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Dynamics of information-awareness-epidemic-activity coevolution in multiplex networks
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Epidemic spreading and awareness diffusion are typically driven by information exchange and physical
contact generated by activities, respectively, evolving in a synergistic manner. In response to this reality, we
propose a dynamic model of information-awareness-epidemic-activity coevolution on a four-layer network. Our
findings reveal the presence of an optimal coupling between information contact preference and activity contact
preference, which efficiently suppresses epidemic spreading. Specifically, the disease-related information should
be targeted towards individuals who engage in more activities, enhancing their awareness and resistance to
infection. Examining the epidemic situation, we observe that the epidemic threshold can be moderately increased
with higher information levels but significantly decreased with increased activity frequency. Quantitatively, we
establish that the epidemic threshold is strictly inversely proportional to the activity frequency. By integrating
the microscopic Markov chain approach with the mean-field method, we provide theoretical insights into the
system’s state size and epidemic threshold. We derive an explicit expression for the critical combination of
information level and activity frequency required to prevent epidemic outbreaks. These results are consistently
supported by extensive Monte Carlo simulations on both heterogeneous scale-free multiplex networks and
homogeneous Erdős-Rényi multiplex networks. This research emphasizes the crucial importance of reducing
physical contact through activities as a key preventive measure against epidemics, complementing the focus on
information dissemination to raise awareness.
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I. INTRODUCTION

Throughout history, mankind has faced numerous epi-
demic outbreaks, from ancient plagues to more recent events
such as SARS [1], H1N1 [2], and the ongoing influenza
and COVID-19 pandemic [3,4]. The devastating impact of
these epidemics on human life and society underscores the
importance of research in epidemic modeling and control
strategies [5–9]. Mathematical modeling and numerical sim-
ulations have become invaluable tools in understanding and
predicting the spread of epidemics, particularly due to chal-
lenges in accessing real-time data. Complex network theory
provides a promising framework for capturing the structural
characteristics and dynamics of epidemic spread by represent-
ing individuals as nodes and their physical contacts as links
within a network [10,11]. Consequently, the study of epidemic
spreading within complex networks has garnered significant
interest and attention in recent years [12–16].

Empirical evidence emphasizes that the significance of
individual self-protection behaviors, such as wearing masks,
maintaining social distance, isolating oneself when infected,
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and actively receiving vaccinations, in significantly reducing
the risk of infection [17–19]. However, the adoption of these
behaviors is often dominated by an individual’s awareness of
epidemics, which in turn affects the overall infection situa-
tion within the public health system. A seminal investigation
conducted by Funk et al. [20] explored the positive impact
of awareness dissemination on suppressing epidemic spread-
ing in a host population. To gain a deeper understanding
of the interplay between awareness and epidemics within
specific network structures, multiplex networks have been
introduced as a powerful tool for separately describing the
spread of awareness and epidemics in two interconnected
layers [21–23]. Building upon this, Granell et al. proposed a
microscopic Markov chain approach (MMCA) to analyze the
size of infectious outbreaks and the threshold for epidemic
prevalence, capturing the evolution of epidemics influenced
by the awareness process within the multiplex structure [24].
Subsequently, they extended their work to incorporate mass
media in the spread of awareness, revealing the absence of
a metacritical point for epidemic outbreaks [25]. As a result
of these studies, the dynamical coevolution of awareness and
epidemics on multiplex networks has emerged as a prominent
research topic [26]. Existing works in this field primarily
focus on expanding three key aspects: epidemic spreading
models [27–29], awareness diffusion models [30–32], and
multiplex structures [33,34]. Additionally, the differences in
dynamic timescales between the awareness and epidemic
layers have been found to significantly impact the infection
status of the network system [35,36]. Recent attention has also
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turned to optimizing resource allocation induced by awareness
diffusion as a means to impede the propagation of epidemics
[37–39]. Interestingly, Wang et al. discovered that awareness
dissemination can play an anomalous role, exacerbating the
spread of epidemics and leading to larger infection sizes,
particularly under limited protection and treatment resources
[40]. These results shed light on the profound relationship
between epidemics and the level of attention people pay to
them.

The spread of epidemics is usually not a spontaneous
process but rather occurs through physical contact between
individuals engaging in various activities or events, such as
eating, working, traveling, and exercising together. From a
modeling perspective, Meloni et al. proposed a traffic-driven
epidemic spreading model, where the intensity of epidemic
propagation between individuals depends on the level of traf-
fic flow. Their work demonstrates the ability to reproduce the
vanishing threshold observed in scale-free (SF) networks un-
der the classical epidemic model [41]. Along with this model,
Yang et al. developed methods to suppress epidemic spreading
by optimizing routing strategies, including local routing [42],
global routing [43], and adaptive routing [44]. These strategies
aim to distribute traffic flow in a way that reduces the scope
and effectiveness of epidemic spreading. The driving propaga-
tion mechanism introduced by these models has garnered high
praise for its practicality. More recently, we also extended
the traffic-driven epidemic spreading model from single-layer
networks to multilayer networks, but without considering the
interference of awareness [45,46].

As another matter of fact, the diffusion of awareness is
closely intertwined with the exchange of information. When
an epidemic breaks out, disease-related information inundates
various communication channels, both online and offline.
This information is shared among individuals, leading to
heightened awareness and consciousness regarding infection
prevention. Consequently, individuals actively seek resources
and regulate their behaviors accordingly to mitigate the risks.
However, most previous studies treat information and aware-
ness as a unified entity, propagated synchronously to all
neighbors [24,31–33]. This oversimplification fails to capture
the complexity of actual dynamics. On one hand, individuals
do not communicate with all their neighbors simultaneously.
On the other hand, the effectiveness of awareness dissemina-
tion often relies on the frequency and quantity of information
exchange. Therefore, it is imperative to develop a coupling
mechanism that accurately reflects the procedural nature of
information-driven awareness dissemination, integrating it
with the dynamics of epidemic spreading. Such an approach
will enable us to systematically uncover the dynamic charac-
teristics of epidemics in the real world.

Motivated by the aforementioned gaps, this paper focuses
on the coevolution of awareness diffusion driven by informa-
tion flow and epidemic spreading triggered by activity flow.
This coevolution occurs within a constructed information-
awareness-epidemic-activity (IAEA) coupling multiplex net-
work model, which takes into account the elements of
preferential contact in both the information layer and the
activity layer. To begin, we integrate the MMCA with the
mean-field method to theoretically analyze the sizes of aware
individuals and infected individuals. This analysis allows us

to approximately predict the epidemic threshold of the IAEA
model, which is extensively validated through Monte Carlo
(MC) simulations. Subsequently, we examine the effects of
the combination of preferential contact in the information
layer and the activity layer on the dynamic characteristics of
epidemic spreading. We find that the optimal preference for
information contact depends on the preference for activity
contact. Specifically, when activities predominantly involve
highly connected individuals, it becomes crucial to prioritize
their information exchange to effectively contain epidemic
outbreaks. Furthermore, we explore the effects of information
flow level and activity flow frequency. The results show that
increasing the level of information exchange can help sup-
press the epidemic, but only to a limited extent, particularly
for high infection rates. However, a noteworthy discovery
is that regardless of awareness interference, the outbreak
threshold of an epidemic exhibits a power-law decline with in-
creasing activity flow frequency. These valuable findings will
offer theoretical guidance for governmental decision-making
concerning resource allocation, dissemination of epidemic
information, and implementation of static management mea-
sures to efficiently curb the spread of the epidemic.

II. INFORMATION-AWARENESS-EPIDEMIC-ACTIVITY
COEVOLUTION MODEL

Our model is defined on a multiplex network that consists
of four layers: the information layer, awareness layer, epi-
demic layer, and activity layer, as illustrated in Fig. 1(a). In
this system, there are N individuals, corresponding to N nodes
in each layer, with nodes connected across layers to represent
different attributes of the same individual. The topology of
the epidemic layer and activity layer is set to be identical
since both involve offline physical contacts. To account for on-
line communication, additional random links are introduced
in the network topology of the activity and epidemic layers
to form the information and awareness layers, which share
the same topology. For convenience, let A = [ai j] denote the
adjacency matrix of the information and awareness layers,
and the adjacency matrix of the activity and epidemic lay-
ers is represented as B = [bi j]. Next, the information-driven
awareness diffusion dynamics and activity-triggered epidemic
spreading dynamics will proceed in this multiplex system,
simultaneously.

A. Information-driven awareness diffusion

In the information layer, messages and news are contin-
uously generated and transmitted between individuals until
they are ineffective. After the epidemic outbreak, we quantita-
tively assume that each individual obtains a certain amount of
disease-related information, denoted as r, at each time step.
A higher value of r indicates a higher level of information
generation from mass media. Subsequently, each individual
passes on all the information they possess to their neighbors
one by one. To capture preferential communication contacts,
the probability pi j of individual i transmitting one piece of
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FIG. 1. Schematic illustration of the coevolution of information-
driven awareness diffusion and activity-triggered epidemic spread-
ing. (a) Four-layer multiplex network: information layer, awareness
layer, epidemic layer, and activity layer. The epidemic layer and
activity layer have an identical topology, while more random links
are added to form the information and awareness layer with the
same topology. (b) Information-driven awareness dissemination pro-
cess: unaware individual j becomes aware with probability α when
it receives one piece of information from an aware neighbor i.
(c) Activity-triggered epidemic spreading process: susceptible indi-
vidual j can be infected with probability βA or βU, depending on
its awareness state, when it engages in an activity with an infected
individual i or vice versa. (d) Transition probability trees for three
states: US (unaware and susceptible), AS (aware and susceptible),
and AI (aware and infected). zU

i (t ) and zA
i (t ) are the probabilities

that individual i is not infected at time t when it is unaware and
aware, respectively. πi(t ) denotes the probability that an unaware
individual i is not informed and does not become aware. δ and μ

are the recovery rates of aware individuals and infected individuals,
respectively.

information to individual j is given by

pi j = kχ
j∑

m∈�i
kχ

m
, (1)

where �i denotes the set of neighbors of node i in the infor-
mation layer and k j is the degree of neighbor j. The parameter
χ represents the preference for information exchange. Obvi-
ously, χ < 0 (>0) indicates that individuals are more inclined
to communicate with neighbors of smaller (larger) degrees.
χ = 0 corresponds to random communication. To simplify
the model, the same information will not be repeatedly shared.
Considering the timeliness of information, the survival time of
information is set as τ time steps. Once the valid time exceeds
τ , the information will be deleted from the system.

In the awareness layer, we incorporate the standard
unaware-aware-unaware model [24] with the aforementioned
information flow model to depict the process of information-
driven awareness diffusion. In this model, all individuals
are divided into two states: unaware (U) and aware (A),

representing individuals who are unaware and aware of the
epidemic, respectively. Normally, aware individuals have a
negative inclination towards the disease-related information
they possess. Therefore, when an unaware individual receive
one piece of information from an aware neighbor, there is a
probability α that it assimilates the information and becomes
aware, as illustrated in Fig. 1(b). However, due to forgetting
or negligence, an aware individual may switch back to the
unaware state with probability δ at each time step.

B. Activity-triggered epidemic spreading

In the activity layer, individuals participate in various ac-
tivities that involve physical contact continuously. To quantify
this, we set the number of activity demands generated by each
individual as λ at each time step. A larger value of λ reflects
a higher frequency of individual activities. Considering the
continuity of daily activities, such as multistep factory produc-
tion, segmented logistics transportation, or express delivery,
which involve handover operations, we assume that activities
undergo κ-step transmissions between individuals from initi-
ation to completion. For each transmission step, individual i
chooses neighbor j as their activity partner with a probability
qi j given by

qi j = kθ
j∑

m∈�i
kθ

m

, (2)

where �i is the set of neighbors of node i in the activity
layer. The preference of physical contact generated by activity
between individuals is reflected by the parameter θ . When θ >

0, individuals with a higher degree have a higher probability
of participating in activities. When θ < 0, the occurrence of
activities will concentrate on individuals with smaller degrees.
When θ = 0, activities are randomly conducted between indi-
viduals.

In the epidemic layer, the classical susceptible-infected-
susceptible [5] model is integrated with the activity flow
model from the activity layer to simulate activity-driven epi-
demic spreading. In this model, individuals can transition
between two states: susceptible (S) and infected (I). As de-
picted in Fig. 1(c), when an activity takes place between a
susceptible individual and an infected neighbor, which can be
initiated by either the infected neighbor or the susceptible in-
dividual, the susceptible individual will become infected with
a probability βU = β if they are unaware, and with a probabil-
ity βA = ηβ (0 � η � 1) if they are in the aware state. Here,
η manifests the effectiveness of self-protective behavior in the
aware state. It is important to note that η = 0 and η = 1 corre-
spond to cases where awareness can immunize individuals and
has no impact on individual infection, respectively. Simultane-
ously, infected individuals will recover with a probability μ.
Without considering the situation of asymptomatic infection,
we assume that individuals will become aware of the epidemic
immediately once they are infected. For simplicity, the time
scale of activity-triggered activity transmission is set to be the
same as that of information-driven awareness diffusion.

For ease of analysis, we summarize all the notations used
in the IAEA model in Table I.
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TABLE I. Summary of notations in the IAEA model.

Network layer Notation Description

Information r Information level
τ Information timeliness
χ Preference of information contact

Awareness α Diffusion rate of awareness
δ Recovery rate of aware individuals

Epidemic βU Infection rate of unaware individuals
βA Infection rate of aware individuals
η Effectiveness of awareness against infection
μ Recovery rate of infected individuals

Activity λ Activity frequency
κ Activity length
θ Preference of activity contact

III. THEORETICAL ANALYSIS

According to our IAEA coevolution model, all individuals
can be categorized into three coupling states: unaware and
susceptible (US), aware and susceptible (AS), and AI. To an-
alyze the transmission dynamics and determine the epidemic
threshold, we will integrate the MMCA with the mean-field
method. This combined approach is of utmost importance in
predicting and controlling real-world epidemics. It allows us
to gain valuable insights into epidemic behavior and devise
effective strategies for epidemic management.

A. Transmission dynamics

For any individual i at time t , we define the probabilities
of being in the US, AS, and AI states as ρUS

i (t ), ρAS
i (t ),

and ρAI
i (t ), respectively, where ρUS

i (t ) + ρAS
i (t ) + ρAI

i (t ) =
1. Additionally, we introduce the probabilistic likelihood
πi(t ), which represents the probability of unaware individual
i not becoming aware, and the probabilistic likelihoods zU

i (t )
and zA

i (t ), which represent the probabilities of unaware and
aware individual i not getting infected, respectively. These
likelihoods can be calculated as follows:

πi(t ) =
∏
j∈�i

[1 − α ji(t )], (3)

zU
i (t ) =

∏
j∈�i

[
1 − βU

ji (t )
]
, (4)

zA
i (t ) =

∏
j∈�i

[
1 − βA

ji (t )
]
. (5)

Here α ji(t ) represents the probability that the awareness prop-
agates from aware neighbor j to individual i in the awareness
layer. Similarly, βU

ji (t ) and βA
ji (t ) are the probabilities of indi-

vidual i being infected by infected neighbor j in the epidemic
layer when they are unaware and aware, respectively. To cal-
culate these probabilities, we introduce two quantities ϕ ji(t )
and σ ji(t ), representing the amount of information and activity
flowing from neighbor j to individual i at time t , respectively.
Regarding information-driven awareness diffusion, when an
unaware individual i receives one piece of information from
an aware neighbor j, the probability of remaining unaware is
denoted as 1 − α. Consequently, the probability of remaining
unaware after receiving ϕ ji(t ) pieces of information is given

by (1 − α)ϕ ji (t ), while the probability of becoming aware is
naturally 1 − (1 − α)ϕ ji (t ), provided that neighbor j is aware
with a probability ρA

j (t ). Thus, the calculation of α ji(t ) can be
expressed as

α ji(t ) = ρA
j (t )

[
1 − (1 − α)ϕ ji (t )

]
, (6)

where ρA
j (t ) = ρAS

j (t ) + ρAI
j (t ). Similarly, for activity-driven

epidemic spreading, a susceptible individual i can be infected
by a neighbor j if individual j is infected and the activity
frequency between them triggers the spread of the epidemic.
This leads us to the following calculations:

βU
ji (t ) = ρAI

j (t )
[
1 − (1 − βU)

σ ji (t )+σi j (t )]
, (7)

βA
ji (t ) = ρAI

j (t )
[
1 − (1 − βA)

σ ji (t )+σi j (t )]
, (8)

where σ ji(t ) + σi j (t ) represents the sum of activity flow be-
tween individual i and individual j.

To accurately analyze the epidemic dynamics, it is neces-
sary to quantitatively evaluate information and activity flows.
Based on the mean-field method, we define the average
amount of information reaching individual j after surviving
n time steps in the information layer as ϕn

j , and the average
amount of activity reaching individual j after undergoing n-
step transmission in the activity layer as σ n

j . When n > 0, ϕn
j ,

and σ n
j incorporate the information and activity transmitted

by all neighbors to individual j, respectively. The recursive
formulas for ϕn

j and σ n
j can be derived as follows:

ϕn
j =

∑
j1∈� j

ϕn−1
j1

p j1 j

=
∑
j1∈� j

p j1 j

∑
j2∈� j1

ϕn−2
j2

p j2 j1

=
∑
j1∈� j

p j1 j

∑
j2∈� j1

p j2 j1

∑
j3∈� j2

ϕn−3
j3

p j3 j2

...

=
∑
j1∈� j

p j1 j

∑
j2∈� j1

p j2 j1 · · ·

×
∑

jn−1∈� jn−2

p jn−1 jn−2

∑
jn∈� jn−1

ϕ0
jn p jn jn−1 , (9)

σ n
j =

∑
j1∈� j

σ n−1
j1

q j1 j

=
∑
j1∈� j

q j1 j

∑
j2∈� j1

σ n−2
j2

q j2 j1

=
∑
j1∈� j

q j1 j

∑
j2∈� j1

q j2 j1

∑
j3∈� j2

σ n−3
j3

q j3 j2

...

=
∑
j1∈� j

q j1 j

∑
j2∈� j1

q j2 j1 · · ·

×
∑

jn−1∈� jn−2

q jn−1 jn−2

∑
jn∈� jn−1

σ 0
jn q jn jn−1 . (10)
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When n = 0 for j = 1, . . . , N , ϕ0
j = r and σ 0

j = λ correspond
to the information generation level and activity frequency of
individuals. Combining with Eqs. (1) and (2), Eqs. (9) and
(10) can be rewritten as

ϕn
j = r

∑
j1∈� j

kχ
j∑

m∈� j1
kχ

m

∑
j2∈� j1

kχ
j1∑

m∈� j2
kχ

m
· · ·

×
∑

jn∈� jn−1

kχ
jn−1∑

m∈� jn
kχ

m

≡ r f j (n, χ ), (11)

σ n
j = λ

∑
j1∈� j

kθ
j∑

m∈� j1
kθ

m

∑
j2∈� j1

kθ
j1∑

m∈� j2
kθ

m

· · ·

×
∑

jn∈� jn−1

kθ
jn−1∑

m∈� jn
kθ

m

≡ λg j (n, θ ), (12)

According to the information timeliness and activity length,
we can get the average amounts of information and activity
from neighbor j to individual i as follows:

ϕ ji =
τ−1∑
n=0

ϕn
j p ji = r

[
1 +

τ−1∑
n=0

f j (n, χ )

]
kχ

j∑
m∈�i

kχ
m

≡ rFji(τ, χ ),

(13)

σ ji =
κ−1∑
n=0

σ n
j q ji = λ

[
1 +

κ−1∑
n=0

g j (n, θ )

]
kθ

j∑
m∈�i

kθ
m

≡ λGji(κ, θ ).

(14)

Here, Fji(τ, χ ) and Gji(κ, θ ) are dependent on the multiplex
network topology and known model parameters, allowing for
the explicit calculation of information flow ϕ ji and activity
flow σ ji. This serves as the basis for employing the MMCA
to solve the probability evolution of individual states. By an-
alyzing the transition probability trees illustrated in Fig. 1(d),
we can acquire the dynamical state equations as follows:

ρUS
i (t + 1) = ρUS

i (t )zU
i (t )πi(t ) + ρAS

i (t )zA
i (t )δ

+ ρAI
i (t )μδ (15)

ρAS
i (t + 1) = ρUS

i (t )zU
i (t )[1 − πi(t )] + ρAS

i (t )zA
i (t )(1 − δ)

+ ρAI
i (t )μ(1 − δ) (16)

ρAI
i (t + 1) = ρUS

i (t )
[
1 − zU

i (t )
] + ρAS

i (t )
[
1 − zA

i (t )
]

+ ρAI
i (t )(1 − μ). (17)

Therefore, in combination with Eqs. (3)–(17), the proportions

ρA(t ) =
∑N

i=1[ρAS
i (t )+ρAI

i (t )]
N of aware individuals and ρI (t ) =∑N

i=1 ρAI
i (t )

N of infected individuals can be theoretically obtained
over time.

B. Epidemic threshold

Next, we focus on the analysis of epidemic threshold for
our IAEA model, which is an important performance indicator
characterizing the resilience of a network system against the
prevalence of a disease. As the dynamics evolve with t → ∞,
the state of each individual will reach stability, i.e., ρUS

i (t +
1) = ρUS

i (t ) = ρUS
i , ρAS

i (t + 1) = ρAS
i (t ) = ρAS

i , and ρAI
i (t +

1) = ρAI
i (t ) = ρAI

i for i = 1, . . . , N .
From Eqs. (7) and (8), we know that the transmission

rate of epidemics is closely related to the frequency of
activities between individuals. With the Taylor expansion,
we can approximate (1 − βU)σ ji+σi j ≈ 1 − βU(σ ji + σi j ) and
(1 − βA)

σ ji+σi j ≈ 1 − βA(σ ji + σi j ) when the infected proba-
bility is small. Thus, Eqs. (7) and (8) can be written as

βU
ji ≈ ρAI

j βU(σ ji + σi j ), (18)

βA
ji ≈ ρAI

j βA(σ ji + σi j ), (19)

When the infection rate β approaches the epidemic threshold
βc, the proportion of infected individuals becomes a very
small value close to 0. Thus, we assume ρI

i = ρAI
i = εi � 1

for i = 1, . . . , N . Integrating this with Eqs. (18) and (19) and
substituting it into Eqs. (4) and (5) yields

zU
i ≈

∏
j∈�i

[1 − ε jβ
U(σ ji + σi j )] ≈ 1 − βU

∑
j∈�i

ε j (σ ji + σi j )

= 1 − βU
N∑

j=1

b jiε j (σ ji + σi j ), (20)

zA
i ≈

∏
j∈�i

[1 − ε jβ
A(σ ji + σi j )] ≈ 1 − βA

∑
j∈�i

ε j (σ ji + σi j )

= 1 − βA
N∑

j=1

b jiε j (σ ji + σi j ) (21)

by ignoring the high-order terms of ε j . Incorporating these
expressions into Eq. (17), one can obtain

μεi = ρUS
i βU

N∑
j=1

b jiε j (σ ji + σi j )

+ ρAS
i βA

N∑
j=1

b jiε j (σ ji + σi j ). (22)

With the approximations ρAS
i = ρA

i − ρAI
i = ρA

i − εi ≈ ρA
i

and ρUS
i = 1 − ρAS

i − ρAI
i = 1 − ρA

i − 2εi ≈ 1 − ρA
i ,

Eq. (22) can be simplified as

N∑
j=1

{[
1 − (1 − η)ρA

i

]
b ji(σ ji + σi j ) − μ

β
e ji

}
ε j = 0, (23)

where e ji is the element of the identity matrix E. This equa-
tion can be transformed into a matrix expression(

H − μ

β
E

)
ε = 0, (24)
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where ε = (ε1, ε2, . . . , εN )T , and the element of matrix H is

h ji = [
1 − (1 − η)ρA

i

]
b ji(σ ji + σi j )

= λ
[
1 − (1 − η)ρA

i

]
b ji[Gji(κ, θ ) + Gi j (κ, θ )]

= λl ji, (25)

by combining Eqs. (13) and (14). Here, let l ji = [1 − (1 −
η)ρA

i ]b ji[Gji(κ, θ ) + Gi j (κ, θ )] as the element of matrix L.
Obviously, to make the solution of of Eq. (24) nontrivial,
the minimal infection rate, known as the epidemic threshold,
should be stipulated as

βc = μ

�max(H)
= μ

λ�max(L)
, (26)

where �max(H) and �max(L) denote the maximum eigen-
values of matrices H and L, respectively. It is clear that
βc depends on several factors, including the effectiveness η

of awareness, the topology b ji of the epidemic layer, the
activity length κ , and preference θ of activity contact, as
well as the probability ρA

i of an aware individual. In quan-
titative terms, the epidemic threshold scales inversely with
the activity frequency λ in the activity layer. Note that as
β approaches βc, the impact of the epidemic layer on the
awareness layer diminishes due to ρI

i → 0. Consequently, ρA
i

can be determined independently using Eq. (A1), treating
the information-driven awareness diffusion process as sep-
arate and independent from the activity-triggered epidemic
propagation.

IV. RESULTS AND DISCUSSION

In this section, we conduct the extensive MC simulations
to validate the MMCA equations of the IAEA coevolution
model. By adopting both numerical experiments and the-
oretical analysis simultaneously, we explore the effects of
dynamical processes of information and activity, including
the selection of preference contact, flow level, and net-
work topology, further unveiling how the information-driven
awareness diffusion affects the activity-triggered epidemic
spreading.

To capture the realistic characteristics of social networks,
we use the heterogeneous SF network as the underlying
structure to construct the IAEA multiplex network with N =
1000 individuals. The uncorrelated configuration model [47]
is employed to generate the epidemic and activity layers,
following a power-law degree distribution P(k) = ck−γ (we
set γ = 2.5), constrained by 2 � k �

√
N , and additional

M = N random links are added to establish the information
and awareness layers. Initially, there is no epidemic, and all
individuals are in an US state. Only the activity dynamic
occurs on the activity layer until it reaches a stable state. Then,
an epidemic is initiated by randomly selecting a fraction ρ0

(we set ρ0 = 0.1) of individuals as infection sources, who
transition to an aware and infected state (AI). From this point
onwards, the awareness dissemination driven by information
flow and epidemic spreading triggered by activity flow coe-
volve over time. After a sufficiently long transition period, the
system’s dynamic states, including the proportions of aware
individuals and infected individuals, reach stability. Average

FIG. 2. Variations of the proportions ρA and ρI of aware individ-
uals and infected individuals with the epidemic infection rate β for
different combinations of the awareness diffusion rate α and aware-
ness effectiveness η. Specifically: (a) α = 0.05, η = 0.5; (b) α =
0.05, η = 0; (c) α = 0.2, η = 0.5; (d) α = 0.2, η = 0; The data
points are the results averaged over 30 MC simulations, and the
corresponding color curves are the theoretical predictions of MMCA
equations. Other parameters are r = 2, τ = 3, and χ = 0 in the
information layer, δ = 0.6 in the awareness layer, λ = 3, κ = 2, and
θ = 0 in the activity layer, and μ = 0.8 in the epidemic layer.

statistics are then calculated over an extended period of time
to obtain reliable results.

A. General analysis of individual states

In this section, we present the general evolution results of
the awareness and epidemic states within the IAEA model.
Figure 2 shows the proportions ρA and ρI of aware individuals
and infected individuals as functions of the infection rate β

considering different awareness diffusion rates α and aware-
ness effectiveness η. As β exceeds the epidemic threshold,
more individuals are involved in the infection, causing ρI

to rapidly increase until it reaches a nearly constant value.
Simultaneously, the spread of awareness is driven by the
ongoing infections, resulting in a similar evolutionary trend
in ρA. It is important to note that in addition to infected
individuals, the exchange of information also facilitates the
spread of awareness among susceptible individuals, thus ρA =
ρAI + ρAS = ρI + ρAS > ρI. By comparing four panels of
Fig. 2, we can infer that a decrease in η effectively reduces
the average infection of individuals, while a larger α slightly
inhabits the outbreaks of epidemics by increasing ρA when
β is below the epidemic threshold. Furthermore, it can be
observed that the theoretical predictions based on the MMCA
exhibit good consistency with the MC simulations. The mean
relative errors between the two methods are 1.3%, 4.7%,
0.4%, and 2.1% for ρA, and 0.2%, 4.2%, 0.02%, and 3.2%
for ρI in Figs. 2(a)–2(d), respectively. These results attest to
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FIG. 3. Variations of the proportions ρA and ρI of aware individ-
uals and infected individuals with the epidemic infection rate β under
different combinations of the preference χ for information contact
and the preference θ for activity contact, considering two scenarios of
awareness effectiveness: η = 0.5 and η = 0. (a) ρA vs β for η = 0.5;
(b) ρA vs β for η = 0; (c) ρI vs β for η = 0.5; (d) ρI vs β for η = 0.
The data points are the results averaged over 30 MC simulations,
and the corresponding color curves are the theoretical predictions
of MMCA equations. Other parameters are r = 2 and τ = 3 in the
information layer, α = 0.1 and δ = 0.6 in the awareness layer, λ = 3
and κ = 2 in the activity layer, and μ = 0.8 in the epidemic layer.

the validity of the dynamic analysis of awareness-epidemic
coevolution on IAEA multiplex networks.

B. Effect of contact preference

Having gained a general understanding of the evolution
characteristics of individual states, we now delve into the
impact of contact preferences in information and activity on
awareness diffusion and the spread of epidemics. Figure 3
presents the results of MC simulations and the corresponding
predictions from the MMCA under different combinations of
contact preferences (χ , θ ). Notably, the agreement between
the MMCA predictions and MC simulations remains strong
across various contact preferences. However, significant dif-
ferences can be observed in the changes of ρA and ρI with
respect to the infection rate β for different combinations of (χ ,
θ ). Comparing the results in Fig. 3, we find that the differences
in ρA and ρI become more pronounced at lower values of β

but converge at higher values of β. In Figs. 3(a) and 3(b), the
initial discrepancy in ρA is attributed to the different aware-
ness thresholds influenced by χ (see Appendix A), where α

lies above the awareness threshold for χ = 1 but below that
for χ = −1. In Fig. 3(c), the influence of θ on the evolution
of ρI is evident, particularly with respect to the epidemic
threshold. However, the information-driven awareness diffu-
sion under different χ does not significantly interfere with this
impact. This can be explained as follows: The activity contact
preference θ plays a dominant role in determining the direc-
tion of activity flow, which directly affects the distribution of
epidemics and has a significant impact on the proportion of

FIG. 4. Variation of the epidemic threshold βc with the informa-
tion contact preference χ under different activity contact preferences
θ for different awareness effectiveness η. (a)–(c) θ = −1, 0, and 1
when η = 0.5; (d)–(f) θ = −1, 0, and 1 when η = 0. The data points
are the results obtained by MC simulations, and the curves are the
theoretical predictions by Eq. (26). Other parameters are r = 2 and
τ = 3 in the information layer, α = 0.1 and δ = 0.6 in the awareness
layer, λ = 3 and κ = 2 in the activity layer, and μ = 0.8 in the
epidemic layer.

infected individuals ρI. In contrast, the information contact
preference χ has a reduced influence on the size and distribu-
tion of aware individuals ρA as the overlap between infected
and aware individuals increases with the infection rate β.
Therefore, the impact of χ on ρA has a smaller influence on
the epidemic size ρI. When the inhibitory effect of awareness
on epidemic transmission is enhanced (e.g., by changing η

from 0.5 to 0), different values of χ result in distinct epidemic
thresholds, as shown in Fig. 3(d). As a result, the outbreak
and spread of the epidemic are closely related to the contact
preferences of both information and activity.

To gain more insight into the coevolution dynamics of
IAEA, we focus on the epidemic threshold, which can be
identified by leveraging the susceptibility �ρ at each infection
rate β in the MC simulations as follows [48]:

�ρI = N
〈ρI2〉 − 〈ρI〉2

〈ρI〉 , (27)

where 〈ρI2〉 and 〈ρI〉 are the ensemble averages of ρI2 and
ρI over all realizations of the MC simulation. The epidemic
threshold βc corresponds to the infection rate at which �ρI

reaches a diverging peak.
Figure 4 reports the variation of epidemic threshold βc with

the information contact preference χ under different activity
contact preferences θ when η is 0.5 and 0, respectively. It is
easy to see that for different θ , βc exhibits clear nonmonotonic
behaviors as χ increases, with this effect being more pro-
nounced at η = 0 compared to η = 0.5. This behavior can be
explained by considering that, with the distribution of activity
flow determined by a certain θ , individuals engaged in more
activities also bear a higher risk of infection. By choosing an
appropriate χ , more disease-related information can be dis-
seminated to these individuals, strengthening their awareness
and reducing their probability of infection, thereby raising the
epidemic threshold. However, if χ is either too large or too
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FIG. 5. Variation of the optimal information contact preference
χopt with the activity contact preference θ for different awareness
effectiveness η. (a) η = 0.5; (b) η = 0. The data points are the re-
sults obtained by MC simulations, and the curves are the theoretical
predictions by Eq. (26). Other parameters are r = 2 and τ = 3 in the
information layer, α = 0.1 and δ = 0.6 in the awareness layer, λ = 3
and κ = 2 in the activity layer, and μ = 0.8 in the epidemic layer.

small, the distribution of information flow will not match the
distribution of activity flow, resulting in a mismatch between
awareness diffusion and epidemic spread, which ultimately
degrades the system’s ability to contain the epidemic. Con-
sequently, βc achieves its maximum value at an optimal χopt,
which varies with θ , indicating that adjusting the information
contact preference based on the activity contact preference
is an important way to improve the system’s defense perfor-
mance.

On the other hand, a smaller value of θ tends to favor
individuals with small degree to engage in activities. Since the
epidemic relies on them for a smaller transmission range, this
preference can contribute to a larger epidemic threshold. Fur-
thermore, the theoretical results predicted by Eq. (26) show
qualitative consistency with the experimental simulations. The
acceptable deviations are mainly provoked by the approx-
imations made during solving and the neglect of dynamic
correlations among network layers.

To optimize epidemic control measures, it is beneficial
to identify the optimal combination (χ, θ ) that produces a
larger epidemic threshold. In Fig. 5, we illustrate the op-
timal preference χopt for information contact corresponding
to different activity contact preferences θ when η = 0.5 and
η = 0. Obviously, χopt keeps increasing with the increase of
θ . This observation can be explained by the fact that a larger
θ emphasizes activities involving individuals with higher de-
grees, thereby necessitating the directed dissemination of
more information to enhance their awareness. In addition,
the theoretical χopt based on Eq. (26) closely aligns with
the numerical results, irrespective of the value of η, thereby
confirming the effectiveness and reliability of our analytical
approach once again. These findings provide valuable insights
for designing prevention and control strategies during the epi-
demic period, especially when resuming work and production.

C. Effect of information and activity flows

The mutual interference between awareness and epidemics
ultimately stems from the flow of information and activities.
In this regard, we investigate the role of information level and

FIG. 6. Variations of the proportions ρA and ρI of aware indi-
viduals and infected individuals with the epidemic infection rate β

under different information levels r and activity frequencies λ. (a) ρA

vs β for different r; (b) ρI vs β for different r. Here, (c) ρa vs
β for different λ; (d) ρI vs β for different λ. The data points are
the results averaged over 30 MC simulations, and the corresponding
color curves are the theoretical predictions of MMCA equations.
Here, λ = 3 in (a) and (b), and r = 2 in (c) and (d). Other parameters
are τ = 3 and χ = 0 in the information layer, α = 0.1 and δ = 0.6
in the awareness layer, κ = 2 and θ = 0 in the activity layer, and
μ = 0.8 and η = 0 in the epidemic layer.

activity frequency, characterized separately by the parameters
r and λ in the IAEA coevolution model. As shown in Fig. 6,
we plot the evolution of the proportions ρA and ρI as a func-
tion of the epidemic infection rate β under different values of
r and λ, respectively. The agreement between the MMCA and
MC results demonstrates that our prediction analysis is robust
to the flow levels of information and activity. From Figs. 6(a)
and 6(b), one can observe that when β is less than βc, a
larger r leads to a significantly higher proportion ρA of aware
individuals, thereby delaying the outbreak of the epidemic.
Once β exceeds βc, the difference in ρA among different r
quickly subsides as β increases, resulting in a slight decrease
in the proportion of infected individuals with the increase of
r. However, in the case of λ, its impact is more clear in terms
of the epidemic threshold and individual states. As shown in
Figs. 6(c) and 6(d), the obvious increase of both ρA and ρI

with increasing λ reflects the promotion of activity frequency
for the spread of the epidemic. Moreover, the distinct gap in
the phase transition position among different λ values indi-
cates that an increase in activity frequency can significantly
influence the outbreak of the epidemic.

To further elucidate the quantitative impact of information
and activity flows, Fig. 7(a) first depicts the relationship be-
tween the epidemic threshold βc and the information level r
for different information timeliness τ . Both theoretical and
numerical results demonstrate that increasing r can help im-
prove βc for all τ , particularly for larger τ where the effect is
more pronounced. Also, a larger τ corresponds to a larger βc,
since it implies that more timely information is available to
individuals, thus increasing their awareness of the epidemic.
Therefore, reinforcing the dissemination of information
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FIG. 7. Effects of the information level r and activity frequency
λ on the epidemic threshold βc. (a) βc vs r for different information
timeliness τ , where λ = 3 and κ = 2; (b) βc vs λ for different activity
lengths κ , where r = 2 and τ = 3. The data points are the results
obtained by MC simulations, and the corresponding color curves are
the theoretical predictions by Eq. (26). Other parameters are χ = 0
in the information layer, α = 0.1 and δ = 0.6 in the awareness layer,
θ = 0 in the activity layer, and μ = 0.8 and η = 0 in the epidemic
layer.

related to epidemics is still beneficial for suppressing the
spread of epidemics. Next, in Fig. 7(b), we explore the evo-
lution of βc under different activity lengths κ for varying
activity frequencies λ. Qualitatively, it can be observed that
βc decreases significantly with the increase of λ and κ . From
a quantitative standpoint, the simulation results show that βc

is strictly inversely proportional to λ, which is consistent with
the theoretical analysis provided by Eq. (26). Overall, com-
pared to the information level, the activity frequency exerts a
stronger impact on the outbreak of epidemics.

To explore the coordinated control of epidemic spread
through the interplay of information level and activity fre-
quency, we examine the dynamic relationship between r and
λ in Fig. 8. The proportion ρI of infected individuals is plotted
as a function of r and λ for different combinations of α

and β. Notably, ρI decreases with increasing α and r, while
the opposite and significant changes occur with β and λ.
A clear boundary can be observed, which is determined by
the critical activity frequency dependent on r, distinguishing
whether the epidemic has erupted. When r is small (r < rc,
see Appendix A), it is insufficient to drive the diffusion of
awareness, and the epidemic spreading is primarily influenced
by the activity flow. In this case, the variation of r does
not change the critical activity frequency, denoted as λc (see
Appendix B) for independent activity-driven epidemic spread-
ing. However, as r increases beyond rc, the awareness
becomes prevalent in the system, suppressing the epidemic
propagation and resulting in an increase in the critical activity

FIG. 8. Phase diagrams of ρI in the plane of the information
level r and the activity frequency λ for different combinations of
the awareness diffusion rate α and the epidemic infection rate β.
(a) α = 0.1, β = 0.1; (b) α = 0.2, β = 0.1; (c) α = 0.1, β = 0.2;
(d) α = 0.2, β = 0.2. Color-coded values of ρI are obtained by MC
simulations on a 35 × 35 grid, and each ρI is the result averaged over
30 realizations. The black solid curves are the theoretical predictions
for complete suppression of the epidemic by Eq. (28). rc and λc

corresponding to the red dashed lines are the critical information
levels and activity frequencies determined by Eqs. (A7) and (B4),
respectively. Other parameters are τ = 3 and χ = 0 in the informa-
tion layer, δ = 0.6 in the awareness layer, κ = 2 and θ = 0 in the
activity layer, and μ = 0.8 and η = 0 in the epidemic layer.

frequency. Nevertheless, as r continues to increase, the effect
of increasing the critical activity frequency becomes less sig-
nificant, as the size ρA of aware individuals tends to reach a
constant value [see Fig. 12(b)]. Comparing Figs. 8(c) and 8(d)
with Figs. 8(a) and 8(b), we find that the increase in the critical
activity frequency with r also weakens with an increase in β.
While strengthening information dissemination for epidemic
prevention ensures the health of the system, it allows for a
certain degree of increase in activity frequency. However, this
effect is limited for higher epidemic infection rates. According
to Eq. (26), since the element ρA

i of the matrix L is related
to α and r [see Eq. (A1)], the theoretical predictions for the
boundary can be expressed as follows:

μ

λ�max(L(α, r))
� β, (28)

By integrating Eq. (28) with Eqs. (A7) and (B4), we can well
determine the region where the information flow suppresses
the outbreak of the epidemic across the activity frequency in
all combinations of α and β of Fig. 8.

D. Effect of network topology

Network topology plays a pivotal role in shaping the spread
and outbreak of epidemics. To this end, we first investigate the
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FIG. 9. Variation of the epidemic threshold βc with the network
size N for different degree distributions γ of SF multiplex networks.
(a) γ = 2.1; (b) γ = 3. The data points are the results obtained by
MC simulations and the curves are the theoretical predictions by
Eq. (26). Other parameters are r = 2, τ = 3, and χ = 0 in the in-
formation layer; α = 0.1 and δ = 0.6 in the awareness layer; λ = 3,
κ = 2, and θ = 0 in the activity layer, and μ = 0.8 in the epidemic
layer.

dependency of the epidemic threshold on the system size for
IAEA coevolution dynamics. As depicted in Fig. 9, one can
observe a decreasing trend of the epidemic threshold βc with
increasing network size N for different degree distributions γ

of SF multiplex networks. The theoretical predictions based

FIG. 10. IAEA coevolution dynamics on the ER multiplex net-
work. (a) Proportion ρI of infected individuals obtained from 30
MC simulations (data points) and MMCA equations (curves) versus
the epidemic infection rate β under different combinations of the
preference χ for information contact and the preference θ for activity
contact. (b) Epidemic threshold βc obtained by Eq. (26) versus the
preference χ for information contact under different preferences θ

of activity contact. (c) Proportion ρI of infected individuals obtained
from 30 MC simulations (data points) and MMCA equations (curves)
versus the epidemic infection rate β under different activity frequen-
cies λ. (d) Epidemic threshold βc obtained by Eq. (26) versus the
information levels r under different activity frequencies λ. The inset
plots λβc as a function of r for different λ. In (a) and (b), r = 2 and
λ = 3. In (c) and (d), χ = 0 and θ = 0. Other parameters are τ = 3
in the information layer, α = 0.1 and δ = 0.6 in the awareness layer,
κ = 2 in the activity layer, and μ = 0.8 and η = 0 in the epidemic
layer.

on Eq. (26) are compared with the corresponding numerical
results. Notably, the reduced differences between the theo-
retical and numerical values with increasing network size N
indicate that our analytical method becomes more efficient for
larger network systems. This finding suggests that finite-size
effects may impact the accuracy of our theoretical predictions.

To demonstrate the generality of our analytical approach
and results, we have conducted additional simulation experi-
ments on a homogeneous random multiplex network, where
the SF topology of network layers is replaced with an Erdős-
Rényi (ER) random topology [49] with an average degree of
〈k〉 = 4. Figure 10(a) compares the evolution of the propor-
tion ρI of infected individuals obtained from MC simulations
with the predictions of MMCA under different combinations
of the preference χ for information contact and the preference
θ for activity contact. We observe good agreement between
the two methods, validating the effectiveness of our analytical
approach across various parameter settings. Building on this,
we utilize Eq. (26) to theoretically predict how the epidemic
threshold βc is affected by the preferences χ and θ on ER
multiplex networks. As shown in Fig. 10(b), one can find that
negative values of θ leads to larger values of βc compared to
positive θ . Similarly, βc evolves nonmonotonically with χ for
all listed θ , with an optimal χ ≈ 2 that maximizes the system

FIG. 11. Phase diagrams of ρI in the plane of the information
level r and the activity frequency λ for different combinations of the
awareness diffusion rate α and the epidemic infection rate β when the
ER multiplex network is adopted. (a) α = 0.2, β = 0.2; (b) α = 0.3,
β = 0.2; (c) α = 0.2, β = 0.3; (a) α = 0.3, β = 0.3. Color-coded
values of ρI are obtained by MC simulations on a 50 × 25 grid, and
each ρI is the result averaged over 30 realizations. The black solid
curves are the theoretical predictions for complete suppression of the
epidemic by Eq. (28). rc and λc corresponding to the red dashed lines
are the critical information levels and activity frequencies determined
by Eqs. (A7) and (B4), respectively. Other parameters are τ = 3
and χ = 0 in the information layer, δ = 0.6 in the awareness layer,
κ = 2 and θ = 0 in the activity layer, and μ = 0.8 and η = 0 in the
epidemic layer.
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performance in defending against epidemic outbreaks. Fur-
thermore, the effects of activity frequency λ and information
level r is also explored on the ER multiplex network. From
Fig. 10(c), we verify that our analytical predictions remain ef-
fective for epidemic prediction on the ER multiplex network.
Subsequently, Fig. 10(d) presents the variation of the theoreti-
cal epidemic threshold βc with r for different values of λ. The
result shows that increasing λ leads to more distinct values of
βc, and an increase in r improves βc. Moreover, the inset of
Fig. 10(d) demonstrates the overlapping evolution of λβc with
r for different λ, once again clarifying the inverse relationship
between the epidemic threshold and activity frequency.

To unveil the interplay between activity frequency and
information level on the ER multiplex network, we examine
the results of the proportion ρI of infected individuals as a
function of r and λ, as well as different combinations of α

and β. Figure 11 illustrates the comparison between the theo-
retical predictions and numerical simulations, demonstrating
their qualitative agreement. Consistent with the results on
the SF multiplex network, we observe that increasing the
information level slightly raises the critical activity frequency
and effectively reduces the infection size of individuals when
an epidemic outbreak occurs. Furthermore, compared to the
suppression of epidemics achieved through increased aware-
ness diffusion, the impact of epidemic prevalence becomes
more significant with an increase in the infection rate. These
observations highlight the complex interplay between activ-
ity frequency and information level in controlling epidemic
outbreaks on the ER multiplex network. It emphasizes the
importance of finding a balance between these factors to ef-
fectively mitigate the spread of epidemics.

V. CONCLUSION

In this paper, we have introduced an IAEA coevolution dy-
namics model on four-layer multiplex networks, considering
the preferences of information exchange and activity contact.
By integrating a MMCA with mean-field approximation, we
have developed a theoretical method to analyze the interplay
between information-driven awareness diffusion and activity-
triggered epidemic spreading. Our model and method provide
insights into the dynamics of spreading processes.

In summary, we have made the following key findings.
First, we have demonstrated the effectiveness of our theo-
retical approach through extensive MC simulations, showing
good agreement between the theoretical predictions and sim-
ulation results in predicting the size of individual states and
the epidemic threshold. Second, we have identified an opti-
mal preference for information exchange that depends on the
preference for activity contact, which maximizes the epidemic
threshold. This highlights the importance of information
reminders in strengthening individuals’ self-protection aware-
ness, particularly for those engaged in more activities. Third,
we have investigated the effects of information level and activ-
ity frequency on the epidemic size and threshold. Our results
indicate that increasing the information level can raise the
epidemic threshold, while decreasing the activity frequency
plays a crucial role in suppressing the spread of the epidemic.

We have validated our model and method on both hetero-
geneous SF multiplex networks and homogeneous ER random

networks, and observed consistent results. Our approach
captures the essential dynamics of information-dependent
awareness diffusion and activity-dependent epidemic spread-
ing, providing valuable insights for modeling and analyzing
epidemic prevention strategies. The findings underscore the
importance of effectively controlling information and activity
flows to mitigate the spread of epidemics. Future work in this
area may involve exploring the integration of resources and
information to further enhance epidemic control strategies.
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APPENDIX A: INDEPENDENT INFORMATION-DRIVEN
AWARENESS DIFFUSION

In cases where the epidemic does not break out in the sys-
tem due to a small infected rate or activity frequency, there are
very few or no individuals in an infected state, which results
in little interference in the dynamics of the awareness layer.
Under these conditions, the information-driven awareness
diffusion can be considered independent of activity-triggered
epidemic spreading. By employing the MMCA, we can model
the evolution of the aware state over time as follows:

ρA
i (t + 1) = [

1 − ρA
i (t )

]
[1 − πi(t )] + ρA

i (t )(1 − δ), (A1)

where the two items on the right-hand side refer to the
generation of new aware individuals and the decay of indi-
vidual awareness, respectively. As shown in Figs. 12(a) and
12(b), the steady proportion ρA

i of aware individuals increases
with the awareness diffusion rate α and information level r.
The theoretical predictions based on Eq. (A1) are consistent
with the MC simulations, which provides the accessibility for
Eq. (26) to accurately predict the epidemic threshold of the
IAEA coevolving dynamics.

Next, we focus on the theoretical analysis of the critical
information level rc illustrated in Figs. 8 and 11. When the
system approaches a stable state of awareness prevalence,
we assume ρA

i (t + 1) = ρA
i (t ) = εA

i � 1 for i = 1, . . . , N .
With the approximation (1 − α)ϕ ji ≈ 1 − αϕ ji, Eq. (6) can be
rewritten as

α ji ≈ αεA
j ϕ ji. (A2)

Substituting Eq. (A2) into Eq. (3) and omitting the high-order
terms of εA

j , we can obtain

πi ≈
∏
j∈�i

(
1 − αεA

j ϕ ji
) ≈ 1 − α

∑
j∈�i

εA
j ϕ ji

= 1 − α

N∑
j=1

εA
j a jiϕ ji.

(A3)
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FIG. 12. Independent information-driven awareness diffusion:
(a) Variation of the proportions ρA of the aware individuals with
the awareness diffusion rate α for different information levels r.
(b) Variation of the proportions ρA of the aware individuals with
the information level r for different information timeliness τ . In
(a), τ = 3. In (b), α = 0.1. Other parameters are χ = 0 in the in-
formation layer and δ = 0.6 in the awareness layer. Independent
activity-triggered epidemic spreading: (c) variation of the propor-
tions of ρI the infected individuals with the epidemic infection rate β

for different activity frequencies λ; (d) variation of the proportions of
ρI the infected individuals with the activity frequency λ for different
activity lengths κ . In (c), κ = 2. In (d), β = 0.05. Other parameters
are θ = 0 in the activity layer, and μ = 0.8 in the epidemic layer.
The data points are the results averaged over 30 MC simulations,
and the corresponding color curves are the theoretical predictions of
Eq. (A1) based on MMCA. Here, the same SF multiplex structure as
Fig. 2 is adopted.

Incorporating with Eq. (A1), we have

δεA
i = (

1 − εA
i

)
α

N∑
j=1

εA
j a jiϕ ji. (A4)

By ignoring the second-order term εA
i εA

j , Eq. (A4) can be
simplified as

N∑
j=1

(
a jiϕ ji − δ

α
e ji

)
εA

j = 0. (A5)

This is an eigenvalue problem for the matrix W , where the
element w ji is given by

w ji = a jiϕ ji = ra jiFji(τ, χ ) = rv ji, (A6)

where v ji is the element of the matrix V . Thus, the critical
information level can be solved as

rc = δ

α�max(V )
, (A7)

where �max(V ) represents the largest eigenvalue of the matrix
V . One can find that the critical information level rc is in-
versely proportional to the awareness diffusion rate α, which
is consistent with the simulation results in Figs. 8 and 11. Note
that V depends on the network topology of the awareness
layer, the preference of information contact, and information
timeliness. As long as these are known, rc can be explicitly
solved.

APPENDIX B: INDEPENDENT ACTIVITY-TRIGGERED
EPIDEMIC SPREADING

Next, we focus on the independent activity-triggered epi-
demic spreading when the information level is below the
critical value (r < rc). In this case, the spread of the epidemic
is not significantly influenced by awareness diffusion. The
MMCA equation for activity-triggered epidemic spreading
can be approximated as

ρI
i (t + 1) = [

1 − ρI
i (t )

]
[1 − zi(t )] + ρI

i (t )(1 − μ). (B1)

Figures 12(c) and 12(d) illustrate the evolution of ρI
i with β

and λ. The predictions obtained from Eq. (B1) show good
agreement with the numerical simulations for independent
activity-triggered epidemic spreading, particularly at the epi-
demic threshold.

Let us now discuss the calculation of the critical activ-
ity frequency λc as shown in Figs. 8 and 11. To obtain
λc, we employ a similar approach to solving rc for inde-
pendent information-driven awareness diffusion. Assuming
ρI

i (t + 1) = ρI
i (t ) = εI

i � 1 for i = 1, . . . , N , we make the
following approximation:

zi ≈
∏
j∈�i

[
1 − βεI

j (σ ji + σi j )
] ≈ 1 − β

∑
j∈�i

εI
j (σ ji + σi j )

= 1 − β

N∑
j=1

εI
jb ji(σ ji + σi j ). (B2)

By ignoring the high-order terms of εI
i , Eq. (B1) can be con-

verted as
N∑

j=1

[
b ji(σ ji + σi j ) − μ

β
e ji

]
εI

j = 0. (B3)

Hence, the critical activity frequency λc can be calculated as

λc = μ

β�max(Y )
, (B4)

where the element of the matrix Y is defined as y ji =
b ji[Gji(κ, θ ) + Gi j (κ, θ )]. By knowing the network topology
of the epidemic layer, preference of activity contact, and ac-
tivity length, we can explicitly acquire λc using Eq. (B4). The
simulation results presented in Figs. 8 and 11 demonstrate
the effectiveness of Eq. (B4) in predicting the critical activity
frequency λc.
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