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Hamiltonian learning is an important procedure in quantum system identification, calibration, and successful
operation of quantum computers. Through queries to the quantum system, this procedure seeks to obtain the
parameters of a given Hamiltonian model and description of noise sources. Standard techniques for Hamiltonian
learning require careful design of queries and O(ε−2) queries in achieving learning error ε due to the standard
quantum limit. With the goal of efficiently and accurately estimating the Hamiltonian parameters within learning
error ε through minimal queries, we introduce an active learner that is given an initial set of training examples
and the ability to interactively query the quantum system to generate new training data. To ensure applicability
on near-term quantum hardware, the active learner operates in batch mode as opposed to sequentially, proposing
batches of queries to be made during learning. We formally specify and experimentally assess the performance of
this Hamiltonian active learning (HAL) algorithm for learning the six parameters of a two-qubit cross-resonance
Hamiltonian on four different superconducting IBM quantum devices. Compared with standard techniques for
the same problem and a specified learning error, HAL achieves more than a 95% reduction in queries required,
and upwards of 33% reduction over a sequential active learner. Moreover, with access to prior information on a
subset of Hamiltonian parameters and given the ability to select queries with linearly (or exponentially) longer
system interaction times during learning, HAL can exceed the standard quantum limit and achieve Heisenberg
(or super-Heisenberg) limited convergence rates during learning.
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I. INTRODUCTION

Hamiltonian learning constitutes the problem of learning
the Hamiltonian governing the dynamics of a quantum sys-
tem given finite classical and quantum resources. This is a
fundamental problem encountered in identification of quan-
tum systems [1–3], operation of quantum information devices
[4,5], validation of theoretical physical models, and has im-
plications for computational bounds on quantum algorithms
[6–8]. In the calibration of quantum computers alone, it is a
significant step in each of the following tasks: system char-
acterization, learning device parameters, different sources of
noise, gate design [9], and control strategies for implementing
robust quantum gates with high fidelity. Moreover, a quantum
computer typically requires frequent recalibrations to account
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for drift in parameters over time requiring multiple iterations
of some Hamiltonian learning routine.

The resource requirements for learning a generic many-
body Hamiltonian rise exponentially with the system size
[10]. Even for a fixed system size, however, the achievable
learning error ε is fundamentally limited by the number of
queries N made to the quantum system. In particular, through
repeated system queries, N in general scales as ε−2 as a
consequence of the central limit theorem. This is commonly
referred to as the standard quantum limit (SQL) or shot noise
limited scaling. Using quantum resources, however, a number
of approaches have shown a much better Heisenberg limited
scaling of N ∼ ε−1. The Heisenberg limit is known to be
fundamental [11–15], under a wide range of assumptions
[16–19], but it is typically only saturated with the help of
quantum resources.

This has been achieved using entanglement [20] such as
NOON states [21,22], but can also be accomplished without
entanglement under certain circumstances. For example in
the problem of phase estimation [23], one has to estimate
the phase φ in an unitary operator of form U = exp(−iφH )
where H is a Hermitian operator and φ can also be inter-
preted as the strength of coupling in a Hamiltonian. It has
been shown that Heisenberg limited scaling can be achieved
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using multiround protocols using both adaptive measure-
ments [24,25] and predetermined nonadaptive measurement
sequences [26,27]. In contrast, there has not been such a
detailed study in the case of learning a general many-body or
a multiparametric Hamiltonian. This motivates understanding
how might just classical resources be employed to solve the
Hamiltonian learning problem with a scaling, which surpasses
the SQL, and ideally achieves the Heisenberg limit.

Even if scalings higher than SQL cannot be achieved,
it is still desirable to minimize resource requirements. This
may be accomplished by changing the estimation procedure
used for Hamiltonian learning in combination with engineered
experiments. Fast Fourier transform (FFT) and linear regres-
sion are some of the traditional estimation methods, which
still form the powerhouse of modern Hamiltonian learning
strategies [28]. It has been shown that adopting alternate esti-
mation methods such as Bayesian estimation [29], stochastic
estimation [30], and neural-network based Hamiltonian recon-
struction [4] can reduce resource requirements and improve
scalability. We will call the reduction in resource requirements
achieved by replacing one Hamiltonian learning strategy with
another as query advantage. This will obviously depend on
the two strategies being compared. We will call the strategy
being replaced as the baseline. The baseline and our proposed
replacements will be discussed in detail later. This brings us
to the primary question we tackle in this paper: what is a
common framework for Hamiltonian learning that can achieve
query advantage even if scalings higher than SQL are not
achieved, just using classical resources?

One effective framework for surpassing central limit theo-
rem bounds when possible and/or achieving query advantage
is active learning, e.g., using optimal experiment design. In
[31], this idea was explored for quantum state tomography,
process tomography, and Hamiltonian learning given a model,
but in an offline manner. This has also been used to reduce
experiment budget and propose different control schemes
[32]. Active learning of a Hamiltonian is a more challenging
problem than for quantum state tomography [33] where one
optimizes over different measurements and process tomogra-
phy [34] where one additionally optimizes over initial states,
due to the additional control parameter of system time evo-
lution. Active learning thus provides a general framework for
making adaptive queries to the quantum system, comprised
of initial state, measurements and system time evolution dur-
ing Hamiltonian learning. In fact, [35] has shown that with
adaptive feedback control, Heisenberg limited scaling can be
reached in principle, but a recipe for this is only given for
estimation of a single Hamiltonian parameter and the proce-
dure requires prior information of the parameter. This was
later extended to multiparameter Hamiltonians by [36]. A
common ingredient of these works and the earlier mentioned
multiround protocols for phase estimation is trading the cost
of using physical quantum resources for cost in time resources
[20].

A sequential active learner for Hamiltonian learning based
on the criteria of Bayes risk was proposed as part of robust
online Hamiltonian learning (ROHL) in [37] and later Qinfer
[38]. However, this active learner operates in a sequential
manner, proposing a query to be made one shot at a time. This
limits its applicability to current hardware where batching

queries (or quantum circuits) is essential to overcome costs of
typically expensive computation of risk functions for different
queries being considered, access over the cloud, compilation,
system queues, and latencies between classical electronics
and the quantum hardware. It is then necessary to ensure any
active learner we introduce for Hamiltonian learning operates
in batch mode.

In this paper, we introduce a Hamiltonian active learning
algorithm (HAL) operating in batch mode based on the cri-
teria of Fisher information, which is a way of measuring the
information content of different queries and naturally appears
in the bound on the errors achieved by a Hamiltonian learner.
This resulting variant of HAL is called HAL-FI. We also intro-
duce another variant of HAL for the task of predicting queries
to the Hamiltonian, which uses the criteria of Fisher informa-
tion ratio (FIR). We call the resulting active learning algorithm
HAL-FIR. We demonstrate the performance of HAL-FI ex-
perimentally on IBM quantum devices, which are based on the
superconducting cross-resonance (CR) gate. Compared with
passive learning, which scales as SQL, we show that HAL-FI
with a fixed space of queries also has an asymptotic scaling
of SQL but is able to achieve a constant reduction of more
than 96.9% in the number of queries required for a desired
learning error in learning the two-qubit CR Hamiltonian on
a 20-qubit IBM quantum device. HAL-FI can achieve more
than 33% reduction in the number of queries required when
compared to current standard methods used for Hamiltonian
learning such as the sequential active learner of Qinfer. We
finally show that queries involving exponentially growing sys-
tem evolution time to the quantum devices suffices during
learning to achieve Heisenberg limited scaling with HAL-FI
when prior information is available. This is another example
of trading physical quantum resources with time resources as
highlighted before.

The paper is organized as follows. In Sec. II, we formally
describe the problem of Hamiltonian learning, and the con-
cept of an active learner. In Sec. III, we present the HAL
algorithms of HAL-FI and HAL-FIR. To illustrate the per-
formance of HAL-FI, we consider the example of calibrating
CR gates on IBM quantum devices. In Sec. IV, we describe
our experimental setup, provide a theoretical description of
the Hamiltonian model of the CR gate and physical models of
the different noise sources affecting the quantum devices. Fur-
ther, we provide details of our experiments on evaluating the
performance of HAL-FI. Finally in Sec. V, we compare the
computational cost of different learners, describe the amount
of query advantage that can be obtained using HAL-FI, and
specify the conditions under which Heisenberg limited rate of
convergence or even super-Heisenberg limited rate of conver-
gence can be achieved. Specifically for CR gates, we show
that HAL-FI can be used to learn an accurate Hamiltonian
using only a fraction of the queries required by currently used
methodologies, resulting in reduction of queries of around two
or three orders of magnitude over currently used methods for
particular learning tasks.

II. HAMILTONIAN LEARNING

In this section, we present a description of the prob-
lem of Hamiltonian learning for a general quantum system
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(Sec. II A), and in the presence of different noise sources
(Sec. II B). We will introduce the concept of an active learner
in this context (Sec. II C). Notation used for this work will be
defined as introduced.

A. Problem statement

This section of the paper describes the unknown Hamilto-
nian of interest, specifies our query setting, formally describes
the different Hamiltonian learning tasks, and the estimators
that are used for Hamiltonian learning.

1. Unknown Hamiltonian

Let H be a partially or fully unknown system Hamiltonian
over n qubits. We can represent H in terms of the n-qubit Pauli
operators as H = ∑

P∈{σI ,σX ,σY ,σZ }⊗n cPP with {σI , σX , σY , σZ}
representing the single-qubit Pauli operators and where cP ∈
R are the corresponding coefficients. We could also represent
H as a Hermitian matrix in C2n×2n

under the usual computa-
tional basis.

We assume that we have a model for the unknown Hamilto-
nian denoted by H (θ), parametrized by a real vector θ ∈ � ⊂
Rm of length m. We use � to denote the set of all possible
values over the Hamiltonian parameters. The model may be
derived from first principles based on the understanding of the
physics of the quantum system or proposed through empirical
observations. We further assume that the system Hamiltonian
is time independent.

Let the unknown Hamiltonian of the quantum system be
H � and the true Hamiltonian parameters be θ�. We refer to the
quantum system of whose Hamiltonian we wish to learn as
an oracle that we can query and which returns measurement
outcomes upon querying. We denote the random variable of
query to the oracle by x and the resulting output by the oracle
as the measurement outcome random variable y corresponding
to a single shot of the qubits being readout in the standard
computational basis. The pair of a query and its corresponding
output is called an example and is denoted by (x, y). The
alphabet of query x is referred to as the query space and
we denote it by Q. The distribution from which queries are
sampled from Q is referred to as the query distribution and
denoted by q. Commonly, y ∈ Y = {0, 1}nr where nr is the
number of qubits being readout. Our goal is to then learn the
parameters θ of the Hamiltonian with error ε from examples
of the form {(x(i), y(i) )}N

i=1 while minimizing the number of
queries made to the oracle or the query complexity N .

2. Specifying a query

We first describe what we mean by a query before spec-
ifying the different learning objectives. The query comprises
three parts: measurement operators M, initial state preparation
operators U , and control parameters t . A schematic of how the
query is used in a quantum circuit to evolve a quantum system
is shown in Fig. 1. In Fig. 2, we show the oracle of a quantum
device receiving the input of queries of form x = (M,U, t )
and returning the corresponding outputs of a single shot of the
qubits on the device being readout denoted by a binary string
of length nr : y ∈ {0, 1}nr .

|0〉⊗n
U e−iHt M

FIG. 1. Quantum circuit picture of how the query x = (M,U, t )
is used. The input to the quantum circuit is the zero state |0〉⊗n.
Application of the preparation operator U on |0〉⊗n is used to create
an initial state before interacting with the system Hamiltonian H for
time t . Finally, a measurement operator M is applied to the evolved
state before measuring in the usual computational basis denoted by
the meter. The output is a single shot of qubits being readout.

(a) Measurement operators. The measurement operators
M ∈ M specify the admissible set of unitary operators that
can be applied after evolving the system Hamiltonian and be-
fore measuring each qubit in the Z basis (as typical of current
hardware). This in turn specifies the basis set {|ψm〉} used
to generate the final measurement observation results. The
permissible set of M is typically constrained to be single-qubit
operators or shallow circuits, because it is experimentally
realistic to implement these on current hardware with high fi-
delity. For our applications, we will consider M to correspond
to single-qubit operators corresponding to measuring under a
Pauli basis.

(b) Initial state preparation operators. Together with the
measurement operator, an initial state |ψ0〉 must also be spec-
ified, in order to determine a measurement result from H .
This initial state can in principle be any unit vector in the
Hilbert space, but much like for measurement operators, we
only allow a subset of possible states to be specified. We
consider |ψ0〉 = |0〉⊗n and allow for realistic single qubit
unitary operators. A common initial state specification is to
provide a unitary operator U = ⊗n

i=1 Ui as a tensor product of
single qubit operators such as single-qubit Pauli operators and
Hadamard gates acting on each of the n qubits in the system.
This then determines the U element of x. We denote the set of
all considered preparation operators as U

(c) Control parameters. The control parameters are the last
element of x, and are typically a set of classical numbers.
For example, one canonical control parameter is the time
t for which H should be applied. Other control parameters
may modulate interactions between qubits. In this work, we
consider only the Hamiltonian evolution time t as a control
parameter and denote the set of all possible evolution times
as T .

After defining the set of measurement operators M, the
set of preparation operators U , and the set of Hamiltonian
evolution times T , the resulting query space is given by Q =
M × U × T . We require Q to be complete, i.e., there exist
queries in Q that are informative about each of the Hamilto-
nian parameters θi so that Hamiltonian learning can succeed.
As we will see later in our discussion on active learning in
Sec. II C 2, completeness of Q is equivalent to the condition
of there existing a set of queries or query distribution for
which the resulting Fisher information matrix is full rank and
invertible.

3. Learning framework

Having fully described a query, we are now in a position to
formalize the problem of Hamiltonian learning. While doing
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X ∼ q̂
x = (M,U, t)

Queries Oracle

Y = {y ∈ {0, 1}nr}

Measurements Estimation Procedure

min
θ

L(θ; X,Y )

Active Learner
θ̂q̂

FIG. 2. Schematic of Hamiltonian learning with an active learner: The oracle constitutes the unknown Hamiltonian and noise sources,
with the true parameter vector of θ�, which is unknown and needs to be learned. Here, we show the device coupling map of the 20-qubit IBM
quantum device ibmq_boeblingen. Learning is carried out on training examples of the form (x, y) where x are queries inputted to the oracle
specifying the measurement observable M, preparation operator U and system time evolution t , and y are the corresponding measurement
outcomes outputted by the oracle. An illustrative quantum circuit picture of the oracle in the noiseless case is shown in Fig. 1. The set of
queries inputted to the oracle is denoted as X and the corresponding set of measurement outcomes outputted by the oracle as Y . An estimation
procedure is run on the training examples of (X,Y ) to learn a model parameter estimate θ̂. The complete top row corresponds to how a passive
learner operates and is also called open-loop Hamiltonian learning. We add a feedback loop to introduce an active learner, which uses the
current estimate of model parameters θ̂ to prescribe the distribution q̂ from which queries to the oracle should be sampled from next. This
process is then repeated during learning until an accurate estimate θ̂ is obtained. The Hamiltonian active learning (HAL) algorithm introduced
in this paper comprises the estimation procedure and active learner shown in this schematic. The active learner is described in Sec. II C and the
HAL algorithm in Sec. III.

so, we draw parallels to and introduce language from machine
learning and statistical learning theory.

We are given a query space Q = M × U × T constructed
as discussed above and a space over the measurement out-
comes Y = {0, 1}nr . We consider the class of Hamiltonian
models H. A Hamiltonian H ∈ H defines a map from Q
to the set of measurement outcomes taking values in Y by
Born’s rule. In particular we assume the availability of a
model description H = {H (θ)|θ ∈ �} ⊂ Rm parametrized by
the vector θ and where � is considered to be the space over
the parameters. When no prior information is available to
constrain the parameter space, we can consider � = Rm. We
denote the true Hamiltonian as H� and assume that H� ∈ H,
i.e., it is realizable. We denote the parameter vector of the
true Hamiltonian as θ�. Our goal is to learn an estimate of
θ�, which we denote by θ̂. With regards to notation, we use θ

whenever we make statements that are true for any parameter
in �.

For the parameter vector θ, the label (or measurement
outcome) y given query x = (M,U, t ) is produced with the
conditional probability

py|x(y|x; θ) =
∑

z

|〈yz|Me−iH (θ)tU |0⊗n〉|2 (1)

as per Born’s rule and assuming the absence of noise. The
summation is over the hidden measurement outcomes of the
(n − nr ) qubits that are not read out, which we denote by z
and | · | is used to denote the absolute value.

Given the dataset of N training examples D =
{(x(i), y(i) )}i∈[N], the goal is to learn the Hamiltonian parameter
vector θ, which characterizes the conditional probability
[Eq. (1)] over measurement outcomes in Y given queries in
Q. This is a supervised learning task for which a suitable loss
function is

Loss(θ; D) = L(D; θ) + R(θ) (2)

where L is a suitable error function for assessing the cho-
sen model on the training dataset, and R is a regularization
function penalizing model complexity. The latter is chosen
to incorporate prior information, enforce conditions such as
sparsity through �1 norm and generalize to unseen data.
The parameter estimate is determined by minimizing the
loss function θ̂ = argminθ∈� L(θ; D). After obtaining an es-
timate θ̂, it is common to evaluate the performance against
a testing dataset, which includes examples not seen during
training. This testing dataset, which we denote as Dtest =
{(x(i), y(i) )}i∈[Ntest ] contains Ntest queries and their correspond-
ing outputs. The Ntest queries are sampled from the query
space Q according to a testing distribution, which we denote
by ptest . This allows us to further distinguish between the
problems of model inference and prediction against ptest .

(a) Model inference. The goal is to learn a parameter es-
timate θ̂ within a prescribed learning error ε with the fewest
queries N , without making special considerations for the test-
ing distribution ptest , which may change or may be unknown.
We use root mean squared error (RMSE) as L in Eq. (2),

RMSE(θ̂; ξ) =
⎛
⎝ m∑

i=1

E

⎡
⎣(

θ̂i

ξi
− θ�

i

ξi

)2
⎤
⎦
⎞
⎠1/2

(3)

where θ� is the parameter vector corresponding to the
unknown Hamiltonian H�, and ξ is the vector to nondimen-
sionalize and normalize θ. This is done to account for different
relative magnitudes of each parameter component θ�

i and to
ensure that the RMSE does not explode due to contributions
of few parameter components. These normalization factors
ξ can be obtained during estimation or be available through
prior information. When an unbiased estimator is used, L
may be reduced to being the square root of the variance,
[
∑

j Var(θ j/ξ j )]1/2. It is typically hard to ensure that an es-

timator is unbiased, even though this is desired. To find θ̂ that
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minimizes the RMSE given D, we use estimation methods
based on the asymptotically unbiased maximum likelihood
estimator (MLE) and Bayesian estimation, all of which we
will discuss in Sec. II A 4.

(b) Prediction against a testing distribution ptest. The goal
is to learn an estimate θ̂ that will allow us to perform well on
predicting the likelihood function of measurement outcomes
given queries sampled from ptest . In such a scenario, L is still
the RMSE but the performance of the estimate is assessed
through the testing error,

Testing Error = Ex∼ptest,y∼py|x (·|x;θ� )[L(y|x; θ̂) − L(y|x; θ�)],
(4)

where we have denoted the negative log-likelihood
− log py|x(y|x; θ) in shorthand by L(y|x; θ) for a general
measurement outcome y and query x given model parameters
θ. We have chosen the testing error as the expectation of the
difference in negative log-likelihood when using the estimate
θ and truth θ� with respect to the testing distribution ptest .
This difference in negative log-likelihood is also often called
the log-likelihood ratio [39]. It is then desired to learn θ̂ such
that the testing error is lower than a given error ε. The error
ε here may need to be specified relative to how the negative
log-likelihood scales, which will depend on the Hamiltonian
of interest and the queries themselves.

Given N training examples, we then say that we have
succeeded at model inference (prediction) if we are able to
produce an estimate θ̂ such that the RMSE (testing error) is
bounded by some error parameter ε. We want to accomplish
these learning tasks by minimizing the resource requirements
or number of queries N .

We distinguish between the two problems of model infer-
ence and prediction against ptest as the ideal training datasets
for these two learning tasks may come from two different
distributions. This will influence how the training data is
chosen when we introduce an active learner into Hamiltonian
learning, as we will discuss in Sec. III. The performance of
the Hamiltonian learning algorithms in tackling the learning
Problem II A 3 b will also be useful for cross-validation and
testing the robustness of these methods.

4. Estimators

We now discuss the different types of estimators that may
be adopted for learning an estimate θ of the Hamiltonian
parameters from the N measurement outcomes Y = {y(i)}i∈[N]

obtained from the quantum system upon N queries X =
{x(i)}i∈[N]. Collectively, we refer to them as the training data
D = (X,Y ) = {(x(i), y(i) )}i∈[N]. The active learner for Hamil-
tonian learning we introduce in this paper will be designed for
use with the following maximum likelihood estimator (MLE)
but is also compatible with the other estimators mentioned
here.

(a) Maximum likelihood estimation. The maximum like-
lihood estimator (MLE) determines an estimate of the
parameters θ̂ from the data D through

θ̂ = argmin
θ∈�

1

N

N∑
i=1

− log py|x
(
y(i)|x(i); θ

)
, (5)

where − log py|x(y(i)|x(i); θ) is the negative log-likelihood of
the measurement outcome y(i) given the query x(i) and when
considering the model parameters θ. The optimization prob-
lem of Eq. (5) is typically nonconvex and thus specific
procedures may be required for avoiding local minima and
converging to the global minimum.

(b) Regression. Estimation based on regression is used as a
proxy for the MLE or sometimes even as part of the first step
in a procedure to solve the optimization of MLE [Eq. (5)].
Let the empirical likelihood computed from measurement
outcomes corresponding to query x be given by p̂y|x. Suppose
we have a model l (x; θ) (e.g., Gaussian or sinusoidal) of the
likelihood function for query x given parameters θ. We can
then obtain an estimate by performing least squares,

θ̂ = argmin
θ

|| p̂Y |X − l (X ; θ)||22, (6)

where we have denoted p̂Y |X as the empirical likelihood com-
puted for different queries in queries X using corresponding
measurement outcomes in Y from D. Note that Eq. (6) could
be further improved by weighting the empirical likelihoods by
their variances due to shot noise.

(c) Bayesian estimation. Instead of the frequentist ap-
proach above, we can also adopt a Bayesian approach during
estimation. The Hamiltonian parameters θ are treated as a ran-
dom vector whose distribution is updated according to Baye’s
rule,

p(θ|D) = p(Y |θ, X )p(θ)

p(Y |X )
, (7)

where p(Y |θ, X ) is the likelihood function over measurement
outcomes Y given queries X and parameter vector θ, p(θ)
is the prior distribution of θ, and p(θ|D) is the posterior
distribution after incorporation of training data D = (X,Y ).
Often, we will use the Baye’s rule iteratively and in that case
the posterior from one step becomes the prior for the next
step. When a single point parameter estimate is desired, we
will use the posterior mean θ̂ = Eθ|D[θ], which is optimal for
minimizing RMSE [27].

Computing the denominator in Eq. (7) and the mean over
the posterior distribution is computationally expensive and
usually intractable in practice. This computational burden is
reduced if structural information about the distributions in
Eq. (7) are known (e.g., Gaussian) or can be reliably enforced.
This is done in Bayesian estimation methods such as the
Kalman filter [40] and Gaussian mixture model based filter
[41]. For our applications, we will consider sequential Monte
Carlo methods (also called particle filtering) [42].

We note that Eq. (5) is an optimization problem that may
be solved in several ways, and similarly there may be different
strategies to evaluate Eq. (7) in Bayesian estimation. The
different programs or algorithms to solve the optimization
problem (or Baye’s rule) are commonly called optimization
procedures or estimation procedures. Different procedures
have different properties such as rate of convergence and
optimality such as guarantee of a local or global minimum.
In order to improve convergence or search direction, it is
common for procedures to require first or second gradient in-
formation. The estimation procedure will need to be specified
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along with the formulated optimization problem at hand for a
complete specification of the learning algorithm or learner.

B. Learning in the presence of noise

Previously, in Sec. II A, we gave formal statements of the
Hamiltonian learning problem in the absence of noise assum-
ing an ideal oracle. However, the oracle is usually noisy due to
the presence of different noise sources affecting the quantum
system. In this section, we describe the problem of learning in
the presence of these noise sources.

Common noise sources include readout noise, decoher-
ence, and imperfect control of the quantum system. State
preparation and measurement (SPAM) errors are already ac-
counted for by considering these noise sources. Classical
SPAM errors encountered are included in the readout noise
and the errors in implementing state preparation or measure-
ment operators fall under imperfect control.

(a) Readout noise. The readout line of the qubit measure-
ment outcomes y is also a classical communication channel
and hence suffers from bit-flip errors. The readout noise can
then be modeled as a classical bit flip channel where the
true measurement outcome yi ∈ {0, 1} of the ith qubit may
be flipped. We denote the observed measurement outcomes’
random variable by ỹ, which can be interpreted as a noisy
observation of y. We denote the conditional probability of ob-
serving ỹ given measurement outcome y, which is hidden from
us as pỹ|y(ỹ|y). Note that in general we expect the readout
channel to be asymmetric, i.e., pỹ|y(1|0) �= pỹ|y(0|1), and this
is accounted for in the readout noise model. The probability
of observing a noisy measurement outcome ỹi of the ith qubit
given query x is then given by

pỹi|x(ỹi|x; θ) = pỹi|y(ỹi|ỹi )pyi|x(ỹi|x; θ) + pỹi|y(ỹi|1 − ỹi )

× pyi|x(1 − ỹi|x; θ) (8)

where py|x(y|x; θ) is given by Eq. (1).
(b) Imperfect control strategies. In general, a Hamiltonian

can be decomposed as

H (t ) = Hd +
K∑

k=1

Hk (t, uk (t )) (9)

where Hd is the drift/free part of the Hamiltonian that is
internal to the system and cannot be controlled externally.
The terms Hk corresponds to the parts of the Hamiltonian that
can be controlled using the control function uk (t ). Depending
on the quantum architecture, the control function can be real-
ized as microwave pulses for superconducting qubits, optical
pulses for ion traps, etc.

Target operators Uf are then obtained starting from the
identity matrix I by implementing controls uk (t ) over time
duration [0, T ] as

Uf = T

[
exp

(
−i

∫ T

0

[
Hd +

K∑
k=1

Hk (t, uk (t ))

]
dt

)]
(10)

where T is the time-ordering operator. These target operators
Uf can be preparation operators, measurement operators, or
different gates, e.g., the Clifford gates. Imperfections in these
pulses will lead to errors in Uf . For example, the strength

of the qubit-qubit interactions is sensitive to variations in the
pulse amplitudes. Strong driving can lead to leakage of states
outside of the computational subspace. Moreover, bandwidth
effects or dispersion can cause leading or trailing edge distor-
tions in the pulse shapes that can lead to errors in the unitary
operator implemented.

(c) Decoherence. Let us consider the unitary operator of
U (t ) = e−iHt . The application of this unitary operator is ac-
companied by decoherence on a real quantum system due to
interactions with its environment. We model this as a depolar-
izing channel E ,

E (ρ(t )) = (1 − pd (t ))ρ(t ) + pd (t )
I

2n
(11)

where ρ(t ) = U (t )ρ(0)U (t )† is the state obtained on appli-
cation of the unitary U (t ) to the initial state ρ(0), pd (t ) is
the probability of the state being depolarized, and I/2n is
the maximally mixed state. We have assumed the case of
complete depolarization here. To obtain a functional form of
pd (t ), we note that up to first order, depolarization events can
be assumed to arrive under a Poisson process with rate μ. By
a depolarization event, we refer to the occurrence of an error
that completely randomizes the quantum state. As the time
between Poisson events follows an exponential distribution,
we can write

pd (t ) = 1 − exp

(
− t − t0

μ

)
(12)

where t0 denotes the starting time of the experiment. Denoting
the probability of measurement outcomes y given a query x
under depolarization errors as pE (y|x; θ), we have

pE (y|x; θ) = exp

(
− t − t0

μ

)
py|x(y|x; θ)

+ 1

2n

(
1 − exp

(
− t − t0

μ

))
(13)

where py|x(y|x; θ) is the probability of measurement outcome
y assuming no depolarization given by Eq. (1). The rate μ can
be related to the amplitude relaxation time T1 and dephasing
time T2 of the qubits on the quantum system. We will describe
this in Sec. IV C for the IBM quantum devices considered for
application of Hamiltonian learning.

Let the collective set of parameters associated with the
different noise models so far described be denoted by ζ.
The measurement outcomes y from the oracle will then be
a function of the queries x and the true parameters (θ�, ζ�).
In order to obtain estimates for ζ̂ in addition to θ̂, we solve
the following modified optimization problem over the training
examples

(θ̂, ζ̂) = argmin
θ∈�,ζ∈Z

1

N

N∑
i=1

L
(
x(i), y(i); θ, ζ

) + R(θ, ζ). (14)

However, this increases the computational cost of the estima-
tion procedure due to the increase in the number of parameters
and the corresponding search space. In practice, prior calibra-
tion data can be used to obtain estimates of ζ̂, which are then
used in Eq. (2) to obtain θ̂.

Hence, the Hamiltonian learning Problems II A 3 a and
II A 3 b can be restated assuming additional information of the
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noise model parameters ζ̂ when we have access to a noisy ora-
cle. When describing our application of Hamiltonian learning,
we will describe both the Hamiltonian of interest in Sec. IV A
and the specific noise sources in Sec. IV C.

C. Active learning of Hamiltonians

This subsection introduces the concept of active learning
and how an active learner can be used in the context of
Hamiltonian learning. We begin by giving a quick overview
of different types of learners, and describe how active learn-
ing differs from passive learning and online learning. This
is followed by an overview of the different active learning
(AL) strategies that have been proposed in the literature. We
describe which AL strategy seems best suited for Hamiltonian
learning and particularly when using the maximum likelihood
estimator (MLE) (Sec. II A 4 a). AL strategies based on Fisher
information (FI) for Problem II A 3 a and Fisher information
ratio (FIR) for Problem II A 3 b seem to be notably appro-
priate. In doing so, we establish criteria for evaluating the
performance of an AL algorithm, and observe that AL al-
gorithms are known to solve some learning problems faster
than passive learners. Moreover, under some circumstances,
AL algorithms can exceed the central limit theorem bounds.

1. Types of learners

An overview of different learners often considered for
learning tasks is given below. We will use the passive learner
as a baseline and the active learner is the focus of our paper. A
description of an offline learner and online learner is given for
completeness and to distinguish an active learner from them.

(a) Offline learner. In offline learning, all of the training
data is given to the learner at once and a model is learned.
The training dataset may be made available to the learner or
collected by sampling queries from an arbitrary distribution
and then obtaining outputs from an oracle using these as in-
puts. This is the learning paradigm under which most machine
learning tasks operate in.

(b) Online learner. In online learning, the training data
is made available in a sequence, typically one at a time by
a referee. A query xt is made available to the learner at the
t th round in a sequence after which the learner constructs an
estimate of the output ŷt to this query. The learner provides
ŷt to the referee, and suffers a loss that depends on ŷt and
the actual output. The learner is then provided with feedback
by the referee, which the learner can then use to update the
model. In this case, the queries that are provided to the learner
by the referee may be adversarial or adaptive to the learner’s
behavior. The learner has no control over the query distribu-
tion from which these queries arrive.

(c) Passive learner. In the learning problems described in
Sec. II A, we did not specify the distribution from which the
queries x are sampled from. In open-loop Hamiltonian learn-
ing, the query distribution remains fixed during learning and
all the queries to the oracle are sampled from this distribution.
When no prior information is available, it is common to set the
query distribution to the uniform distribution over the query
space Q. We will refer to this setting as passive learning
through out this paper. Combined with a specification of an
estimation procedure, the passive learner will serve as a base-

line to the active learner, which we introduce in the next
section.

(d) Active learner. In active learning (AL), the learner has
access to the query space Q and the ability to select queries or
decide the query distribution during training using the current
estimates of the model parameters θ̂. This is accomplished
by introducing a feedback into the open loop Hamiltonian
learning approach shown earlier in Fig. 2. Based on the current
estimate θ̂ and the queries made so far combined with their
respective outcomes, the active learner proposes a query dis-
tribution from which queries should be selected from to send
to the oracle. These queries may be sent to the oracle in a se-
quential manner one at a time or in batches. In Sec. II C 2, we
discuss different criteria used for query selection or proposing
query distributions.

Here, we distinguish a passive learner from an offline
learner only in the number of rounds of training data collec-
tion. An offline learner is given access to a complete training
dataset or is allowed to collect it through queries to an oracle
in one round. On the other hand, a passive learner has contin-
ued access to the oracle and is allowed to collect training data
until the learning task has been accomplished. The primary
difference between the active learner and the online learner is
that the former has control over the query distribution from
which it will select queries to input to the oracle.

2. Query criteria for active learner

There have been multiple criteria proposed for query se-
lection but are usually subdivided into the two categories
of informativeness and representativeness. Criteria based on
informativeness aim to select queries that will reduce the
uncertainty of the statistical model and include uncertainty
sampling [43,44], query-by-committee [45,46], and margin
[47]. On the other hand, the goal of representativeness [48,49]
is to ensure selection of queries that exploit the structure of the
underlying distribution and are diverse. There has also been
exploration into combining the criteria of informativeness and
representativeness [50,51].

Multiple query criteria used in active learning in practice
are based on heuristics and empirical evidence [52]. Here,
we choose the informativeness criteria of Fisher information
(FI) and Fisher information ratio (FIR) as they have direct
relationships with the different learning problems we intro-
duced in Sec. II A. This allows us to provide guarantees on
the performance of our AL strategy. Later, we discuss how we
can ensure that representative queries are also selected.

We introduce some notation before discussing the query
criteria for our AL strategy. Let us denote the Fisher infor-
mation matrix of a particular query x ∈ Q as Ix(θ) where the
(i, j)th element of the matrix is given by

Ix(θ)[i, j] = E

[
∂ log py|x(y|x; θ)

∂θi

∂ log py|x(y|x; θ)
∂θ j

]
(15)

and where the expectation is taken with respect to p(y|x; θ).
The Fisher information matrix is equivalently written as
Ix(θ) = E[SST ] where S = ∂ log py|x(y|x; θ)/∂θ is commonly
called the score vector. Instead of selecting one query at a
time, we often require the active learner to select a distribu-
tion over the query space Q, which we will call the query
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distribution. The Fisher information matrix corresponding to
q will then be given by

Iq(θ) = Eq[Ix(θ)] =
∑
x∈Q

q(x)Ix(θ) (16)

where the summation can be replaced by an integral in the
case of a continuous query space. If the parameters describing
the Hamiltonian model are θ ∈ Rm, then Iq(θ) ∈ Rm×m. Let
us now describe the different query criteria in the context of
the different learning tasks.

(a) RMSE of parameters. If the learning objective is to
learn the parameters with small RMSE (Problem II A 3 a), a
natural query optimization strategy is obtained by noting the
Cramer-Rao bound for unbiased estimators [53],

Cov(θ) � 1

N
I−1

q (θ), (17)

∑
i

Var(θi ) �
1

N
Tr

(
I−1

q (θ)
)
. (18)

Combining the Cramer-Rao bound with the fact that the
parameter estimates converges in probability θ̂ → θ� for an
unbiased estimator such as MLE and the distribution con-
verges in law as

√
N (θ̂ − θ�) → N (0, I−1

q (θ�)) [54,55], we
get that MLE is an asymptotically efficient estimator with the
efficiency equal to the Fisher information over the training
examples [39]. An optimal query distribution can then be
obtained through the following query optimization:

q� = arg min
q∈P

Tr
(
I−1

q (θ�)
)

(19)

where P is the family of all valid probability distributions
over the query space Q. We also note that for q�, Iq� must
necessarily be invertible and hence full rank. This ensures that
the queries inform us about all the Hamiltonian parameters
of interest. Also for an unbiased and consistent estimator, the
Cramer-Rao bound is likely to be saturated in the limit of large
number of queries.

(b) Testing accuracy against testing distribution. When the
learning objective is to minimize the expected log-likelihood
error against a testing distribution ptest (learning Problem
II A 3 b), we use an active learning strategy based on Fisher
Information ratio (FIR) Tr(I−1

q (θ)Iptest (θ)). The name FIR
comes from the scalar case where it can be viewed a ratio of
the Fisher information corresponding to the query distribution
and that corresponding to the testing distribution. The use
of FIR for this learning task can be motivated by noting the
following inequality [39]:

Ex∼ptest,y∼py|x (·|x;θ)[VarD∼q(x)py|x (y|x;θ)[L(θ̂D; x, y) − L(θ; x, y)]]

� 1

N
Tr

(
I−1

q (θ )Iptest (θ)
)
, (20)

where the left-hand side is the expected variance of the asymp-
totic distribution of the log-likelihood ratio, which can be
viewed as a testing error and the right-hand side involves
the FIR. Minimizing the upper bound would then allow us
to control the testing error and hence this suggests using the
following query distribution:

q� = arg min
q∈P

Tr
(
I−1

q (θ�)Iptest (θ
�)

)
. (21)

We note the Fisher information ratio is related to the Fisher
information matrices of the query distribution Iq and testing
distribution Iptest through the following inequality:

Tr
(
I−1

q (θ)Ip(θ)
)
� Tr

(
I−1

q (θ)
) · Tr(Iptest (θ)). (22)

Thus, we recover the query optimization of Eq. (19) when the
testing distribution is unknown.

In quantum tomography, such query criteria have been
applied in optimal experiment design (OED) or adaptive quan-
tum tomography. Fisher information has been used as a query
criteria for offline OED in quantum state tomography [33].
Even earlier, an active learner based on Shannon entropy
also known as maximum uncertainty sampling was consid-
ered in [56]. An AL strategy based on Shannon information
combined with Bayesian estimation was proposed in [57] for
the selection of measurement operators during quantum state
tomography. Fisher information was again used in [34] where
OEDs were analyzed for a family of qubit channels over
different design problems. In Hamiltonian learning, Fisher in-
formation has been used to comment on heuristic strategies for
OED [58] and has been combined with Bayesian estimation to
produce a sequential active learner [37].

3. Active learning strategy

Implicit in the above descriptions of the query criteria is
the idea of proposing a query distribution rather than selecting
one query at a time during active learning. This demarcates
sequential active learning where one query is chosen at a time
from batch mode active learning where a batch of queries
sampled from a query distribution are selected to be inputted
to the oracle. Moreover, combining FI/FIR query criteria with
batch mode active learning [59] ensures that representative
queries are chosen as well.

In what follows, we describe the batch-mode active learn-
ing scheme that forms the basis of the AL algorithm for
Hamiltonian learning that we discuss in Sec. III. Given a bud-
get of N queries, the training is divided into multiple rounds.
We index each round of the training process as i and denote
the batch size as Nb. The number of queries made till the ith
round (inclusive) is denoted as N (i)

tot . In each round, a batch of
queries is sampled from the optimal query distribution based
on the current parameters’ estimate θ̂ and then this estimate is
updated using the measurement outcomes of the queries. This
is then repeated until all of the budget has been expended. We

denote the estimate in the ith round by θ̂
(i)

and the optimal

query distribution in the ith round based on θ̂
(i)

by q(i). The
query distribution at the very beginning of the training process
q(0) is determined from any available prior information of the
parameters or else set to be the uniform distribution over the
query space.

What should be the size of the initial set of queries N (0)
tot ?

Some suggestions are given in [60] based on a finite-sample
analysis for logistic regression but these do not suffice for the
application considered in this paper. Qualitatively, one hopes
that N (0)

tot is high enough such that the parameter estimate

θ̂
(0)

lies close to the true parameter value θ� and in a convex
basin of the asymptotic negative log-likelihood loss function.
However, setting N (0)

tot to a very high value may not allow us
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take advantage of the presence of an active learner and the
savings it can provide.

Additionally, it may be advantageous to adaptively change
the query space for exploration from one batch to the next.
It is not necessary for the query space to remain static
or unchanged [52] during active learning. In fact, there
is an element of adaptively changing the search space in
many prominent algorithms. In sparse fast Fourier transform
[61,62], the bins of frequencies are randomly chosen with
each iteration in the algorithm. In the related machine learning
tool of reinforcement learning, action spaces are changed
to eliminate actions [63], and to generalize over time by
parametrizing them [64] or embedding them in a continuous
action space [65].

Adaptively changing the query space is particularly
compelling for the application of active learning to the Hamil-
tonian learning problem, because evidence suggests that it
may result in so-called Heisenberg-limited scaling of the num-
ber of queries as we noted in Sec. I. We will also make a case
for why we expect the active learner, which we will introduce
for Hamiltonian learning in Sec. III to achieve Heisenberg-
limited scaling when possible.

The computational cost of the batch-mode AL scheme is
determined by the number of rounds of batches issued and the
computational cost of solving the query optimization prob-
lems of Eqs. (19) and (21). Solving these directly can be
challenging but fortunately the query optimizations can be
reformulated as semidefinite programs (SDP) [39] under the
assumptions of differentiability of the log-likelihood function,
and invertibility of the Fisher information matrix for query
distributions in a compact space around the optimal query
distribution and around the uniform distribution. When using
the query criteria of Fisher information ratio (FIR) [Eq. (21)],
the optimization problem [39,60] is

arg min
α1,...,αd

m∑
i=1

αi such that
∑
x∈Q

q(x) = 1, and

[
Iq(θ) e j

eT
j α j

]
� 0, j ∈ [m] (23)

where we have introduced m auxiliary variables α1, ..., αm,
and e j are the eigenvectors of Ip(θ̂). Recall that the parameter
vector θ has m components. To obtain the SDP program for
the query optimization when using the query criteria of Fisher
information (FI) [Eq. (19)] in our AL strategy, we replace e j

by the eigenvectors of the identity matrix. In this case, e j are
m-dimensional canonical vectors with 1 in the jth component
and zero elsewhere. The computational cost of solving the
above SDP programs with a barrier interior-point method is
O(n2

Qm3 + nQm4 + m5) where we have denoted nQ = |Q| as
the size of the query space of interest.

4. Query advantage

To compare resource requirements of different Hamilto-
nian learning (HL) methods for accomplishing a learning task,
we introduce the concept of query advantage. The query ad-
vantage (QA) of an HL method in achieving a learning error

of ε is

QA = 1 − number of queries required by method

number of queries required by baseline
. (24)

As discussed before, QA measures the amount of query
reduction obtained by selecting a HL method over a base-
line strategy. In this paper, we consider the passive learner
equipped with an appropriately chosen estimation procedure
as the baseline. We will specify the estimation procedure when
discussing a QA result or it will be clear from context.

The benefits of quantifying QA for an HL method are
twofold. Firstly, it allows us to comment on the performance
boost obtained by using one HL method over another for
accomplishing a learning task. Moreover, we can comment on
learning tasks that can be achieved using one HL method but
is unattainable by another. Secondly, it gives us a direct way
to select a particular HL method based on minimal resources
required, from a set of methods for a particular learning task
by choosing the method with the highest QA.

As we will see in the next Sec. III, an active learning
strategy is a framework for achieving query advantage and
higher learning rates of convergence when possible.

5. Related work

Numerous methods exist for quantum Hamiltonian learn-
ing with different estimations and admissible experiments
(also known as query space). This work is not intended to
replace these Hamiltonian learning methods but propose a
general framework for active learning (or adaptive experiment
design) that can replace the step of proposing experiments
within these methods.

Active learning for Hamiltonian learning has not received
as much attention as has quantum state tomography and quan-
tum process tomography. The only example we could find
in literature is that of robust online Hamiltonian learning
(ROHL) [37], which has since been used for scalable Bayesian
estimation for Hamiltonian learning [29] and has been ex-
tended to Qinfer [38]. ROHL (or Qinfer) is a sequential active
learner that proposes experiments (or queries) one shot at a
time by minimizing a risk that is a function of the current
estimate θ̂ and examples seen so far. The proposed query for
the (k + 1)th shot then typically takes the form

x(k+1) = argmin
x∈Q

R
(
X (k),Y (k); θ̂

(k))
, (25)

where X (k) is the set of all queries taken so far, Y (k) are

the associated measurement outcomes, and θ̂
(k)

is the current
estimate of the Hamiltonian parameters. In the case of ROHL
and Qinfer, this is chosen to be Bayes risk given by

R(X (k),Y (k); θ̂
(k)

) = Ey|θ̂;Q[(θ − θ̂(X (k),Y (k) ))T

× Q(θ − θ̂(X (k),Y (k) ))] (26)

where the right-hand side can be interpreted as the expected
posterior covariance matrix weighted against Q, which is a
positive semidefinite matrix indicating the relative scale be-
tween the unknown parameters in θ. In practice, minimizing
the above risk function is expensive and one may resort to
different experimental design heuristics [66].
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The main limitation of the above method is that it is very
expensive to decide queries one at a time during learning.
This will be true irrespective of our progress in quantum
computers as this processing is done on a classical computer,
and is especially an obstacle on current hardware given the
usual limited access, and latencies within electronics. It is then
desirable to batch up queries (or experiments), which has not
been considered by earlier work. This paper, which proposes
an active learner operating in batch mode thus fills this gap.

III. HAMILTONIAN ACTIVE LEARNING ALGORITHMS

We are now in a position to describe how to adapt prob-
abilistic pool-based batch-mode active learning with query
criteria of FI and FIR for Hamiltonian learning. The resulting
algorithms are collectively called Hamiltonian active learning
algorithms. We call HAL combined with the query criterion
of Fisher information as HAL-FI and that with Fisher in-
formation ratio as HAL-FIR. We discuss how the resulting
algorithms are expected to achieve query advantage over a
specified baseline.

A. Algorithm

The HAL algorithm is summarized in Algorithm 1. We
assume that the unknown Hamiltonian is time independent
and a model parameterized by θ� for the oracle (i.e., Hamil-
tonian with noise sources) is available to us. Inputs to the
HAL algorithm include the initial query distribution q(0) to be
used for sampling the initial set of N (0)

tot queries and the query
optimization algorithm (QOA). When the query criterion is
Fisher information (FI), the corresponding QOA is given by
Algorithm 2, which solves Eq. (19). Similarly when the query
criterion is Fisher information ratio (FIR), the corresponding
QOA is given by Algorithm 3, which solves Eq. (21). Recall
that the choice of query criteria and hence QOA depends
on the learning task at hand: We consider FI for learning
Hamiltonian parameters with low RMSE [Eq. (19)] and FIR
for minimizing the testing error [Eq. (21)]. Additional inputs
include the maximum number of batches imax that will be
issued during learning, which we will denote by Nb and the
total experimental budget available.

Using the notation for batch-mode active learning as dis-
cussed in Sec. II C, we denote the batch of queries that are
sampled at the ith round with respect to the query distribution
q(i) as X (i)

q and the corresponding measurement outcomes
from inputting these queries to the oracle as Y (i)

q . The set
of all queries made so far at any round is denoted by X (i)

and their corresponding measurement outcomes as Y (i). We
note that |X (0)

q | = |Y (0)
q | = N (0)

tot , which is typically larger than
|X (i)

q | = |Y (i)
q | = Nb, when prior information about the param-

eters is not available. The initial set of training examples is
used to determine an initial value of the parameters, which is
used for determining an informative albeit suboptimal query
distribution q(1) through the given QOA. Note that in the
QOA of Algorithms 2 and 3, we modify the query distribution
q(i) obtained through solving Eq. (19) or (21), by mixing it
with the uniform distribution over the query space pU , i.e.,
μq(i) + (1 − μ)pU where 0 � μ � 1 is the mixing coeffi-
cient. This is done to encourage exploration and is analogous

to epsilon-greedy policies in reinforcement learning [67]. The
value of μ typically depends on the number of queries made
so far, and we set it to μ = 1 − 1/|X (i)|1/6 as often used for
such active learning algorithms [39,60].

Deviating from a vanilla batch model AL scheme, we re-
quire an additional input of the query space {Q(i)}i∈[imax] during
training. We allow the query space to adaptively change from
one batch to the next. How do we decide how the query space
changes from one batch to the next? We remind ourselves that
the query distribution in Iq is a joint probability distribution
over the measurement operators, preparation operators and
evolution times. Conditioned on a particular evolution time,
we would not expect changing M or U to help in reducing the
query complexity. The query space is then adaptively grown
by growing T linearly or exponentially with each batch. We
note that Q(1) ⊂ Q(2) ⊂ ... ⊂ Q(imax ).

The output of the algorithm is an estimate θ̂ of the true
Hamiltonian model parameters θ� learned through active
learning using N queries. In the HAL algorithm as presented
in Algorithm 1, we use the maximum likelihood estimator in
the HAL algorithm but this may be replaced by other esti-
mation methods such as regression or Bayesian estimation as
we show later in Sec. V. HAL-FI produces an estimate θ̂ that
has an RMSE lower than what would be obtained without any
active learning using a budget of N queries, and batches of size
Nb. Similarly, HAL-FIR produces an estimate θ̂ that performs
well in prediction of queries to the Hamiltonian against the
testing distribution ptest .

Algorithm 1. Hamiltonian active learning (HAL).

Input: Initial number of queries N (0)
tot , Batch size Nb, Initial query

distribution q(0), Maximum number of batches imax, Adaptively
growing query space {Q(i)}i∈[imax], oracle, query optimization
algorithm (QOA)
Output: θ̂

1: Sample N (0)
tot queries X (0)

q from Q(0) according to q(0)

2: Obtain measurement outcomes Y (0)
q by sending queries X (0) to

oracle
3: Set X (0) = X (0)

q and Y (0) = Y (0)
q

4: Compute MLE estimate: θ̂
(i−1) = arg minθ L(θ; X (0),Y (0) )

5: for i = 1 : imax do
6: Solve q(i) through QOA (Algorithm 2 or 3)
7: Sample Nb queries X (i)

q from Q(i) w.p. q(i)

8: Update number of queries: N (i)
tot = N (i−1)

tot + Nb

9: Obtain measurement outcomes Y (i) by issuing queries X (i) to
oracle
10: Set X (i) = X (i−1)

⋃
X (i)

q and Y (i) = Y (i−1)
⋃

Y (i)
q

11: Compute MLE estimate: θ̂
(i) = arg minθ L(θ; X (i),Y (i) )

12: return θ̂
(imax )

B. Comment on query advantage and Heisenberg limited
scaling

In this section, we provide intuition as to why we expect
HAL-FI to provide query advantage and when Heisenberg
limited scaling may be expected in experiment. The intuition
and claims made here are backed by empirical evidence in
Sec. V.

We start by comparing the performance of a passive learner
LPL and an active learner LHAL, which uses HAL-FI. We
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Algorithm 2. Query optimization based on Fisher information
(FI).

Input: Number of queries made so far N (i−1)
tot , Batch size Nb,

Query space Q(i), Current parameter estimates θ̂
(i)

Output: q(i)

1: Set N (i)
tot = N (i−1)

tot + Nb

2: Solve q(i) = arg minq Tr(I−1
q (θ̂

(i)
)) subject to

∑
x∈Q(i) q(x) = 1,

and 0 � q(x) � 1, ∀x ∈ Q(i)

3: Obtain uniform distribution over query space: pU = 1/|Q(i)|
4: Set mixing coefficient: μ = 1 − 1/|N (i−1)

tot |1/6

5: Modify query distribution: q(i) = μq(i) + (1 − μ)pU

6: return q(i)

assume that both of these learners use the same estimation
method to estimate θ̂ from the training examples generated.
Consider the second round of learning (i = 2) with a fixed
query space Q and where both learners have seen the same
data D(1) so far. LPL will uses queries uniformly sampled from
Q and LHAL will use HAL-FI to decide the query distribu-
tion to use for sampling from Q. The corresponding Fisher

information is IpU (θ̂
(1)

) (where pU is the uniform distribution)

and Iq(θ̂
(1)

). From Eq. (19), we know that Tr(I−1
q (θ̂

(1)
)) �

Tr(I−1
pU

(θ̂
(1)

)). We thus expect LHAL to require the fraction

of r (1) ≈ Tr(I−1
q (θ̂

(1)
))/Tr(I−1

pU
(θ̂

(1)
)) � 1 number of queries

compared to LPL to achieve the same variance reduction. This
is compounded through the following learning rounds, leading
to an overall reduction in queries required (or gain in query
advantage) by LHAL to reach the same RMSE compared to
LPL. Moreover, in latter rounds (i > 2), the fraction of queries
required by LHAL may further decrease due to more informa-

tive training examples available to obtain θ̂
(i)

, which is then
used to obtain the query distribution.

We claim that HAL-FI with an appropriately chosen adap-
tively growing query space by adaptively growing T can
achieve Heisenberg limited scaling in Hamiltonian parameters
where possible. If the query space is not rich enough, it will
not be possible to determine a sequence of queries to achieve
Heisenberg limited scaling. Without an adaptively growing
query space (i.e., with fixed query space), the scaling of the
number of queries N with error parameter ε is O(1/ε2) as is
dictated by the Cramer-Rao bound. The query complexity by
using an active learner only improves by a constant factor in
such a case. If one chose to adaptively grow the query space
during training without an active learning strategy and chose
for example an uniform distribution over the new query space
(i.e., carry out passive learning), Heisenberg limited scaling
would not be expected as it would become exponentially more
unlikely to sample an informative query. Moreover, Heisen-
berg limited scaling is expected as long as the evolution time
is below the decoherence time. Beyond the decoherence time,
the oracle will start losing its quantum behavior.

If the so chosen adaptively growing query space cannot be
used to achieve Heisenberg limited scaling, it should still be
possible to achieve Heisenberg limited scaling for a subset
of the Hamiltonian parameters provided that the goal is to
now learn these parameters and we are provided information

Algorithm 3. Query optimization based on Fisher information
ratio (FIR).

Input: Number of queries made so far N (i−1)
tot , Batch size Nb,

Query space Q(i), Current parameter estimates θ̂
(i)

, Testing
Distribution ptest

Output: q(i)

1: Set N (i)
tot = N (i−1)

tot + Nb

2: Compute model fisher information corresponding to ptest :
Iptest (θ̂)

3: Solve q(i) = arg minq Tr(I−1
q (θ̂

(i)
)Iptest (θ̂

(i)
)) subject to∑

x∈Q(i) q(x) = 1, and 0 � q(x) � 1, ∀x ∈ Q(i)

4: Obtain uniform distribution over query space: pU = 1/|Q(i)|
5: Set mixing coefficient: μ = 1 − 1/|N (i−1)

tot |1/6

6: Modify query distribution: q(i) = μq(i) + (1 − μ)pU

7: return q(i)

about the other parameters. This learning task often occurs
in practice during recalibrations of quantum devices when it
is required to learn a subset of parameters that are known
to fluctuate significantly with time but information about the
other parameters can be used from previous calibrations dur-
ing estimation. We provide empirical evidence for this claim
in Sec. V where we consider the application of the HAL-FI to
cross-resonance Hamiltonians. The results of HAL-FI for this
particular application are summarized in Table I.

What distinguishes HAL-FI from other methods such as
Floquet calibration [28], which have been shown to achieve
Heisenberg limited scaling is that it does not require prior
specification of experiments and their order of implemen-
tation. This is decided by the HAL-FI during learning.
Moreover, HAL-FI utilizes single-shot outimes from queries,
instead of requiring expectation values. In practice, this can
result in multiple orders of magnitude reduction in queries
required. Finally, HAL-FI can achieve query advantage over
passive learners for complete query spaces even when Heisen-
berg limited scaling cannot be achieved.

C. Computational cost and extensions

A consequence of adaptively growing the query space over
rounds during learning is that the SDP programs [Eq. (23)]
corresponding to the query optimizations of Eqs. (19) and (21)
[with computational cost O(n2

Qm3 + nQm4 + m5)] become
increasingly more computationally expensive to solve over
rounds. If nQ grows exponentially, each iteration of the query
optimization problem becomes more exponentially expensive

TABLE I. Query complexity of HAL-FI for Hamiltonian learn-
ing (Problem II A 3 a) under different conditions as observed on a
real quantum device. The case of fixed query space corresponds to
adaptivity in query space being none.

Adaptivity Scaling Scaling of N
in query space of N (recalibration)

None O(1/ε2) O(1/ε2)
Linearly growing T O(1/ε2) O(1/ε2/3)
Exponentially growing T O(1/ε2) > O(1/ε)
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to solve. This can be circumvented by reducing the number
of queries to optimize over using uncertainty filtering [68],
thereby effectively reducing the size of the query space nQ
over which the query optimization is carried out. Uncertainty
filtering for our application of Hamiltonian learning to the
cross-resonance Hamiltonian is discussed in Appendix B 2.

The HAL-FI and HAL-FIR algorithms can be generalized
to different experimental setups or requirements. The HAL
algorithm presented in Algorithm 1 uses the stopping crite-
rion of maximum number of batches of queries issued during
learning but other stopping criteria such as the �2 norm of the

differences in consecutive parameter values ||θ̂(i) − θ̂
(i−1)||2

could also be used.

IV. HAMILTONIAN LEARNING FOR A TWO-QUBIT
SUPERCONDUCTING CR GATE: MODEL AND SETUP

To assess the performance of the HAL algorithms de-
scribed in Sec. III over a passive learner and empirically
verify our claims, we consider the application of learning
cross-resonance (CR) Hamiltonians on superconducting IBM
quantum devices. In this section, we describe the model of the
two-qubit cross-resonance Hamiltonian, and the set of queries
that we can make to it. This is followed by a description of
the different noise sources that affect the quantum system
and the resulting likelihood of measurement outcomes given
queries. The evaluation of the likelihood is required by all of
our estimators (Sec. II A 4). In turn, we then describe different
estimators used for Hamiltonian learning including MLE and
a Bayesian estimator. Finally, we describe our implemen-
tation of the HAL algorithms in the context of numerical
experiments for learning the CR Hamiltonians. A descrip-
tion of the IBM quantum devices employed for assessing
the performance of the HAL algorithms can be found in
Appendix A.

A. Cross-resonance Hamiltonian

The cross resonance (CR) gate is a two-qubit entangling
gate for superconducting qubits requiring only microwave
control, which allows for the use of fixed-frequency trans-
mon qubits [69,70]. Using appropriate pulse sequences such
as multipulse echos and cancellation tones [71], the CR
gate can be transformed to a locally equivalent CNOT
gate [72]. Combined with arbitrary single qubit gates, this
then forms a complete set of gates for universal quantum
computation.

The Hamiltonian of the cross-resonance (CR) gate has the
following structure:

HCR = σZ ⊗ A

2
+ σI ⊗ B

2
, (27)

A = cZIσI + cZX σX + cZY σY + cZZσZ , (28)

B = cIX σX + cIY σY + cIZσZ , (29)

where {σI , σX , σY , σZ} are the single-qubit Paulis and cab ∈
R are real coefficients of the Pauli product terms σa ⊗ σb.
The above time-independent Hamiltonian description of the
cross-resonance gate can be obtained through theoretical mod-
els based on effective block-diagonal Hamiltonian techniques
[73]. In our experiments, which we describe in Sec. IV B,
the CR gate is implemented without using an echo [71] to
refocus the σIσX , σZσZ , and σZσI terms. However, we measure
only the target qubit through our queries and thus effectively
neglect the σZσI term. The target qubit is typically chosen to
be qubit 1 in a (0,1) qubit pair and is specified for the different
quantum devices we consider in Appendix A 1. The effective
removal of the σZσI term from Eq. (29) results in the following
simplified CR Hamiltonian, which we consider throughout the
rest of our paper,

H =
∑

a∈{I,Z}
b∈{X,Y,Z}

Jabσa ⊗ σb (30)

where we have used the parameter vector J =
[JIX , JIY , JIZ , JZX , JZY , JZZ ]T to denote the nonzero
coefficients of the corresponding Pauli product terms and
have omitted the subscript CR. Learning the unknown
Hamiltonian of the two-qubit CR gate is then reduced to
estimating the unknown parameter vector J.

Noting the block-diagonal structure of H , we can express it
in the usual computational basis of (|00〉, |01〉, |10〉, |11〉) as

H =

⎡
⎢⎢⎣

a0 β�
0 0 0

β0 −a0 0 0
0 0 a1 β�

1
0 0 β1 −a1

⎤
⎥⎥⎦, where

a j = JIZ + (−1) jJZZ

β j = (JIX + (−1) jJZX ) + i(JIY + (−1) jJZY ) (31)

where the subscript j ∈ {0, 1} is used to refer to the two dif-
ferent blocks. The two blocks have similar structure with their
elements differing in the sign of JZX , JZY , and JZZ . Using a j ,
and β j for j ∈ {0, 1} from Eq. (31), we define the following
parameters:

ω j =
√

a2
j + |β j |2, δ j = sin−1 a j

ω j
, φ j = arg(β j ) (32)

where the subscript j = 0 is used to denote the preparation
operator U = σIσI and j = 1 to denote U = σX σI . We then
arrive at an alternate parametrization (related to the spec-
tral decomposition of H), which turns out to be useful for
simplifying expressions for probability, likelihood and Fisher
information: � = (ω0, δ0, φ0, ω1, δ1, φ1)T . The unitary opera-
tor U (t ) = e−iHt in the usual computational basis is then given
by

U (t ) =

⎡
⎢⎢⎣

cos(ω0t ) − i sin(δ0 ) sin(ω0t ) −ie−iφ0 cos(δ0) sin(ω0t ) 0 0
−ieiφ0 cos(δ0) sin(ω0t ) cos(ω0t ) + i sin(δ0) sin(ω0t ) 0 0

0 0 cos(ω1t ) − i sin(δ1) sin(ω1t ) −ie−iφ1 cos(δ1) sin(ω1t )
0 0 −ieiφ1 cos(δ1) sin(ω1t ) cos(ω1t ) + i sin(δ1) sin(ω1t )

⎤
⎥⎥⎦

(33)
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FIG. 3. Rabi oscillations obtained experimentally through queries to a CR Hamiltonian on the IBM quantum device (ibmq_boeblingen)
for different measurement operators (rows), preparation operators (markers), and evolution times t (x axis). The set of measurement and
preparation operators will be described in Sec. IV B 2. The experimental data is indicated by markers and the model fit to the data by lines.
The model fit was generated by learning the CR Hamiltonian [Eq. (31)] from experimental data using MLE and predicting values of Rabi
oscillations for the query space using the learned Hamiltonian.

where we have used the parameter vector of � defined in
Eq. (32). Moreover, the different components of � can be
bounded based on their definitions and these bounds will help
us later while solving the MLE problems. By construction,
we have −π

2 � δ0,1 � π
2 and φ0,1 can be bounded within any

interval of size 2π , e.g., −π � φ0,1 � π . Assuming δt is
the average time increment between distinct ordered values
of evolution times t ∈ T , ω0,1 can be bounded based on the
Nyquist sampling theorem as 0 � ω0,1 � π

δt .
To obtain the physical meaning of the parameter vector

�, we consider Rabi oscillations. For different measurement
operators M ∈ M and preparation operators U ∈ U , the cor-
responding Rabi oscillation is the difference in probability
densities of the ground state and excited state of the target
qubit with time t ∈ T . A typical example of the Rabi oscilla-
tions from querying the CR Hamiltonian on a noisy quantum
system is shown in Fig. 3. We remark that ω0,1 defines the
frequency of the Rabi oscillations for the two different prepa-
ration operators we consider. The parameters δ0,1 and φ0,1

define the offsets, amplitudes, and phase shifts of the Rabi
oscillations. In Fig. 3, we can see the effects of different noise
sources such as readout and depolarization, which will be
discussed in Sec. IV C.

B. Experimental setup

In this section, we give a quick overview of the different
IBM quantum devices that we employ for our application of
Hamiltonian learning. This is followed by a description of the
query space considered for our application.

1. Quantum devices

We will present data and results for four different IBM
quantum devices, which we call A, B, C, and D. All

of these devices are based on superconducting architec-
tures requiring only microwave control [69,70] and consist
of fixed-frequency transmon qubits with shared quantum
buses [74]. Device A is a two-qubit device. Device B
is a four-qubit device on which we will query only one
of the CR gates that can be implemented between two
qubits. Device C is a five-qubit device with a bow-tie lay-
out. Device D is the 20-qubit ibmq_boeblingen, which was
accessed via the IBM quantum cloud computing service.
See Fig. 16 in Appendix A 1 for the connectivity maps
of all the devices. We give a summary of the proper-
ties of the pairs of qubits involved in the cross-resonance
Hamiltonians we considered on these devices in Table VII
in Appendix A 1.

2. Query space

To prepare the initial state, we consider the set of prepa-
ration operators U = {σI ⊗ σI , σX ⊗ σI} applied to the pure
state |00〉. Assuming the first (left) qubit is the control
and the second (right) qubit is the target, the effect of the
preparation operators is to place the control in |0〉 and |1〉
respectively. We evolve the initial state |ψ (0)〉 for time t ∈ T ,
which we will specify when discussing the results of our
application of Hamiltonian learning in Sec. V. Finally after
obtaining the final state |ψ (t )〉, we apply the measurement
operators in M = {σI ⊗ exp(i π

4 σY ), σI ⊗ exp(−i π
4 σX ), σI ⊗

σI} and measure only the second qubit, which we have chosen
as the target qubit. The query space is then Q = M × U × T .

Queries to the CR Hamiltonians between different qubit
pairs on the IBM quantum devices are made through appro-
priate pulse sequences. These pulse sequences are constructed
and executed on the hardware using Qiskit-Pulse [75],
which is a pulse programming module within Qiskit [76].
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(a) (b)

FIG. 4. Characterization of readout noise from calibration data of single qubit readouts considering a bit-flip channel model using (a) a
trained Bayesian naive classifier and (b) fitting Gaussian distributions. In (a) and (b), the experimental data points of the complex readout
signal c are shown as markers. In (a), the decision boundary is shown as a line. In (b), the contours indicate the single standard deviation.

Description of how a query to the CR gate on an IBM quantum
device is specified is given in Appendix A 2.

In our experimental setup, we obtain measurements of the
single-shot signal (integrated cavity amplitude) c from the
IBM quantum devices, which is a function of the measurement
outcomes y, which we have described earlier. In the following
Sec. IV C, we will discuss how to model the different noise
sources that affect our system and how they are determined
through experiments.

C. Estimates of noise and nonidealities
for experimental system

Using the noise models presented in Sec. II B, we give the
specific relevant models for readout noise, imperfect pulse
shaping, and decoherence for the different IBM quantum de-
vices, which we study.

Let us introduce some notation that we will use in the
following discussions. We use the index k for the queries.
The kth query is given by x(k) = (M (k),U (k), t (k) ), and the
corresponding measurement outcome of the target qubit as

y(k). The measurement outcome y(k) is not directly observed
but inferred from the corresponding signal c(k). We denote the
inferred value as ŷ(k).

1. Readout noise

As discussed in Sec. II B, we assume the measurement
noise model to be a bit-flip channel with the input of unob-
served measurement outcomes y and the output of readout
ỹ observed through signal c. For this inference task, we use
calibration data of single qubits initially prepared in states |0〉
or |1〉, and subsequently measured in the usual computational
basis. In Fig. 4(a), we plot different realizations {y(k), c(k)}100

k=1
from IBM quantum device D ibmq_boeblingen that were used
for training a binary classifier. The classifier provides us with
the ability to predict y given c. Moreover, the misclassification
errors pŷ|y(1|0) and pŷ|y(0|1) can be used to approximate the
properties of the bit-flip channel, in particular the conditional
probabilities of a bit-flip pỹ|y(1|0) and pỹ|y(0|1) respectively.
As these are independent of values of c here, we denote the
conditional probabilities of a bit-flip as r0 = pỹ|y(1|0) and
r1 = pỹ|y(0|1). The MLE of the parameters incorporating this
noise model is given by

θ̂ = arg min
θ

− 1

N

N∑
k=1

log[pỹ|x(ỹ(k)|x(k); θ)] (34)

= arg min
θ

− 1

N

N∑
k=1

log[(1 − ŷ(k) )((1 − r0)py|x(y(k) = 0|x(k); θ) + r1(1 − py|x(y(k) = 1|x(k); θ))) (35)

+ ŷ(k)((1 − r1)(1 − py|x(y(k) = 1|x(k); θ)) + r0 py|x(y(k) = 0|x(k); θ))] (36)

where py|x(y(k)|x(k); θ) is given by Eq. (1). Alternately, in-
stead of assigning a deterministic result ŷ(k) for each c(k),

we can incorporate pc|y directly into the log-likelihood func-
tion, which could yield a more accurate model. This could
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(a) (b)

FIG. 5. Examples of Rabi oscillations computed from experimental data collected from IBM quantum device D ibmq_boeblingen for
different measurement operators M (rows), preparation operators U (markers), and evolution times t (x axis). These were computed (a) using
a binary classifier and (b) using Gaussian distribution fits. The difference between the two approaches is negligible when the misclassification
error of the binary classifier is low (r0, r1 < 0.01) as is the case here.

be done through our choice of binary classifier or by fitting
a distribution to the training data. Noting that single qubit
measurement outcomes correspond to their energy levels, we
fit Gaussian distributions to the training data and hence obtain
a parameteric form of pc|y in Fig. 4(b). The MLE is now

θ̂ = arg min
θ

− 1

N

N∑
k=1

log[pc|y(c(k)|0)py|x(y(k) = 0|x(k); θ)

+ pc|y(c(k)|1)(1 − py|x(y(k) = 0|x(k); θ))]. (37)

A useful tool for calibration and diagnostics is Rabi oscil-
lations, which we denote by prabi(x). Rabi oscillations are
obtained from evaluating the difference in the population
densities of the ground state and excited state of the target

qubit or prabi(x) = py|x(0|x) − py|x(1|x). We can compute
Rabi oscillations in two different ways, either through binary
classification or through fitting Gaussians. Using the misclas-
sification errors from the binary classifier, we can then write

p̂rabi(x) = pŷ|x(0|x)

(
1 − r0 + r1

1 − r0 − r1

)

− pŷ|x(1|x)

(
1 + r0 − r1

1 − r0 − r1

)
, (38)

where we have denoted the computed Rabi oscillations as
p̂rabi(x). While py|x(0|x) and py|x(1|x) are guaranteed to be
valid probability distributions, the above estimation does not
ensure that p̂rabi(x) is bounded by −1 and 1. To obtain more
accurate estimates of the Rabi oscillations, we can solve the
following MLE problem:

p̂rabi(x) = arg min
q∈[−1,1]

(
−

∑
k

1{x(k) = x} log[(1 + q)pc|y(c(k)|0) + (1 − q)pc|y(c(k)|1)]

)
, (39)

where we use the estimated conditional distributions pc|y from the Gaussian fits. The indicator function 1{x(k) = x} is used to
ensure that the summation is only over measurement outcomes of given query x. We can write down the analytical expressions
for prabi(x) for each measurement operator M and preparation operator U noting that x = (M,U, t ) as

M〈X 〉 : prabi(x) = sin δ j cos δ j cos φ j + cos δ j

√
1 − cos2 δ j cos2 φ j cos(2ω jt + α j ), (40)

M〈Y 〉 : prabi(x) = sin δ j cos δ j sin φ j + cos δ j

√
1 − cos2 δ j sin2 φ j cos(2ω jt + γ j ), (41)

M〈Z〉 : prabi(x) = 1 − 2 cos2 δ j sin2(ω jt ) = sin2 δ j + cos2 δ j cos(2ω jt ), (42)

where we denote α j = arg ((− sin δ j cos φ j ) + i(− sin φ j ))
and γ j = arg ((− sin δ j sin φ j ) + i cos φ j ) in the above expres-

sions. The subscript j = 0 is used to denote the preparation
operator U = σIσI and j = 1 to denote U = σX σI .
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In Fig. 5, we plot the Rabi oscillations for the different
M ∈ M and U ∈ U over the time range of t ∈ T using the
above two methods. We observe that the Rabi oscillations
are not bounded between −1 and +1 for the case of M〈Y 〉 in
Fig. 5(a) when using misclassification error to compensate for
the readout noise. The estimated Rabi oscillations in Fig. 5(b)
do not suffer from the same issue.

As we will see later in Sec. IV D, Rabi oscillations will also
be used in our estimation procedure for obtaining an initial
guess for the parameter estimate θ̂ that is used as an input
to the optimizer for solving the MLE problem. It can also
be used as a quantitative tool for ascertaining how well the
model fits the data. This will become apparent in the next few
sections where we discuss other noise models.

2. Imperfect pulse shaping

Another nonideality is introduced through the pulses used
to control the Hamiltonian and implement different unitary
operators. It is convenient to think of cross-resonance control
pulses as rectangular pulses that modulate the sinusoidal con-
trol pulse. The modulated signal results in unitary operators
of the form U (t1) = exp (−iHt1), which we would want to
implement in a quantum circuit. However, in practice, rect-
angular pulses cause significant amounts of signal energy to
be distributed above and below the frequency of the control
sinusoid. This distribution of energy can potentially excite
higher energy states of the superconducting transmon being

used as a qubit (i.e., |2〉 and above) as well as excite neigh-
boring spectator transmon qubits. To minimize such effects,
pulse shaping is employed to reduce this energy spread by
smoothing the rising and falling edges of the pulse, which has
the effect of reducing the magnitudes of the frequency artifacts
above and below the frequency of the control sinusoid.

Pulse shaping is accomplished by taking a Gaussian-
shaped pulse, splitting it in half, and then inserting a
rectangular pulse between the halves. This results in the
GaussianSquare pulse, described in further detail in Ap-
pendix A 2. Thus, we actually implement operators of the
form Ũ (t1) = T exp (−i

∫ t1
0 H̃ (t ; θ)dt ) where T is the time

ordering operator and H̃ (t ; θ) is the cross-resonance Hamil-
tonian due to imperfect control at any particular time t with
parameters θ. Up to a first-order approximation in t , we can
model H̃ (t ; θ) as (see Appendix A 3 for details)

H̃ (t ; θ) = v(t )H (θ), (43)

where H (θ) is the time-independent cross-resonance Hamil-
tonian and v(t ) is a function of the cross-resonance pulse
amplitude. Using this, we can now derive an expression for the
unitary of Hamiltonian evolution. We denote �tr and �t f as
the time durations of the rising and falling edges of the shaped
pulse. The central portion of v(t ′) is a rectangular function;
i.e., for �tr � t ′ � t − �t f , v(t ′) = 1t ′∈[�tr ,t−�t f ] where t is
the duration of the pulse. We then have

Ũ (t ) = exp

(
−iH (θ)

∫ t

0
v(t ′)dt ′

)
= exp

⎛
⎜⎜⎜⎜⎝−iH (θ)

⎡
⎢⎢⎢⎢⎣(t − �t f − �tr ) +

∫ �tr

0
v(t ′)dt ′ +

∫ �t f

t−�t f

v(t ′)dt ′

︸ ︷︷ ︸
�teff

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠ (44)

= exp
(−iH (θ)(texpt + �teff )

)
, (45)

where in the last step, we set texpt = t − �t f − �tr which is the evolution time that is reported in our experiments. It should be
noted that this can change from one experimental setup to another. The value of �teff can be interpreted as an effective total
edge duration that takes the shapes of the rising and falling edges into account. This first-order pulse-shaping model introduces
another model parameter, namely �teff, that we need to estimate. We can do this directly in our MLE,

[θ̂,�t̂eff] = arg min
θ,�teff

− 1

N

N∑
k=1

log

⎡
⎣ ∑

y∈{0,1}

⎛
⎝pc|y(c(k)|y)

∑
z∈{0,1}

|〈yz|M (k)e−iH (θ)(t (k)+�teff )U (k)|00〉|2
⎞
⎠
⎤
⎦. (46)

While this can be certainly done while learning the Hamil-
tonian, one can also determine the dependence of �teff on
the different Hamiltonian parameters using prior calibration
data. We determined that �teff depends only on the pa-
rameters of ω0,1 as �t̂eff(θ) = a/(ω + bω2). In Fig. 6, we
plot the dependence of �t (short for �teff) on ω for the
IBM quantum device D ibmq_boeblingen. The results for
the other IBM quantum devices A, B, and C, are shown
in Fig. 22 (Appendix D). For the IBM quantum device
D (ibmq_boeblingen), the values are a = 6.2774 ± 0.01502
and b = 1.5086 × 10−9 ± 0.6104 × 10−9 s. How we arrived
at this dependence is discussed later in Sec. V. Using this
data-driven model allows us to use reduce the number of

parameters in the estimation and hence reduce the associated
computational cost of the optimization. In the following sec-
tions, we will denote this model by �t̂eff(θ).

3. Decoherence

Recalling our discussion in Sec. II B, we model decoher-
ence as a depolarization channel acting on the quantum state
ρ(t ) = exp(−iHt )ρ(0) produced as a result of Hamiltonian
evolution for a time duration t . The resulting state [from
Eq. (11)] was given by

E (ρ(t )) = (1 − pd (t ))ρ(t ) + pd (t )
I

2n
. (47)
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FIG. 6. Dependence of the time offset �t on parameters ω for
IBM quantum device D ibmq_boeblingen. The plotted data points
correspond to driving the device under different conditions and hence
different cross-resonance Hamiltonians. The imperfect pulse shaping
model extracted from these experimental data points is shown by a
fit and this is later used in the MLE.

One approach to obtain a description of pd (t ) is to assume
the functional form 1 − exp ( − (t − t0)/μ), resulting from a
Poisson process with rate μ as described in Sec. II B and then
estimate μ from the training examples after incorporating this
into the MLE. Here, we describe a model for pd (t ) using the
measured device properties of T1 and T2 times of each qubit.

We consider an independent noise model on each of the
two qubits used for implementing a cross-resonance gate. Let
us denote the amplitude damping and phase damping of kth
qubit as Ea,k and Ep,k respectively. They have the following
Kraus operators:

Ea,k :

{[
1 0
0

√
1 − γa,k

]
,

[
0

√
γa,k

0 0

]}
,

Ep,k :

{[
1 0
0

√
1 − γp,k

]
,

[
0 0
0

√
γp,k

]}
(48)

where

γa,k = 1 − exp (−�a,kt ), γp,k = 1 − exp(−�p,kt ) (49)

with

�a,k := 1

2T1,k
, �p,k := 1

Tφ,k
(50)

where T1,k is the T1 time of the kth qubit and Tφ,k is the pure
dephasing rate of the kth qubit related to the T2 time of the kth
qubit as

1

Tφ,k
= 1

T2,k
− 1

2T1,k
. (51)

TABLE II. Comparison of different decoherence models in fit-
ting Rabi oscillations inferred from experimental data collected
from IBM quantum Device D. Kullback-Leibler divergence (KL
divergence) is computed as DKL(pdata||pmodel ) where pdata is the prob-
ability inferred from data and pmodel is that predicted from the model.

Decoherence Root mean KL
model squared error divergence

No decoherence 0.109321 0.012370
Single-qubit decoherence model 0.095903 0.007408
Single-parameter model 0.091644 0.006515
Two-qubit decoherence model 0.090953 0.006392
Two-parameter model 0.084289 0.005376

The overall noise operator acting on the two qubits is then
given by [77]

E = ⊗2
k=1(Ea,k ◦ Ep,k ) (52)

where ◦ indicates taking a composition of the two noise op-
erators. The probability pd (t ) can be based on the unitarity
[78] of the noise operator E , which is a completely positive
linear map quantifying the coherence of the noise operator.
The probability pd (t ) is then given by

1 − pd (t ) = 1 + 1

15

(
γ 2

a,1(3γa,2(γp,2 − 2) − 4γp,2 + 7)

+ 4γa,1(γp,1 − 2)
(
γ 2

a,2 + γa,2(γp,2 − 2)

− γp,2 + 2
) + γ 2

a,2(7 − 4γp,1)

− 4γa,2(γp,1 − 2)(γp,2 − 2) + 4γp,1γp,2

− 8γp,1 − 8γp,2
)
. (53)

This can be further generalized to n-qubit system (see
Appendix G of [77] for details). Let the measurement of
Hamiltonian evolution for time t followed by this noisy depo-
larization channel be ỹ and the corresponding Rabi oscillation
p̃rabi. Note that the Rabi oscillations in this case are related to
the noiseless case [from Eq. (42)] as

p̃rabi = (1 − pd (t ))prabi. (54)

In Table II, we give the RMSE between Rabi oscillations
obtained using different decoherence models assuming we
know the true Hamiltonian parameters and Rabi oscillations
inferred from data. For the single parameter model, we con-
sider a prefactor of (1 − pd (t )) = exp ( − (t − t0)/μ) with the
single parameter μ on the Rabi oscillations obtained using
no decoherence model. This parameter μ is then estimated
from the data and is found to be (7.75 ± 0.91) × 10−5 s. In
the two-parameter model, this is allowed to vary with the
state preparation operator U being applied. For U = σI ⊗ σI ,
we have μ = (5.52 ± 0.82) × 10−5 s and for U = σX ⊗ σI ,
μ = (2.51 ± 0.59) × 10−5 s. It is advantageous to use such
models due to the low number of parameters present and when
the T1 or T2 times of the different qubits are not available.
However, if these times are available, one can use the two-
qubit decoherence model or the two parameter model as we
note from the values of RMSE in Table II.

033060-17



ARKOPAL DUTT et al. PHYSICAL REVIEW RESEARCH 5, 033060 (2023)

D. Estimation procedures for learning CR Hamiltonians

We have so far described the likelihood of different mea-
surement outcomes given different queries (Sec. IV B 2) to
the two-qubit cross-resonance Hamiltonian [Eq. (30)], and
the different noise sources or nonidealities on the IBM quan-
tum devices. We now describe our estimation procedures
for estimators described earlier in Sec. II A 4, which utilizes
this likelihood function for estimating the CR Hamiltonian
parameters from the training data D = (X,Y ) generated dur-
ing learning. While all the estimators described here can be
adopted with HAL algorithms (Sec. III), it should be noted
that the best performance is expected with the maximum-
likelihood estimator (MLE) due to the query criteria used in
HAL-FI/HAL-FIR.

1. Regression

We perform regression on Rabi oscillations [Eq. (42)]
(which is just the difference in likelihood for y = 0 and y = 1)
inferred from the measurement outcomes. Let us consider the
parametrization of �. This is more useful to work with as
the frequencies of oscillation in e−iHt are determined by ω0

and ω1 unlike J where it is determined by all the parame-
ters. Instead of directly performing regression as described in
Sec. II A 4 b, we divide our estimation procedure into multiple
steps. We create initial estimates of ω0,1 independent of the
other parameters through fast Fourier transform (FFT) before
performing a full regression.

We compute the Rabi oscillations p̂rabi for each query x
through the corresponding measurement outcomes by solving

the optimization problem of Eq. (39). Initial estimates of
the parameters ω0,1 are then obtained by applying a discrete
(fast) Fourier transform to the Rabi oscillations. These initial
estimates are then refined by fitting regression equations of
the form A cos(ωt ) + B sin(ωt ) + C to the Rabi oscillations,
where the fit minimizes the total L2 error, the coefficients
A, B, and C for each Rabi oscillation are estimated using
linear least-squares regression, and a bracketed gradient-based
search is performed to refine the estimates of ω0,1. The corre-
sponding optimization problem can be framed as minimizing
the following residual error:

min E (A, ω0,1) =
∑
t∈T

(prabi(t ) − A�(ωt ))2, (55)

where the coefficients A = (A, B,C) are known functions of
δ0,1, φ0,1 through the analytical forms of the Rabi oscillations
for the query space considered [see Eq. (42)] and �(ωt ) is a
vector of cosines and sines (fully described in Appendix C).
Thus, we can then obtain estimates for δ0,1, φ0,1 from the A,
B, and C coefficients of the regression equations for each of
the Rabi oscillations. Finally, we obtain an estimate �̂ by
fixing the values of ω0,1 and carrying out a gradient descent
procedure using the same cost function. If desired, we out-
put the Hamiltonian parameter estimate Ĵ by transforming �̂

appropriately [Eq. (32)].

2. Maximum-likelihood estimation

The MLE parameter estimate θ̂ obtained through solving
Eq. (5) for the CR Hamiltonian incorporating the Hamiltonian
model description and presence of different noise sources is

θ̂ = arg min
θ

− 1

N

N∑
k=1

log

[ ∑
y∈{0,1}

(
pỹ|y(ỹ(k)|y)

∑
z∈{0,1}

[(1 − pd (t (k) ))|〈yz|M (k)e−iH (θ)(t (k)+�t̂eff (θ))U (k)|00〉|2 + 1

4
pd (t (k) )]

)]
, (56)

or

θ̂ = arg min
θ

− 1

N

N∑
k=1

log

[ ∑
y∈{0,1}

(
pc|y(c(k)|y)

∑
z∈{0,1}

[(1 − pd (t (k) ))|〈yz|M (k)e−iH (θ)(t (k)+�t̂eff (θ))U (k)|00〉|2 + 1

4
pd (t (k) )]

)]
, (57)

depending on how the readout noise is modeled. The imper-
fect pulse-shaping model �t̂eff(θ) was discussed in Sec. IV C 2
and pd (t ) is the probability of depolarization associated with
the two-qubit decoherence model (Sec. IV C 3). The choice of
the MLE [Eq. (56) or (57)] for each IBM quantum device will
be specified in Sec. V.

The MLE problem [Eqs. (56) and (57)] in either of the two
different parametrizations of J and � is nonlinear and noncon-
vex. An example of the energy landscape of the log-likelihood
loss function for the IBM quantum device ibmq_boeblingen
is shown in Fig. 21 of Appendix C. The presence of multiple
local minima makes the MLE problem in general challenging
to solve. To ensure that we converge to the global minimum
and do not get stuck in a local minimum during estimation,
we divide the estimation into multiple stages. In the first stage,
we obtain an initial estimate, which is refined over subsequent
stages. The estimation procedure is summarized in Algorithm
4.

During learning, this initial estimate may be available
from the previous round. When such an initial estimate is
not available, we use the estimation based on regression as
discussed earlier in Sec. IV D 1, and summarized in lines 1–6
of Algorithm 4. This initial estimate is then used as an initial
condition to the MLE solve [Eq. (56)]. In Algorithm 4, we
have denoted the negative log-likelihood loss function, which
appears in the optimization problem of Eq. (56) as L. We solve
the MLE problem using the optimizer of stochastic gradient
method of ADAM [79], which encourages getting out of any
local minima. The parameter estimate produced by ADAM is
then refined using the second-order quasi-Newton method of
L-BFGS-B [80]. The computational complexity of our MLE
estimation procedure is dominated by ADAM. This moti-
vates us to directly use L-BFGS-B for estimation for latter
batches during learning. The full description, computational
details and extensions of the estimation procedure is given in
Appendix C.
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Algorithm 4. MLE estimation procedure for Hamiltonian
learning

Input: Training examples of size m: D = {(X,Y )} = {(xi, yi )}i∈[m],
initial condition Ĵ0 (optional)
Output: Ĵ
1: if no input of Ĵ0 then � get an initial estimate through
regression
2: Obtain Rabi oscillations prabi from D by solving Eq. (39)
3: ω0,1 ← FFT(prabi ) � FFT of Rabi oscillations prabi over T ,
see Appendix C for details
4: (δ0,1, φ0,1) ← prabi(�(ω0,1t ))−1 � Regression on Rabi
oscillations given ω0,1

5: Refine estimate of �̂0 through gradient descent on E (A, ω0,1)
in Eq. (55)
6: Get Ĵ0 by transforming �̂0 [Eq. (32)]
7: Ĵ ← arg minJ L(J; X,Y ) � using Ĵ0 as a guess
8: return Ĵ

3. Bayesian estimation

For Bayesian estimation, we use a particle filtering al-
gorithm [42], also called sequential Monte Carlo (SMC)
algorithm. In SMC, a distribution [say p(r)] is discretely
approximated with a distribution that has support only over
a finite number of points (say np) called particles,

p(r) =
np∑

k=1

wkδ(r − rk ), (58)

where wk is the weight of the kth particle, and rk is the location
of the kth particle. Note that the vector of weights (wk ) can
also be thought of as a vector of probabilities, satisfying 0 �
wk � 1 and

∑np

k=1 wk = 1. An particle filter is then specified
by weights and locations {(wk, rk )}k∈[np] over the set of np

particles. This can be used to compute the expectation value
of a function g as

∑np

k=1 wkg(rk ).
For learning the CR Hamiltonian, we will be interested

in tracking the distribution p(J|D) of the Hamiltonian pa-
rameters given the training data D being collected. It is then
beneficial to think of the particle filter as {(wk, Jk )}k∈[np].
Considering the prior distribution as p(J), the initial weights
of the particles can be set as wk = 1/np and the locations as
random samples Jk , sampled from this prior. With this prior
distribution, we can then carry out Bayes rule [Eq. (7)] to
compute the posterior distribution p(J|D) over the Hamilto-
nian parameters J described by particles {(w′

k, J′
k )}k∈[np] by

setting J′
k = Jk and

w′
k = wk p(Y |X, Jk )∑

k p(Y |X, Jk )
. (59)

In practice, iteratively carrying out Baye’s rule as above
leads to numerical instabilities due to limited resolution and
weights shrinking to zero. Increasing the number of particles
np obviously delays this while improving the accuracy of
the evaluation of expectations of functions using the particles
and posterior distributions in the SMC algorithm. Stability is
ensured by resampling techniques, which adaptively changes
locations Jk of particles to higher weight regions. In our im-
plementation, we use the Liu-West algorithm [81].

Finally, we can output a point estimate from the posterior
particles

Ĵ =
np∑

k=1

w′
kJ′

k, (60)

which is the mean of the posterior distribution (Sec. II A 4 c)
and minimizes the RMSE.

We use the implementation of SMC in the Qinfer package
[38] for our purposes. We thus refer the reader to [37,38] for
details on the SMC algorithm used for Hamiltonian learning.
We specify the prior distribution p(J) and the number of
particles np chosen for different IBM quantum devices and
learners in Sec. V.

E. Implementation of HAL algorithm for learning CR
Hamiltonians

We now discuss the details of the HAL-FI algorithm imple-
mented for learning the CR Hamiltonian on the IBM quantum
devices. As the implementation of HAL-FIR for this applica-
tion is very similar, it is omitted. Moreover, we will consider
the MLE estimator here but the other estimators (Sec. IV D)
can also be adopted.

In our implementation of the HAL-FI algorithm in ex-
periments on learning the CR Hamiltonian, we consider the
following inputs. The initial query space, which may be
changed during the course of the HAl-FI algorithm during
training is Q(0) = M × U × T (0) with M and U as described
in Sec. IV B 2. Here, we explicitly denote the superscript on
T , which is initially set to T (0) but may change during training
if an adaptive query space strategy is employed. We set T (0) to
be the 81 equispaced times in the interval [10−7, 6 × 10−7] s.
We consider the initial number of queries as N (0)

tot = 2430 (or
five times the number of different queries in the initial query
space Q(0)), a constant batch size Nb = 486 (or the number
of queries in the initial query space Q(0)), and the initial
query distribution q(0) as the uniform random distribution over
Q(0).

The initial set of training examples (X (0),Y (0) ) are obtained
by sampling X (0) from Q(0) with respect to q(0) in Line 1 of
Algorithm 1 and collecting the corresponding set of measure-
ment outcomes Y (0) through queries to the CR Hamiltonian
on the IBM quantum device in Line 2. The set of training
examples (X (i),Y (i) ) is progressively increased (Line 10) dur-
ing learning by adding Nb queries X (i)

q sampled from query
distribution q(i) chosen by HAL-FI in Line 6 and collecting
the corresponding measurement outcomes Y (i)

q in Line 9. The
learning is continued until our query budget is expended or
the desired learning error is achieved.

To determine the initial parameter estimate θ̂
(0)

from the

initial set of training examples (Line 4) and subsequent θ̂
(i)

from (X (i),Y (i) ) (Line 11), we solve the MLE [Eq. (5)] for the
CR gate incorporating the Hamiltonian model description and
presence of different noise sources.

The parameter estimates θ̂ obtained after solving the MLE
problem are used by HAL-FI to construct the Fisher infor-
mation matrices based on the model and obtain the query
distribution q(i) by solving the SDP program of Eq. (23)
in Line 6. The expressions for the Fisher information
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TABLE III. Summary of different learning scenarios.

Learning scenario Query space Query distribution

Passive learning Fixed uniformly random
Active learning with fixed query space Fixed q through Eq. (19)
Active learning with adaptive query space I Linearly growing T q through Eq. (19)
Active learning with adaptive query space II Exponentially growing T q through Eq. (19)

matrices for different queries (Sec. IV B 2) considering the
CR Hamiltonian and noise models are given in Appendix A.
The query space Q(i) used in Lines 6 and 7 depend
on the querying strategy and hence the learning scenario
we consider.

As described in Sec. III A, we can define four different
learning scenarios based on the presence of an active learner
and how the query space is adaptively changed during learn-
ing. In passive learning, an active learner is not present and
we set the query distribution to the uniformly random dis-
tribution over Q. In the case of active learning with fixed
query space, the query space remains fixed during training,
i.e., Q(i) = Q∀i, and the query distribution is determined by
solving Eq. (23) using the current estimate of the parameters θ̂

over this fixed query space. When considering active learning
with an adaptively growing query space, we consider two
different situations on the basis of how the query space is
changed between batches during learning. We consider two
cases: (i) Q(i) grows linearly by linearly increasing the T (i)

between batches and (ii) Q(i) grows exponentially by doubling
the allowed set of system interaction time T (i). The query dis-
tribution is then determined by solving the corresponding SDP
problem of Eq. (23) over the query space Q(i) corresponding
to the ith batch. These different learning scenarios for HAL-FI
are summarized in Table III.

V. RESULTS

We now present the results of the experiments described
in Sec. IV and show that they support the claims made in
Sec. II A. In this section, we compare the active learner HAL
introduced in Sec. III against the passive learner (Sec. II C 1 d)
equipped with different estimators (Sec. IV D) and the sequen-
tial active learner of Qinfer (Sec. II C 5) in learning the CR
Hamiltonian through experiments on different IBM quantum
devices. We finally analyze the results of these experiments
to comment on the scaling behavior, classical computational
cost and query advantage of the different learners.

In Sec. V A, we first describe the datasets used for Hamil-
tonian learning, hyperparameters of the estimators (Sec. IV D)
used in experiments, and the experimental protocol for evalu-
ating the performance of the learners. In Sec. V B, we describe
the implementation of the sequential active learner of Qinfer,
which is also used as a baseline for assessing the performance
of HAL-FI. In Sec. V C, we show results of the learners on
these different datasets. In Sec. V D, we describe how HAL-
FI can be used to achieve Heisenberg (or super-Heisenberg)
limited scaling and evaluate the query advantage of HAL-FI
over the baseline considering different learning scenarios.

A. Data and experiment protocol

In this section, we describe the different kinds of datasets
that were used in assessing the performance of the HAL-FI
algorithm and how they were collected. We then summarize
the parameters of the cross-resonance Hamiltonian and the
noise sources discussed in Sec. IV C for the different IBM
quantum devices (Sec. IV B 1).

1. Datasets from IBM quantum devices

The different datasets that we use for Hamiltonian learning
are a combination of experimental data collected from the
IBM quantum devices described in Sec. IV B 1 and that col-
lected from a simulator, which we will describe in Sec. V A 3.

Experimental data is collected from the different IBM
quantum devices according to the query space described in
Sec. IV B 2. The set of evolution times T is set to 81 eq-
uispaced times in the interval T = [10−7, 6 × 10−7] s. For
IBM quantum devices A, B, and C, there are 200 measure-
ment outcomes (or shots) for each query x ∈ Q. For IBM
quantum device D ibmq_boeblingen, there are 512 measure-
ment outcomes for each query. Recall from our discussion of
the Hamiltonian learning framework in Sec. II A and HAL
algorithm in Sec. III B, the outputs of our queries are not
expectation values but rather single shot readouts of the target
qubit.

The experimental data is then collected and made available
as an offline dataset that the active learner can query. Unlike
deploying an active learner in real-time where a particular
query can be made to the system unlimited number of times,
using experimental datasets imposes the additional constraint
of the number of times a query can be made by the active
learner due to the limitation on the number of measurement
outcomes available for each query. In Appendix B, we discuss
how we handle this constraint during query optimization.

2. Parameters of the CR Hamiltonian and noise sources for IBM
quantum devices

Considering the entire collected experimental datasets for
each IBM quantum device (Sec. IV B 1) as training data, we
compute the Hamiltonian parameters J/�, and that of the dif-
ferent noise sources using the estimation procedure specified
in Sec. IV D for the MLE. We solve the MLE of Eq. (56)
for IBM quantum device D, which has very low readout
noise and use MLE of Eq. (57) for the other IBM quantum
devices. A summary of the estimated parameters of the CR
Hamiltonian and noise sources on IBM quantum device D
ibmq_boeblingen is shown in Table IV under different drive
configurations. We summarize the estimated parameters for
the other devices in Appendix D.
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TABLE IV. Summary of estimated CR Hamiltonian parameters for the IBM quantum device D ibmq_boeblingen with different drive
configurations (Config.) corresponding to amplitude (Amp.) of CR pulse. We give the Hamiltonian parameters in the parametrization J and
the physically relevant frequency components in �. The readout noise is defined by the parameters of r0 and r1, which are the conditional
probabilities of bit flip given the measurement outcomes are y = 0 and y = 1 respectively (see Sec. IV C 1).

Drive CR Amp.
Hamiltonian parameters [×106s−1] Noise sources

Config. (arb. units) J = (JIX , JIY , JIZ , JZX , JZY , JZZ ) (ω0, ω1) Readout (r0, r1) Time Offset (�teff,0,�teff,1) [ns]

1 0.24 (−3.88, −1.08, −0.24, 5.44, 1.07, 0.21) (1.57, 9.58) (0.012, 0.025) (1965, 289)
2 0.30 (−4.57, −1.47, −0.29, 6.50, 1.39, 0.41) (1.94, 11.45) (0.0078, 0.033) (1581, 226)
3 0.36 (−5.12, −1.65, −0.23, 7.52, 1.66, 0.33) (2.40, 13.07) (0.0078, 0.035) (1267, 203)
4 0.42 (−5.42, −1.95, 0.37, 8.38, 1.90, 0.07) (2.97, 14.33) (0.0078, 0.039) (1016, 182)
5 0.48 (−5.72, −2.13, 0.03, 9.20, 2.15, 0.11) (3.48, 15.51) (0.0078, 0.023) (862, 166)

3. Datasets from simulation

The experimental datasets in Sec. V A 1 contain noise
sources other than those modeled even if negligible and may
not span a long enough time range over T for testing different
learning scenarios. In order to understand the behavior of the
HAL-FI and HAL-FIR algorithms considering all the noise
sources are known, we set up a simulator. The advantage of
using a simulator over experimental data is that it allows us to
assess the limits of the performance of the HAL-FI algorithm
in the presence or absence of different noise sources such as
decoherence. Studies carried out on the simulator also allow
us to test the robustness of the active learner in the presence
or absence of different noise sources.

The simulator imitates the different quantum devices but
where all the different noise sources are known and perfectly
modeled, and which we can query. The Hamiltonian of the
simulator is set to that learned from the full set of training
examples contained in an experimental dataset collected from
a particular quantum device. Thus, we can have simulators
for each of the IBM quantum devices A, B, C, and D, under
different drive configurations. All the modeled noise sources
of readout noise, imperfect pulse-shaping, and decoherence as
described in Sec. IV C are included. We apply HAL-FI in real
time on the simulator as there is no limitation on the number
of times we select a particular query x ∈ Q.

In Fig. 7, we compare Rabi oscillations computed from a
subset of the experimental data collected from IBM quantum

device D ibmq_boeblingen under drive configuration 2, and
training examples generated on the corresponding simulator.
A set of 46 800 training examples are generated from both the
experimental data and simulator assuming a uniform query
distribution over the query space. These training examples
are then used to learn Hamiltonian parameters in each case.
The small difference in the predicted model Rabi oscillations,
computed using the analytical expressions of Eq. (42) and
the Hamiltonian parameters learned from these two different
datasets, further indicates that the simulator faithfully repre-
sents the collected experimental data.

4. Hyperparameters of estimators for learning CR Hamiltonians

Among the different estimators (Sec. IV D) we use for
Hamiltonian learning, some of them require the specification
of some hyperparameters. In our estimation procedure for
MLE (Sec. IV D 2), we set the learning rate for the ADAM
solve as 10−3 and use only the quasi-Newton method after
50 batches. In the Bayesian SMC method (Sec. II A 4 c), we
use np particles to track the distribution over p(J̃|D) where
J̃ is the normalized version of the Hamiltonian parameter
vector J by 106. We choose this normalization factor as this
is the order of magnitude expected for these parameters under
these drive conditions [73]. We then set the prior distribution
over the parameters as p(J̃) as an uniform distribution over
[−10, 10]6. On the simulator, we set np = 104 and on the ex-
perimental data, we set np = 105. These values were obtained

(a) (b) (c)

FIG. 7. Comparison of Rabi oscillations computed from data (46 800 queries) of IBM quantum device D ibmq_boeblingen from the
(a) collected experimental data, and (b) simulator. In (c), we plot the difference in the model Rabi oscillations predicted from the Hamiltonians
learned in (a) and (b). In the subplots of (a)–(c), we plot Rabi oscillations (or difference) for different measurement operators M (rows),
preparation operators U (colors), and evolution times t (x axis), corresponding to the query space described in Sec. IV B 2.
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by increasing the number of particles on each oracle until we
saw the expected convergence behavior with a passive learner
equipped with the SMC method as an estimator.

5. Protocol for comparing performance of Hamiltonian
learning methods

Query complexity is used for comparing the performance
of different learners on the simulator or oracle with access
to an experimental dataset. In particular, our main goal is to
extract the scaling of the query complexity with respect to the
root mean square error (RMSE) of Hamiltonian parameters
J. On the simulator as we have access to the truth J�, we can
compute the RMSE directly. On the experimental data, we use
the empirical RMSE, computed at each round of learning as

RMSE =
m∑

i=1

E

⎡
⎣(

θ̂i

ξi
− θ�

i

ξi

)2
⎤
⎦1/2

≈ 1

Nruns

m∑
i=1

Nruns∑
k=1

⎡
⎣(

θ̂
(k)
i

ξi
− θ�

i

ξi

)2
⎤
⎦1/2

, (61)

where we approximate the expectation by an average over
parameter estimates from Nruns runs and the true parameter
values θ� by the mean of these runs. The normalization factors
ξi are selected to be 106 s−1 for all i as the components of
J with highest magnitude are expected to the order of 106±1

[73] for these IBM quantum devices under these drive config-
urations. We implement the following experimental protocol.
For each of the quantum devices described in Sec. IV B 1,
we compute the empirical RMSE for the learners from 200
independent runs of the simulator and 500 independent runs
on the experimental dataset. These number of runs on each
oracle were required to obtain accurate scalings of trends in
RMSE with number of queries and ensure the uncertainty (or
two standard deviations) of each scaling was at most 10%. In
each run, we carry out the Hamiltonian learning algorithm for
the different learning scenarios as detailed in Sec. IV E and
summarized in Table III. Additionally, we track the testing
error of the learner with number of queries N . The so obtained
trends are used to comment on the robustness of the estimation
procedure used for MLE (Sec. IV D) and the benefits of using
the active learner HAL-FIR for making predictions of queries
to the Hamiltonian (Problem II A 3 b) over a baseline. The
testing error is computed empirically as well on a testing
dataset collected from the simulator or experimental dataset
using ptest .

B. Sequential active learner: Qinfer

In this section, we describe the sequential active learner of
Qinfer [37,38] that was earlier introduced in Sec. II C 5 and
how it is used in our numerical experiments on learning the
CR Hamiltonian.

The sequential active learner in [37,38], which we refer to
simply as Qinfer [82] uses Bayes risk [Eq. (26)] as a query
criteria. In our implementation, the Bayes risk is computed
by running a hypothetical update over a set of risk particles
in SMC (Sec. IV D 3) for each query in the query space Q.
These risk particles are a separate set of particles than those

used to track the distribution p(θ|D) in SMC. The weights and
locations of these risk particles are set to the same values as
those of the particles partaking in estimation, however, before
computation of the Bayes risk over all queries and after every
estimation step. Further details of Bayes risk computation can
be found in [38].

For a fair and systematic comparison of Qinfer against
HAL-FI on the simulator and experimental data, we run
Qinfer sequentially over batches of queries. Running Qinfer
sequentially over ∼105 shots/queries would be computation-
ally very expensive, as we would need to update the particles
in SMC after collecting just one measurement outcome and
then compute Bayes risk over all the queries in Q. Instead, we
issue a batch of Nb queries, all of which are the same query
and the one with the lowest Bayes risk. The corresponding
measurement outcomes are then used to update the particles
in SMC before computing Bayes risk using the updated risk
particles and issuing another batch of queries.

On experimental data, we also need to ensure that query
constraints are respected due to limited number of mea-
surement outcomes available for each query. We do this by
breaking down a batch of queries into mini-batches if enough
number of measurement outcomes is not available for the
request query with the lowest Bayes risk. Further details are
given in Appendix B.

Finally in Qinfer, we use the same prior distribution and
same number of particles as in the case of the passive learner
equipped with the Bayesian SMC estimator (Sec. IV D 3). On
the simulator, we set np = 104 and on the experimental data
we set np = 105.

C. Performance of Hamiltonian learning methods

In this section, we assess the performance of the differ-
ent Hamiltonian learning methods introduced so far using
the protocol described in Sec. V A 5 in tackling the learning
problems posed in Sec. II A. We report results of the dif-
ferent Hamiltonian learning scenarios (Table III): (i) passive
learner with estimation based on FFT and linear regression,
(ii) passive learner with an estimation procedure to solve the
MLE problem, (iii) active learner in fixed query space, and
(iv) active learner in an adaptively growing (linearly) query
space. Results of the exponentially growing query space are
postponed to Sec. V D 1 where we comment on the achiev-
ability of Heisenberg limited scaling. We use the HAL-FI
algorithm, which was discussed in Sec. II C in the latter active
learning approaches. We also show results of learners with
different estimations based on FFT and linear regression (Lin.
Reg.), maximum-likelihood (MLE), and Bayesian estimation
using the sequential Monte Carlo (SMC) method. We addi-
tionally compare HAL-FI, which proposes batches of queries
during learning against the sequential active learner Qinfer
(Sec. V B), which proposes queries one at a time using Bayes
risk as a query criteria.

We present the convergence behavior of each algorithm
during learning under different regimes. For each scenario,
we show trends of learning error (RMSE) with number of
queries. These trends indicate the performance of each learn-
ing algorithm, culminating in evidence of query advantage.
For brevity of presentation, we focus on the results obtained
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FIG. 8. Scaling of RMSE with number of queries for different learners on a simulator when MFC is satisfied. In (a), we compare the trends
in RMSE of HAL-FI against the passive learner with estimations based on MLE and linear regression (Lin. Reg.). In (b), we compare the trends
in RMSE of HAL-FI using the Bayesian estimator of sequential Monte Carlo (SMC) against HAL-FI using MLE, Qinfer using Bayes risk as
the query criteria and passive learners equipped with different estimators. In (a) and (b), estimators of each learner are indicated in brackets.
Slopes indicate the scaling of RMSE with number of queries in the finite sample and asymptotic sample regimes. Filled in areas indicate the
respective errors on trends for each learner. In (b), we do not show slopes and errors for learners shown earlier in (a) on the left, and their trends
are shown for visual reference.

from IBM quantum Device D (ibmq_boeblingen) under the
drive configuration 2.

We focus on the Hamiltonian learning task of model in-
ference (II A 3 a) and touch upon prediction against a testing
distribution (II A 3 b) to show that HAL is a general frame-
work for tackling both problems when equipped with the
appropriate query optimization. We show results on the sim-
ulator for two different cases of time range T of the query
space Q. The time range T should be chosen such that you
can estimate the Hamiltonian parameters of interest θ̂. For a
given T , the non-zero frequencies that can be successfully de-
tected using FFT [83,84] range from 1/�T to Fs/2 − 1/�T
at increments of 1/�T where �T is the length of the time
interval T and Fs is the sampling rate. Fs is decided according
to the Nyquist criterion to ensure that aliasing does not occur.
Accordingly, �T must be sufficiently long to see a single
cycle of the sinusoid corresponding to the lowest frequency.
We call this as the minimum-frequency criteria (MFC). Note
that when using other estimation methods based on MLE or
Bayesian estimation methods, T is not required to satisfy
these properties.

We thus show results on the simulator where T is such
that the MFC for frequency estimation (using FFT) is satisfied
and when MFC is not necessarily satisfied. Moreover, in Ap-
pendix C, we describe how standard FFT can be modified to
detect lower frequencies than MFC allows. This is a build-up
to our comparison on the experimental dataset where T is
such that MFC is not necessarily satisfied. In the following
results, we plot the learning error (RMSE/testing error) versus
number of queries made on a log-log scale so that the slope s
of the plotted lines can be directly interpreted as the scaling of
learning error with complexity ε ∼ Ns.

(a) Simulator and minimum-frequency criteria is satis-
fied. We consider the query space as defined in Sec. IV B 2
with T set to be the 243 equispaced times in the interval of
[10−7, 18 × 10−7] s. A comparison of different learners for
Hamiltonian learning considering this query space is shown
in Fig. 8. For the passive learners (with any estimator), we
observe a scaling of ε ∼ 1/

√
N or N ∼ ε−2 in RMSE with

number of queries. This is in agreement with the SQL. The
approximately constant gap between the passive learner when
using an estimator based on MLE and the passive learner
when using an estimator based on linear regression corre-
sponds to a constant query reduction. This illustrates how a
query advantage can be obtained by changing estimation for
Hamiltonian learning.

In Fig. 8(a), we observe two different scalings for the HAL-
FI algorithm with MLE, an initial scaling, which is higher
than SQL and similar to Heisenberg limited scaling, and a
scaling of SQL in the asymptotic query regime. This shows
that depending on the desired learning error, we can expect
to see a higher rate of convergence. However, asymptoti-
cally the number of queries N required by the active learner
HAL-FI is a constant fraction of that required by the passive
learner.

We can also consider HAL-FI using Bayesian estimation
for Hamiltonian learning. In Fig. 8(b), we show results com-
paring learners with the Bayesian estimator SMC, against
learners using alternate estimation. Among active learners, we
show HAL-FI alongside Qinfer using Bayes risk as a query
criteria. Firstly, we note that HAL-FI with SMC outperforms
all other learners equipped with the Bayesian estimator in-
cluding Qinfer. This indicates that HAL-FI can be adopted
with different types of estimators in practice, and a query
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FIG. 9. Scaling of testing error with number of queries for different learners on a simulator when MFC is satisfied. In (a), we compare the
trends in testing error of HAL-FIR against the passive learner with estimations based on MLE and linear regression (Lin. Reg.). In (b), we
compare the trends in testing error of HAL-FIR using the Bayesian estimator of sequential Monte Carlo (SMC) against HAL-FIR using MLE,
and passive learners equipped with different estimators. In (a) and (b), estimators of each learner are indicated in brackets. Slopes indicate the
scaling of testing error with number of queries in the finite sample and asymptotic sample regimes. Filled in areas indicate the respective errors
on trends for each learner. In (b), we do not show slopes and errors for learners shown earlier in (a) on the left, and their trends are shown for
visual reference.

advantage can be obtained. Secondly, similar scaling behavior
is seen for the different learners as earlier.

Additionally, we compare the passive learners and active
learner HAL-FIR for tackling Problem II A 3 b in Fig. 9. The
testing error is computed using Eq. (21) on a testing dataset of
105 independent identically distributed (i.i.d.). samples. The
testing distribution ptest is considered to be known and set
to be the uniform distribution over the query space Q. It is
assumed that HAL-FIR is given access to this testing distri-
bution. We observe a scaling of ε ∼ 1/N for the the passive
learners, which is expected as the log-likelihood loss function
associated with θ̂ is divergence-free in the asymptotic case
[39]. As in the case of HAL-FI for Hamiltonian learning, we
observe a higher initial scaling for HAL-FIR and a a scaling
of ε ∼ 1/N in the asymptotic regime, consistent with that
observed for the passive learner.

As discussed in Sec. II A, it is not typical for the testing
distribution in Problem II A 3 b to be known and the result here
can viewed as a validation of the Hamiltonian model learned
and hence the learners on a set of queries sampled using the
testing distribution.

We note sudden peaks in uncertainty associated with the
passive learner and HAL-FIR using the MLE estimator for
higher values of samples. This might be indicative of traveling
between multiple local minima in a larger convex hull when
solving the MLE [Eq. (56)]. The trends in testing error are
not severely impacted by this in expectation indicating that
these are rare events and our learners (with their estimation)
are robust.

Having made a case for the robustness of the learners and
estimation used in this work on the simulator considering a
query case Q, which satisfies MFC, we are now in a position
to compare the performance of the different learners when the

Q is not guaranteed or known to satisfy such a criteria. In the
results that follow, the observations made here are used as a
basis for the behavior to expect among the learners.

(b) Simulator and minimum-frequency criteria is not nec-
essarily satisfied. In practice, the range of system evolution
times T corresponding to the query space Q cannot be known
apriori to satisfy MFC for frequency estimation using FFT on
Rabi oscillation data. It is then crucial for learners equipped
with estimation procedures to either: (i) succeed at Hamilto-
nian learning given this query space or (ii) alert the user that
a longer T is required upon failure to learn a Hamiltonian
model. Here, we ensure the former by modifying the standard
FFT routine as discussed earlier in Sec. IV D. Further details
are also provided in Appendix C. Note that this solve is also
carried out as the first step in our estimation procedure for
obtaining initial conditions to the MLE solve.

A comparison of the different learners considering a T that
does not satisfy Minimum-Frequency criteria on the simulator
is shown in Fig. 10. We set T to be the set of 81 equispaced
times in the interval of 10−7, 6 × 10−7] s. As obtained earlier
on the simulator with a longer T , we observe a SQL scaling
of ε ∼ 1/

√
N or (N ∼ ε−2) in RMSE with number of queries

for the passive learners combined with estimation based on
linear regression, MLE or the Bayesian estimator of SMC.
However, there is now a noticeably wider gap in between the
trends corresponding to around 80.6% reduction in queries
when using the passive learner with the MLE estimator over
the passive learner with estimation based on linear regression.

For the HAL-FI algorithm with MLE, we consider cases of
when the query space is fixed and when it is adaptively grown
by linearly growing the T . For both cases, we see an initial
scaling, which is higher than SQL and similar to Heisenberg
limited scaling, and a scaling of SQL in the asymptotic query
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FIG. 10. Scaling of RMSE with number of queries for different learners on a simulator when MFC is not satisfied. In (a), we compare the
trends in RMSE of HAL-FI against the passive learner with estimations based on MLE and linear regression (Lin. Reg.). In (b), we compare
the trends in RMSE of HAL-FI using the Bayesian estimator of sequential Monte Carlo (SMC) against HAL-FI using MLE, Qinfer using
Bayes risk as the query criteria and passive learners equipped with different estimators. In (a) and (b), estimators of each learner are indicated
in brackets. Slopes indicate the scaling of RMSE with number of queries in the finite sample and asymptotic sample regimes. Filled in areas
indicate the respective errors on trends for each learner. In (b), we do not show slopes and errors for learners shown earlier in (a) on the left,
and their trends are shown for visual reference.

regime. This behavior is expected from our observations on
the simulator earlier. We note that using HAL-FI combined
with a linearly growing query space does not show significant
improvement over HAL-FI in the fixed query space. This is
due to the low rate at which we adaptively grow the query
query space during learning and the fact that growing the
query space is only advantageous for learning a subset of the
Hamiltonian parameters. We discuss this further in Sec. V D 1.

As before, we can also consider HAL-FI using Bayesian
estimation for Hamiltonian learning. In Fig. 10(b), we show
results comparing learners with the Bayesian estimator SMC,
against learners using alternate estimation. Firstly, we note
that in a reversal of fortunes from Fig. 8(b), the passive learner
with the Bayesian estimator SMC performs similarly to the
passive learner with MLE, and much better than the passive
learner with estimation based on linear regression. Secondly,
we note that while HAL-FI with SMC outperforms all other
learners equipped with Bayesian estimators including the se-
quential active learner of Qinfer, this advantage has reduced
from the case where the query space satisfied the MFC cri-
teria. Lastly, similar scaling behavior is seen for the different
learners as earlier.

(c) Experimental dataset. We show a comparison of the
performance of the different learners on the oracle with access
to experimental data in Fig. 11. As expected from our observa-
tions on the simulator, we observe SQL like scalings in RMSE
with N for the passive learners. We observe around 82.2%
query reduction when using the passive learner with the MLE
estimator over estimation based on linear regression, simi-
lar to that previously observed on the simulator. This query
reduction was computed by fixing the RMSE value at 0.2,
and comparing the number of queries required by the passive
learner to achieve this RMSE value versus the baseline. The

trends themselves are remarkably similar to those obtained on
the simulator, supporting the fact that the main noise sources
affecting the quantum device were identified and the simulator
is a good representation of the real quantum hardware.

For HAL-FI, we only show results for fixed query space
as the results for the linearly growing query space are very
similar, as was also observed on the simulator. We also only
show results for HAL-FI with the MLE estimator as HAL-FI
produces best results combined with this estimation and we
have already shown that HAL-FI is compatible with Bayesian
estimation earlier. We see an initial scaling of ε ∼ 1/N3/2 (or
N ∼ ε−2/3) in RMSE with number of queries, which is higher
than SQL and Heisenberg limited scaling, and a scaling of
SQL in the asymptotic query regime. The performance of
HAL-FI on the experimental data is surprisingly better than
that on the simulator. This behavior is consistent across dif-
ferent drive configurations on ibmq_boeblingen. The initially
accelerated learning where we observe super-Heisenberg lim-
ited scaling in HAL-FI and lower values of RMSE achieved
for a smaller number of N than on the simulator might be due
to: (i) noise sources not included in our model that do not con-
tribute significantly to the noise affecting the quantum device
but encourage exploration by HAL-FI, and (ii) correlations
between the samples collected in the experimental data (e.g.,
due to thermal fluctuations).

For the sequential active learner Qinfer, we observe similar
behavior in scalings as HAL-FI with an initially acceler-
ated scaling higher than Heisenberg limited scaling and a
scaling of SQL in the asymptotic query regime. The RMSE
achieved by Qinfer is comparable to HAL-FI for lower values
of queries but HAL-FI outperforms Qinfer significantly for
higher values of queries (obtaining lower RMSE and with
lower uncertainty). This is similar to what was observed on
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FIG. 11. Scaling of RMSE for different learners on experimental data with (a) number of queries made and (b) number of mini-batches
requested. The time range T of the query space is such that minimum-frequency criteria is not necessarily satisfied for frequency estimation
using FFT. We compare the trends in RMSE of HAL-FI using MLE, sequential active learner of Qinfer using Bayes risk as the query criteria
and passive learners equipped with different estimators. Estimators of each learner are indicated in brackets. Slopes indicate the scaling of
RMSE with number of queries in the finite sample and asymptotic sample regimes. Filled in areas indicate the respective errors on trends for
each learner.

the simulator earlier. Moreover, as Qinfer is a sequential active
learner, it requests more mini-batches of queries to reach a
particular value of RMSE. This is illustrated in Fig. 11(b)
where we compare the number of mini-batches of queries
made by HAL-FI against Qinfer. Note that the passive learners
and HAL-FI request only one mini-batch for every round
during learning. A mini-batch in our numerical experiments
directly corresponds to a job containing multiple quantum
circuits for execution on cloud based IBM quantum devices.
Each mini-batch has an associated cost of compilation on the
device, and latency from classical electronics interfacing with
the quantum hardware. Results of Fig. 11(b) thus indicate that
HAL-FI would be preferred over Qinfer on current hardware
with a fixed experimental budget.

We have already seen benefits of using HAL-FI over a
passive learner and a sequential active learner such as Qinfer
through the lower values of RMSE that can be achieved for a
given number of queries. This is analyzed in terms of query
advantage in Sec. V D 3.

D. Analysis

In this section, we analyze the results of the performance
of the different learners from Sec. V C. We firstly comment
on the achievability of the Heisenberg limited scaling by
HAL-FI with an adaptively growing query space as claimed
in Sec. II B. In the process, we consider a different learning
scenario motivated by recalibrations of quantum devices. We
then describe the query advantage of the active learner under
different conditions over the baseline strategy.

1. Heisenberg limited scaling

In Sec. V C, we did not observe Heisenberg limited scaling
for HAL-FI (even with an adaptively growing query space).

This is due to the fact that the query space is not rich enough to
achieve Heisenberg limited scaling, i.e., there is no sequence
of queries even in the adaptively growing query space to
achieve Heisenberg limited scaling. We discuss when Heisen-
berg limited scaling is achievable for Hamiltonians based on
the CR Hamiltonian in Appendix E. We show that the behav-
ior of the learners observed so far is expected through another
set of experiments in Appendix D.

It should, however, be possible to achieve Heisenberg lim-
ited scaling for a subset of Hamiltonian parameters given the
query space (see Sec. IV B 2) when the task is to learn this
subset of Hamiltonian parameters and we are given access to
information about the other Hamiltonian parameters. This is
exactly the setting of a recalibration where prior information
about the Hamiltonian parameters is available from previous
calibrations and the goal is to learn the subset of parameters,
which drift significantly with time while refining estimates of
those parameter that do not. Motivated by this, we consider the
following learning scenario on ibm_boeblingen under drive
configuration 3 (see Table IV).

We have access to an estimate of the Hamiltonian param-
eters θ̂ from a previous calibration during which Hamiltonian
learning was run on a uniformly sampled set of queries from
Q (of size N = 2430). The goal is to then learn the parame-
ters ω0,1 using the different learners at our disposal. We plot
comparisons of different learners (using Nb = 972) on this
recalibration task in Fig. 12 considering the oracles of the
simulator and experimental data. We consider all the learners
with estimation based on MLE or linear regression but could
also use a Bayesian estimator as we have already noted in
Sec. V C. We will call the passive learner with estimation
based on linear regression as the baseline for these studies.

We observe the SQL scaling in the baseline, passive learner
and HAL-FI in the fixed query space. There is nearly a
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FIG. 12. (a) Trends of RMSE with number of queries for different learners in fixed or growing query spaces (QS) on experimental data
(Expt.) compared against simulator (Sim.). Slopes indicate the scaling of RMSE ε with number of queries N in the low query/sample and
high query/sample regimes. Filled in areas indicate the respective errors on trends for each learner on the simulator. Passive learner, which has
similar behavior to HAL-FI in fixed query space is not shown for brevity. (b) Trends of the maximum evolution time associated with query
spaces of different learners.

constant gap between the baseline strategy and HAL-FI in
the fixed query space, indicating a constant query reduction
in achieving a desired learning error. We observe a super-
Heisenberg limited scaling of RMSE ε ∼ N−3/2 in number of
queries in HAL-FI with a linearly growing query space. This
is also observed for HAL-FI with an exponentially growing
query space in the low sample regime. The deterioration in
the scaling of HAL-FI with an exponentially growing query
space to the SQL is due to the maximum evolution time cor-
responding to the growing query space eventually exceeding
T1 and T2. This is shown in Fig. 12(b). In fact, the bend in the
trend of RMSE versus N for HAL-FI with an exponentially
growing query space occurs immediately after the maximum
evolution time in T exceeds T1. As T for HAL-FI with a
linearly growing query space is grown much more slowly,
effects of decoherence are not yet felt and super-Heisenberg
limited scaling convergence rate in learning error is achieved.

Qualitatively, it is clear that much lower values of learning
error can be achieved with a given budget of queries using
HAL-FI with an adaptively growing query space over the
baseline for recalibration. This is quantified in terms of query
advantage in Sec. V D 3.

2. Computational cost

So far, we have assessed the performance of different learn-
ers in achieving a value of RMSE with respect to the number
of queries consumed. However, another relevant resource is
the classical computational time required for learning the
Hamiltonian parameters during estimation or that required in
computing query criteria for active learners.

The main contribution to this classical computational time
is the evaluation of the likelihood function for different
queries, required during estimation and for evaluation of
query criteria for active learning. If an analytical expression
for the likelihood function is not available, then one needs to
carry out expensive quantum simulations. The computational
cost of using the SMC estimator in a round during learning

scales as O(|Q|np) with the number of particles. On the other
hand, the cost (or number of likelihood evaluations) of using
MLE in a round scales as O(|Q|niters ) with the number of
iterations niters within the estimation procedure (e.g., number
of gradient steps, etc.). In HAL-FI, we also account for the
number of likelihood evaluations in setting up the Fisher in-
formation matrices of different queries for solving the SDP of
Eq. (19). In Qinfer, we account for the number of likelihood
calls in hypothetical updates of the risk particles for evalu-
ating Bayes risk (see Sec. V B). In Fig. 13, we compare the
RMSE achieved for increasing computational cost for differ-
ent learners equipped with the MLE estimator or the Bayesian
SMC estimator. Overall, we find that learners equipped with
MLE are less computationally expensive compared to those
equipped with the Bayesian estimator.

In our experiments, we observe that the number of it-
erations (e.g., of the quasi-Newton solve) in the estimation
procedure of MLE (Sec. IV D 2) is lower than the number of
particles np required in SMC. This translates into about two
orders of magnitudes of savings in computational cost when
comparing HAL-FI against the sequential active learner of
Qinfer on both the simulator and experimental data.

3. Query advantage

We have so far compared the trends and obtained the
scalings of RMSE ε with number of queries N for different
learners for Hamiltonian learning (Sec. V C) and with prior
information (Sec. V D 1). To quantify the benefits of using
HAL-FI over other learners, we now evaluate its query ad-
vantage (QA), defined in Sec. II C 4 as a performance metric
that summarizes the reduction in resources required to achieve
a desired learning error. We restrict our attention to HAL-FI
with the MLE estimator to simplify the discussion.

We plot the trend of QA as a function of RMSE for ac-
tive learners HAL-FI and Qinfer over baselines of passive
learners equipped with different estimators as achieved on
the simulator in Fig. 14 and as achieved on experimental

033060-27



ARKOPAL DUTT et al. PHYSICAL REVIEW RESEARCH 5, 033060 (2023)

(a) (b)

FIG. 13. Trends of RMSE with computational cost for different learners on (a) simulator where MFC is not necessarily satisfied, and
(b) experimental data. The computational cost is measured in terms of the number of likelihood evaluations during learning.

data in Fig. 15(a). Values of QA for certain values of RMSE
are tabulated in Tables V and VI for different combinations
of learners and baselines. We observe a QA of around 80%
in HAL-FI on the simulator and experimental data over the
baseline of the passive learner with estimation based on linear
regression, for high values of RMSE. The initial accelerated
learning observed for HAL-FI on the simulator in Fig. 10 and
experimental data in Fig. 11 translates to an accelerated QA
for high values of RMSE. The trend in QA for HAL-FI over
the passive learner with estimation based on linear regression
on the simulator flattens to an asymptotic value of at least
95.1% when the query space is fixed during learning and
at least 96.3% when the query space is grown linearly. The
corresponding value for HAL-FI on the experimental data
in the fixed query space is 99.8% for low values of RMSE.
Similarly, the QA of HAL-FI over a passive learner with the

MLE estimator is around 82.1% on the simulator and around
99.0% on experimental data for low values of RMSE. In com-
parison, the sequential active learner of Qinfer is only able to
achieve a QA of around 62.7% on the simulator but performs
better on the experimental data achieving a QA of around
96.9% over the baseline of passive learner with the MLE
estimator.

For QA of other combinations of learners and baselines, we
turn our attention to Tables V and VI. We note that HAL-FI
can achieve up to a QA of 53.2% and 70.9% in expectation
over the baseline of Qinfer on the simulator and experimental
data respectively for the lowest value of RMSE achieved by
HAL-FI in our numerical experiments in Fig. 11. There is,
however, a large uncertainty on the estimate of QA on the
experimental due to the fluctuations of the trend of Qinfer on
the experimental data (Fig. 11). In practice, we expect that
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FIG. 14. Query advantage (QA) of different learners on the simulator when MFC (minimum-frequency criteria) is not satisfied over the
following baselines: (a) passive learner with estimation based on linear regression and (b) passive learner with the MLE estimator. In (a) and
(b), the data points correspond to values of QA computed from the data points of Fig. 10 and the lines are the fits to these values of QA. The
annotated text for the different trends indicate the QA obtained for the corresponding learner over the baseline for the lowest observed value
of RMSE in our numerical experiments. Filled in areas indicate the 95% confidence interval on the data points shown.
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FIG. 15. Query advantage (QA) of different learners over specified baselines considering the problem of (a) Hamiltonian learning without
prior information and (b) Hamiltonian learning with prior information on subset of Hamiltonian parameters from previous calibrations. In (a),
we plot the QA of passive learners, HAL-FI, and Qinfer on experimental data over two different baselines. In (b), we plot the QA of HAL-FI
over the baseline of the passive learner on the simulator for fixed and adaptively growing query spaces (QS). In (b), the QAs obtained on the
simulator closely match those obtained on the experimental data and hence the latter is not shown. In (a) and (b), the data points correspond
to values of QA computed from the data points of Figs. 11 and 12 and the lines are the fits to these values of QA. The annotated text for
the different trends indicate the QA obtained for the corresponding learner over the baseline for the lowest observed value of RMSE in our
numerical experiments. Filled in areas indicate the 95% confidence interval on the data points shown.

TABLE V. Query advantage of various learners considering different baselines on a simulator when MFC is not satisfied. Estimators of
each learner are indicated in brackets. For each combination of learner and baseline, we report query advantage at lowest value of RMSE
achieved by the learner (compared to extrapolated fit of baseline) and the query advantage at lowest value of RMSE achieved by the baseline
in brackets below. The errors represent one standard deviation on the value of expected query advantage.

�������Baseline
Learner

Passive (MLE) Qinfer (SMC) HAL-FI (MLE, Fixed QS) HAL-FI (MLE, Lin. Growing QS)

Passive (Lin. Reg.) 0.763 ± 0.034 0.903 ± 0.092 0.951 ± 0.018 0.963 ± 0.031
(0.788 ± 0.024) (0.926 ± 0.043) (0.929 ± 0.011) (0.935 ± 0.029)

Passive (MLE) × 0.627 ± 0.122
(0.668 ± 0.090)

0.821 ± 0.067
(0.750 ± 0.062)

0.867 ± 0.113
(0.811 ± 0.114)

Qinfer
(SMC)

× × 0.532 ± 0.174
(0.416 ± 0.182)

0.658 ± 0.289
(0.572 ± 0.302)

HAL-FI
(MLE, Fixed QS)

× × × 0.184 ± 0.091
(0.215 ± 0.081)

TABLE VI. Query advantage (QA) of various learners considering different baselines on experimental data. Estimators of each learner
are indicated in brackets. For each combination of learner and baseline, we report query advantage at lowest value of RMSE achieved by the
learner (compared to extrapolated fit of baseline) and the query advantage at lowest value of RMSE achieved by the baseline in brackets below.
The errors represent one standard deviation on the value of expected query advantage and are underlined in cases where the range of query
advantage should be read as [QA-error,1) instead of [QA-error, QA+error].

�������Baseline
Learner

Passive (MLE) Qinfer (SMC) HAL-FI (MLE, Fixed QS)

Passive (Lin. Reg.) 0.802 ± 0.057 0.993 ± 0.006 0.997 ± 0.001
(0.809 ± 0.034) (0.953 ± 0.012) (0.957 ± 0.009)

Passive
(MLE)

× 0.969 ± 0.046
(0.917 ± 0.056)

0.990 ± 0.011
(0.916 ± 0.046)

Qinfer
(SMC)

× × 0.709 ± 0.373
(0.510 ± 0.169)
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HAL-FI would achieve a QA upwards of 33% (computed by
considering one standard deviation below the expected value
of QA).

Similarly for the learning scenario of recalibration, we plot
the QA of HAL-FI over the baseline of passive learner (with
estimation based on linear regression or MLE) for Hamilto-
nian learning when prior information is available in Fig. 15(b).
The trends shown here correspond to that of the simulator as
similar behavior is observed for experimental data. The QA of
HAL-FI in a fixed query space over the baseline is constant
with RMSE and around 99.6%, i.e., HAL-FI requires only
0.4% of the queries required by the baseline. For HAL-FI with
a linearly growing query space, the query advantage for low
values of reported RMSE is around (100 − 3.2 × 10−3)%.
Further, we note that the scaling of QA of HAL-FI in a
linearly growing query space with RMSE ε scales as QA ∼
(1 − O(ε−1/6)) until decoherence starts effecting the scaling.
For HAL-FI with an exponentially growing query space, the
QA flattens to around (100 − 5.4 × 10−4)% for low values of
RMSE. Under this learning setting at low values of RMSE
around 10−3, HAL-FI has a query space with evolution times
far exceeding T1 or T2 and thus this reported QA is expected
for even lower values of RMSE.

From the analysis of query advantage above, we observe
that two orders of magnitude reduction in queries can be
obtained over a baseline of passive learner with estimation
based on linear regression by adopting HAL-FI. Moreover,
during recalibrations, we observe three orders of magnitude
reduction when HAL-FI is used with a linearly growing query
space and five orders of magnitude reduction in queries when
HAL-FI is used with an exponentially growing query space.

Adopting HAL-FI not only allows us to achieve query
reduction but it also allows us to save wall clock time taken
to calibrate a quantum device. We again consider the query
space of Sec. IV B 2 where a query on average takes 2400 ns
to run (accounting for time duration of implementing mea-
surement pulses). The repetition rate of current IBM quantum
devices for executing circuits is 10 kHz. We can then reduce
the duration of Hamiltonian learning of all CR Hamiltonians
of directly connected qubit pairs on a 20-qubit IBM quantum
device of ibmq_boeblingen to reach a RMSE of 5 × 10−2

from around 10 minutes to 5 seconds by using HAL-FI instead
of a passive learner with estimation based on regression [71].
These timings only take into account the time on the quantum
hardware and not additional latencies in classical electronics
interfacing with the hardware.

VI. CONCLUSIONS

In this paper, we proposed the active learning algorithms
of HAL-FI for Hamiltonian learning and HAL-FIR for pre-
dictions of queries to a Hamiltonian, sampled from a testing
distribution. They both perform in batch-mode making them
ideal for use on near-term quantum hardware. The perfor-
mance of HAL-FI/HAL-FIR was compared against different
learners for learning a CR Hamiltonian on the 20-qubit IBM
quantum device ibmq_boeblingen on a simulator and exper-
imental data. We showed that HAL-FI can achieve a query
advantage of around 99.7% over a passive learner with estima-
tion based on linear regression, 99.0% over a passive learner

with MLE estimator, and upwards of 33% over the sequential
active learner of Qinfer (equipped with the query criteria of
Bayes risk) for low values of learning error on experimental
data. Moreover, HAL-FI is able to achieve the same learning
error at lower computational cost than passive learners and
Qinfer. During recalibration when learning the Hamiltonian
with access to information from previous calibrations, we
observed that HAL-FI can achieve query advantages of 99.5%
over passive learners. Further, we showed that we achieve
Heisenberg limited rate of convergence where possible when
an active learner is used in conjunction with an adaptive query
space during learning before the evolution time of queries
exceed qubit T1 or T2 and decoherence starts deteriorating
information content available in queries.

Overall, using the active learner HAL-FI operating in batch
mode can yield a reduction in resources of up to two orders
of magnitude during calibration and five orders of magnitude
during recalibration for low values of learning error. This
improvement in query complexity has multiple practical con-
sequences besides accelerating Hamiltonian learning during
calibration and recalibrations of quantum computers.

Another important calibration step is determining controls
to implement desired single and multi-qubit quantum gates.
This often relies on building a Hamiltonian model of the
true environment, i.e., the quantum computer. This can be
accomplished by HAL to ensure minimal queries are used.
Gates, once implemented, are characterized through quantum
process tomography, which is not query efficient but could
be accelerated with an active learner. For the specific appli-
cation of learning the CR Hamiltonian, more noise sources
can be included as they become relevant, e.g., leakage errors,
which become pronounced under strong driving. It would also
be interesting to see if one can achieve asymptotic Heisen-
berg limited scaling even in the presence of noise such as
decoherence by using appropriate quantum error correction
protocols. It should be noted that Hamiltonian learning and
for that matter quantum process tomography both suffer from
an exponential scaling in the size of the quantum device n and
using an active learner only ensures a better scaling in ε or
query advantage. One could get a better scaling in n if ad-
ditional information such as the structure of the Hamiltonian
was known to be a k-local Hamiltonian, which can be learned
with a query complexity that scales as O(poly(n)) [85].

There are other calibration steps where Hamiltonian learn-
ing may not be required but the concept of active learner can
be introduced. This would particularly be advantageous where
a variety of experiments can be carried out but it is not clear
which of them are more informative for the learning task.
For example, a query efficient method is desired for learning
cross-talk on a superconducting quantum device [86,87].

Additionally, there is room for improvement and exten-
sion in the algorithm itself. Currently, expert knowledge is
required to specify a complete query space to HAL to ensure
all the Hamiltonian parameters can be learned and possibly
with Heisenberg limited scaling. It is desirable to remove this
expert and replace them with a method to synthesize queries.
The current active learning strategy is also based on the query
criterion of Fisher information but this could be modified to
incorporate cost of different queries and incentivize explo-
ration. Moreover, a more general query criteria could possibly
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TABLE VII. Relevant parameters of IBM quantum devices. The qubit used as the control or target qubit is indicated by its number in the
device connectivity map shown in Fig 16. Error per gate refers to the average infidelity of single-qubit gates implemented on that qubit.

Qubit Qubit freq. (GHz) T1 (µs) T2 (µs) Error per gate (×10−4)

Device Control Target Control Target Control Target Control Target Control Target

A 1 0 5.0593 4.8441 65.4 ± 10.8 32.9 ± 9.5 71.1 ± 5.9 57.7 ± 9.2 5.65 ± 0.13 8.85 ± 0.46

B 3 0 5.1482 4.9273 63.2 ± 11.7 78.1 ± 24.9 73.9 ± 9.9 124.3 ± 21.5 5.92 ± 0.30 6.29 ± 0.23

0 1 5.3613 5.2910 34.2 ± 2.5 45.0 ± 19.1 39.2 ± 3.3 63.1 ± 7.6 18.3 ± 1.0 20.6 ± 1.3
C 0 2 5.3613 5.2543 34.2 ± 2.5 45.0 ± 19.1 35.8 ± 0.7 52.4 ± 4.2 18.3 ± 1.0 9.23 ± 0.26

1 2 5.2910 5.2543 39.2 ± 3.3 63.1 ± 37.6 35.8 ± 0.7 52.4 ± 4.2 20.6 ± 1.3 9.23 ± 0.26

D 0 1 5.0466 4.8468 94.0 ± 6.0 75.7 ± 17.0 177.2 ± 44.8 128.1 ± 29.7 2.39 ± 0.12 3.12 ± 0.11

be learned through reinforcement learning as illustrated in
recent work on classical applications [88].

Code for the passive learner and the active learner HAL
using estimators based on regression and MLE is available
at [89]. Code for the learners including Qinfer for the cross-
resonance Hamiltonian, all equipped with a Bayesian estima-
tor is available at [90]. Datasets generated from the simulator
are included in the above repositories. Please contact the cor-
responding author for access to the experimental datasets col-
lected from the IBM quantum devices and used in the paper.
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APPENDIX A: DETAILS OF CROSS-RESONANCE
HAMILTONIAN

In this Appendix, we firstly give details of the different
IBM quantum devices employed for assessing the perfor-
mance of the HAL algorithms (HAL-FI and HAL-FIR)
proposed in Sec. III for learning cross-resonance (CR) Hamil-
tonians [Eq. (31)]. In Appendix A 2, we discuss how the
queries from Sec. IV B 2 are implemented in practice on the
devices. In Sec. IV C 2, we stated a model for the noise source
of imperfect pulse-shaping. Here in Appendix A 3, we de-
scribe how this model was obtained. This is then followed
by relevant analytical expressions of likelihood and Fisher
information in Appendix A 4 considering the query space in
Sec. IV B 2.

1. Description of IBM quantum devices

We consider CR Hamiltonians on the four different IBM
quantum devices described in Sec. IV B 1. The connectivity

maps of these devices are shown in Fig. 16. We consider CR
gates on particular qubit pairs on each device, which are sum-
marized in Table VII. In Table VII, we describe the properties
of each qubit involved in the CR gate including their T1 or T2

times and the average infidelity of single-qubit gates.

2. Experimental implementation of query space

Queries to the CR Hamiltonians between different qubit
pairs on the IBM quantum devices are made through appro-
priate pulse sequences. These pulse sequences are constructed
and executed on the hardware using Qiskit-Pulse [75],
which is a pulse programming module within Qiskit [76]
and serves as a front-end implementation of the OpenPulse
interface [91]. Each Qiskit-Pulse [75] program consists
of pulses, channels and instructions. Here, we describe a
Qiskit-Pulse program and describe how a query to a CR
gate on an IBM quantum device is specified.

A pulse is a time-series of complex-valued amplitudes with
maximum unit norm and which we denote as ak where k ∈
[n − 1] corresponds to the time stamp. The difference between

FIG. 16. Connectivity maps for (a) IBM quantum device A,
(b) IBM quantum device B, (c) IBM quantum device C, and (d) IBM
quantum device D ibmq_boeblingen. Each node represents a physical
qubit on the chip and the presence of an edge between two nodes in
the connectivity map indicates that a CR gate can be applied between
these two nodes.
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FIG. 17. An example of a CR pulse schedule on the IBM
quantum device ibmq_boeblingen considering to the query of x =
(M,U, t ) where M = σI ⊗ exp(−i π

4 σX ), U = σX ⊗ σI , and time du-
ration t = 6 × 10−7 s. The x axis corresponds to time normalized by
dt = 2.22 × 10−10 [Eq. (A1)]. The different channels corresponding
to each qubit (y axis) are written as the type of channel (see plot
legend) followed by qubit number. Qubit 0 is set to be the control
qubit and 1 to be the target qubit. The envelope of the different pulses
are shown in each channel. The rotations on the drive or control
channels indicate virtual Z gates. An equivalent representation of the
quantum circuit is shown in Fig. 1.

these time stamps is considered to be dt , which is typically the
sample rate of the waveform generator. The output signal thus
has an amplitude of

Ak = Re[ei2π f kdt+γ ak] (A1)

at time kdt where f and γ are a modulation frequency and
phase. A pulse is specified in Qiskit-Pulse by specifying
the individual amplitudes ak and the phase φ. Alternatively,
one can use parametric pulse shapes that are offered by the li-
brary such as Gaussian, GaussianSquare, etc. These pulses
are then implemented on the hardware via channels, which
label signal lines used for transmitting and receiving signals
between the control electronics, and the hardware. In partic-
ular, these are implemented on the PulseChannel and are
used to control the system Hamiltonian to implement different
gates.

To implement a query to a quantum device, we need an
equivalent description of the quantum circuit shown in Fig. 1
in the form of a pulse schedule. We discuss this here in
parallel with a description of the query space Q considered for
learning CR Hamiltonians. To prepare the initial state, we con-
sider the set of preparation operators U = {σI ⊗ σI , σX ⊗ σI}
applied to the pure state |00〉. The single-qubit gates are im-
plemented as a sequence of Gaussian pulses of the appropriate
amplitude and duration [75]. Assuming the first (left) qubit
is the control and the second (right) qubit is the target, the
effect of the preparation operators is to place the control in
|0〉 and |1〉 respectively. We evolve the initial state |ψ (0)〉
for time t ∈ T , which we will specify when discussing the
results of our application of Hamiltonian learning in Sec. V.
This is done by switching the CR interaction on for time
duration t , which is done in practice by implementing a
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FIG. 18. Hamiltonian parameters J as a function of the amplitude
of the control pulse or drive as reported in Sheldon et al. [71].

GaussianSquare pulse of duration t . A GaussianSquare
pulse is a square pulse with truncated Gaussian-shaped rising
and falling edges. We discuss later in Sec. IV C how using
this pulse may introduce nonidealities in the system evolu-
tion. Finally after obtaining the final state |ψ (t )〉, we apply
the measurement operators in M = {σI ⊗ exp(i π

4 σY ), σI ⊗
exp(−i π

4 σX ), σI ⊗ σI} and measure only the second qubit,
which we have chosen as the target qubit. The query space
is then Q = M × U × T . An example of a pulse schedule is
shown in Fig. 17 highlighting the different parts of the query.
Moreover, in our experimental setup, we obtain measurements
of the single-shot signal (integrated cavity amplitude) c, which
is a function of the measurement outcomes y, which we have
described earlier.

3. Modeling pulse shapes

We now describe how the imperfect pulse-shaping model
stated in Sec. IV C 2 was obtained. We consider cross-
resonance control pulses (also called GaussianSquare)
whose time-varying amplitudes are rectangular-shaped en-
velopes with tapered rising and falling edges, where the
tapering is designed to minimize the signal energy that falls
above and below the frequency of the sinusoid that is be-
ing modulated by the pulse envelope. The resulting unitary
operators thus have the form Ũ (t ) = T exp ( − i

∫ t
0 H̃ (t ′)dt ′),

where T is the time ordering operator, H̃ is the Hamilto-
nian at any particular time given by H̃ (t ′) = H (t ′, v(t ′)), H
is the cross-resonance Hamiltonian (with the dependence on
parameters θ not shown), and v(t ′) is the time-varying pulse
envelope.

Let �tr and �t f be, respectively, the durations of the rising
and falling edges of the shaped pulse envelope. The central
portion of v(t ′) is then a rectangular function such that, for t ′ ∈
[�tr, t − �t f ], v(t ′) = Vmax1t ′∈[�tr ,t−�t f ] where t is the total
duration of the pulse, and Vmax is the amplitude of this central
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rectangular portion. We thus have

Ũ (t ) = exp

(
−iT

∫ t

0
H̃ (t ′)dt ′

)
(A2)

= exp

(
−iT

∫ t

t−�t f

H (t ′, v(t ′))dt ′
)

exp

(
−iT

∫ t−�t f

�tr

H (t ′,Vmax)dt ′
)

exp

(
−iT

∫ �tr

0
H (t ′, v(t ′))dt ′

)
(A3)

= exp

(
−iT

∫ t

t−�t f

H (t ′, v(t ′))dt ′
)

exp

(
−iHmax

∫ t−�t f

�tr

dt ′
)

exp

(
−iT

∫ �tr

0
H (t ′, v(t ′))dt ′

)
(A4)

= exp

(
−iT

∫ t

t−�t f

H (t ′, v(t ′))dt ′
)

exp
(−iHmaxtexpt

)
exp

(
−iT

∫ �tr

0
H (t ′, v(t ′))dt ′

)
(A5)

where texpt = t − �t f − �tr and Hmax = H (t ′,Vmax), which is
constant assuming that any signal distortions that are intro-
duced by the control electronics and/or along the signal path
to the quantum device are negligible.

The above equation decomposes Ũ (t ) into the time evo-
lution of the Hamiltonian that corresponds to the central
rectangular-pulse portion of the control pulse with pre- and
post-rotations that are determined by the tapered rising and
falling edges of the pulse. In general, there is a nonlinear re-
lationship between the shapes of these edges and the resulting
pre- and post-rotations. However, based on the results reported
in [71] and shown in Fig. 18, the cross-resonance Hamilto-
nian parameters tend to vary fairly linearly with respect to
the overall pulse amplitude. The pre- and post-rotations can
thus be approximated by assuming a first-order model for the
time-varying Hamiltonian parameters given by

J(t ′) ≈ v(t ′)
Vmax

Jmax (A6)

where Jmax is the vector of parameters for the Hamiltonian
Hmax of the central recetangular portion of the pulse envelope.
The time-varying Hamiltonian is then approximated by

H (t ′, v(t ′)) ≈ v(t ′)
Vmax

Hmax. (A7)

The overall unitary operator Ũ (t ) is then approximated by

Ũ (t ) ≈ exp

(
−iHmax

1

Vmax

∫ t

t−�t f

v(t ′)dt ′
)

× exp (−iHmaxtexpt ) exp

(
−iHmax

1

Vmax

∫ �tr

0
v(t ′)dt ′

)
(A8)

= exp (−iHmax(texpt + �teff )) (A9)

where

�teff = 1

Vmax

(∫ �tr

0
v(t ′)dt ′ +

∫ t

t−�t f

v(t ′)dt ′
)

. (A10)

4. Likelihood function and Fisher information matrix
for the CR Hamiltonian

In this section, we give the expressions for the likelihood
function of py|x(y|x; θ) and the Fisher information (FI) matrix.
We consider the experimental setup as described in Sec. IV
and query space Q as described in Sec. IV B 2.

Recall from Sec. II C 2, the FI matrix of a query x is given
by

Ix(θ)[i, j] = E

[
∂ log py|x(y|x; θ)

∂θi

∂ log py|x(y|x; θ)
∂θ j

]
(A11)

where log p(y|x; θ) is the log-likelihood of the measurement
outcome y given the query x. In most cases in practice, the
Fisher information matrix must be computed empirically in
a Monte Carlo fashion. However, here we have a model of
the CR Hamiltonian and models of the different noise sources
affecting the quantum system available to us. We can thus
evaluate the FI matrix analytically for different queries and
in the presence or absence of noise.

a. In Absence of Noise

(a) Likelihood. In the noiseless case, the likelihood func-
tion of different measurement outcomes y ∈ {0, 1} given
query x = (M,U, t ) ∈ Q is

py|x(y|x; θ) =
∑

z∈{0,1}
|〈yz|Me−iH (θ)t )U |00〉|2. (A12)

Evaluating this for the different queries in the query space as
described in Sec. IV B 2, we obtain

py|x(0|x; θ) =

⎧⎪⎪⎨
⎪⎪⎩

1
2 (( cos(ω jt ) + sin(φ j ) cos(δ j ) sin(ω jt ))2 + ( sin(δ j ) sin(ω jt ) + cos(φ j ) cos(δ j ) sin(ω jt ))2), x = (M〈X 〉,Uj, t )

1
2 (( cos(ω jt ) − cos(φ j ) cos(δ j ) sin(ω jt ))2 + ( sin(δ j ) sin(ω jt ) + sin(φ j ) cos(δ j ) sin(ω jt ))2), x = (M〈Y 〉,Uj, t )

1 − ( cos(δ j ) sin(ω jt ))2, x = (M〈Z〉,Uj, t )

(A13)

033060-33



ARKOPAL DUTT et al. PHYSICAL REVIEW RESEARCH 5, 033060 (2023)

where we have used the index j ∈ {0, 1} to refer to the dif-
ferent preparation operators U0 = σIσI and U1 = σX σI . The
measurement operators are: M〈X 〉 = σI ⊗ exp(i π

4 σY ), M〈Y 〉 =
σI ⊗ exp(−i π

4 σX ), and M〈Z〉 = σI ⊗ σI .
(c) Fisher information matrix. Noting that the measure-

ment outcome y ∈ {0, 1}, we have

Ix(θ)[i, j] =
∑

y∈{0,1}

1

py|x(y|x; θ)

∂ py|x(y|x; θ)
∂θi

∂ py|x(y|x; θ)
∂θ j

(A14)

= 1

py|x(0|x; θ)(1 − py|x(0|x; θ))

∂ py|x(0|x; θ)
∂θi

∂ py|x(0|x; θ)
∂θ j

(A15)

where in the second step, we have used the fact that
py|x(1|x; θ) = 1 − py|x(0|x; θ) and ∂ py|x(1|x;θ)

∂θi
= − ∂ py|x(0|x;θ)

∂θi
.

The FI matrix elements can also be expressed using the
Rabi oscillation of a query prabi(x; θ) as follows:

Ix(θ)[i, j] = 1

1 − p2
rabi(x; θ)

∂ prabi(x; θ)

∂θi

∂ prabi(x; θ)

∂θ j
. (A16)

The FI matrices Ix(θ) for the different queries x =
(M,U, t ) (Sec. IV B 2) depend on the parametrization of
choice. We denote the FI matrix considering the parametriza-
tion of � as Ix(�). Note that the Fisher information matrices
Ix(J) for the parametrization of J is related to the former
through the jacobian of � with respect to J,

D�,J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Re(β0 )
ω0

−Re(β0 )a0

|β0|a0
− Im(β0 )

|β0|2
Re(β1 )

ω1
−Re(β1 )a1

|β1|a1
− Im(β1 )

|β1|2
Im(β0 )

ω0
− Im(β0 )a0

|β0|a0

Re(β0 )
|β0|2

Im(β1 )
ω1

− Im(β1 )a1

|β1|a1

Re(β1 )
|β1|2

a0
ω0

|β0|
ω2

0
0 a1

ω1

|β1|
ω2

1

Re(β0 )
ω0

−Re(β0 )a0

|β0|a0
− Im(β0 )

|β0|2 −Re(β1 )
ω1

Re(β1 )a1

|β1|a1

Im(β1 )
|β1|2

Im(β0 )
ω0

− Im(β0 )a0

|β0|a0

Re(β0 )
|β0|2 − Im(β1 )

ω1

Im(β1 )a1

|β1|a1
−Re(β1 )

|β1|2
a0
ω0

|β0|
ω2

0
0 − a1

ω1
−|β1|

ω2
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A17)

where the (i, j)th element is given by ∂� j/∂Ji with a0,1 and
β0,1 as defined as in Eq. (31).

Note that Ix(�) is of rank-1 for each query and takes
a block form of [I0 0

0 0] for U = σI ⊗ σI and [0 0
0 I1

] for
U = σX ⊗ σI . This indicates that queries involving U =
σI ⊗ σI are informative about the Hamiltonian parameters
(ω0, δ0, φ0) and those involving U = σX ⊗ σI are informative
about (ω1, δ1, φ1).

b. In presence of noise sources and nonidealities

In Sec. IV C 1, we modeled the effect of different
noise sources and nonidealities on the quantum system. In

particular, we discussed the effect of imperfections in control
in Sec. IV C 2, effect of decoherence in Sec. IV C 3 and how
the observed measured outcome is subject to readout noise
in Sec. IV C 1. We consider the two-qubit decoherence model
from Sec. IV C 3, and the readout noise model of a bit-flip
channel based on binary classification from Sec. IV C 1. We
denote the noisy observed measurement outcome as ỹ and the
hidden measurement outcome before the effect of the bit-flip
channel as y.

(a) Likelihood. The likelihood function in the presence of
the noise sources of readout noise, imperfect-pulse shaping,
and decoherence, is then given by

pỹ|x(ỹ|x; θ) = pỹ|y(ỹ|y)
∑

z∈{0,1}

[
(1 − pd (t ))pyz|x(yz|(M,U, t + �teff(θ)); θ) + 1

4
pd (t )

]
(A18)

= (1 − pd (t ))[(1 − r1−ỹ)py|x(ỹ|(M,U, t + �teff(θ)); θ) + rỹ py|x(1 − ỹ|(M,U, t + �teff(θ)); θ)]

+ 1

2
pd (t )(1 − r1−ỹ + rỹ) (A19)

with the probability of the two-qubit string yz given by

pyz|x(yz|(M,U, t ); θ) = |〈yz|Me−iH (θ)t )U |00〉|2 (A20)

and the probability py|x(y|x) given by Eq. (1) (the noiseless case). In the expressions above, we have used the tuple representation
of the query x, pd (t ), which is the depolarization probability associated with the two-qubit decoherence model as discussed in
Sec. IV C 3 and (r0, r1), which are the readout noise parameters as introduced in Sec. IV C 1.

(b) Fisher information matrix. The FI matrix for a given query x is given by

Ix(θ)[i, j] = 1

pỹ|x(0|x; θ)(1 − pỹ|x(0|x; θ))
∂ pỹ|x(0|x; θ)

∂θi

pỹ|x(0|x; θ)
∂θ j

(A21)
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where

∂ pỹ|x(0|x; θ)
∂θi

= (1 − r0 − r1)(1 − pd (t ))
∂ py|x(0|x; θ)

∂θi
(A22)

and

∂ py|x(0|x; θ)
∂θi

=
⎧⎨
⎩

∂ p(y=0|(M,U,t+�teff (θ));θ)
∂θi

, θi /∈ {ω0, ω1}
∂ p(y=0|(M,U,t+�teff (θ));θ)

∂ (θi�teff (θ))
∂ (θi�teff (θ))

∂θi
, θi ∈ {ω0, ω1}

. (A23)

Note that special attention has to be given when taking the
derivative with respect to ω0,1 as �teff(θ) (Sec. IV C 2) actu-
ally only has a dependence on these two components in � and
appears in the effective evolution time t with a prefactor of
ω0,1 in the likelihood [see Eq. (A13)].

APPENDIX B: COMPUTATIONAL DETAILS OF QUERY
OPTIMIZATION

In Sec. V A 1, we pointed out that the number of shots
available for each query in the experimental datasets col-
lected from the IBM quantum devices are limited. In this
Appendix, we describe how the query optimizations for HAL-
FI [Eq. (19)] and HAL-FIR [Eq. (21)] are solved under shot
constraints for each query. We then describe how the com-
putational cost of query optimization can be reduced through
uncertainty filtering of the query space.

1. Different query optimizations and strategies for handling
query constraints

We describe how constraints can be handled for the query
optimization [Eq. (19)] in HAL-FI (Algorithm 2) but the same
approach can also be used for HAL-FIR. Let us consider
the ith round in active learning. The Hamiltonian parameter

estimate in this round is θ̂
(i)

. Let us denote the number of shots
available for each query x ∈ Q in the ith round as N (i)

shots(x).
The number of shots available before learning has started is
then N (0)

shots(x). Let the total number of shots that have already
been made against query x by the ith round (inclusive) be
denoted as N (i)

tot (x). We will denote the total number of shots
made over all queries inputted to the oracle by the ith round
(inclusive) as N (i)

tot .
We can frame the query optimization problem undershot

constraints in two different ways, motivated by the asymptotic
optimal query distribution associated with HAL-FI,

q� = arg min
q∈P (Q)

Tr
(
I−1

q (θ�)
)

(B1)

where P (Q) is the family of all probability distributions over
the specified query space Q. As discussed in Sec. II C, we
cannot solve for this distribution in practice as this requires us
to have access to the true parameters θ�, and hence we solve

for a suboptimal query distribution q(i)(θ̂
(i)

) given the current
parameter estimates θ̂. During active learning, we can solve

for q(i)(θ̂
(i)

) by viewing it as the query distribution over all the
queries that have inputted to the oracle (i.e., including from
previous rounds) or as the query distribution associated with
the current ith batch of queries that will be issued. These two
viewpoints lead us to two different approaches of how the shot

constraints are handled and how the queries to be inputted to
the oracle are sampled from the query distribution.

Firstly, consider the following query optimization problem:

q(i) = arg min
q

Tr
(
I−1

q (θ̂
(i)

)
)

(B2)

subject to
∑

x∈Q(i)

q(x) = 1, and

N (i−1)
tot (x)

N (i)
tot

� q(x) � min

{
1,

N (i)
shots(x)

N (i)
tot

}
∀x ∈ Q(i) (B3)

with corresponding sampling of queries in that batch as

Sample Nb queries X (i)
q from Q(i) w.p. q(i)

b (B4)

where q(i)
b (x) = q(i)(x) − N (i−1)

tot (x)
N (i)

tot
. The query optimization in

this case considers all the queries that have been sampled from
earlier batches during active learning. The query distribution
q(i) is then the distribution over all the queries made so far
and q(i)

b is the query distribution for the batch to be issued.
Further, the Fisher information matrix associated with q(i) is
guaranteed to be invertible but that associated with q(i)

b may
be noninvertible. This suggests that the outcomes of queries
made in this round of the active learning procedure may not
be informative about all the Hamiltonian parameters.

In order to ensure that the query distributions for each
batch are informative about all the Hamiltonian parameters,
one may alternately solve the following query optimization
problem:

q(i) = arg min
q

Tr
(
I−1

q (θ̂
(i)

)
)

(B5)

subject to
∑

x∈Q(i)

q(x) = 1, and

0 � q(x) � min

{
N (i)

shots(x)

N (i)
b

, 1

}
,∀x ∈ Q(i) (B6)

where N (i)
b is the size of the batch of queries being issued to

the oracle in the ith round. Queries of the issued batch are then
sampled as

Sample Nb queries X (i)
q from Q(i) w.p. q(i) (B7)

where q(i) is now the query distribution for each batch. This
query optimization can be viewed as a greedy approach of
query selection. The Fisher information matrix associated
with q(i) is guaranteed to be invertible and hence informative
about all the Hamiltonian parameters. We thus solve the query
optimization considering shot constraints on each query ac-
cording to Eq. (B6) for our application.
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(a) (b)(a) (b)

FIG. 19. Visualization of queries being selected for each batch during a particular run of HAL-FI for N0 = 2000 and 25 batches of size
Nb = 5000. In (a), we plot the available number of shots for each query after batches of queries are made during active learning. In (b),
we plot the query distribution for each batch during active learning. The number of shots available for each query before learning starts
is N (0)

shots(x) = 512 ∀x. Half the total number of shots available in this dataset is exhausted by the end of learning. Note that the different
parameter values considered for HAL-FI are for stress testing the query constraints’ handling procedure and are not tuned for the HAL-FI
algorithm.

As we sample queries randomly according to q(i) and not
proportional to q(i), the resulting Xq might not satisfy query
constraints exactly and an additional pruning step is required.
Moreover, to reduce the computational cost of the query opti-
mization solve, we consider a subset of queries Q(i)

filtered ⊂ Q(i)

for which shots are still available.
In Algorithm 5, we summarize the steps taken to handle

query constraints during query optimization for HAL-FI. It
takes the inputs of the query space Q(i) of the current ith round
of active learning, number of shots available for each query
and the size of the batch of queries to be issued. The inputted
query space is first filtered by retaining only those queries
for which shots are available. The resulting filtered query
space is denoted by Q(i)

filtered, and we then compute the query
distribution q(i) according to Eq. (B6). We then sample queries
for the batch Xq according to this distribution after mixing and
with incorporation of a pruning step. Note that lines 4 and 5
were also used in the original query optimization algorithms
of HAL-FI (Algorithm 2) and HAL-FIR (Algorithm 3) to
encourage exploration. An illustration of the operation of the
query optimization and handling of query constraints is shown
in Fig. 19 for a particular run of the HAL-FI learner.

2. Uncertainty filtering of query space

Uncertainty filtering becomes a crucial step during query
optimization when we consider HAL-FI with an adaptively
growing query space. We noted in Sec. II C 1 d that the

computational cost of query optimization [Eq. (19)] scales
as O(n2

Qm3 + nQm4 + m5) where nQ = |Q| is the number of
queries in the query space, and m is the length of the parameter
vector θ. This computational cost is alleviated through filter-
ing of the query space based on entropy S(x). The entropy of
the different queries can be computed from the model proba-
bility expressions available to us (see Appendix A) given the

Algorithm 5. Handling query constraints during query opti-
mization in HAL-FI.

Input: Current query space Q(i), number of shots available for
each query N (i)

shots(x), size of batch of queries requested N (i)
b , total

number of queries made so far N (i−1)
tot

Output: Query set Xq of size N (i)
b

1: Filter Q(i) by keeping only queries for which shots are
available: Q(i)

filtered = {x ∈ Q(i)|N (i)
shots(x) > 0}

2: Obtain HAL-FI query distribution q(i) by solving the query
optimization of Eq. (B6) with input of Q(i)

filtered
3: Obtain uniform distribution over filtered query space:
pU = 1/|Q(i)

filtered|
4: Set mixing coefficient: μ = 1 − 1/|N (i−1)

tot |1/6

5: Modify query distribution: q(i) = μq(i) + (1 − μ)pU

6: Sample Xq from Q(i)
filtered according to q(i)

7: Prune queries from Xq that cannot be made and randomly assign
valid queries
8: return Xq
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FIG. 20. Uncertainty filtering of Q as defined in Sec. IV B 2 with T set to be a sequence of 243 linearly equispaced evolution times in
[10−7, 18 × 10−7] s . The The x axis corresponds to the system evolution times t ∈ T . The y axis indicates the different combinations of
measurement operators and preparation operators available for each query in Q. The different preparation operators are denoted as U0 = σIσI

and U1 = σX σI . We consider the θ� corresponding to IBM quantum device D ibmq_boeblingen under drive configuration 2, with the different
noise sources of readout noise, imperfect pulse-shaping, and decoherence being accounted for. Queries colored as dark blue are retained in the
filtered query space and rest is filtered out.

current Hamiltonian parameter estimate θ̂. The filtered query
space based on entropy is determined as follows:

QS =
{

x|x ∈ Q, S(x) > τ × max
x′∈Q

S(x′)
}

(B8)

where we set the threshold τ = 0.95, i.e., we only consider
queries with entropy that is at least 0.95 times the highest
entropy. This value of τ was chosen to ensure that at most
only half of the queries are retained after uncertainty filtering
of the query space. An illustration of uncertainty filtering of a
query space is given in Fig. 20.

APPENDIX C: ESTIMATION PROCEDURE FOR
LEARNING CROSS-RESONANCE HAMILTONIANS

In this Appendix, we discuss in detail the estimation pro-
cedures of Sec. IV D for the estimator based on regression
(Sec. IV D 1) and the MLE estimator (Sec. IV D 2), used for
learning cross-resonance Hamiltonians [Eq. (31)]. These esti-
mators can be used by both the passive learner and the active
learners of HAL-FI/HAL-FIR (Sec. III). Additionally, we can
also use Bayesian estimators such as the sequential Monte
Carlo method discussed in Sec. II A 4 c. In the following dis-
cussion, we consider the experimental setup from Sec. IV.
We will also discuss how these estimation procedures can be
improved or extended to other Hamiltonians.

Let us recall the notation introduced in Sec. III and
Sec. IV D. The different rounds of active learning are indexed
by i ∈ [imax]. In each round of active learning, we use an
estimation procedure divided into multiple steps. We index
each of these fractional steps by k. The Hamiltonian parameter
estimate at the kth fractional step in the ith round of learning

will then be denoted by θ̂
(i,k)

with the parameter estimate in
the ith round at the end of the estimation procedure denoted

simply by θ̂
(i)

. The training examples available at the ith round
is given by (X (i),Y (i) ).

We now discuss the estimation procedures for (i) regression
and (ii) maximum-likelihood estimation (MLE).

1. Regression

As mentioned in Sec. IV D 1, the first step of our esti-
mation procedure involves frequency estimation followed by
a nonlinear regression solve combined with a gradient de-
scent procedure on the Rabi oscillations inferred from data
[Eq. (39)]. We denoted these inferred Rabi oscillations by
p̂rabi(t ).

Estimates are obtained by fitting nonlinear regression equa-
tions of the form A cos(ωt ) + B sin(ωt ) + C to the Rabi
oscillations, where the fit minimizes the sum of the weighted
L2 errors across the corresponding time series. For a given
value of ω, the coefficients A, B, and C are estimated using
weighted linear least-squares regression. Fast Fourier trans-
forms (FFTs) [92] are used to perform an efficient grid search
over these weighted least-squares fits to obtain initial esti-
mates of ω. Bracketed gradient-based search is then used to
refine the estimates. The resulting coefficients A, B, and C
for each Rabi oscillation are subsequently used to obtain esti-
mates of the corresponding δ and φ Hamiltonian parameters.
We note this analysis in general assumes periodic signals.
In order to successfully estimate the Rabi frequencies using
standard FFT, the set of time points T should span at least the
time duration established by the minimum-frequency criterion
defined in Sec. V C.

For each Rabi oscillation, the following weighted least-
squares normal equations are solved to estimate the A, B,C
coefficients for a given value of ω, where the summations
are performed over time points t ∈ T , and where the wt ’s are
weighting factors
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⎡
⎢⎢⎣

∑
t wt cos2(ωt )

∑
t wt cos(ωt ) sin(ωt )

∑
t wt cos(ωt )∑

t wt cos(ωt ) sin(ωt )
∑

t wt sin2(ωt )
∑

t wt sin(ωt )∑
t wt cos(ωt )

∑
t wt sin(ωt ) sin(ωt )

∑
t wt

⎤
⎥⎥⎦
⎡
⎢⎢⎣

A

B

C

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
∑

t wt p̂rabi(t ) cos(ωt )∑
t wt p̂rabi(t ) sin(ωt )∑

t wt p̂rabi(t )

⎤
⎥⎥⎦. (C1)

The weights wt are equal to one over the estimation variance of p̂rabi(t ) for the corresponding time points t . The purpose of the
weights is to account for the heteroskedasticity of the estimation errors in p̂rabi(t ).

If we write Eq. (C1) in the form Ra = b, where a is the vector of A, B,C coefficients that satisfies Eq. (C1), then the residual
weighted squared error is given by

E2 =
∑

t

wt p̂2
rabi(t ) − aT Ra. (C2)

For a group of Rabi oscillations that share the same frequency ω, the optimization problem is to find the ω that minimizes
the sum of the weighted squared errors E2 across those time series. Fourier techniques are used to make the initial search
computationally efficient by noting that Eq. (C1) can be rewritten as⎡

⎢⎢⎣
1
2

∑
t wt + 1

2

∑
t wt cos(2ωt ) 1

2

∑
t wt sin(2ωt )

∑
t wt cos(ωt )

1
2

∑
t wt sin(2ωt ) 1

2

∑
t wt − 1

2

∑
t wt cos(2ωt )

∑
t wt sin(ωt )∑

t wt cos(ωt )
∑

t wt sin(ωt )
∑

t wt

⎤
⎥⎥⎦
⎡
⎢⎢⎣

A

B

C

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
∑

t wt p̂rabi(t ) cos(ωt )∑
t wt p̂rabi(t ) sin(ωt )∑

t wt p̂rabi(t )

⎤
⎥⎥⎦, (C3)

which simplifies to⎡
⎢⎢⎣

1
2F{wt }(0) + 1

2 Re(F{wt }(2ω)) − 1
2 Im(F{wt }(2ω)) Re(F{wt }(ω))

− 1
2 Im(F{wt }(2ω)) 1

2F{wt }(0) − 1
2 Re(F{wt }(2ω)) −Im(F{wt }(ω))

Re(F{wt }(ω)) −Im(F{wt }(ω)) F{wt }(0)

⎤
⎥⎥⎦
⎡
⎢⎢⎣

A

B

C

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

Re(F{wt p̂rabi(t )}(ω))

−Im(F{wt p̂rabi(t )}(ω))

F{wt p̂rabi(t )}(0)

⎤
⎥⎥⎦

(C4)

where

F{x(t )}(ω) =
∑

t

x(t )e−iωt (C5)

is the discrete-time Fourier transform of x(t ) over t ∈ T ,
x(t ) ∈ {wt ,wt p̂rabi(t )}. Standard FFTs allow us to efficiently
calculate the various Fourier coefficients in Eq. (C4) at fixed
intervals in the spectrum using

F

{
x

(
n

Fs
+ t0

)}
(k) =

N−1∑
n=0

x

(
n

Fs
+ t0

)
e−i 2π

N kn. (C6)

The Fourier coefficients calculated via the above equa-
tion can then be used in Eq. (C4) to perform a com-
putationally efficient grid search over possible values of
ω ∈ {1 2πFs

N , 2 2πFs
N , 3 2πFs

N , ..., πFs}, with an initial estimate
for ω obtained by minimizing Eq. (C2) summed over the
corresponding Rabi oscillations. Bracketed gradient-based
search can then be performed using Eq. (C1) directly at
a higher computational cost to refine these grid-search
estimates.

For grid search purposes, we have also found it useful to
sample frequency amplitudes at intermediate half steps to bet-
ter avoid local minima, particularly when T does not satisfy
the minimum-frequency criteria. Such intermediate sampling
is accomplished by multiplying signals of the form x( n

Fs
+ t0)

by a rotating exponential frequency and then computing a

second FFT,

G

{
x

(
n

Fs
+ t0

)}
(k) = F

{
x

(
n

Fs
+ t0

)}(
k + 1

2

)

=
N−1∑
n=0

[
x

(
n

Fs
+ t0

)
e−i π

N n

]
e−i 2π

N kn.

(C7)

For general multiparameter Hamiltonians, the above initial
estimation procedure must be modified to ensure that all the
frequency components in a Rabi oscillation corresponding
to (M,U ) can be faithfully extracted. The model must then
assume that each Fourier series has up to K modes. Normal
equations for the same can then be setup. Such an approach
has been employed in Bayesian spectral analysis [93] and
nonstationary time-series estimation [94,95].

2. Maximum likelihood estimation

The estimation procedure for MLE (Sec. IV D 2) requires

an initial estimate θ̂
(i,0)

, which ideally lives in the same convex
basin as the global minimum of the MLE. This allows for
a more localized search to be carried out and a stochastic
gradient descent procedure should allow us to jump out of any
smaller local minima here if present. When an initial estimate
cannot be provided by the learner, the estimates obtained
through regression as just discussed is used as an initial guess
to the MLE.
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(a) (b)

FIG. 21. Slices of energy landscapes of the log-likelihood loss function along the different parameter components considering experimental
data collected from IBM quantum device D ibmq_boeblingen under drive configuration 3 (Table IV) (a) using parametrization J, and (b) using
parametrization �. In each slice of θi (x axis), we fix the values of the other components to that obtained through estimation and evaluate the
negative log-likelihood loss (y axis) by changing the value of θi. We indicate the Hamiltonian parameter estimate θ̂i as obtained through our
estimation procedure by a dashed red line.

We solve the MLE 5 through a combination of SGD
applied on different parametrizations and the quasi-Newton
method for further refinement. Addition of the latter step
helps us in saving computationally expensive hyperparameter
tuning that is required.

(1) SGD solve using ADAM considering the �

parametrization and learning rate of ηi
� using the input

of θ̂
(i,0)

. This returns the output of θ̂
(i,1)

.
(2) SGD solve using ADAM considering the J

parametrization and learning rate of ηi
J using the input

of θ̂
(i,1)

. This returns the output of θ̂
(i,2)

.
(3) MLE solve considering the J parametrization using

LFBGS-B using the input of θ̂
(i,2)

. This returns the output of

θ̂
(i,3)

.
We set the learning rate ηi for ADAM [79] in the ith round

of active learning according to the number of queries already
made. We consider the learning rate to be ηi ∝ 1√

|X (i)| , i.e.,

the learning rate is reduced inversely to the square root of the

number of training examples. This ensures a more localized
search as we progress in the learning. We consider η0 = 10−3.
We found that carrying out step 2 after step 1 gave us more
accurate estimates of θ̂ than just carrying out step 1. Moreover,
after the first few rounds of HAL, we can skip steps 1 and 2.
We can carry out step 3 directly using an initial condition of
θ̂ (i,0) from initial estimation or θ̂ (i−1) from the previous round.

3. Energy landscapes of negative log-likelihood loss
for cross-resonance Hamiltonian

We ascertain the efficacy of the estimation procedure by vi-
sualizing the energy landscapes of the negative log-likelihood
loss function [Eq. (56)] and inspecting the location of the θ̂

in the landscape. In Fig. 21, we plot the energy landscape
obtained from an experimental dataset, for the two different
parametrizations J and �. The energy landscapes indicate the
nonlinear and non-convex nature of the MLE of Eq. (56).
These energy landscapes also indicate why solving the MLE
in the parametrization of � using ADAM is carried out before
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TABLE VIII. Summary of estimated CR Hamiltonian parameters for the IBM quantum devices A, B, and C. We give the Hamiltonian
parameters in the parametrization J and the physically relevant frequency components in �. The readout noise is defined by the parameters of
r0 and r1, which are the conditional probabilities of bit flip given the measurement outcomes are y = 0 and y = 1 respectively (see Sec. IV C 1).
We show the results for CR Hamiltonians between two different pairs of qubits on Device C, specified as (control qubit, target qubit): (0,1)
(CR01) and (0,2) (CR02).

Drive
Hamiltonian parameters [×106 s−1] Noise sources

Device config. J = (JIX , JIY , JIZ , JZX , JZY , JZZ ) (ω0, ω1) Readout (r0, r1) Time offset (�teff,0,�teff,1) [ns]

0 (58.47, 3.68, −5.00, 10.76, 2.29, −0.52) (69.71, 47.94) (0.160,0.215) (15, 101)
1 (38.93, 2.34, 0.26, 11.15, −3.30, −0.30) (50.09, 28.36) (0.150, 0.210) (97, 187)

A 2 (19.35, 0.12, 0.69, 10.80, −0.66, 0.24) (30.17, 8.60) (0.220,0.150) (178, 699)
3 (−0.21,−1.68, 0.20, 10.47, 1.50, −0.86) (10.28, 11.20) (0.145, 0.150) (579, 532)
4 (−20.11, −1.35, 0.73, 10.55, 0.94, −1.13) (9.58, 30.80) (0.190, 0.185) (594, 174)

0 (30.03, 3.62, 0.49, 1.75, −0.16, −0.31) (31.97, 28.54) (0.110, 0.140) (149, 175)
1 (15.34, 1.85, 0.19, 1.81, −0.75, −0.59) (17.19, 13.80) (0.090, 0.070) (318, 407)

B 2 (0.89, 0.72, 0.24, 1.82, −0.54, −0.34) (2.72, 1.67) (0.120, 0.160) (2235, 3712)
3 (−13.71, −2.31, −0.54, 1.78, 0.09, 0.09) (12.15, 15.69) (0.130, 0.160) (472, 353)
4 (−28.45, −2.19, −1.20, 1.56, 2.15, 0.27) (26.91, 30.35) (0.110, 0.100) (187, 161)

0 (−8.52,−2.15, −0.26, 10.93, 0.85, 0.32) (2.74, 19.69) (0.200, 0.160) (2280, 286)
1 (−3.88, −2.26, −0.35, 10.88, 1.46, 0.43) (7.04, 15.24) (0.120, 0.160) (869, 376)

C/CR01 2 (0.58, −1.81, −0.45, 10.81, 0.83, 1.24) (11.46, 10.70) (0.080, 0.070) (518, 563)
3 (4.86, −1.66, 0.08, 10.85, 0.44, −0.14) (15.75, 6.35) (0.070, 0.110) (369, 966)
4 (9.53,−0.17, 0.29, 10.76, −0.17, −0.32) (20.29, 1.36) (0.070, 0.120) (276, 4835)

0 (9.42,−0.71, 0.27, 12.21, −0.71, −0.25) (21.67, 2.84) (0.070, 0.060) (255, 2123)
1 (6.17,−0.46, 0.09, 11.96, −0.59, −0.26) (18.16, 5.81) (0.070, 0.110) (311, 1038)

C/CR02 2 (2.59, 0.05, −0.26, 11.90, −1.66, −0.17) (14.58, 9.46) (0.050, 0.090) (397, 629)
3 (−1.03, −0.10, −0.16, 11.99, −0.63, −0.18) (10.99, 13.03) (0.090, 0.060) (541, 445)
4 (−4.53, 0.10, −0.31, 12.04, −0.18, 0.39) (7.50, 16.59) (0.100, 0.110) (811, 344)

solving the MLE in the parametrization of J. The slices along
specific components of � display more convex like nature
than those along components of J. It should also be noted that
there is a global minimum present in the energy landscapes,
which we are able to identify using our estimation procedure.

4. Incorporating uncertainty from shot noise

The inferred Rabi oscillations prabi(t ) used for estimation
are sensitive to the number of shots made for a given query
x = (M,U, t ). This variability in the Rabi oscillations leads to

a variability in the estimates of θ̂
(i,0)

produced. This variability
is particularly high during the initial rounds of HAL when
there are only a few shots of each query present in the set
of training examples. In order to accurately account for this
variability and hence include the uncertainty in our estimates
of the Hamiltonian parameters, we consider the following
procedure. Let us consider the initial estimation of Algorithm
4 as the procedure applied on a particular realization of the
Rabi oscillations. We construct nrep realizations of the Rabi
oscillations considering the observed Rabi oscillation data and
sampling according to the binomial distribution associated
with the number of shots for each query. For each of these
realizations, we obtain frequency estimates of ω0,1 through
the initial estimation as described above. We then fit the para-
metric distributions of log-normal distributions to frequency
estimates from each each realization. We then continue with
the initial estimation procedure and MLE considering each of
these realizations.

Other ways of incorporating uncertainty in the Hamiltonian
parameter estimates during the estimation procedure would be
to adopt a Bayesian learning framework or stochastic process
regression (e.g., Gaussian process regression). This is left for
future work.

APPENDIX D: LEARNED HAMILTONIAN PARAMETERS
AND LEARNING ERROR ON IBM QUANTUM DEVICES

In this Appendix, we give a summary of the estimated
cross-resonance Hamiltonian parameters on different IBM
quantum devices not already discussed in Sec. V and lend
further support to the performance of different learners on
the 20-qubit IBM quantum device D ibmq_boeblingen under
drive configuration 2 (Table V A 2).

1. Summary of model parameters on IBM quantum devices

In Sec. V A 2, we described the estimated Hamiltonian pa-
rameters and the noise model parameters for the IBM quantum
device D ibmq_boeblingen. Here, we give a similar summary
for the other IBM quantum devices (A, B, and C).

Considering the entire experimental datasets collected for
each of these IBM quantum devices (Sec. IV B 1) as training
data, we compute the Hamiltonian parameters using our esti-
mation procedure (Sec. IV D), and that of the different noise
sources (Sec. IV C). We summarize these parameters for the
different devices in Table VIII. These Hamiltonian parameters
serve as approximations of the true parameters J�. Here, the
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(a) (b)

(c) (d)

FIG. 22. Dependence of the time offset �t on parameters ω for IBM quantum devices (a) A, (b) B, (c) C CR01, and (d) C CR02. The plotted
data points correspond to driving the device under different conditions and hence different cross-resonance Hamiltonians. The imperfect pulse
shaping model extracted from these experimental data points is shown by a fit and this is later used in the MLE.

readout noise parameters (r0, r1) are given to indicate the
amount of readout noise possible in these devices and serve as
a proxy for the conditional distributions of the readout given
the measurement outcome used in the final MLE [Eq. (56)].
The time offset �teff,i introduced due to imperfect control is
also specified and where the subscript i indicates dependence
on the preparation operator U0 = σIσI and U1 = σX σI .

As mentioned earlier in Sec. IV C 2, we fit the estimated
values of �teff to the Hamiltonian parameters to obtain a
model for the time-offset. This is shown in Fig. 22 and is used
in the MLE [Eq. (56)].

2. Expected trends of learning error

In Sec. V C, we assessed the performance of the HAL-FI
and HAL-FIR algorithms in different learning scenarios on
IBM quantum device D ibmq_boeblingen under drive configu-
ration 2, where the query distribution was learned in real time.

Here, we lend support that the trends observed in Figs. 10–12
are expected.

To determine the behavior of the learners in an idealized
setting, we consider the case where we have access to the
optimal query distribution during learning. In Fig. 23, we
show the trend of RMSE for HAL-FI with a fixed query space
assuming access to the query distribution q(θ�) during train-
ing and that the Cramer-Rao bound is saturated. We follow
the same protocol from Sec. V A 5 as we did for our earlier
experiments. For the baseline strategy and a passive learner,
the query distribution corresponds to an uniform distribution
over the query space. As expected, using a passive learner
does not change the scaling in the finite query nor the asymp-
totic query regimes. A scaling of ε ∼ 1/

√
N or N ∼ ε−2 is

observed, which is in line with the standard quantum limit
(SQL). For HAL-FI, we observe an initial scaling in RMSE
with number of queries, which is higher than SQL but this
reduces to SQL in the asymptotic query regime. Thus, our
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FIG. 23. Scaling of learning testing error with number of queries for Hamiltonian learning considering access to the asymptotic optimal
query distribution q(θ�) of HAL-FI or HAL-FIR. We show trends of (a) RMSE and (b) testing error obtained upon analysis of the lower
Cramer-Rao bounds. We consider the Hamiltonian parameters of θ� as determined from the experimental dataset of IBM quantum device D
ibmq_boeblingen under drive configuration 2. We plot the trends of learning error with number of queries for HAL-FI/HAL-FIR against the
passive learner, which uses the uniform distribution over Q.

results from Sec. V C are in agreement with what we observe
here. Asymptotically, we expect a constant savings in the
number of queries or resources required when employing an
active learner with a fixed query space compared to a passive
learner.

Likewise for Hamiltonian learning with prior information,
we can compute the RMSE with number of queries for HAL-
FI with an adaptively growing query space and access to
q(i)(θ�) for each ith batch during learning. In Fig. 24, we show
the trend of RMSE with number of queries for HAL-FI with
a linearly growing query space and an exponentially growing
query space. We observe that the passive learner has a scaling

of the SQL in the asymptotic query regime. HAL-FI in the lin-
early growing query space achieves super-Heisenberg scaling.
We note that this supports the trend of RMSE achieved during
the experiments in Sec. V D 1.

As noted in Sec. V D 1, HAL-FI with an exponentially
growing query space also achieves Heisenberg limited scaling
until the evolution times being included in the query space
reach the magnitude of the decoherence time T1 and T2. In this
case, HAL-FI avoids selecting higher evolution times as the
information gained from these measurement outcomes will
tend to zero. Thus, we expect that the Heisenberg limit to be
achieved for the finite query setting.

FIG. 24. Hamiltonian learning with access to prior information of subset of parameters during recalibration: Scaling of RMSE with Number
of Queries. We assume access to the asymptotic optimal query distribution q(θ�) of HAL-FI and analysis of the Cramer-Rao bounds. We
consider the Hamiltonian parameters of θ� as determined from the experimental dataset of IBM quantum device D ibmq_boeblingen under
drive configuration 3.
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FIG. 25. Asymptotic optimal query distribution q(θ�) for HAL-FI with a fixed query space (Sec. IV B 2) on ibmq_boeblingen under drive
configuration 2 (Table IV). We consider different noise sources of readout noise, imperfect pulse shaping, and decoherence. The y axis indicates
the different combinations of measurement operators and preparation operators available for each query in Q. The different preparation
operators are denoted as U0 = σIσI and U1 = σX σI . The x axis corresponds to T , which is set to 81 equispaced evolution times in [10−7, 6 ×
10−7] s . The query distribution is colorcoded according to the colormap on the right.

3. Sparse query distributions

Another consequence of using HAL-FI is the sparsity of
the asymptotic query distribution during learning. This is
confirmed by visualizing the optimal query distribution of
HAL-FI with the fixed query space (Sec. IV B 2) considering
IBM quantum device ibmq_boeblingen under drive configura-
tion 2 in Fig. 25. It is interesting to note that this was achieved
even though sparsity was not incorporated into the learning
problem. This can be explained by realizing that the most
informative queries are in fact sparse over the query space.
It should be noted, however, that this is typically not the query
distribution that HAL-FI has access to during learning as the
true parameters θ� are not available and the query distribution
obtained through optimization [Eq. (19)] is modified by mix-
ing with the uniform distribution (see Sec. III A).

APPENDIX E: HEISENBERG LIMITED SCALING
IN CROSS-RESONANCE TYPE HAMILTONIANS

In this Appendix, we discuss if Heisenberg limited scal-
ing (HLS) can be achieved in different quantum systems
with simplified cross-resonance Hamiltonians. The simplified
cross-resonance Hamiltonians are obtained by removing par-
ticular Pauli product terms from the cross-resonance (CR)
Hamiltonian (Sec. IV A) that we have studied so far. We
give examples of such Hamiltonians (equipped with the query
space described in Sec. IV) in Appendix E 1 where HLS is
achieved for all the parameters and examples where HLS
is not achieved for all the parameters during Hamiltonian
learning in Appendix E 2. For examples of HLS, we describe
query distributions obtained by HAL-FI and relate them to
query distributions obtained through zero crossings of Rabi
oscillations or maximum entropy.

In the following examples, we consider reduction to a sin-
gle interaction in the two qubit system and a three interaction
example, which we call the simplified cross-resonance (SCR)
Hamiltonian. This reduction from the full CR Hamiltonian is

achieved by setting the appropriate Hamiltonian parameters to
zero and introducing the matrix R that denotes which parts of
the CR Fisher information matrix are involved in the estima-
tion of these respective Hamiltonian parameters. Suppose the
reduced set of parameters are collected into the vector θR, then
the Cramer-Rao bound is now∑

i

Var((θR)i ) �
1

N
Tr

(
I−1

q (θR)
) = 1

N
Tr

(
R−TI−1

q (θ)R−1
)

(E1)

where Iq(θR) is the reduced Fisher information matrix corre-
sponding to the query distribution q. In the last step, we noted
the relation of the reduced Fisher information matrix with the
full Fisher information matrix as Iq(θR) = RIq(θ)RT .

1. Examples

a. Single interaction two-qubit system

The Hamiltonian of interest in this case is

H = JZX σZ ⊗ σX . (E2)

This may be obtained by considering the parameter set
of J = (0, 0, 0, JZX , 0, 0)T and R = [0, 0, 0, 1, 0, 0]. The
values of the parameters in the alternate parametriza-
tion of � = (ω0, δ0, φ0, ω1, δ1, φ1)T = (JZX , 0, 0, JZX , 0, π )
where we have assumed JZX > 0. The Rabi oscillations for
different queries in this case are as follows:

(M〈X 〉,Uj, t ) : prabi(x) = 0, (E3)

(M〈Y 〉,Uj, t ) : prabi(x) = sin(2ω jt ), (E4)

(M〈Z〉,Uj, t ) : prabi(x) = cos(2ω jt ), (E5)

where the index j ∈ {0, 1} corresponds to different prepara-
tion operators U0 = σIσI and U1 = σX σI . We note that the
measurement operator of M〈X 〉 is not informative about the
frequency ω0 = JZX for this system and can also be noted
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from considering the corresponding Fisher information. In
order to learn the parameter of interest ω0, it is enough to
consider one of the queries in {M〈Y 〉, M〈Z〉} × {σIσI , σX σI} and
a suitable time range T .

Let us select the query of (M〈Z〉, σIσI , t ) and suppose our
query distribution over the time range is based on the zeros the
Rabi oscillations. Given a time range T , we consider values
of tk = π

4ω0
+ kπ

2ω0
where k ∈ N. Queries with these system

evolution times have the maximum entropy for the considered
(M,U ).

Note that the Fisher information of a query in this case is
given by Ix(ω0) = 4t2. Through the Cramer-Rao bound, we
then have

ε2 = Var(ω0) �
N∑

k=1

1

4t2
k

≈
{

1
2

ω2

Nπ2 , fixed space of zero crossings
3
4

ω2

N3π2 , linearly spaced zero crossings
(E6)

where we have set the learning error to be achieved as ε. We
can thus expect to achieve a scaling of N ∼ ε−3/2 when using
linearly spaced zero crossings. For exponentially spaced zero
crossings of the Rabi oscillations, the variance approaches
zero at an increasing rate.

b. Two interaction systems

Consider the following Hamiltonian:

H = JIX σI ⊗ σX + JZX σZ ⊗ σX . (E7)

The reduced set of parameters is then �R = (ω0, ω1) =
(|JIX + JZX |, |JIX − JZX |). As in the earlier single interaction
example, we can choose the queries that contain the zero
crossings of the Rabi oscillations. The Rabi oscillations are
given by

(M〈X 〉,Uj, t ) : prabi(x) = 0, (E8)

(M〈Y 〉,Uj, t ) : prabi(x) = sin(2ω jt ), (E9)

(M〈Z〉,Uj, t ) : prabi(x) = cos(2ω jt ), (E10)

where j ∈ {0, 1} is used as an index to denote the prepara-
tion operators U0 = σIσI and U1 = σX σI . A complete set of
queries to estimate (ω0, ω1) with Heisenberg limited scaling
would then be

Q =
{

(M〈Z〉, σIσI , tk ) : tk = π

4ω0
+ kπ

2ω0
, k ∈ N

}
⋃{

(M〈Z〉, σX σI , tk ) : tk = π

4ω1
+ kπ

2ω1
, k ∈ N

}
.

(E11)

The set of evolution times chosen here also correspond to
those with maximum entropy. The Fisher information of a
query made through either set of measurement or preparation
operators in the query space is given by Ix(ω0, ω1) = 4t2.
Thus, through the argument we made in the previous section,
we can also learn the parameters of unitary here with Heisen-
berg limited scaling.

2. Examples of non-HLS scaling during Hamiltonian learning

So far, we have given examples of Hamiltonians obtained
through simplification of the CR Hamiltonian, that can be
learned with HLS scaling. We now give examples of Hamil-
tonians, which cannot be learned with HLS scaling using the
query space described in Sec. IV B 2.

a. Two interaction systems

Now, let us consider the following alternate Hamiltonian
(modified slightly from the previous example discussed):

H = JIY σI ⊗ σY + JZX σZ ⊗ σX (E12)

where a complete reduced set of parameters is �R =
(ω0, φ0) = (

√
J2

ZX + J2
IY , tan−1( JIY

JZX
)). This set of parameters

contains a frequency in addition to a phase. Fisher information
matrices in the �R parametrization considering queries of the
form (M, σIσI , t ) where we select one particular preparation
operator is given by

M〈X 〉 : I = 1

1 − sin2(φ0) sin2(2ω0t )

[
4t2 sin2(φ0) cos2(2ω0t ) 1

2 t sin(2φ0) sin(4ω0t )

1
2 t sin(2φ0) sin(4ω0t ) cos2(φ0) sin2(2ω0t )

]
, (E13)

M〈Y 〉 : I = 1

1 − cos2(φ0) sin2(2ω0t )

[
4t2 cos2(φ0) cos2(2ω0t ) − 1

2 t sin(2φ0) sin(4ω0t )

− 1
2 t sin(2φ0) sin(4ω0t ) sin2(φ0) sin2(2ω0t )

]
, (E14)

M〈Z〉 : I =
[

4t2 0

0 0

]
. (E15)

Fisher information matrices in JR is given by

IJ =
⎡
⎣ J2

IY

ω2
0
I11 + 2JIY JZX

ω3
0

I12 + J2
ZX

ω4
0
I22

JZX

ω3
0
I12 − JIY

ω3
0
I12 + JIY JZX

ω2
0

(I11 − I12)

· J2
ZX

ω2
0
I11 − 2JIY JZX

ω3
0

I12 + J2
IY

ω4
0
I22

⎤
⎦ (E16)

where we have related them to elements of I as given above
in Eq. (E15). We observe that in order to obtain HLS in

(JIY , JZX ), it is necessary to set I22 = 0 and I12 �= 0 to ensure
IJ is full rank and there is an explicit dependence on the
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variable t that we can take advantage of, for HLS. However,
the required conditions cannot be achieved simultaneously
here. This suggests that the current set of queries cannot be
used to achieve HLS.

b. Three interaction simplified cross-resonance gate

The Hamiltonian of interest in this case is

H = JIX σI ⊗ σX + JIY σI ⊗ σY + JZX σZ ⊗ σX . (E17)

This may be obtained by considering the parameter set
of J = (JIX , JIY , 0, JZX , 0, 0)T . Defining R is a bit more
tricky in this case compared to the previous example.
Let us first look at the alternate parametrization of � =
(
√

(JIX +JZX )2 + J2
IY , 0, tan−1( JIY

JIX +JZX
),
√

(JIX − JZX )2+J2
IY ,

0, tan−1( JIY
JIX −JZX

))T . Note that the reduced parametrization
of �R is an over-parameterization with four non-zero
components compared to JR, which only has three nonzero
components. The Rabi oscillations in this case are given by

(M〈X 〉,Uj, t ) : prabi(x) = sin(φ j ) sin(2ω jt ), (E18)

(M〈Y 〉,Uj, t ) : prabi(x) = cos(φ j ) sin(2ω jt ), (E19)

(M〈Z〉,Uj, t ) : prabi(x) = cos(2ω jt ). (E20)

The Fisher information matrices can be obtained by looking
at the CR Fisher information matrices (Appendix A) and
simplifying them,

M〈X 〉 : I j = 1

1 − sin2(φ j ) sin2(2ω jt )

[
4t2 sin2(φ j ) cos2(2ω jt ) 1

2 t sin(2φ j ) sin(4ω jt )

1
2 t sin(2φ j ) sin(4ω jt ) cos2(φ j ) sin2(2ω jt )

]
, (E21)

M〈Y 〉 : I j = 1

1 − cos2(φ j ) sin2(2ω jt )

[
4t2 cos2(φ j ) cos2(2ω jt ) − 1

2 t sin(2φ j ) sin(4ω jt )

− 1
2 t sin(2φ j ) sin(4ω jt ) sin2(φ j ) sin2(2ω jt )

]
, (E22)

M〈Z〉 : I j =
[

4t2 0

0 0

]
. (E23)

If we were to consider the zero crossings of the Rabi oscillations as in the previous example, the queries and their corresponding
Fisher information matrices are of the following form:

M〈X 〉 : tk (M〈X 〉) = π

2ω j
+ kπ

2ω j
, I j =

[
4t2

k sin2(φ j ) 0

0 0

]
, (E24)

M〈Y 〉 : tk (M〈Y 〉) = π

2ω j
+ kπ

2ω j
, I j =

[
4t2

k cos2(φ j ) 0

0 0

]
, (E25)

M〈Z〉 : tk (M〈Z〉) = π

4ω j
+ kπ

2ω j
, I j =

[
4t2

k 0

0 0

]
, (E26)

where k ∈ N. It should be noted that the evolution times tk (M ) being selected are a function of the measurement operator
involved in the query, which is made explicit through the argument M. As �R is an overparameterization, let us look at the query
Fisher information matrix Iq(JR) for the above set of queries,

Iq(JR) =
∑

k

∑
M∈{M〈X 〉,M〈Z〉}

4t2
k (M )

⎡
⎢⎢⎢⎢⎢⎣

(
∂ω0
∂JIX

)2
+

(
∂ω1
∂JIX

)2 (
∂ω0
∂JIX

∂ω0
∂JIY

+ ∂ω1
∂JIX

∂ω1
∂JIY

) (
∂ω0
∂JIX

∂ω0
∂JZX

+ ∂ω1
∂JIX

∂ω1
∂JZX

)
(

∂ω0
∂JIY

)2
+

(
∂ω1
∂JIY

)2 (
∂ω0
∂JIY

∂ω0
∂JZX

+ ∂ω1
∂JIY

∂ω1
∂JZX

)
(

∂ω0
∂JZX

)2
+

(
∂ω1
∂JZX

)2

⎤
⎥⎥⎥⎥⎥⎦ (E27)

where we have only given the upper-triangular part of the symmetric matrix. It can be shown that for these queries, Iq(JR) is
rank deficient and thus noninvertible. This was foreshadowed by the fact that Iq(�) was informative in ω0 and ω1 but not one of

the phases φ0,1. Hence, it is more appropriate to consider R = [1 0 0 0 0 0
0 0 0 1 0 0] for these set of queries. It can be verified

through an analysis similar to the single interaction system that we can achieve a scaling of N ∼ O(ε−3/2) and hence make
improvements over than SQL.

If we wish to learn JIY as well, it is necessary to introduce other queries such that the Fisher information matrix is non-zero
for the corresponding parameter of interest. Let us start by changing our learning task to the simpler challenge of learning the
parameters (ω0, δ0). In this case, it is enough to consider only queries of the form (M〈X 〉, σI ⊗ σI , t ) where the time range t ∈ T
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needs to be determined. We immediately observe that

Iq(�R)−1 ∝
∑

k

1

1 − sin2(φ0) sin2(2ω0tk )

[
cos2(φ j ) sin2(2ω jt ) − 1

2 t sin(2φ j ) sin(4ω jt )
− 1

2 t sin(2φ j ) sin(4ω jt ) 4t2
k sin2(φ j ) cos2(2ω jt )

]
(E28)

and the variance of parameter φ0,

Var(φ0) � 1

N

N∑
k=1

1 − sin2(φ0) sin2(2ω0tk )

cos2(φ0) sin2(2ω0tk )
(E29)

where the term inside the sum on the right-hand side is
fixed for any periodic or equispaced set of evolution times

tk and thus HLS cannot be achieved using such a set
of queries. One key to ensure achieving Heisenberg lim-
ited scaling is to introduce an explicit dependence on the
variable of system evolution time t into the correspond-
ing Fisher information. We note that this is not followed
by the different set of measurement operators considered
here.
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