite width N effect.

(iii) The learning curve ε = εL(α) of the DNNs with var-
ious depths L is analyzed evaluating the generalization error
εL(α) in the case of a Bayes-optimal teacher-student setting
where replica symmetry holds. It becomes independent of
the depth L, i.e., εL(α) = ε∞(α), as long as the network is
deep enough such that the liquid phase, where students are
decorrelated from the teacher, remains in the center reflecting
strong overparametrization.

On the numerical side, we find the following:
(i) We simulated the model with finite connectivity c and

width N in the Bayes-optimal teacher-student setting, and we
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found that a simple greedy Monte Carlo algorithm allows the
student machines to equilibrate after sufficiently long times.
Thus typical equilibrium states are accessible starting from
typical random initial configurations without going over bar-
riers in the loss landscape.

(ii) Observation of the overlap between the machines
reveals spatially inhomogeneous learning in qualitative agree-
ment with the theory. While the theory in the dense limit N �
c � 1 predicts (in the case of strong overparametrization)
crystalline regions with finite overlap close to the input/output
layers separated by a liquid region with zero overlap in the
center, the distinction between the crystalline and the liquid
phases becomes blurred in systems with finite width N and
finite connectivity c. Nonetheless, the presence of the liquid-
like region in the center becomes clearer by making the width
N large and the connectivity c large or the depth L large. We
consider that the remnant overlap left in the center by the finite
width N and the finite connectivity c effects play the role of
a symmetry-breaking field, which connect the two crystalline
regions attached to the boundaries.

(iii) Observation of the learning curve ε = εL,c,N,D(α) re-
veals that it becomes independent of the depth L in deep
enough systems, in agreement with the theoretical prediction.

(iv) The observations reveal that the finite effective di-
mension D effect and the finite width N effect are indeed
very similar, as suggested by consideration of the loop effects
in the theory. The generalization error εL,c,N,D(α) decreases
significantly, decreasing either the width N or the effective
dimension D.

III. MODEL

A. Multilayer perceptron network

We consider a simple multilayer neural network of a rect-
angular shape with width N and depth L (see Fig. 1). The input
and output layers are located at the boundaries l = 0 and L,
respectively, while l = 1, 2, . . . , L − 1 are hidden layers. On
each layer l = 0, 1, 2, . . . , L there are N neurons labeled as
(l, i) with i = 1, 2, . . . , N . The state of the neuron (l, i) is
represented by an Ising spin Sl,i: it is active if Sl,i = 1 and
inactive if Sl,i = −1.

The network is constructed as follows. There are N� =
NL perceptrons. Consider a perceptron � = (l, i), which is
the ith neuron in the lth layer. It receives c inputs from
the outputs of the perceptrons �(k) (k = 1, 2, . . . , c) in the
previous (l − 1)th layer, weighted by J� = (J1

�, J2
�, . . . , Jc

�).
[For the special case l = 1, �(k) should be understood as
one of the spins in the input layer.] The c perceptrons are se-
lected randomly out of N possible perceptrons in the (l − 1)th
layer.

The output of the perceptron �, which we denote as S�, is
given by

S� = sgn

(
1√
c

c∑
k=1

Jk
�S�(k)

)
, (1)

where sgn(y) = y/|y| is our choice for the activation function.
We assume that the synaptic weights Jk

� take real numbers

FIG. 3. A loop of interactions in a DNN extended over three
layers, through three perceptrons and four bonds.

normalized such that
c∑

k=1

(Jk
�)2 = c. (2)

For convenience, we refer to the state of the neurons Sl,i’s
as “spins” and the synaptic weights Jk

�s as “bonds” in the
present paper. We denote the set of perceptrons in the lth layer
as � ∈ l and the set of perceptrons whose outputs become
input for � as ∂�, i.e., ∂� = {�(1),�(2), . . . ,�(c)}. For
convenience, we introduce also � ∈ 0 so that we can write
the set of spins in the input layer as S�∈0.

B. Dense coupling

As stated above, c legs of a perceptron � at the lth layer are
connected to c neurons S�(k) (k = 1, 2, . . . , c) in the previous
(l − 1)th layer. The c neurons out of N possible neurons are
selected randomly. Thus our graph becomes a sort of sparse
(layered) random graph when c is finite. We will find in
Sec. IV that this construction enables us to obtain an exactly
solvable statistical mechanics model of DNN because of the
following reasons:

(i) The graph becomes locally treelike as in the case of
Bethe lattices so that contributions of “loops” can be neglected
in the wide limit N → ∞ with fixed c. This can be seen as
follows. For instance, consider a loop 0 → 1 → 2 → 3 → 0
shown in Fig. 3. Starting from 0, choose any 1 connected
to 0. Then choose any 2 connected to 1. Then choose any
3 (different from 1) connected to 0. In the case of global
coupling c = N , 2 is certainly connected to 3 completing
a loop. However, in the case of dense coupling, in a given
realization of the random graph, 2 is connected to 3 only with
a probability ∼c/N . Thus in the limit N → ∞ with fixed c, the
probability to complete the loop vanishes. This argument can
be generalized for 2-loops, 3-loops, etc., which happen with
probability O(c/N )2, O(c/N )3, etc. Note that the loops cannot
be neglected in the case of global coupling, c = N (assumed
in [15]).

(ii) In the case of the global coupling c = N , the system
is symmetric under permutations of the perceptrons within
each layer so that one has to consider whether this symmetry
becomes broken spontaneously [23]. In the case of sparse
coupling, c < N , we can eliminate this symmetry by choosing
the connections in stochastic ways, i.e., a random graph.

(iii) In the setup of our theory, we finally consider c →
∞ (and M = αc → ∞ [see Eq. (5)]) (after N → ∞). This
greatly simplifies the theory as it allows us to use the
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saddle-point method in theoretical analysis. We refer to such
intermediately dense coupling with

N � c � 1 (3)

as dense coupling.

C. Connection to spin glasses

The feed-forward network made of perceptrons is equiva-
lent to the zero-temperature limit of the transfer matrix of a
spin glass with a Hamiltonian

H = − 1√
c

∑
�

c∑
k=1

Jk
�S�S�(k) (4)

as shown in Appendix A. This is a spin-glass model put in
a layered structure. Specifying the spin configuration on the
boundary l = 0, spin configurations at layers l = 1, 2, . . . , L
become specified deterministically in the T → 0 limit of the
transfer matrix. The perceptrons Eq. (1) just do this operation.

An important point is that there are no direct interactions
within each layer, much as the restricted Boltzmann machines
(RBMs) [24] which make the operations of the T = 0 trans-
fer matrices equivalent to the simple feed-forward nonlinear
mappings Eq. (1). In Appendix A we also show that such
representations are possible for generic activation functions
including the function sgn(y) which we employ in this paper
just as a special case.

For a given set of interactions Jk
�, the ground state of the

system is unique if the boundaries are allowed to relax. But
here we are considering ground states with different realiza-
tions of frozen boundaries. Specifying the boundary condition
on one side, the configurations on the other side become fixed
deterministically.

From this viewpoint, the exponential expressibility of
DNNs [25] can be traced back to the chaotic sensitivity of
a spin-glass ground state [26,27]. Even if a change of the
configuration on the boundary Sμ

�∈0 → Sν( �=μ)
�∈0 is small, the

resultant changes of the spin configurations become larger go-
ing deeper into the system, l = 1, 2, . . . . This can be viewed
as an avalanche process. In deeper layers l = 1, 2, . . ., larger
number of nodes i = 1, 2, . . . will be involved in a single
avalanche event. In Sec. V B 4 we discuss a quantity that
reflects the avalanche sizes, i.e., the number of nodes involved
in a same avalanche caused by Sμ

�∈0 → Sν( �=μ)
�∈0 .

D. Teacher-student setting

As shown in Fig. 4, we consider a learning scenario by
a teacher machine and a student machine. For simplicity, we
assume that the teacher is a “quenched-random teacher”: its
synaptic weights {(Jk

�}teacher} are iid random variables, which
take continuous values subjected to the normalization condi-
tion Eq. (2).

Training: we generate M sets of training data labeled as
μ = 1, 2, . . . , M as follows. The values of the spins in the
input layer Sμ

�∈0 = {Sμ
0,1}teacher are set as iid random Ising

numbers ±1 (i = 1, 2, . . . , N , μ = 1, 2, . . . , M) and the cor-
responding output of the teacher {Sμ

L,i}teacher are obtained. The
student does training by adjusting its own synaptic weights
{(Jk

�)student} such that it reproduces perfectly the M sets of

FIG. 4. Schematic pictures of the teacher-student setting.

the input-output relations of the teacher. More precisely, we
consider an idealized setting in which (i) the student has
exactly the same architecture as the teacher, including the
specific realization of the random network between adjacent
layers, and (ii) the student knows exactly the M sets of the
input/output relations of the teacher. In short, the student
knows everything about the teacher except for its actual values
of {(Jk

�)teacher}. Within the framework of Bayesian inference,
this is a so-called Bayes-optimal setting [17,28].

The configurations of the spins associated with the
M-patterns of the training data may be represented by M-
component vectors Sl,i = (S1

l,i, S2
l,i, . . . , SM

l,i ) (see Fig. 1). In
the theory, we will consider the M → ∞ limit with

α ≡ M

c
(5)

fixed. Note that our network is parametrized by NcL varia-
tional bonds and the NM constrained spin components on the
input and output boundaries. The ratio of the two scales as

r ≡ NcL

NM
= L

α
. (6)

Test (validation): the generalization ability of the student
can be examined empirically using a set of test data. Preparing
M ′ sets of test data as new iid random data (Sμ

0,i )teacher (i =
1, 2, . . . , N , μ = 1, 2, . . . , M ′) (not used for the training), we
compare the output of the teacher and student machines. The
probability that the student makes an error can be measured as

ε = 1

2

⎛
⎝1 − 1

NM ′

M ′∑
μ=1

N∑
i=1

(Sμ
L,i )teacher (S

μ
L,i )student

⎞
⎠. (7)

If the student is just making random guesses, ε = 1/2, while
ε = 0 if it perfectly reproduces the teacher’s output.

E. Gardner’s volume

Following the pioneering work by Gardner [8,9], we in-
vestigate the ensemble of all possible machines (choices of
the synaptic weights Jk

�s) of the student which are perfectly
compatible with the M set of the input S0 and output data
SL provided by the teacher machine (see Figs. 2 and 4). As
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we noted in Sec. III C, each machine with the feed-forward
propagation of signals can be viewed as a zero-temperature
limit of the transfer matrix of a spin-glass with a set of Jk

�’s.
So the ensemble of machines is an ensemble of such transfer
matrices, which are typically chaotic.

The phase-space volume, which is called Gardner’s vol-
ume, can be expressed for the present DNN as [15]

VM (S0, SL ) = eNMS(S0,Sl )

=
⎛
⎝∏

�
TrJ�

⎞
⎠
⎛
⎝ ∏

�\output

TrS�

⎞
⎠

×
M∏

μ=1

∏
�

e−βv(rμ

� ), (8)

where v(r) is a hard-core potential,

e−βv(r) = θ (r), (9)

with θ (r) being the Heaviside step function, and we intro-
duced the “gap” variable,

rμ

� ≡ Sμ

�

c∑
k=1

Jk
�√
c

Sμ

�(k). (10)

The trace over the spin and bond configurations can be written
explicitly as

TrS =
M∏

μ=1

∑
Sμ=±1

, TrJ =
∫ ∞

−∞

c∏
j=1

dJ jδ

(
c∑

k=1

(Jk )2 − c

)
.

(11)

In [Eq. (8)], �\ output means to exclude � in the output layer.
The key idea behind the expression Eq. (8) is the internal

representation [29]: we are considering the spins (neurons) in
hidden layers (l = 1, 2, . . . , L − 1) as dynamical variables in
addition to the synaptic weights. This is allowed because the
input-output relation of the perceptrons Eq. (1) is forced to
be satisfied by requiring the gap to be positive rμ

� > 0 for all
perceptrons � = 1, 2, . . . , NL in the network for all training
data μ = 1, 2, . . . , M in Eq. (8). As shown in Appendix A,
the expression Eq. (8) can also be obtained considering the
transfer-matrix representation.

The main quantity of our interest in the present paper is
the generalization error ε [Eq. (7)]. Gardner’s volume VM

provides a way to estimate the generalization ability of the
network for the test data [30,31]. The probability that the
network, which perfectly satisfies the constraint established
by M sets of training data, happens to be compatible with
one more unseen datum is given by the ratio VM+1/VM . Then
the generalization error, namely the error probability ε, the
probability that the configuration of one spin in the output
layer l = L of the student machine is wrong (different from
the teacher) for a test datum, can be expressed as

ε = 1 −
(

VM+1

VM

)1/N

. (12)

FIG. 5. Variables (green) associated with a perceptron � which
changes sign by the flip of the gauge variable σ� → −σ�.

F. Symmetries

Let us note here that there are some symmetries (besides
the replica symmetry, which we discuss later) in the present
problem. The following becomes important, especially in nu-
merical simulations.

1. Gauge symmetry

For any �, the system is invariant under gauge transforma-
tion,

Sμ

� → σ�Sμ

�, μ = 1, 2, . . . , M, (13)

Jk
� → σ�Jk

�σ�(k), k = 1, 2, . . . , c (14)

specified by gauge variables

σ� = ±1, � = 1, 2, . . . , N (L − 1). (15)

Note that we do not have a gauge transformation in the output
layer l = L since the output layer is constrained. It can be eas-
ily seen that the gap variables rμ

� [see Eq. (10)] are invariant
under the gauge transformation.

Thus for a given realization of a machine with a set of
synaptic weights, there are 2(L−1)N completely equivalent ma-
chines specified by 2(L−1)N possible realizations of the gauge
variables: all of them operate exactly in the same way yielding
the same output for any input. If the synaptic weights only take
Ising values Jk

� = ±1, the number of possible configurations
of the machines modulo the gauge symmetry is 2NLc2−N (L−1).

The presence of the gauge invariance is natural given the
connection to the spin glass as mentioned in Sec. III C. While
the gauge variables are frozen in spin-glass problems with
quenched bonds [32], here the bonds are dynamical variables
so that the gauge variables also evolve in time during learning.

Importantly, this is a local symmetry in the sense that a
change of any σ� induce changes only in the neighborhood
of � (see Fig. 5): Sμ

� → −Sμ

� for ∀μ, Jk
� → −Jk

� for ∀k,
Jl
� → −Jl

� for ∀(�, l ) such that �(l ) = �. This means that
in sparse systems with finite connectivity c and M(= αc), the
evolution of the machine from one to another connected by a
local gauge transformation takes only a finite time in dynam-
ics. Only in the limit c → ∞ do such gauge transformations
become frozen in time.
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FIG. 6. Schematic picture of the hidden manifold model.

2. Permutation symmetry in globally coupled systems

As we already noted in Sec. III B, in globally coupled sys-
tems with c = N , the system is invariant under permutations
of perceptrons � ∈ l within each layer, l = 1, 2, . . . , L. This
symmetry can be removed if the coupling is not global, c < N ,
since we can construct random networks (see Sec. III B).

G. Hidden manifold

We incorporate the hidden manifold model for the data [21]
in our model as the following. We replace the original teacher
machine of width N with a narrower teacher machine of
width D(� N ) (see Fig. 6). The teacher is working entirely in
D-dimensional space being subjected to D-dimensional input
data and produces D-dimensional output. Student machines
are provided N-dimensional input/output data, which are ob-
tained from the D-dimensional input/output of the teacher via
folding matrices Fi,k of size N × D,

(Sstudent )
μ
0,i = sgn

(
D∑

k=1

Fi,k (Steacher )
μ

0,k

)
,

(Sstudent )
μ
L,i = sgn

(
D∑

k=1

Fi,k (Steacher )
μ

L,k

)
(16)

for i = 1, 2, . . . , N and μ = 1, 2, . . . , M. For the folding ma-
trix, we consider a simple model,

Fi,k =
{

1, k = mod(i − 1, D) + 1,

0 otherwise. (17)

In this model, N elements of the data for students are cre-
ated simply by making N/D copies of the D elements of the
teacher’s data.

IV. REPLICA THEORY

Now we develop and analyze a replica theory for the statis-
tical mechanics problem of DNNs in the dense limit N � c �
1 introduced in Sec. III B. We first show that it can be solved
exactly, overcoming the issue of uncontrolled approximation
made in [15]. This is the first main result of this paper. For
clarity, we repeat the steps made in [15] and indicate how the
problem is resolved. Then we revisit the replica-symmetric
solution in the teacher-student setting presented in [15] and
analyze it in more detail. Using the exact solution, we analyze
the generalization ability of DNNs evaluating the generaliza-
tion error ε via Eq. (12), which is the second main result of

this paper. The technical details of the theory are presented in
Appendix B.

A. Formalism

1. Order parameters

We are considering the dense coupling Eq. (3) in which
(i) perceptrons have large connectivity c � 1, and (ii) the
permutation symmetry of the perceptrons that exist in globally
coupled systems c = N is removed. We are also considering a
large number of training patterns M = αc � 1 [see Eq. (5)].
Then we can naturally introduce “local” order parameters
associated with each perceptron �,

Qab,� = 1

c

c∑
k=1

(Jk
�)a(Jk

�)b, qab,� = 1

M

M∑
μ=1

(Sμ

�)a(Sμ

�)b.

(18)

The overlaps between the teacher and student machines
are represented by Q0b,� = Qb0,� and q0b,� = qb0,� (b =
1, 2, . . . , s) while those between the student machines are
represented by Qab,� = Qba,� and qab,� = qba,� (a, b =
1, 2, . . . , s).

It is important to note that the order parameters Qab,�
and qab,� defined above change sign under the change of the
gauge variable σ a

�, which can be defined independently for
each replica (a = 1, 2, . . . , n) (see Fig. 5). Thus they trivially
vanish in thermal equilibrium in sparse systems with finite
connectivity c. Only in the dense limit c → ∞ can the gauge
variables σ a

� be considered as slow variables.
It is natural to expect that order parameters are homoge-

neous within each layer since we will take the average over
realization of random connections between adjacent layers
[see Eq. (23)]. Thus we assume they only depend on the index
l of layers,

Qab,� = Qab(l ), l = 1, 2, . . . , L − 1,

qab,� = qab(l ), l = 0, 1, 2, . . . , L − 1, L. (19)

Here we have included, for our convenience, the spin overlaps
at the boundaries l = 0, L where spins of all student replicas
a = 1, 2, . . . , s are forced take the same values as the teacher
a = 0,

qab(0) = 1, qab(L) = 1. (20)

Note also that the normalization condition for the bonds
[Eq. (2)] and the spins (which take Ising values ±1) implies
Qaa(l ) = qaa(l ) = 1 for ∀a and ∀l .

The order parameters also vanish in thermal equilibrium in
globally coupled system with c = N due to the permutation
symmetry—the second symmetry mentioned in Sec. III F.
This issue is removed by using the dense coupling by selecting
connections between adjacent layers randomly.

2. Replicated Gardner volume, free energy

Let us introduce the replicated Gardner’s volume,
where the teacher machine is included as the zeroth

033068-6



SPATIALLY HETEROGENEOUS LEARNING BY A DEEP … PHYSICAL REVIEW RESEARCH 5, 033068 (2023)

replica,

V 1+s(S0, SL ) = eNMS1+s (S0,SL )

=
s∏

a=0

⎛
⎝∏

�
TrJa

�

⎞
⎠
⎛
⎝ ∏

�\output

TrSa
�

⎞
⎠

×
⎧⎨
⎩ ∏

μ,�,a

e−βv(rμ

�,a
)

⎫⎬
⎭ (21)

with

rμ

�,a ≡ (Sμ

�)a
c∑

k=1

(Jk
�)a

√
c

(
Sμ

�(k)

)a
. (22)

Here the output SL is the output of the teacher a = 0. The
main object we are interested in is the free-energy functional
(Franz-Parisi’s potential [33]),

−βF [{Q̂(l ), q̂(l )}]
NM

= ∂sV 1+s(S0, SL(S0, (J k
�)0)|s=0

NM

= ∂ss1+s[{Q̂(l ), q̂(l )}]∣∣s=0, (23)

where the overline denotes the average over (i) the random
inputs S0 imposed commonly on all machines and (ii) realiza-
tion of random connections between adjacent layers.

It turns out that the dense coupling [Eq. (3)] N � c � 1
allows us to obtain the exact expression for the replicated
Gardner volume for n = 1 + s replicas in terms of the order
parameters [Eq. (19)],

sn[{Q̂(l ), q̂(l )}] = 1

α

L∑
l=1

sent,bond[Q̂(l )] +
L−1∑
l=1

sent,spin[q̂(l )]

−
L∑

l=1

Fint[λ̂(l )] (24)

with

λab(l ) = qab(l − 1)Qab(l )qab(l ). (25)

Here sent,bond[Q̂(l )] and sent,spin[q̂(l )] are the entropic part of
the free-energy associated with bonds and spins, respectively,
and −Fint[q̂(l − 1), Q̂(l ), q̂(l )] is the interaction part of the
free energy. Fortunately, the free-energy functional obtained
in [15] turns out to be valid in the dense limit N � c � 1, al-
though it is unjustified for the global coupling c = N assumed
there. The details of the expressions and the derivation are
presented in Appendix B 5.

The main reasons for the success, which allows us to over-
come the problems in [15], are the three points discussed in
Sec. III B. First, the sparseness of the network allows us to
safely neglect the contribution of loops, as we explain in detail
in Appendix B 4. Second, the random connections between
adjacent layers eliminate the permutation symmetry that exists
in globally coupled system c = N . Third, the limit c → ∞
allows us to use the standard saddle-point method to evaluate
thermodynamic quantities exactly.

3. Replica-symmetric ansatz

Since our current problem is a Bayes-optimal inference
problem [17,28], we can safely assume a replica-symmetric
(RS) solution,

(a, b = 1, . . . , s) Qab(l ) = [1 − Q(l )]δab + Q(l ),

qab(l ) = [1 − q(l )]δab + q(l ),

(a = 1, . . . , s) Q0a(l ) = Qa0(l ) = R(l ),

q0a(l ) = q0a(l ) = r(l ) (26)

for l = 1, 2, . . . , L and the Nishimori condition (see
Sec. V B 3),

Q(l ) = R(l ), q(l ) = r(l ), (27)

which must hold in Bayes-optimal cases. The saddle-point
equations, which extremize the replicated free energy, are
obtained in [15]. It can be checked that the saddle-point equa-
tions can verify the relation Eq. (27).

4. Generalization error

Based on the above results, we can analyze the error prob-
ability Eq. (12), which is the main object of our interest in the
present paper. Using the free energy (23) and (24), we readily
find it as

ε = 1− exp

(
L−1∑
l=1

∂ssent,spin[q̂(l )]|s=0 −
L∑

l=1

∂sFint[λ̂(l )]|s=0

)
.

(28)

Explicit expressions of the free energy needed to evaluate the
above quantity are given in Appendix B 6.

B. Analysis

1. Order parameters

We numerically solved the saddle-point equations (B41)
to obtain the order parameters repeating the analysis in [15]
but in a wider parameter space. In Fig. 7 we show the spatial
profile of the order parameters. As already shown in [15],
the theory predicts spatially heterogeneous learning. It can be
seen that the “crystalline” phase with a finite order parameter
(inference of the teacher’s configuration is successful) grows
with increasing α starting from the input/output boundaries.
This is reminiscent of wetting transitions [34–36]. Details of
the behavior of the order parameters are displayed in Fig. 8.

The central region remains in the liquid phase with a zero
order parameter (where inference of the teacher’s configura-
tion is impossible) until the two crystalline phases meet in the
center at a critical point, αc1(L). Naturally, αc1(L) increases
with L. For α > αc1(L) the central liquid phase is absent. As
far as α < αc1(L), we find that the crystalline parts attached to
the two opposite boundaries grow with α, but the profiles of
the order parameters remain independent of L.

Now for α > αc1(L), where the liquid phase is absent, the
order parameters depend explicitly on the depth L. One may
regard this as a “finite depth L effect.” At some larger α it
becomes difficult to follow the saddle-point solution numeri-
cally. Presumably this implies spinodal instability associated
with a first-order transition to another solution q = Q = 1
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FIG. 7. Spatial profile of the order parameter obtained by solving
the replica-symmetric saddle-point equations. Top: the overlap of
spins (neurons), and bottom: the overlap of bonds (synaptic weights).
Here L = 20. Different lines corresponds to α = 16 − 103 with equal
spacing in ln α = 0.23 . . . .

(which is a saddle-point solution) at some αc2(L) [> αc1(L)].
Such a discontinuous “perfect recovery” behavior has been
found in the case of a single perceptron with binary couplings
[37]. We skip a detailed analysis of the first-order transition
and leave it for future works. Up to the discontinuous change,
the evolution of the order parameters with increasing α is
continuous.

2. Generalization errors

Now we turn to the generalization error ε (see [Eq. (28)])
evaluated by the replica symmetric solution obtained above,
which is of our main interest in the present paper. It is obtained
as shown in the bottom panels of Figs. 8 and 9. The relation
ε versus α is referred to often as learning curves. Without
learning α = 0, ε = 1/2 because the student just makes ran-
dom guesses. The learning curves ε = εL(α) consist of two
parts, as follows.

(i) Let us recall that for sufficiently small α, the two crys-
talline phases at the boundaries remain disconnected from
each other separated by the liquid phase in the center and

that the profiles of the order parameters are independent of L
since the two crystalline regions do not meet, as we discussed
in Sec. IV B 1. In this regime, the learning curve does not
depend on the depth L, i.e., ε = ε∞(α). The reason is that the
contribution from the liquid region where q(l ) = Q(l ) = 0 to
ε [Eq. (28)] is just zero: it contributes neither positively nor
negatively to ε. On the other hand, the crystalline region where
q(l ), Q(l ) > 0 contributes negatively to ε [Eq. (28)], and it is
independent of L as long as the two crystalline regions do not
meet. It is remarkable that ε∞(α) < 1/2 and it decreases with
increasing α: the system generalizes even though the central
part is in the liquid phase due to overparametrization.

(ii) Increasing α, the crystalline phases meet at some criti-
cal point αc1(L) and the central liquid phase disappears. Note
again that αc1(L) is larger for larger L. For sufficiently large
α> αc1(L), where the central liquid gap is filled up by the
crystalline phase, the learning curve depends on the depth L
as the order parameters now depend on L. For even larger
α > αc2(L), we speculate that ε jumps to 0 due to the first-
order transition mentioned in Sec. IV B 1.

The L-independent behavior of the learning curve can be
seen in Fig. 9 as follows. For instance, one can see that εL(α)
of L = 10, 20 are indistinguishable for 1/α > 0.01, and L =
10, 20, 5 are indistinguishable for 1/α > 0.1.

C. Finite-width N/dimension D effects and finite
connectivity c effects

In reality, DNNs have some finite width N and finite
connectivity c, while in the theory we assumed an idealized
situation, namely the dense limit N � c � 1 and M � 1 with
fixed α = M/c. It is very important to consider the effects of
finite width N and finite connectivity c (and M).

1. Finite width N effect

The effects of finite width N can be attributed to the cor-
rections due to geometrically closed loops in the network,
which become non-negligible when the width N is finite, as
we discussed in Sec. III B. The simplest is the one shown in
Fig. 3, which connects three adjacent layers. More extended
ones exist as shown in Fig. 20, which connect many layers. As
we showed in Sec. III B, the probability to have such a geo-
metrically closed single loop is proportional to c/N no matter
how extended it is. The probability vanishes in N → ∞ but
exists as long as N is finite.

Most importantly, the loops connect different layers and
different nodes within the same layer inducing correlations in-
side the network. Indeed, as discussed in detail Appendix B 4,
the loops yield finite width N corrections to the interaction
part of the free energy. We also note that the symmetry con-
cerning the exchange of input/output sides present in the
saddle-point solutions (see Fig. 7) becomes lost in the pres-
ence of such loop correction terms.

2. Finite hidden dimension D effect

It is interesting to discuss here the hidden manifold model
[21] introduced in Sec. III G. Let us recall that our original
model contains no correlations within the boundaries. We can
consider the effect of the correlations put in the input/output
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FIG. 8. Order parameters and generalization error obtained by solving the replica-symmetric saddle-point equations. In the panels on the
first and second rows, overlaps of spins q(l ) (filled symbols) and Q(l ) bonds (open symbols) are shown. In the bottom row, the generalization
error ε is shown.

boundaries by the hidden manifold model in a perturbative
manner around the replica-symmetric saddle-point solution as
the following.

Within the simplest model [Eq. (17)] for the folding matrix
F , the same values are repeated in the input (output) data
on different nodes i (= 1, 2, . . . , N ). This induces additional
closed loops. For example, the unclosed loop in panel (b) of

FIG. 9. Learning curves of DNN with various depths L obtained
by solving the replica-symmetric saddle-point equations.

Fig. 10 becomes closed if the input data at k1 and k2 are forced
to take the same value by the simplest hidden manifold model.
This means that finite width N effects become enhanced as the
effective dimension D becomes smaller. This consideration
implies that the finite width N effect and the finite hidden di-
mension D effect will be similar. Both will lead to an increase
of correlations inside the network.

FIG. 10. Schematic picture of the closed and unclosed loop at the
boundary.
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Let us note that the teacher and students have different ar-
chitectures in the hidden manifold model so that the inference
by the students is not Bayes-optimal. In such a circumstance,
the replica symmetry is not guaranteed. We leave the analysis
beyond the perturbative analysis for future works.

3. Finite connectivity c effect

Finally, in the N → ∞ limit, we will still be left with finite
connectivity c effects. In our theoretical analysis, we assumed
c → ∞, which allowed us to perform the saddle-point com-
putations. One can naturally consider 1/c corrections, taking
into account contributions from fluctuations around the saddle
point as sketched in Appendix B 7.

Naturally the fluctuating field around the saddle point in-
duces correlations inside the network. Let us also note that the
cubic term in the expansion breaks the symmetry concerning
the exchange of input/output sides (see Appendix B 7 b).

4. Discussions

The corrections due to the loops (Sec. IV C 1 and Sec.
IV C 2) and those due to the fluctuations around the saddle
points (Sec. IV C 3) can be easily separated considering the
dense limit N � c � 1, which is difficult for the case of
global coupling c = N . Nonetheless, we found that the two
corrections bring qualitatively similar effects: (i) correlations
inside the network, and (ii) asymmetry with respect to the
exchange of input/output sides.

We consider that the two effects, which disappear in the
dense limit, are important in practice in the following respects:

(i) Remnant symmetry-breaking field. One would wonder:
how a student machine can recognize the existence of the
two crystalline regions (teacher’s configuration) if the two are
separated by the liquid region as in Fig. 7?” For an algorithm
to work in this situation, some remnant symmetry breaking
field should help the student. We consider the corrections due
to the loops and the fluctuations around the saddle point play
this role.

(ii) Input-output asymmetry. One would also wonder: how
a DNN with the feed-forward propagation of information can
have such spatial profile which is completely symmetric con-
cerning the exchange of input/output sides as in Fig. 7? We
consider the corrections due to the loops and the fluctuations
around the saddle point are responsible for the breaking of this
symmetry.

V. SIMULATION

Now let us discuss Monte Carlo simulations on the same
model we analyzed theoretically. We first explain the simu-
lation method in Sec. V A, we introduce the observables in
Sec. V B, and then we present the results in Sec. V C.

A. Method

1. Learning scenarios

We simulate the teacher-student scenario (see Sec. III D)
in the Bayes-optimal setting and the setting with the hidden
manifold model (see Sec. III G).

(i) Bayes-optimal Scenario.

(a) Network: Teacher and student machines have the same
rectangular network of width N and depth L (see Fig. 1).
The rectangular network is created as a random graph as the
following. Every � ∈ l is given c arms. Each of the arms is
connected to a � ∈ l − 1 chosen randomly out of N possible
ones.

(b) Synaptic weights of teacher machine: The teacher’s
synaptic weights {(Jk

�)teacher} for � ∈ 1, 2, . . . , L and k =
1, 2, . . . , c are prepared as iid random numbers drawn from
the Gaussian distribution with zero mean and unit variance.

(c) Data: M set of training data is prepared as follows. First
the common input data for all machines including the teacher
and students are prepared as iid random numbers (Steacher )

μ
0,i =

±1 for i = 1, 2, . . . , N and μ = 1, 2, . . . , M. Then the out-
put (Steacher )

μ
L,i for i = 1, 2, . . . , N and μ = 1, 2, . . . , M are

obtained by the feed-forward propagation of the signal us-
ing Eq. (1). These outputs are used as the target outputs
(S∗)μL,i to train the student machines (see below), i.e., (S∗)μL,i =
(Steacher )

μ
L,i. Another M ′ set of data for the test (validation) are

created in the same way.
(ii) Hidden Manifold Scenario [21].
(a) Network: The networks of the teacher and student ma-

chines are the rectangular, random regular network as in the
Bayes-optimal scenario but the teacher machine is narrower
than the student machine, i.e., D < N (see Fig. 6).

(b) Synaptic weights of teacher machine: The teacher’s
synaptic weights are prepared in the same manner as in the
case of the Bayes-optimal scenario.

(c) Data: M sets of data for training and another M ′ sets
of data for the test (validation) are created in the same way
as the following. Pairs of input/output data of the teacher’s
machine is created just as in the case of Bayes-optimal sce-
nario but with D replacing N . Then the N-dimensional inputs
(Sstudent )0,i for i = 1, 2, . . . , N to be given to the student ma-
chines are created using the simple folding matrix F given by
Eq. (17). Similarly, the N-dimensional target output (S∗)L,i for
i = 1, 2, . . . , N for the student machines is created using the
same folding matrix F .

2. Learning algorithm: Greedy Monte Carlo method

For a set of temporal synaptic weights of a student ma-
chine {(Jk

�)student} for � ∈ 1, 2, . . . , L and k = 1, 2, . . . , c, we
obtain the output data (Sstudent )L,i (i = 1, 2, . . . , N) for a given
input data (Sstudent )0,i (i = 1, 2, . . . , N) using the feed-forward
propagation based on Eq. (1).

To train the student machines, we use a simple zero-
temperature or greedy Monte Carlo algorithm. We introduce
the loss function defined as

E =
N∑

i=1

M∑
μ=1

|(Sstudent )
μ
L,i − (S∗)μL,i|, (29)

where (S∗)μL,i is the target output data defined above. Note that
the loss function takes discrete values. In particular, we are
interested with the ensemble of student machines in the E = 0
space, whose phase-space volume is just Gardner’s volume.

Starting from a set of initial synaptic weights, the student
machines are updated as follows:

(i) Select a perceptron � randomly out of the N� possible
ones and select a link k randomly out of the c possible ones,
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k = 1, 2, . . . , c. Then propose a new synaptic weight,

(Jk
�)new

student = (Jk
�)student + δx√

1 + δ2
, (30)

where δ is a parameter and x is an iid random number drawn
from the Gaussian distribution with zero mean and unit vari-
ance. Note that (Jk

�)new
student is normalized such that its variance

remains to be 1.
(ii) Accept the proposed one if the resultant loss function

does not increase. Otherwise reject it and go back to (i).
Importantly, we accept updates by which the loss function
remains unchanged. This is crucial to allow exploration of the
E = 0 (SAT) space.

Within one Monte Carlo step (MCS), we repeat the above
procedure N�c times.

We simulate learning by two student machines “1” and
“2” which are subjected to the same training data but evolve
independently from each other using statistically independent
random numbers for steps (i) and (ii) explained above.

3. Learning and unlearning

For the training, we consider the following two protocols:
Learning: the initial synaptic weights of the student

machines {(Jk
�)student} are prepared just as iid Gaussian ran-

dom numbers totally uncorrelated with the teacher’s weights
{(Jk

�)teacher}.
To facilitate the training, we perform a sort of “annealing.”

At a given time t (MCS), perform the greedy Monte Carlo up-
date using a subset of the training data of size Mbatch(t )(< M ).
Starting from Mbatch(0) = 1, increase Mbatch(t ) logarithmi-
cally in time t progressively adding more data to the training
data set such that Mbatch(tmax) = M in the end of the simula-
tion at tmax (MCS).

Unlearning (or planting): the initial synaptic weights of the
student machines {(Jk

�)student} are set to be exactly the same
as the teacher’s weights {(Jk

�}teacher}. The student machine
explores the E = 0 (SAT) space.

If the greedy Monte Carlo method equilibrated the system,
the two protocols should yield the same results for macro-
scopic observables, which we explain below, after averaging
over time and/or initial configurations in the stationary state.

B. Observables

1. Simple overlaps

We are interested in the similarity between different ma-
chines in the hidden layers l = 1, 2, . . . , L − 1. To quantify
this, we first introduce, between the two student machines
“1,” “2” and the teacher machine “0,” the following “simple”
overlaps:

q(l ) = 1

NM

N∑
i=1

M∑
μ=1

(S1)μl,i(S2)μl, j, (31)

r(l ) = 1

2NM

N∑
i=1

M∑
μ=1

(S0)μl, j[(S1)μl,i + (S2)μl,i]. (32)

Here μ = 1, 2, . . . , M for the training data and μ =
1, 2, . . . , M ′ for the test data (and replace the factor 1/M by
1/M ′ in the latter case).

These are the same as the order parameters for the spins
used in the replica theory [see Eq. (18)]. However, as men-
tioned in Sec. IV A 1, the expectation value of the simplest
overlaps defined above vanishes in thermal equilibrium be-
cause of the local gauge symmetry (and the permutation
symmetry in the case c = N), as discussed in Sec. III F.

2. Squared overlaps

To overcome the above problem, we define the following
order parameters, which we refer to as squared overlaps, and
which are invariant under the symmetry operations. Let us first
introduce

qab,i j (l ) = 1

M

M∑
μ=1

(Sa)μl,i(Sb)μl, j . (33)

(34)

Here a and b are indices for machines: 0 for the teacher
machine, 1 and 2 for the student machines. Then we introduce
the squared overlaps as

q2,ab(l ) = 1

N

N∑
i, j=1

[qab,i j (l )]2 − N

M
. (35)

We note that this is analogous to the order parameter used in
numerical simulations of vectorial spin-glass models which
have rotational symmetry in spin space [38].

Finally, we introduce the normalized version of the squared
overlap,

q2(l ) = q2,12(l )√
q2,11(l )

√
q2,22(l )

,

r2(l ) = q2,01(l ) + q2,02(l )√
q2,00(l )[

√
q2,11(l ) +√

q2,22(l )]
. (36)

Interestingly, these are very similar to the measure proposed
in [39] referred to as “centered kernel alignment.”

3. Nishimori condition

Since our teacher-student scenario is a Bayes-optimal in-
ference, we have

q(l ) = r(l ), q2(l ) = r2(l ), l = 1, 2, . . . , L. (37)

This is a Nishimori condition which must hold in Bayes-
optimal inferences [17,28,32]. These relations are useful to
check the equilibration of the system.

4. Physical meaning of the squared overlaps

Let us discuss more closely the significance of the squared
overlap defined in Eq. (35) and its normalized version
Eq. (36). In the following, we denote the average over dif-
ferent realization of the inputs as · · ·input. From Eq. (34), we
can write

[qab,i j (l )]2
input = 1

M
+ 1

M

M∑
μ=1

1

M

∑
ν( �=μ)

rμ→ν
a,i rμ→ν

b, j

input

 1

M
+ rμ→ν( �=μ)

a,i rμ→ν( �=μ)
b, j

input
(38)
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with

rμ→ν
a,i = (Sa)μli (Sa)νli. (39)

Here rμ→ν
a,i can be regarded as a change of the sign of the spin

(neuron) at the node (l, i) of student-a when the input pattern
is changes from μ to ν. Using the above expression, we find
that Eq. (35) with the subtraction term −N/M becomes

q2,ab(l )  1

N

N∑
j=1

rμ→ν( �=μ)
a,i rμ→ν( �=μ)

b, j

input
. (40)

This can be viewed as a kind of correlation volume within
layer l in the following sense.

(i) Totally uncorrelated random machines. Suppose that
student-a and student-b are totally uncorrelated (far beyond
the trivial difference by the gauge transformation and the
permutation) randomly generated machines. Then we natu-

rally expect rμ→ν( �=μ)
a,i rμ→ν( �=μ)

b, j

input
= 0. This means that the

minimum value of the squared overlap q2,ab(l ) is 0.
(ii) Same random machine modulo gauge transformation

and permutation. On the other hand, if the two machines
are the same machine modulo the gauge transformation and
permutation, we can write

rμ→ν( �=μ)
a,i rμ→ν( �=μ)

b, j

input

= δi j + (1 − δi j )r
μ→ν( �=μ)
a,i rμ→ν( �=μ)

b, j

input
. (41)

Thus in this case the squared overlap q2,ab(l ) is at least 1 and
can be larger.

In the case of the perceptrons with random synaptic
weights and the highly nonlinear activation function [see

Eq. (1)], we expect rμ→ν( �=μ)
a,i rμ→ν( �=μ)

b, j

input
becomes significant

also between different nodes i �= j. This is because of the
chaos effect, which we discussed in Sec. III C: it is known
that in such a nonlinear random feed-forward network, a
slight change of the input induces chaotic changes in the
state of spins (neuron) as the signal propagates deeper into
the network [25]. This is an avalanche-like process so that

the correlation rμ→ν( �=μ)
a,i rμ→ν( �=μ)

b, j

input
for i �= j becomes more

significant with increasing l . In this case, the squared overlap
q2,ab(l ) can be viewed as a measure of avalanche size within
layer l .

(iii) General case. Based on the above consideration,
we naturally expect that in general q2,ab(l ) quantifies the
avalanche size and similarity of the avalanche patterns taking
place in machines a and b through changes of inputs μ →
ν( �= μ). Then it becomes clear that the normalized version
[Eq. (36)] quantifies the similarity of the avalanche patterns in
machines a and b.

5. Generalization error

To measure the generalization ability of the student ma-
chines (see Sec. III D), we measure

rout = 1

NM

N∑
i=1

M ′∑
μ=1

(Sstudent )
μ

l,i(Steacher )
μ

l,i. (42)

Here we use the M ′ sets of the outputs of the teacher and
student machines for the test data (not used for training). The
generalization error [see Eq. (12)] can be evaluated as

ε = 1
2 (1 − rout ). (43)

In the above expression, we used simple overlap defined on
the output layer l = L (see [Eq. (32)]). Note that there are no
gauge transformations or permutations on the output layer.

C. Results

Now let us discuss the results of the simulations. First,
we discuss the equilibration process through the learning and
unlearning protocols (see Sec. V A 3). Next, we discuss the
equilibrium properties of macroscopic observables.

In the simulations, we used δ = 0.1 to generate new
weights by Eq. (30). For the test, we used M ′ = M data uncor-
related with the training data. In the following, observables are
averaged over 240 statistically independent samples (different
realizations of the teacher machine, initial configurations of
student machines for learning, and realizations of random
numbers used in Monte Carlo updates).

1. Learning

In Fig. 11, we present the relaxation of the loss function
Eq. (29) in the learning protocol (see Sec. V A 3). It can be
seen in panel (a) that relaxation of the loss function slows
down by increasing the number of the training data M = cα.
On the other hand, it can be observed in panel (b) that re-
laxation becomes faster upon increasing the depth L of the
network.

As shown in panel (c), the relaxation depends also on the
width N but converges in large enough N with fixed c, and α

suggests that relaxation time is finite in systems with finite
connectivity c even in the N → ∞ limit. For larger c, the
relaxation curves converge to a slower curve as shown in panel
(d), suggesting that the relaxation time becomes larger for
larger connectivity c.

2. Unlearning

In Fig. 12, we show the simple overlaps defined in Eq. (32)
observed in the unlearning protocol, which explores the E = 0
landscape (SAT phase) (see Sec. V A 3). Note that q(l ) =
r(l ) = 1 at the beginning. The student machines become
decorrelated from the teacher machine and also from each
other as time t elapses. It is interesting to note that relaxation
is inhomogeneous in space: relaxation is faster in the central
part of the network and slower closer to the input/output
boundaries.

It is important to note that the complete vanishing of
the simple overlaps does not necessarily mean that the so-
lution space is completely in a liquid state as the overlaps
are not gauge-invariant. Because of the gauge symmetry (see
Sec. III F 1), even machines that are completely the same as
the teacher machine modulo the gauge transformation can
have vanishing simple overlap with the teacher machine. In-
deed, we will find below that normalized squared overlaps
[Eq. (36)] (which are gauge-invariant) instead indicate corre-
lations between different machines.
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(b) (c) (d)(a)

FIG. 11. Relaxation of the loss function in learning [annealing with tmax = 104 (MCS)] observed by the MC simulation. In all cases,
N = 10. (a) Various α = M/c with L = 10 and c = 5. (b) Various L with α = M/c = 4 and c = 5. (c) Various N with L = 10, α = 4, and
c = 5. (d) The same as (c) but with c = 10. The unit of time t is 1 (MCS).

The inhomogeneity of the relaxation observed here sug-
gests that the system is more constrained closer to the
boundary while the center is freer. We have also observed that
the deeper system relaxes faster, as shown in Fig. 11(b). These
may be interpreted as an echo of the “crystal-liquid-crystal”
sandwich structure predicted by the theory (Fig. 7).

3. Equilibration

In equilibrium, learning and unlearning protocols should
give the same results for macroscopic observables after suffi-
ciently long times. This is indeed verified, as shown in the top
panels (a), (c), and (e) of Fig. 13. In panels (a) and (c) we show
the normalized squared overlaps defined in Eq. (36), which
are invariant under the gauge transformations. The normalized
squared overlaps of unlearning and learning protocols agree,
suggesting the establishment of equilibrium. Furthermore, it
can be seen that the Nishimori condition q2(l ) = r2(l ) [see
Eq. (37)] expected for the Bayes-optimal inferences becomes
satisfied after sufficiently long times. This is additional evi-
dence of thermal equilibration. Equilibration can also be seen
in panel (e), where we show the simple overlap between the
teacher and student machines in the output layer l = L for the
test data.

As can be seen in Fig. 13, the spatial profiles of the
normalized squared overlaps q2(l ) and r2(l ) are strongly

inhomogeneous in space. As discussed in Sec. V B 4, we
consider that the normalized squared overlaps quantify the
similarity of the avalanche patterns taking place in differ-
ent machines through changes of inputs μ → ν( �= μ). At
the beginning of unlearning, which starts from the teacher’s
configuration, the normalized squared overlaps take high val-
ues. On the other hand, they are small at the beginning of
learning, which is not surprising because teacher and student
machines are totally uncorrelated at the beginning. In equi-
librium, they converge to a nontrivial, spatially nonmonotonic
function. This implies that the equilibrium phase is not just
a liquid, as we might have thought based on the observation
of the vanishing simple overlap (Fig. 12). On the contrary,
the gauge-invariant quantity shows that the student machines
are strongly correlated with each other and with the teacher
machine in equilibrium. The spatial nonmonotonicity means
that they become less correlated with each other in the center
(beyond the trivial difference by the gauge transformations)
while they are similar to each other (modulo the gauge trans-
formation) closer to the input and output boundaries. This
observation can be regarded as another echo of the spatial
inhomogeneity predicted by the theory (Fig. 7). From the
theoretical point of view, the strong asymmetry concerning
the exchange of input/output sides, which is absent in the
saddle-point solution, may be attributed to the finiteness of the
width N and the connectivity c, as we discussed in Sec. IV C 4.

FIG. 12. Time evolution of simple student-student overlap q(l ) (filled symbols) and teacher-student overlap r(l ) (open symbols) observed
in MC simulations of the unlearning protocol. Here N = 10, α = 4, c = 5. Panel (a) shows data at t = 1, 2, 4, 8, 10, 20, 40, 80. Panels (b) and
(c) show the simple student-student overlap q(l ) and simple teacher-student r(l ) overlap, respectively.

033068-13



HAJIME YOSHINO PHYSICAL REVIEW RESEARCH 5, 033068 (2023)

FIG. 13. Spatial profile of the normalized squared teacher-student overlaps r2(l ) and student-student overlaps q2(l ) [see Eq. (36)] for
training (a),(b) and test (c),(d), and time evolution of the simple teacher-student overlap r(L) in the output layer (l = L) for test (e),(f) [See
Eq. (42)]. All data are obtained by the MC simulations. In panels (a), (c), and (e), data of q2(l ) (open symbols) and r2(l ) (filled symbols)
of learning/unlearning are represented by red/blue points (α = 4). Panels (a) and (c) show the normalized squared overlaps at various times
t = 1, 10, 100, 1000, 10 000 (increasing along the arrows) at each layer. Panel (e) shows the time evolution of the simple teacher-student
overlap r(L) at the output layer (l = L) for the test data. Panels (b) and (d) show the normalized squared teacher-student overlap for unlearning
(open symbols)/learning (filled symbols) at α = 2, 4, 8 at t = 104 (MCS). Panel (f) show the time evolution of the simple teacher-student
overlap r(L) at the output layer (l = L) for the test data, obtained by unlearning (open symbols)/learning (filled symbols) protocols with
α = 2, 4, 8, 16, 32. Here N = 10, L = 10, and c = 5 for all data.

As shown in the bottom panels (b), (d), and (f) in Fig. 13,
the overlaps increase as α increases, as expected. In panel (f) it
can be seen that the dynamics of both learning and unlearning
slow down as α increases.

4. Typical student machines

Now let us examine further the equilibrium properties, i.e.,
properties of typical student machines sampled in the solu-
tion space. We show in Fig. 14 some data of the normalized
squared overlaps q2(l ). It can be seen again that the data ob-
tained by both learning (filled symbols) and unlearning (open
symbols) agree, confirming that the system is equilibrated.
Quite remarkably, the equilibrium normalized squared overlap
q2(l ) evolves nonmonotonically in space for large enough N
and c. It first decreases with l but finally increases with l .
This means that avalanches taking place in different machines
become decorrelated in the middle of the network but strongly
correlated closer to the input and output boundaries. It appears
that the situation has become closer to the “crystal-liquid-

crystal” sandwich structure predicted by the theory (Fig. 7)
increasing N and c.

In Sec. IV C 4 we discussed that the corrections due to
the loops and fluctuations around the saddle point can be
separated considering the dense limit N � c � 1, but they
bring about similar effects: (i) a remnant symmetry-breaking
field, and (ii) input-output asymmetry. Indeed, it can be seen in
Fig. 14 that for fixed connectivity c, the normalized squared
overlaps decrease around the center of the network, and the
asymmetry with respect to the exchange of input/output be-
comes weaker as N increases. Furthermore, the data suggest
convergence in the N → ∞ limit with fixed c. Comparing
panels (a) and (b), it can be seen that the remnant asymmetry
becomes weaker as the connectivity c increases. Remark-
ably, decorrelation in the center also becomes clearer upon
increasing N and c, suggesting the emergence of a liquidlike
region in the center due to overparametrization, as suggested
theoretically in the dense limit N � c � 1.

In Fig. 15 we show the normalized squared overlaps q2(l ),
r2(l ) and the generalization error ε in systems with α = 4,
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(a)

(b)

FIG. 14. Finite N effect and finite c effect: the asym-
metry becomes smaller as N increases for unlearning (open
symbols)/learning (filled symbols). N = 10, 20, 30, 40, 80 with α =
1.0 and (left) c = 5, (right) c = 10. All data are obtained by MC
simulations of t = 104 (MCS).

c = 5 observed after t = 104 (MCS) in systems with different
depth L = 5, 10, 20. As shown in the top panels (a), (c), and
(e), data obtained by both learning (filled symbols) and un-
learning (open symbols) agree, proving again that the system
is equilibrated. As shown in panels (a) and (c), we find again
that the normalized squared overlaps are strongly inhomoge-
neous in space. The machines decorrelate more concerning
each other in the central region in deeper systems, but correla-
tions recover approaching the output layer. We also find again
that normalized squared overlaps increase significantly and
that the asymmetry concerning the exchange of the input and
output sides becomes stronger upon decreasing the width N .

Now let us turn to the effect of finite-dimension D in-
troduced by the hidden manifold model (see Sec. V A 1).
The results of simulations on the hidden manifold model are
displayed in panels (b) and (d) of Fig. 15. Here we used
the simplest folding matrix F of the form Eq. (17), but we
obtained qualitatively the same results (not shown) also in
the case of random matrices. Comparing the panels (b) to
(a) and (d) to (c), we immediately notice that the effect of
hidden dimension D is quite similar to the effect of finite
width N : decreasing D with fixed N is much like decreasing
N (= D). We conjecture that this is due to the enhancement of
the loop corrections induced by the closing of the loops by the
correlated inputs as discussed in Sec. IV C 2.

Finally, let us discuss the generalization error ε shown in
panels (e) and (f) of Fig. 15. In panel (e) we also show the
generalization error ε obtained by the theory in the dense
limit c → ∞ [see Eq. (12) and Fig. 9]. Remarkably, the effect
of finite width N and hidden dimension D is very similar
again. The generalization error improves significantly either
by decreasing N (= D) or D with fixed N . Presumably this is
due to the increase of correlations inside the network induced
by the loop corrections. Moreover, the generalization error be-
comes independent of the depth L at sufficiently deep systems,
much like the theoretical prediction. The result implies that
the generalization ability first decreases, making the system
deeper, but it does not vanish even in the L → ∞ limit. This is
consistent with the L-independent learning curve ε = ε∞(α)
predicted theoretically (see Sec. IV B 2).

VI. CONCLUSIONS

In the present paper, we obtained an exactly solvable
statistical mechanics model of machine learning by a deep
neural network (DNN) in the dense limit N � c � 1. Exact
solutions are obtained using the replica method developed in
[15]. We used the replica theory to analyze the generaliza-
tion ability of the DNN in the Bayes-optimal teacher-student
setting. The learning curve ε = εL(α) becomes independent
of the depth L as long as the two crystalline phases attached
to input/output boundaries are separated by the liquid phase
in the center. Thus the system is predicted to generalize even
in the limit L → ∞ where the system becomes extremely
overparametrized. We discussed the loop corrections to the
dense limit and argued that finite width N and finite hidden
dimension D effects appear similarly. Both should lead to an
increase of correlations inside the network.

In simulations, the simple greedy Monte Carlo method
turned out to work efficiently to enable sampling of typical
machines in equilibrium, suggesting the simplicity of the loss
landscape. The main obstacle in simulations is the gauge
invariance of the system by which order parameters in the
original simple form vanish. To overcome the difficulty, we
measured the normalized squared overlap, which quantifies
the correlation of avalanches concerning changes in input
data between different machines. It is a gauge (and permu-
tation) invariant quantity that reflects the similarity between
machines modulo the gauge (and permutation) symmetries.
The result is qualitatively consistent with the theoretical pre-
diction that overparametrization in the DNN leads to spatially
inhomogeneous learning: students become close to the teacher
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FIG. 15. Spatial profile of the normalized squared overlaps and the generalization error in systems with various widths N (top panels) and
hidden dimension D(� N ) (bottom panels) obtained by MC simulations. In the top panels, data obtained by both learning (filled symbols)
and unlearning (open symbols) are shown. Panels (a) and (b) show the normalized squared overlaps for training, while (c) and (d) show those
for the test. Panels (e) and (f) show the generalization error ε [see Eq. (43)]. In panel (e) we also show the generalization error ε obtained by
the theory in the dense limit: N → ∞ followed by N → ∞ [see Eq. (12) and Fig. 9]. In panels (a)–(d) data with L = 5, 10, 20 are shown. In
panels (a), (c), and (e) data with N = 8, 10, 20 are shown. In panels (b), (d), and (f) data with D = 4, 6, 8, 10 are shown. In all cases, α = 4,
c = 5, and t = 104.

around the input/output boundaries, while they remain only
weakly correlated in the center. We note that a liquidlike
central region was also noticed in [40]. Furthermore, some-
what counterintuitively but in agreement with the theoretical
prediction, the generalization error first increases the depth
L but then becomes independent of it, suggesting that the
generalization ability survives in the L → ∞ limit. Simula-
tions confirm that finite width N and finite hidden dimension
D effects are quite similar and lead similarly to significant
improvements in the generalization ability. Presumably this
reflects the increase of correlations inside the network due to
the loop corrections. As we noted in Sec. IV C 4, we consider
that the corrections due to the loops and fluctuations around
the saddle point play the role of a symmetry-breaking field,
which allows the student to recognize the teacher again in
spite of the liquidlike center.

Finally, what is the advantage of making the system
deeper? One important advantage is that the learning dy-
namics become faster, increasing the depth, as we found
numerically. This should be due to the presence of the central
region, where the system is less constrained. We believe that

this point will become more important as we move away
from the idealized, Bayes-optimal teacher-student setting we
considered in the present work. From a theoretical point of
view, there is no guarantee that replica symmetry continues
to hold as we move away from the Bayes-optimal situation
toward the situations in the real world. For example, one can
consider a noisy teacher-student scenario by adding noise to
the training data provided by the teacher. Then the situation
becomes closer to the random scenario considered in [15],
where complex replica-symmetry breaking (RSB) was found
in the DNN. In the latter case, RSB evolves in space such
that the hierarchy of RSB becomes simplified layer-by-layer
approaching the center so that the central region can remain
in the replica-symmetric liquid phase if the network is made
deep enough. This implies the deeper system will relax faster
even in the presence of the RSB around the boundaries.

There are numerous directions in which to generalize and
extend the present work. Let us mention a few of them here.
It is straightforward to study the model exactly with the pa-
rameter α depending on space α = α(l ). This amounts to
making the width N of the network vary in space N = N (l ).
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It will be interesting to study how one can control the spatial
heterogeneity of learning by changing α(l ). The dense limit
N � c � 1 will be useful not only for the replica theory but
also for other theoretical approaches. For instance, it should be
possible to develop cavity approaches in the dense limit. It will
also be very interesting to generalize our theory considering
more general activation functions, as we noted in Sec. III C.
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APPENDIX A: TRANSFER-MATRIX REPRESENTATION
OF FEED-FORWARD NETWORKS

Here we show that transfer-matrix representations of a
family of spin-glass models put in the layered geometry (like
in Fig. 1) become feed-forward DNNs in the zero-temperature
limit.

In the following, we denote the configuration of the set of
spins in the lth layer as Sμ

l = {Sμ

�∈l}, where μ is the label to
specify a data set. Let us write the conditional probability to
realize a spin configuration Sμ

L on the output boundary given
a spin configuration Sμ

0 on the input boundary as

P(Sμ
0 → Sμ

L ) =
(

L−1∏
l=1

TrSμ

l

)
L∏

l=1

P(Sμ

l−1 → Sμ

l ), (A1)

where P(Sμ

l−1 → Sμ

l ) is the conditional probability to realize
a spin configuration Sμ

l on the lth layer given a spin configu-
ration Sμ

l−1 on the (l − 1)th layer,

P(Sμ

l−1 → Sμ

l ) = 〈Sμ

l−1|Tl |Sμ

l 〉
TrSμ

l
〈Sμ

l−1|Tl |Sμ

l 〉 , (A2)

where Tl is the transfer matrix from the (l − 1)th to the lth
layer.

1. Layered Ising spin-glass model

Let us first consider the layered Ising spin-glass model
Eq. (4) with the restricted Boltzmann machine (RBM) -like
architecture [24],

H = − 1√
c

∑
�

c∑
k=1

Jk
�S�S�(k), (A3)

where the spins are Ising variables Sμ = ±1. The matrix ele-
ments of the transfer matrix are given by

〈Sμ

l−1|Tl |Sμ

l 〉 = e
∑

�∈l

∑c
k=1

βJk
�√
c

Sμ

�Sμ

�(k) . (A4)

Here β = 1/T is the inverse of the temperature T . The size
of the matrix is 2N × 2N . Then we find that the conditional
probability Eq. (A2) becomes

P(Sμ

l−1 → Sμ

l ) =
∏
�∈l

P(Sμ

l−1 → Sμ

�), (A5)

where ∏
�∈l

P(Sμ

l−1 → Sμ

�) =
∏
�∈l

eβrμ

�

TrSμ

�
eβrμ

�
, (A6)

with rμ

� being the gap variable Eq. (10),

rμ

� = Sμ

�

c∑
k=1

Jk
�√
c

Sμ

�(k). (A7)

It is important to notice the factorization of the conditional
probability in Eq. (A5). It is a consequence of the RBM-type
architecture: there are no direct interactions within each layer.

Taking the zero-temperature limit T → 0 (β → ∞), we
find

P(Sμ

l−1 → Sμ

l ) −−→
T →0

∏
�∈l

θ (rμ

�), (A8)

where θ (r) is the Heaviside step function. Thus in this limit,
the configuration Sμ

� in � ∈ l is established deterministically
given Sμ

� in � ∈ l − 1 by the perceptron’s rule Eq. (1),

Sμ

� = sgn

(
c∑

k=1

Jk
�√
c

Sμ

�(k)

)
. (A9)

Note that the operation of the transfer matrix of size 2N × 2N ,
Eq. (A4), is now replaced in the T → 0 limit by simple
nonlinear mapping of a much lower computational cost of
O(Nc) thanks to (i) the RBM-like network structure, and (ii)
the T → 0 limit.

Similarly, we find

lim
T →0

P(Sμ
0 → Sμ

L ) =
⎛
⎝ ∏

�\output

TrSμ

�

⎞
⎠∏

�
θ (rμ

�), (A10)

which means S�∈L in the output layer becomes determined by
the multilayer perceptron for a given S�∈0 in the output layer.
Note that Gardner’s volume Eq. (8) can be written as

VM (S0, SL ) = lim
T →0

⎛
⎝∏

�
TrJ�

⎞
⎠∏

μ

P(Sμ
0 → Sμ

L ). (A11)

In this representation it becomes clear that the traces over the
spins in the hidden layers used in Gardner’s volume for DNN
Eq. (8) (the internal representation [29]) are equivalent to
computation of the products of transfer matrices in Eq. (A1).

2. Layered spin-glass models with continuous spins

Now let us consider a class of slightly more generalized
models on the RBM-type network with the Hamiltonian

H = − 1√
c

∑
�

c∑
k=1

Jk
�S�S�(k) +

∑
�

U (S�). (A12)

Here we consider spins that take continuous values −∞ <

S < ∞. The function U (x) in the second term of the Hamil-
tonian Eq. (A12) represents a confining potential to regularize
the spins. Then the conditional probability Eq. (A2) becomes

P(Sμ

l−1 → Sμ

l ) =
∏
�∈l

eβ(hμ

�Sμ

�−U (Sμ

� ))

TrSμ

�
eβ(hμ

�Sμ

�−U (Sμ

� ))
, (A13)
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(a) (b)

FIG. 16. Some examples of the activation function f (h) and the
associated confining potential U (S). Here u = 1 for the piecewise
linear function.

where

hμ

� =
c∑

k=1

Jk
�√
c

Sμ

�(k). (A14)

In the T → 0 limit, we find

P(Sμ

l−1 → Sμ

l ) →
∏
�∈l

δ(Sμ

� − f (hμ

�)), (A15)

where the function f (h) is determined such that

f (h) = argminS[−hS + U (S)]. (A16)

Assuming that the potential U (s) is differentiable, we find

f −1(S) = dU (S)

dS
(A17)

or

U (S) =
∫ S

−∞
f −1(S)dS. (A18)

Thus given a layered spin-glass model with a confining local
potential U (S), Eq. (A12), we find a corresponding feed-
forward neural network with the activation function f (h) in
the T → 0 limit.

In Fig. 16 we display some examples of activation func-
tions f (h) and the associated confining potentials U (S). In
Appendix A 1 we showed that the transfer matrix of the
layered Ising spin-glass model becomes equivalent to the
feed-forward network with the activation function f (h) =
sgn(h) in the T → 0 limit. The same activation function can
be obtained also from the continuous spin model using the
confining potential

U (S) =
{

0 (−1 < u < 1),
∞ (u < −1 or u > 1). (A19)

Similarly, for a piecewise linear function parametrized by u >

0,

f (h) =
⎧⎨
⎩

1 (h > u),
h
u (−u < h < u),

−1 (h < −u),
(A20)

we find

U (S) =
{

u
2

(
S − h

u

)2 + h2

u (−1 < u < 1),
∞ (u < −1 or u > 1).

(A21)

Finally in the case of f (h) = tanh(h) one can easily find
U (S) = S tanh−1(S) + (1/2) ln(1 − S2).

APPENDIX B: DETAILS OF THE REPLICA THEORY

1. Replicated Gardner volume, Fourier transformation, and
Legendre transformation

By introducing a Fourier representation of the Boltzmann
factor,

e−βv(r) =
∫

dη√
2π

Wηe−iηr, (B1)

the replicated Gardner volume Eq. (21) can be rewritten as

V n(S0, SL )

= eNMSn(S0,Sl )

=
∏

a

⎛
⎝∏

�
TrJa

�

⎞
⎠
⎛
⎝ ∏

�\output

TrSa
�

⎞
⎠
⎧⎨
⎩ ∏

μ,�,a

e−βv(rμ

�,a
)

⎫⎬
⎭

=
∏

μ,�,a

{∫
dημ,�,a√

2π
Wημ,�,a

}
Ṽ n(S0, SL ), (B2)

where we introduced the Fourier transform of the replicated
Gardner volume

Ṽ n(S0, SL ) =
∏

a

⎛
⎝∏

�
TrJa

�

⎞
⎠
⎛
⎝ ∏

�\output

TrSa
�

⎞
⎠

×
∏

μ,�,a

eiημ,�,arμ

�,a (B3)

with the gap variable rμ

�,a defined as

rμ

�,a ≡ (Sμ

�)a
c∑

k=1

(Jk
�)a

√
c

(Sμ

�(k) )
a. (B4)

Introducing the identities

1 =
∏
a<b

∫ ∞

−∞

∫ i∞

−i∞

( c

2π i

)
dQab,�dεab,�ec

∑
a<b εab,�(Qab,�−c−1 ∑c

k=1(Jk
� )a(Jk

� )b),

1 =
∏
a<b

∫ ∞

−∞

∫ i∞

−i∞

(
M

2π i

)
dqab,�dεab,�eM

∑
a<b εab,�(qab,�−M−1 ∑M

μ=1(Sμ

� )a(Sμ

� )b), (B5)

we can express the Fourier transformation of the replicated Gardner volume Ṽ n as

Ṽ n(S0, SL ) =
∏

a<b,�

{∫ ∞

−∞
dQab,�

} ∏
a<b,�\output

{∫ ∞

−∞
dqab,�

}
e−βF̃n[Q̂,q̂], (B6)
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where we introduced

e−βF̃n[Q̂,q̂] =
∏

a<b,�

{∫ i∞

−i∞

( c

2π i

)
dεab,�

} ∏
a<b,�\output

{∫ i∞

−i∞

(
M

2π i

)
dεab,�

}

×ec
∑

�
∑

a<b εab,�Qab,�+M
∑

�\output

∑
a<b εab,�qab,�e−βG̃n[ε̂,ε̂] (B7)

with

−βG̃n[ε̂, ε̂] = −βGbond
n,0 [ε̂] − βGspin

n,0 [ε̂] + ln

⎛
⎜⎝
〈

exp

⎡
⎣i
∑

μ,�,a

ημ,�,a(Sμ

�)a
c∑

k=1

(Jk
�)a

√
c

(
Sμ

�(k)

)a

⎤
⎦〉

ε,ε

⎞
⎟⎠ (B8)

and

−βGbond
n,0 [ε̂] =

∑
�

ln

(∏
a

TrJa

)
e−c

∑
a<b εab,�JaJb

, −βGspin
n,0 [ε̂] =

∑
�\output

ln

(∏
a

TrSa

)
e−M

∑
a<b εab,�SaSb

. (B9)

We also introduced

〈· · · 〉ε,ε =
∏

�\output TrSa
�

e−∑μ

∑
a<b εab(Sμ

� )a(Sμ

� )b ∏
� TrJae−∑k

∑
a<b εab(Jk

� )a(Jk
� )b

. . .∏
�\output TrSa

�
e−∑μ

∑
a<b εab(Sμ

� )a (Sμ

� )b ∏
� TrJae−∑k

∑
a<b εab(Jk

� )a (Jk
� )b

, (B10)

which represents an averaging using a noninteracting system
with polarizing field εab and εab conjugated to the order pa-
rameters Qab and qab [41].

Note that Eq. (B7) defines −βF̃n[Q̂, q̂] by a Legendre
transformation of −βG̃n[ε̂, ε̂] defined by Eq. (B8). The inte-
grations over ε and ε can be done by the saddle-point method
for c � 1 and M � 1 yielding

−βF̃n[Q̂, q̂] = −βG̃n[ε̂∗, ε̂∗] + c
∑

a<b,�
ε∗

ab,�Qab,�

+ M
∑

a<b,�
ε∗

ab,�qab,�, (B11)

where the saddle points ε∗ = ε∗[Q̂] and ε∗ = ε∗[q̂] satisfy

Qab,� = − 1

c

∂

∂εab,�
(−βG̃n[ε̂, ε̂])

∣∣∣∣
ε=ε∗,ε=ε∗

= 1

c

c∑
k=1

〈(Jk
�)a(Jk

�)b〉ε∗,ε∗ ,

]qab,� = − 1

M

∂

∂εab,�
(−βG̃n[ε̂, ε̂])

∣∣∣∣
ε=ε∗,ε=ε∗

= 1

M

M∑
μ=1

〈(Sμ

�)a(Sμ

�)b〉ε∗,ε∗ . (B12)

The latter implies

〈(Jk )a(Jk )b〉ε = Qab ∀k, 〈(Sμ)a(Sμ)b〉ε = qab ∀μ

(B13)

since different components μ’s and k’s are equivalent and
independent in the averaging Eq. (B10).

Note that −βG̃n[ε̂, ε̂] [Eq. (B8)] consists of a noninteract-
ing part (entropic term) −βGbond

n,0 [ε̂] and −βGspin
n,0 [ε̂] defined

in Eq. (B9) and a contribution of interactions that involves
an evaluation using the noninteracting system Eq. (B10). Cer-

tainly, the latter is the crucial one. Our strategy is to analyze
the effect of interactions using a combination of the Plefka
expansion (Appendix B 2) and the cumulant expansion (Ap-
pendix B 4).

2. Plefka expansion

Suppose that the effect of the interactions can be treated
perturbatively, which enables the following decompositions
[42]:

F̃n = Fn,0 + λF̃n,1 + λ2

2
F̃n,2 + · · · ,

G̃n = Gbond
n,0 + Gspin

n,0 + λG̃n,1 + λ2

2
G̃n,2 + · · · ,

εab = (ε0)ab + λ(ε1)ab + λ2

2
(ε2)ab . . . ,

εab = (ε0)ab + λ(ε1)ab + λ2

2
(ε2)ab . . . , (B14)

where we introduced a parameter λ to keep track of the ex-
pansion. Here the quantities with the suffix 0 represent those
that are present in the absence of interactions, and those with
suffixes 1, 2, . . . represent those due to interactions.

The Legendre transform Eq. (B11) becomes, at O(λ0),

−βFn,0[Q̂, q̂] = −βGbond
n,0 [ε̂∗

0 ] − βGspin
n,0 [ε̂∗

0]

+ c
∑

a<b,�
(ε∗

0 )ab,�Qab,�

+ M
∑

a<b,�
(ε∗

0 )ab,�qab,�, (B15)

where (ε∗
0 )ab and (ε∗

0 )ab are defined such that

Qab = −1

c

∂

∂εab

(−βGbond
n,0 [ε̂]

)∣∣∣∣
ε̂=ε̂∗

0 [Q̂]

,

qab = − 1

M

∂

∂εab

(−βGspin
n,0 [ε̂]

)∣∣∣∣
ε̂=ε̂∗

0 [q̂]

. (B16)
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Then at O(λ) we find

−βF̃n,1[Q̂, q̂] = −βG̃n,1[ε̂∗
0 [Q̂], ε̂∗

0[q̂]] +
∑

a<b,�

∂
(−βGbond

n,0 [ε̂]
)

∂εab,�

∣∣∣∣∣
ε̂=ε̂∗

0 [Q̂]

(ε∗
1 )ab,� + c

∑
a<b,bs

(ε∗
1 )ab,�Qab,�

+
∑

a<b,�

∂
(−βGspin

n,0 [ε̂]
)

∂εab,�

∣∣∣∣∣
ε̂=ε̂∗

0 [q̂]

(ε∗
1 )ab,� + M

∑
a<b

(ε∗
1 )ab,�qab,� = −βG̃n,1[ε̂∗

0 [Q̂], ε̂∗
0[q̂]]. (B17)

In the second equation, we used Eq. (B16).
Similarly, at O(λ2) we find

−βF̃n,2[Q̂, q̂] = −βG̃n,2[ε∗
0 , ε∗

0] + 2
∑

a<b,�

∂ (−βG̃n,1[ε, ε])

∂εab,�

∣∣∣∣
ε=ε∗

0 ,ε=ε∗
0

(ε∗
1 )ab,� + 2

∑
a<b,�

∂ (−βG̃n,1[ε, ε])

∂εab,�

∣∣∣∣
ε=ε∗

0 ,ε=ε∗
(ε∗

1 )ab,�

+
∑

a<b,�

∂
(−βGbond

n,0 [ε]
)

∂εab,�

∣∣∣∣∣
ε=ε∗

0

(ε∗
2 )ab,� +

∑
a<b,�

∂
(
−βGspin

n,0 [ε]
)

∂εab,�

∣∣∣∣∣∣∣
ε=ε∗

0

(ε∗
2 )ab,�

+
∑
�

∑
a<b,�

∑
c<d

∂2
(−βGbond

n,0

)
[ε, ε]

∂εab,�εcd,�

∣∣∣∣∣
ε=ε∗

0

(ε∗
1 )ab,�(ε∗

1 )cd,�

+
∑
�

∑
a<b

∑
c<d

∂2
(−βGspin

n,0

)
[ε, ε]

∂εab,�εcd,�

∣∣∣∣∣
ε=ε∗

0

(ε∗
1 )ab,�(ε∗

1 )cd,� + c
∑

a<b,�
(ε∗

2 )ab,�Qab,� + M
∑

a<b,�
(ε∗

2 )ab,�qab,�

= −βG̃n,2[ε∗
0 , ε∗

0] −
∑
�

∑
a<b

∑
c<d

∂ (−βG̃n,1)[ε̂, ε̂]

∂εab,�

(
∂2
(−βGbond

n,0 [ε̂]
)

∂εab,�∂εcd,�

)−1
∂ (−βG̃n,1)[ε̂, ε̂]

∂εcd,�

−
∑
�

∑
a<b

∑
c<d

∂ (−βG̃n,1)[ε̂, ε̂]

∂εab,�

(
∂2
(−βGspin

n,0 [ε̂]
)

∂εab,�∂εcd,�

)−1
∂ (−βG̃n,1)[ε̂, ε̂]

∂εcd,�
. (B18)

To derive the last line, we used Eq. (B16) and

0 = ∂ (−βG̃n,1[ε̂, ε̂])

∂εab,�

∣∣∣∣
ε=ε∗

0 ,ε=ε∗
0

+
∑
c<d

∂2
(− βGbond

n,0 [ε̂]
)

∂εab,�∂εcd,�

∣∣∣∣∣
ε=ε∗

0

(ε∗
1 )cd,�,

0 = ∂
(−βG̃n,1[ε̂, ε̂]

)
∂εab,�

∣∣∣∣∣
ε=ε∗

0 ,ε=ε∗
0

+
∑
c<d

∂2
(−βGspin

n,0 [ε̂]
)

∂εab,�∂εcd,�

∣∣∣∣∣
ε=ε∗

0

(ε∗
1 )cd,�, (B19)

which is obtained by expanding Eq. (B12) up to O(λ) and then using Eq. (B16) for the zeroth-order terms.
If O(λ)2 terms and higher-order terms vanish (as happens in the dense coupling), we can set λ = 1 and obtain

F̃n[Q̂, q̂] = −βFn,0[Q̂, q̂] − βF̃n,1[Q̂, q̂]

= −βGn,0[ε̂∗, ε̂∗] + c
∑

a<b,�
ε∗

ab,�Qab,� + M
∑

a<b,�
ε∗

ab,�qab,� − βG̃n,1[ε̂∗], (B20)

where ε̂∗ = ε̂∗
0 [q̂] and ε̂∗ = ε̂∗

0[Q̂] are those determined by Eq. (B16).

3. Summary 1

Here we can wrap up the above results to find the replicated Gardner volume [Eq. (B2)] expressed as

V n(S0, SL ) = eNMSn (S0,Sl )

=
∏

a<b,�

{∫ ∞

−∞
dQab,�

} ∏
a<b,�\output

{∫ ∞

−∞
dqab,�

}
e−βFn[Q̂,q̂]. (B21)

The functional −βFn[Q̂, q̂] may be regarded as replicated free-energy functional

−βFn[Q̂, q̂] = −βF0[Q̂, q̂] − βFex[Q̂, q̂], (B22)
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where −βF0[Q̂, q̂] given by Eq. (B15) may be regarded as the entropic part of the free-energy while −βFex is the interaction
part of the free-energy,

e−βFex[Q̂,q̂] =
∏

μ,�,a

{∫
dημ,�,a√

2π
Wημ,�,a

}
e−βF̃ex[Q̂,q̂;{iημ,�,a}] = e−βF̃ex[Q̂,q̂,{∂/∂μ,�,a}]

∏
μ,�,a

e−βv(hμ,�,a )

∣∣∣∣∣∣
{hμ,bs,a}=0

(B23)

with

F̃ex = F̃n,1 + F̃n,2 + · · · . (B24)

In the first equation of Eq. (B23), we recalled that F̃ex[Q̂, q̂; {iημ,�,a}] depends on {iημ,�,a}. In the second equation of Eq. (B23),
F̃ex[Q̂, q̂; {iημ,�,a}] is a differential operator.

4. Cumulant expansion

Now we turn to the explicit evaluation of the −βG̃n[ε̂, ε̂] defined in Eq. (B8) by a cumulant expansion, introducing the
parameter λ,

−βG̃n[ε̂, ε̂] = ln

〈
exp

⎡
⎣i
∑

μ,�,a

ημ,�,a(Sμ

�)a
c∑

k=1

√
λ√
c

(Jk
�)a(Sμ

�(k) )
a

⎤
⎦〉

ε,ε

= ln

〈
1 +

∑
μ,�,a

iημ,�,a(Sμ

�)a
c∑

k=1

√
λ√
c

(Jk
�)a(Sμ

�(k) )
a + 1

2!

∑
μ,�,a

∑
ν,�,b

iημ,�,aiην,�,b(Sμ

�)a(Sν
�)b

×
c∑

k=1

√
λ√
c

(Jk
�)a(Sμ

�(k) )
a

c∑
k′=1

√
λ√
c

(Jk′
�)b(Sν

�(k′ ) )
b + · · ·

〉
ε,ε

. (B25)

From Eq. (B10) we find that averages 〈· · · 〉ε,ε of terms with odd numbers of spins (Sμ

�)a and bonds (Jk
�)a vanish by symmetry.

Consequently, we find nonvanishing terms at order O(λ), O(λ2),...corresponding to the second- and fourth-order terms of the
cumulant expansion which are represented by connected diagrams. They define −βG̃n,1,−βG̃n,2 . . . in the Plefka expansion
[Eq. (B14)] of −βG̃n.

a. O(λ) term

We find that the second-order cumulant yields O(λ), i.e., −βĜn,1. Then by Eq. (B17) we find that this is also −βF̃n,1,

−βF̃n,1[Q̂, q̂] = −βG̃n,1[ε̂∗[Q̂], ε̂∗[q̂]]

=
〈

1

2!

∑
μ,�,a

∑
ν,�,b

iημ,�,aiην,�,b(Sμ

�)a(Sν
�)b

c∑
k=1

√
λ√
c

(Jk
�)a(Sμ

�(k) )
a

c∑
k′=1

√
λ√
c

(Jk′
�)b(Sν

�(k′ ) )
b

〉
ε∗[Q̂],ε∗[q̂]

= λ

2

∑
μ,�

∑
a,b

iημ,�,aiημ,�,bqab,�Qab,�
1

c

c∑
k=1

qab,�(k), (B26)

where we have used Eq. (B13). Anticipating the homogeneous solution with each layer [Eq. (19)], we find −βF̂n,1/(NM ) ∼
O(1). This term will become the dominant term that contributes to the interaction part of the free-energy −βFex in the dense
limit, N � c � 1.

In Fig. 17 we show a graphical representation of the term. G̃1 (and F̃1) is obtained by associating two replicas to the diagram.

b. O(λ2 ) terms

At the fourth order of the cumulant expansion, we easily find a O(λ2) term that contributes to −βGn,2 and thus −βFn,2 via
Eq. (B18) by associating four replicas to the same diagram shown in Fig. 17,

−βF̃n,2(Fig. 17) = −βG̃n,2(Fig. 17) = 1

c

λ2

4!

∑
μ,�

∑
a,b,c,d

iημ,�,aiημ,�,biημ,�,ciημ,�,d
1

c

c∑
k=1

[〈(Sμ

�)a(Sμ

�)b(Sμ

�)c(Sμ

�)d (Jk
�)a

× (Jk
�)b(Jk

�)c(Jk
�)d (Sμ

�(k) )
a(Sμ

�(k) )
b(Sμ

�(k) )
c(Sμ

�(k) )
d〉ε̂,ε̂ − qab,�Qab,�qab,�(k)qcd,�Qcd,�qcd,�(k)

− qac,�Qac,�qac,�(k)qbd,�Qbd,�qbd,�(k) − qad,�Qad,�qad,�(k)qbc,�Qbc,�qbc,�(k)]. (B27)
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FIG. 17. Graphical representation of a contribution to G̃1

(and F̃1).

We see that −βF̃n,2(Fig. 17)/(NM ) ∝ 1/c and it vanishes
in the c → ∞ limit.

FIG. 18. A contribution to G2 which is one-line reducible.

There is another contribution to G̃2 which is associated
with a diagram shown in Fig. 18. We associate two replicas
a, b with branch “1” and replicas c, d with branch “2,”

−βG̃n,2(Fig. 18) ∼
∑
a<b

∑
c<d

[〈(S0)a(J1)a(S1)a(S0)b(J1)b(S1)b(S0)c(J2)c(S2)c(S0)d (J2)d (S2)d〉ε,ε

−〈(S0)a(J1)a(S1)a(S0)b(J1)b(S1)b〉ε,ε〈(S0)c(J2)c(S2)c(S0)d (J2)d (S2)d〉ε,ε]

=
∑
a<b

∑
c<d

〈(S0)a(S0)b(S0)c(S0)d〉c
ε,εQab,�qab,�Qcd,�qcd,�, (B28)

where 〈SaSbScSd〉c’s are connected correlation functions defined as

〈SaSbScSd〉c = 〈SaSbScSd〉 − 〈SaSb〉〈ScSd〉
= 〈SaSbScSd〉 − qabqcd . (B29)

Note that it involves four perceptrons associated with the four replicas so that we have a factor (1/
√

c)4 but there are c(c − 1)
different ways to choose the end points of branch “1” and “2.” Thus the contribution by this type of term survives in the c → ∞
limit as the O(1) contribution to −βGn,2/(NM ).

However, this does not contribute to −βFn,2 because it is exactly canceled by the second term in Eq. (B18). To see this, let us
recall that Gn,1 is like

G̃n,1 ∼
∑
a<b

〈(S0)a(J1)a(S1)a(S0)a(J1)b(S1)b〉. (B30)

Then we find

−
∑
a<b

∑
c<d

∂G̃n,1[ε̂, ε̂]

∂εab,�

(
∂2
(−βGspin

n,0 [ε̂]
)

∂εab,�∂εcd,�

)−1
∂G̃n,1[ε̂, ε̂]

∂εcd,�

∼ −
∑
a<b

∑
c<d

∂

∂εab,�

⎛
⎝∑

e< f

〈(S0)e(J1)e(S1)e(S0) f (J1) f )(S1) f 〉
⎞
⎠(∂2

(−βGspin
n,0 [ε̂]

)
∂εab,�∂εcd,�

)−1

× ∂

∂εcd,�

⎛
⎝∑

g<h

〈(S0)g(J1)g(S1)g(S0)h(J1)h)(S1)h〉
⎞
⎠

= −
∑
e< f

∑
g<h

〈(J1)e(S1)e(J1) f )(S1) f 〉〈(J1)g(S1)g(J1)h)(S1)h〉
∑
a<b

∑
c<d

∂qe f ,�
∂εab,�

(
∂2
(−βGspin

n,0 [ε̂]
)

∂εab,�∂εcd,�

)−1∑
g<h

∂qgh,�
∂εcd,�

= −
∑
e< f

∑
g<h

Qe f ,�qe f ,�Qgh,�qgh,�

(
∂2
(−βGspin

n,0 [ε̂]
)

∂εe f ,�∂εgh,�

)

= −
∑
e< f

∑
g<h

Qe f ,�qe f ,�Qgh,�qgh,�〈(S0)e(S0) f (S0)g(S0)h〉c
ε,ε. (B31)
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FIG. 19. A loop of interactions in a DNN extended over three
layers, through three perceptrons and four bonds.

This exactly cancels −βG̃n,2(Fig. 18). Thus the diagram
shown in Fig. 18 does not contribute −βF̃n,2.

Indeed, it is known in diagrammatic expansions that “one-
line (or particle) reducible” diagrams like the one shown in
Fig. 18 become canceled after Legendre transform from −βG̃

to −βF̃ [43,44] leaving only loop diagrams, which are one-
line irreducible, i.e., diagrams that cannot be separated into
two disconnected diagrams by cutting a line. At O(λ2) we do
not have such a loop diagram.

To sum up, we find

−βF̃n,2/(NM ) = −βF̃n,2(Fig. 17)/(NM ) ∝ 1/c, (B32)

which vanishes in the dense limit c → ∞.

c. O(λ3) terms

At O(λ3) we will have a term that is obtained by associat-
ing six replicas to the diagram Fig. 17 whose contribution to
−βFn,3/(NM ) vanishes as 1/c2 in the c → ∞ limit.

Apart from that, we find contributions of one-loop dia-
grams. As the simplest example, consider the loop shown in
Fig. 19 (same one as shown in Fig. 3). Such a loop contributes
to the form

−βF̃n,3(Fig. 19) = λ3

6!

(
1√
c

)6∑
�,μ

∑
a,b,c,d,e, f

⎛
⎝ ∑

�A,�B,k

⎞
⎠

loop

iημ,�,aiημ,�,biημ,�A,ciημ,�A,d iημ,�B,eiημ,�B, f

× Qab,�Qcd,�A
Qe f ,�B

[〈Sa
�Sb

�Sc
�Sd

�〉ε,ε
〈
Sa
�A

Sb
�A

Sc
�A

Sd
�A

〉
ε,ε

〈
Sa
�B

Sb
�B

Se
�B

S f
�B

〉
ε,ε

〈
Sc

kSd
k Se

kS f
k

〉
ε,ε

− qab,�qcd,�qab,�A
qcd,�A

qab,�B
qe f ,�B

qcd,kqe f ,k
]
. (B33)

Here the factor (1/
√

c)6 appears because six perceptrons (two
replicas for each of the three perceptrons �,�A,�B) are in-
volved. The expression (

∑
�A,�B,k )loop means to sum over �A,

�B, and k conditioned that the loop � → �A → �B → � is
closed.

Let us consider how many such loops exist for a given
perceptron �. Starting from 0, there are c choices for �A

connected to � and c − 1 choices for �B (different from �A)
connected to �. Similarly, there are c choices for k connected
to �A. Finally, the probability (in a given realization of the
random network) that k happens to be connected to �B is
∼c/N . Thus ⎛

⎝ ∑
�A,�B,k

⎞
⎠

loop

∼ c2(c − 1)
c

N
. (B34)

Thus the net contribution of the one-loop terms scales as

−βF̃n,3(Fig. 19)

NM
∝ c

N
. (B35)

Thus the contribution vanishes in the dense limit because the
N → ∞ limit is taken before the c → ∞ limit. However, in
the case of global coupling c = N the contribution cannot be
neglected.

d. Higher-order terms

Similarly to the O(λ3) terms, higher-order terms of
−βF̃ex/(NM ) can be classified into two cases.

(i) At O(λp) (p � 3) we will have a term that is obtained
by associating 2p replicas to the diagram Fig. 17 whose con-
tribution to −βFn,p/(NM ) vanishes as 1/cp−1 in the c → ∞
limit.

(ii) All other terms are associated with loop diagrams.
Similarly to the loop diagram considered at O(λ3), we can
consider more extended one-loops such as the one shown in
Fig. 20, which involves 2p perceptrons (two replicas for each
of p perceptrons) extended over (p − 1)/2 + 2 layers. It is
easy to see that all such one-loops make O(c/N ) contributions
to the higher-order terms of −βF̃n,p/(NM ) for p � 3. It is
interesting to note that the order of the correction term is order
O(c/N ), which is independent of the size p of the loop.

Onto the same one-loop diagram, we can associate four
replicas: two replicas along one path from the right to left
and the other two replicas along the other path. This yields
a contribution to −βF̃n,2p/(NM ) of order O(c−p(c/N )).

(iii) Contributions of two-loops, three-loops, etc., can
be considered similarly. First one can see that the prob-
ability to close two-loops, three loops, etc., scales as

FIG. 20. More extended loop.
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O(c/N )2, O(c/N )3, . . . . By associating two replicas to such
diagrams, we find contributions to −βF̃n,p/(NM ) of order
O(c/N )2, O(c/N )3, . . . .

(iv) Note that loop corrections break the symmetry with
respect to the exchange of input/output sides.

(v) In general, by associating more replicas to the same
diagram, we find contributions that vanish more rapidly, in-
creasing c.

5. Summary 2

Now we can collect the above results to obtain the free-
energy functional −βFn[Q̂, q̂] defined in Appendix B 3,

−βFn[{Q̂, q̂}]
M

= 1

α

∑
l=1,2,...,L

∑
�∈l

sent,bond[Q̂�]

+
∑

l=1,2,...,L−1

∑
�∈l

sent,spin[q̂�]

+ −βFex[{Q̂�, q̂�}]
M

, (B36)

with the first two terms being the entropic part of the free
energy due to bonds and spins [see Eqs. (B9) and (B15)],

csent,bond[Q̂] = −βGbond
n,0 [ε̂∗

0 ] + c
∑
a<b

(ε∗
0 )abQab,

Msent,spin[Q̂] = −βGspin
n,0 [ε̂∗

0 ] + M
∑
a<b

(ε∗
0 )abqab. (B37)

The last term in Eq. (B36) is the interaction part of the free-
energy −βFex[{Q̂�, q̂�}] [see Eq. (B23)].

In the dense limit limc→∞ limN→∞, we have found that
only the first-order term −βF̃n,1 [see Eq. (B26)] in the Plefka
expansion contributes to −βF̃ex[Q̂, q̂, {∂/∂μ,�,a}]. Thus we
find

−βFex[{Q̂�, q̂�}]
M

=
∑

l=1,2,...,L−1

∑
�∈l

(−Fint )[λ̂�] (B38)

with

−Fint[�̂] = ln exp

⎡
⎣∑

a,b

�ab
∂2

∂ha∂hb

⎤
⎦∏

a

e−βv(ha )

∣∣∣∣∣∣
h=0

(B39)

and

λab,� = Qab,�qab,�
1

c

c∑
k=1

qab,�(k). (B40)

On the boundaries we have qab,� = qab,� = 1 for � ∈ 0 and
� ∈ L.

Finally, assuming that order parameters are homogeneous
within the layers Eq. (19), we find the expression Eq. (24).

The saddle-point equations are

0 = ∂

∂Qab,�
(−βFn[{Q̂, q̂}])

= 1

α

∂

∂Qab,�
sent,bond[Q̂�] +

∑
�

∂��
∂Qab,�

(−Fint )
′[��],

0 = ∂

∂qab,�
(−βFn[{Q̂, q̂}])

= 1

α

∂

∂Qab,�
sent,bond[Q̂�] +

∑
�

∂��
∂qab,�

(−Fint )
′[��].

(B41)

6. Franz-Parisi’s potential in the replica-symmetric ansatz

Here we display the expressions for the Franz-Parisi poten-
tial within the replica-symmetric ansatz needed to evaluate the
generalization error.

From (128) of [15] we find

sent,spin[ε̂1+s, q̂1+s] = sεrr + 1

2
εr + s

2

k∑
i=0

εiqi(mi − mi+1) + s

2
εk

+ ln exp

⎡
⎣�

Ising
com

2

s∑
a,b=0

∂2

∂ha∂hb

⎤
⎦ k∏

i=0

exp

⎡
⎣�

Ising
i

2

s∑
a,b=1

Imi
ab

∂2

∂ha∂hb

⎤
⎦ s∏

a=0

[2 cosh(ha)]

∣∣∣∣∣∣
{ha=0}

= sεrr + 1

2
εr + s

2

k∑
i=0

εiqi(mi − mi+1) + s

2
εk + ln γ�com ⊗ [

2 cosh(h)γ
�

Ising
0

⊗ e−s f Ising (m1,h)]∣∣
h=0. (B42)

Then we find

∂ssent,spin[ε̂1+s, q̂1+s]|s=0 = εrr + 1

2

k∑
i=0

εiqi(mi − mi+1) + 1

2
εk

+
∫

Dzcom(2 cosh(
√

�comzcom ))
∫

Dz0
(− f Ising

(
m1,

√
�comzcom +

√
�

Ising
0 z0

))
∫

Dzcom(2 cosh(
√

�comzcom ))
. (B43)
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For the interaction part of the free energy, we find from (134) of [15],

−∂sFint[q̂
1+s(l − 1), Q̂1+s(l ), q̂1+s(l )]

∣∣
s=0 = −∂s ln exp

⎡
⎣�com(l )

2

s∑
a,b=0

∂2

∂ha∂hb

⎤
⎦ exp

[
�teacher (l )

2

∂2

∂h2
0

]
,

k+1∏
i=0

exp

⎡
⎣�i(l )

2

s∑
a,b=1

Imi
ab

∂2

∂ha∂hb

⎤
⎦ s∏

a=0

e−βv[r(ha )]

∣∣∣∣∣∣
{ha=0}

∣∣∣∣∣∣∣
s=0

= −∂s ln
∫

Dzcom

∫
Dzteachere

−βv[
√

�com (l )zcom+√
�teacher (l )zteacher ]

∫
Dz0e−s f (m1,

√
�com (l )zcom+√

�0(l )z0 )

∣∣∣∣
s=0

=
∫

Dzcomgteacher (
√

�com(l )zcom )
∫

Dz0(− f (m1,
√

�com(l )zcom + √
�0(l )z0))∫

Dzcomgteacher[
√

�com(l )zcom]
, (B44)

where we introduced [see (147) of [15]]

gteacher (h) ≡
∫

Dzteachere
−βv(h−√

�teacherzteacher ). (B45)

7. Quadratic and cubic expansions of the free energy

Here we expand the free-energy functional given by Eq. (B36) supplemented by Eqs. (B38), (B39), and (B40) around the
saddle point given by Eq. (B41). We can write

Qab,� = Q∗
ab(l ) + �Qab,�, qab,� = q∗

ab(l ) + �qab,�, (B46)

where Q∗
ab(l ) and q∗

ab(l ) are the saddle-point values of the order parameters, l is the label of the layer to which � belongs, and
�Qab,� and �qab,� are fluctuations around the saddle point.

a. Quadratic expansion

The quadratic expansion of the replicated free-energy functional is specified in the Hessian matrix. It is obtained as

HQQ
ab,cd,�1,�2

= ∂2

∂Qab,�1
∂Qcd,�2

(βFn)[{Q̂, q̂}]
M

= −δ�1,�2

1

α

∂2

∂Q2
ab,�1

sent,bond[Q̂�1
]

−
∑
�

∂2��
∂Qab,�1

∂Qab,�2

(−Fint )
′[��] −

∑
�

∂��
∂Qab,�1

∂��
∂Qab,�2

(−Fint )
′′[��]

= −δ�1,�2

[
1

α

∂2

∂Q2
ab,�1

sent,bond[Q̂�1
] + ∂2��1

∂Q2
ab,�1

(−Fint )
′[��1

] +
(

∂��1

∂Qab,�1

)2

(−Fint )
′′[��1

]

]
,

HQq
ab,cd,�1,�2

= ∂2

∂Qab,�1
∂qcd,�2

(βF )[{Q̂, q̂}]
M

= −
∑
�

∂2��
∂Qab,�1

∂qab,�2

(−Fint )
′[��] −

∑
�

∂��
∂Qab,�1

∂��
∂qab,�2

(−Fint )
′′[��]

= − ∂2��1

∂Qab,�1
∂qab,�2

(−Fint )
′[��1

] − ∂��1

∂Qab,�1

∂��1

∂qab,�2

(−Fint )
′′[��1

],

Hqq
ab,cd,�1,�2

= ∂2

∂qab,�∂qcd,�

(βF )[{Q̂, q̂}]
M

= −δ�1,�2

∂2

∂q2
ab,�1

sent,spin[q̂�1
]

−
∑
�

∂2��
∂qab,�1

∂qab,�2

(−Fint )
′[��] −

∑
�

∂��
∂qab,�1

∂��
∂qab,�2

(−Fint )
′′[��], (B47)

where

∂��1

∂Qab,�1

= qab,�1

1

c

c∑
k=1

qab,�1(k),
∂2��1

∂Q2
ab,�1

= 0, (B48)
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and

∂2��1

∂Qab,�1
∂qab,�2

= δ�1,�2

1

c

c∑
k=1

qab,�1(k) + 1

c
qab,�1

I∂�1
(�2),

∂��1

∂Qab,�1

∂��1

∂qab,�2

= δ�1,�2
qab,�1

Qab,�1

(
1

c

c∑
k=1

qab,�1(k)

)2

+ 1

c
q2

ab,�1
Qab,�1

(
1

c

c∑
k=1

qab,�1(k)

)
I∂�1

(�2), (B49)

and

∑
�

∂2��
∂qab,�1

∂qab,�2

= 1

c
[Qab,�1

I∂�1
(�2) + Qab,�2

I∂�2
(�1)],

∑
�

∂��
∂qab,�1

∂��
∂qab,�2

= δ�1,�2

(
Qab,�1

1

c

c∑
k=1

qab,�1(k)

)2

+ 1

c
Q2

ab,�1
qab,�1

1

c

c∑
k=1

qab,�1(k)I∂�1
(�2)

+ 1

c
Q2

ab,�2
qab,�2

1

c

c∑
k=1

qab,�2(k)I∂�2
(�1) + 1

c2

∑
�

(qab,�Qab,�)2I∂�(�1)I∂�(�2), (B50)

where IA(x) is the indicator function, i.e., Ia(x) = 1 if x ∈ a and 0 otherwise.
Let us note that in the liquid phase where Qab = qab = 0 for a �= b, the Hessian matrix become simplified as

HQQ
ab,cd,�1,�2

= −δ�1,�2

1

α

∂2

∂Qab,�1
∂Qcd,�1

sent,bond[Q̂�1
]

∣∣∣∣
Q̂�1

=0

,

HQq
ab,cd,�1,�2

= 0,

Hqq
ab,cd,�1,�2

= −δ�1,�2

∂2

∂qab,�1
∂qcd,�1

sent,spin[q̂�1
]

∣∣∣∣
q̂�1

=0

. (B51)

b. Cubic expansion

Here let us analyze the cubic expansion. For simplicity, let us only consider the liquid phase where Qab = qab = 0 for a �= b.
We find that the only nonvanishing contribution is due to

W qQq
ab,cd,e f ,�1,�2,�3

= ∂3

∂qab,�1
∂Qcd,�2

∂e f ,�3

(βFn)[{Q̂, q̂}]
M

∣∣∣∣∣
Q̂=q̂=0

= − ∂3��2

∂qab,�1
∂Qab,�2

∂qab,�3

(−Fint )
′[��2

]

∣∣∣∣
Q̂=q̂=0

δ(ab),(cd )δ(cd ),(e f )

= −1

c

[
I∂�2

(�1)δ�2,�3
+ δ�2,�1

I∂�2
(�3)

]
(−Fint )

′[��2
]
∣∣
Q̂=q̂=0δ(ab),(cd )δ(cd ),(e f ). (B52)

It is interesting to note that this cubic term breaks the symmetry concerning the exchange of input/output sides.

c. Correction to the saddle point

Now let us turn to corrections due to fluctuations around the saddle point. These give finite connectivity c or M = cα
corrections (α is fixed).

We can write

Qab,� = Q∗
ab(l ) + �Qab,�, qab,� = q∗

ab(l ) + �Qab,�, (B53)

where Q∗
ab(l ) and q∗

ab(l ) are the saddle-point values of the order parameters, l is the label of the layer to which � belongs, and
�Qab,� and �qab,� are fluctuations around the saddle point. Including the correction due to the fluctuations around the saddle
point, the replicated Gardner volume Eq. (21) can be written as

V 1+s(S0, SL(S0,Jteacher ))
S0,Jteacher = eNMs1+s[{Q̂∗,q̂∗}]Zfluctuation, (B54)
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where

Zfluctuation =
∫ ∏

�

∏
a<b

d�Qab,�d�qab,�

× exp

⎡
⎣−M

2

∑
a<b

∑
c<d

∑
�,�

[
HQQ

ab,cd,�,��Qab,��Qcd,� + HQq
ab,cd,�,��Qab,��qcd,� + Hqq

ab,cd,�,��qab,��qcd,�
]

−M

3!

∑
a<b

∑
c<d

∑
e< f

∑
�1,�2,�3

[
W qQq

ab,cd,e f ,�1,�2,�3
�qab,�1

�Qcd,�2
�qe f ,�3

+ · · · ]

⎤
⎦, (B55)

where HQQ
ab,cd,�,�... are the Hessian matrices given in Appendix B 7.

For the following discussion, we do not need to perform a complete analysis of the correction. We restrict ourselves in the
liquid phase Q = q = 0. Then as shown in Appendix B 7, the Hessian matrices become completely local, i.e., HQQ

�,� = δ�,�HQQ
�,�

and Hqq
�,� = δ�,�Hqq

�,� while HQq
�,� = 0 [see Eq. (B51)]. Thus at the quadratic level of fluctuations, there is no correlation

between different layers in the liquid phase. In the cubic order, we find W qQq
�1,�2,�3

∝ 1
c [I∂�2

(�1)δ�2,�3
+ δ�2,�1

I∂�2
(�3)] [see

Eq. (B52)]. This will induce correlations between different layers even in the liquid phase. And this will be enhanced next to the
frozen wall and by correlation in the frozen wall (the hidden manifold model).

To understand the key point, it is sufficient to consider a simplified model,

Z =
∫ ∏

�
dx�dy� exp

⎡
⎣−M

2

∑
�

hxxx2
� − M

2

∑
�

hyyy2
� − αw

∑
�

∑
�∈∂�

y�x�y�

⎤
⎦. (B56)

Then by introducing

Z0 =
∫ ∏

�∈(1,2,...,L)

dx� exp

⎡
⎣−M

2

∑
�

hxxx2
�

⎤
⎦∫ ∏

�∈(1,2,...,L−1)

dy� exp

⎡
⎣−M

2

∑
�

hyyy2
�

⎤
⎦ =

⎛
⎝√ 2π

Mhxx

⎞
⎠NL(√

2π

Mhyy

)N (L−1)

(B57)
and

〈· · · 〉x,y =
∫ ∏

� dx�
∏

� dy� exp
[−M hxx

2

∑
� x2

� − M hyy

2

∑
� y2

�
] · · ·∫ ∏

� dx�
∏

� dy� exp
[−M hxx

2

∑
� x2

� − M hyy

2

∑
� y2

�
] (B58)

we can write

ln Z − ln Z0 = ln

〈
exp

⎡
⎣−αw

∑
�

∑
�∈∂�

y�x�y�

⎤
⎦〉

x

= −αw
∑
�

∑
�∈∂�

〈y�x�y�〉xy + 1

2
(αw)2

∑
�1

∑
�1∈∂�1

∑
�2

∑
�2∈∂�2

〈y�1
x�1

y�1
y�2

x�2
y�2

〉xy + · · ·

= 1

2
(αw)2

∑
�

∑
�∈∂�

〈 y2
�x2

�y2
�︸ ︷︷ ︸

M3(hyyhxxhyy )−1

〉xy + · · · . (B59)

[1] Y. LeCun, Y. Bengio, and G. Hinton, Deep learning, Nature
(London) 521, 436 (2015).

[2] G. Carleo, I. Cirac, K. Cranmer, L. Daudet, M. Schuld, N.
Tishby, L. Vogt-Maranto, and L. Zdeborová, Machine learn-
ing and the physical sciences, Rev. Mod. Phys. 91, 045002
(2019).

[3] M. Geiger, A. Jacot, S. Spigler, F. Gabriel, L. Sagun,
S. d’Ascoli, G. Biroli, C. Hongler, and M. Wyart, Scal-
ing description of generalization with number of parame-
ters in deep learning, J. Stat. Mech.: Theor. Expt. (2020)
023401.

[4] S. Mei and A. Montanari, The generalization error of random
features regression: Precise asymptotics and the double descent
curve, Commun. Pure Appl. Math. 75, 667 (2022).

[5] B. Loureiro, C. Gerbelot, M. Refinetti, G. Sicuro, and F.
Krzakala, Fluctuations, bias, variance & ensemble of learn-
ers: Exact asymptotics for convex losses in high-dimension, in
International Conference on Machine Learning (PMLR, 2022),
Vol. 162, pp. 14283–14314.

[6] S. d’Ascoli, L. Sagun, and G. Biroli, Triple descent and the two
kinds of overfitting: where and why do they appear? J. Stat.
Mech.: Theor. Expt. (2021) 124002.

033068-27

https://doi.org/10.1038/nature14539
https://doi.org/10.1103/RevModPhys.91.045002
https://doi.org/10.1088/1742-5468/ab633c
https://doi.org/10.1002/cpa.22008
https://proceedings.mlr.press/v162/loureiro22a.html
https://doi.org/10.1088/1742-5468/ac3909


HAJIME YOSHINO PHYSICAL REVIEW RESEARCH 5, 033068 (2023)

[7] D. J. Amit, H. Gutfreund, and H. Sompolinsky, Spin-glass
models of neural networks, Phys. Rev. A 32, 1007 (1985).

[8] E. Gardner, The space of interactions in neural network models,
J. Phys. A 21, 257 (1988).

[9] E. Gardner and B. Derrida, Three unfinished works on the opti-
mal storage capacity of networks, J. Phys. A 22, 1983 (1989).

[10] F. Gerace, B. Loureiro, F. Krzakala, M. Mézard, and L.
Zdeborová, Generalisation error in learning with random
features and the hidden manifold model, in International
Conference on Machine Learning (PMLR, 2020), Vol. 119,
pp. 3452–3462.

[11] M. Gabrié, A. Manoel, C. Luneau, N. Macris, F.
Krzakala, L. Zdeborová et al., Entropy and mutual
information in models of deep neural networks, in Advances
in Neural Information Processing Systems (Curran Associates,
Inc., 2018), Vo. 31.

[12] B. Aubin, B. Loureiro, A. Maillard, F. Krzakala, and L.
Zdeborová, The spiked matrix model with generative priors, in
Advances in Neural Information Processing Systems (Curran
Associates, Inc., 2019), Vo. 32.

[13] D. Schröder, H. Cui, D. Dmitriev, and B. Loureiro, Determin-
istic equivalent and error universality of deep random features
learning, arXiv:2302.00401.

[14] H. Cui, F. Krzakala, and L. Zdeborová, Optimal learning of
deep random networks of extensive-width, arXiv:2302.00375.

[15] H. Yoshino, From complex to simple: hierarchical free-energy
landscape renormalized in deep neural networks, SciPost Phys.
Core 2, 005 (2020).

[16] A. Engel and C. Van den Broeck, Statistical Mechanics of
Learning (Cambridge University Press, Cambridge, 2001).

[17] L. Zdeborová and F. Krzakala, Statistical physics of inference:
Thresholds and algorithms, Adv. Phys. 65, 453 (2016).

[18] A. Jacot, F. Gabriel, and C. Hongler, Neural tangent ker-
nel: Convergence and generalization in neural networks, in
Advances in Neural Information Processing Systems (Curran
Associates, Inc., 2018), Vo. 31.

[19] S. Mei, A. Montanari, and P.-M. Nguyen, A mean field view of
the landscape of two-layer neural networks, Proc. Natl. Acad.
Sci. (USA) 115, E7665 (2018).

[20] L. Chizat and F. Bach, On the global convergence of gradient
descent for over-parameterized models using optimal transport,
in Advances in Neural Information Processing Systems (Curran
Associates, Inc., 2018), Vo. 31.

[21] S. Goldt, M. Mézard, F. Krzakala, and L. Zdeborová, Modeling
the Influence of Data Structure on Learning in Neural Net-
works: The Hidden Manifold Model, Phys. Rev. X 10, 041044
(2020).

[22] S. Goldt, B. Loureiro, G. Reeves, F. Krzakala, M. Mézard,
and L. Zdeborová, The gaussian equivalence of genera-
tive models for learning with shallow neural networks, in
Mathematical and Scientific Machine Learning (PMLR, 2022),
pp. 426–471.

[23] E. Barkai, D. Hansel, and H. Sompolinsky, Broken symmetries
in multilayered perceptrons, Phys. Rev. A 45, 4146 (1992).

[24] D. H. Ackley, G. E. Hinton, and T. J. Sejnowski, A learn-
ing algorithm for boltzmann machines, Cognitive Sci. 9, 147
(1985).

[25] B. Poole, S. Lahiri, M. Raghu, J. Sohl-Dickstein, and
S. Ganguli, Exponential expressivity in deep neural
networks through transient chaos, in Advances in
Neural Information Processing Systems (Curran Associates,
Inc., 2016), Vol. 29.

[26] A. J. Bray and M. A. Moore, Chaotic Nature of the Spin-Glass
Phase, Phys. Rev. Lett. 58, 57 (1987).

[27] C. M. Newman and D. L. Stein, Multiple states and thermody-
namic limits in short-ranged ising spin-glass models, Phys. Rev.
B 46, 973 (1992).

[28] Y. Iba, The nishimori line and bayesian statistics, J. Phys. A 32,
3875 (1999).

[29] R. Monasson and R. Zecchina, Weight Space Structure and
Internal Representations: A Direct Approach to Learning and
Generalization in Multilayer Neural Networks, Phys. Rev. Lett.
75, 2432 (1995).

[30] E. Levin, N. Tishby, and S. A. Solla, A statistical approach to
learning and generalization in layered neural networks, Proc.
IEEE 78, 1568 (1990).

[31] M. Opper and W. Kinzel, Statistical mechanics of generaliza-
tion, in Models of Neural Networks III , edited by E. Domany,
J. L. van Hemmen, and K. Schulten (Springer, New York,
1996), pp. 151–209.

[32] H. Nishimori, Statistical Physics of Spin Glasses and Infor-
mation Processing: An Introduction, 111 (Clarendon, Oxford
(UK), 2001), p. 111.

[33] S. Franz and G. Parisi, Recipes for metastable states in spin
glasses, J. Phys. I 5, 1401 (1995).

[34] P.-G. De Gennes, Wetting: statics and dynamics, Rev. Mod.
Phys. 57, 827 (1985).

[35] F. Krzakala and L. Zdeborová, On melting dynamics and the
glass transition. i. glassy aspects of melting dynamics, J. Chem.
Phys. 134, 034512 (2011).

[36] F. Krzakala and L. Zdeborová, On melting dynamics and the
glass transition. ii. glassy dynamics as a melting process, J.
Chem. Phys. 134, 034513 (2011).

[37] G. Györgyi, First-order transition to perfect generalization in a
neural network with binary synapses, Phys. Rev. A 41, 7097
(1990).

[38] K. Hukushima and H. Kawamura, Chiral-glass transition and
replica symmetry breaking of a three-dimensional heisenberg
spin glass, Phys. Rev. E 61, R1008(R) (2000).

[39] S. Kornblith, M. Norouzi, H. Lee, and G. Hinton,
Similarity of neural network representations revisited, in
International Conference on Machine Learning (PMLR, 2019),
pp. 3519–3529.

[40] W. Zou and H. Huang, Data-driven effective model shows a
liquid-like deep learning, Phys. Rev. Res. 3, 033290 (2021).

[41] G. Parisi and M. A. Virasoro, On a mechanism for explicit
replica symmetry breaking, J. Phys. 50, 3317 (1989).

[42] T. Plefka, Convergence condition of the tap equation for the
infinite-ranged ising spin glass model, J. Phys. A 15, 1971
(1982).

[43] J.-P. Hansen and I. R. McDonald, Theory of Simple Liquids
(Elsevier, Amsterdam, 1990).

[44] J. Zinn-Justin, Quantum Field Theory and Critical Phenomena
(Oxford University Press, Oxford, 2021).

033068-28

https://doi.org/10.1103/PhysRevA.32.1007
https://doi.org/10.1088/0305-4470/21/1/030
https://doi.org/10.1088/0305-4470/22/12/004
http://proceedings.mlr.press/v119/gerace20a.html
https://proceedings.neurips.cc/paper/2018/hash/6d0f846348a856321729a2f36734d1a7-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2019/hash/2f3c6a4cd8af177f6456e7e51a916ff3-Abstract.html
http://arxiv.org/abs/arXiv:2302.00401
http://arxiv.org/abs/arXiv:2302.00375
https://doi.org/10.21468/SciPostPhysCore.2.2.005
https://doi.org/10.1080/00018732.2016.1211393
https://proceedings.neurips.cc/paper/2018/hash/5a4be1fa34e62bb8a6ec6b91d2462f5a-Abstract.html
https://doi.org/10.1073/pnas.1806579115
https://proceedings.neurips.cc/paper_files/paper/2018/hash/a1afc58c6ca9540d057299ec3016d726-Abstract.html
https://doi.org/10.1103/PhysRevX.10.041044
https://proceedings.mlr.press/v145/goldt22a.html
https://doi.org/10.1103/PhysRevA.45.4146
https://doi.org/10.1207/s15516709cog09017
https://proceedings.neurips.cc/paper_files/paper/2016/hash/148510031349642de5ca0c544f31b2ef-Abstract.html
https://doi.org/10.1103/PhysRevLett.58.57
https://doi.org/10.1103/PhysRevB.46.973
https://doi.org/10.1088/0305-4470/32/21/302
https://doi.org/10.1103/PhysRevLett.75.2432
https://doi.org/10.1109/5.58339
http://dx.doi.org/%2010.1007/978-1-4612-0723-8_5
https://doi.org/10.1051/jp1:1995201
https://doi.org/10.1103/RevModPhys.57.827
https://doi.org/10.1063/1.3506841
https://doi.org/10.1063/1.3506843
https://doi.org/10.1103/PhysRevA.41.7097
https://doi.org/10.1103/PhysRevE.61.R1008
http://proceedings.mlr.press/v97/kornblith19a.html
https://doi.org/10.1103/PhysRevResearch.3.033290
https://doi.org/10.1051/jphys:0198900500220331700
https://doi.org/10.1088/0305-4470/15/6/035

