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The Markov chain Monte Carlo (MCMC) method, especially the Metropolis-Hastings (MH) algorithm, is
a widely used technique for sampling from a target probability distribution P on a state space � and applied
to various problems such as estimation of parameters in statistical models in the Bayesian approach. Quantum
algorithms for MCMC have been proposed, yielding the quadratic speedup with respect to the spectral gap �

compared to classical counterparts. In this paper, we consider the quantum version of the MH algorithm in the
case that calculating P is costly because the log-likelihood L for a state x ∈ � is obtained via computing the sum
of many terms, 1

M

∑M−1
i=0 �(i, x). We propose calculating L by quantum Monte Carlo integration and combine it

with the existing method called quantum simulated annealing (QSA) to generate the quantum state that encodes
P in amplitudes. We consider not only state generation but also finding a credible interval for a parameter, a
common task in Bayesian inference. In the proposed method for credible interval calculation, the number of
queries to the quantum circuit to compute � scales on �, the required accuracy ε, and the standard deviation
σ of � as Õ(σ/ε2�3/2), in contrast to Õ(M/ε�1/2) for QSA with L calculated exactly. Therefore, the proposed
method is advantageous if σ scales on M sublinearly. As one such example, we consider parameter estimation
in a gravitational wave experiment, where σ = O(M1/2).

DOI: 10.1103/PhysRevResearch.5.033059

I. INTRODUCTION

A. Background and motivation

Following the recent rapid development of quantum com-
puting, various quantum algorithms are studied extensively,
along with their industrial and scientific applications. Among
them, quantum algorithms for the Markov Chain Monte
Carlo (MCMC) method are one of the prominent ones [1–7].
MCMC is a methodology for sampling from a probability
distribution P on a sample space (state space) � by generating
a Markov chain whose stationary distribution is P (see [8]). It
is widely used in various situations, for example, estimation of
parameters in statistical models in the Bayesian approach [9].

In spite of its usefulness, MCMC often has an issue of com-
putational time, since many iterations of state generation may
be needed for the chain to sufficiently converge to the target
distribution P. Classically, the iteration number for sufficient
convergence scales as Õ(�−1), where � is the spectral gap of
the chain (see the definition in Sec. II B).

Quantum MCMC algorithms can be remedies for this: us-
ing the quantum walk [10] as a building block, they generates
(an approximation of) a quantum state |P〉 that encodes P in
amplitudes with Õ(�−1/2) queries to the walk operator, which
indicates the quadratic quantum speedup. More concretely, the

*miyamoto.kouichi.qiqb@osaka-u.ac.jp

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

approach in Refs. [1–5] called quantum simulated annealing
(QSA) takes the following strategy. We consider an initial
distribution P0 and a series of Markov chains with stationary
distributions P1, . . . , Pl such that these distributions suffi-
ciently overlap; that is, the quantum states that encode them
satisfy |〈Pi|Pi+1〉|2 � const. Then, starting from the state |P0〉
that encodes P0, we sequentially generate |P1〉, . . . , |Pl−1〉,
and finally |Pl〉, which is close to |P〉. In particular, Ref-
erence [5] considered applying this to Bayesian inference,
where P is written as P(x) ∝ P0(x)e−L(x) with the negative
log-likelihood L, and presented the procedure to generate |P〉
making Õ(

√
L̄/�) calls to the quantum walk operator, where

L̄ is the expectation of L under the distribution P0.
Among various types of MCMC, the Metropolis-Hastings

(MH) algorithm [11,12] is particularly prominent. In this algo-
rithm, it is supposed that the target distribution P is efficiently
computable except for the normalization constant and we
are given some proposal distribution T for transition among
possible states, which is also efficiently computed. Then,
accepting the proposed transition with some probability deter-
mined by P and T , we generate a chain, which is guaranteed
to converge to P. Because of its simplicity, the MH algorithm
is widely used. Some of the previous quantum algorithms for
MCMC are in fact based on the MH algorithm [4,6,7].

In this paper, we consider a quantum Metropolis-Hastings
algorithm in a specific but ubiquitous and important situation.
That is, we focus on the case that the target distribution P
is computed via summation of many terms. More specifi-
cally, we suppose that P(x) ∝ P0(x)e−L(x) and L is written
as L(x) = 1

M

∑M−1
i=0 �(i, x) with a large integer M and a func-

tion �, except for efficiently computable terms (see Sec. III B
for the exact problem setting). In the context of Bayesian
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inference, this corresponds to the situation that the negative
log-likelihood is a sum of many terms. In this case, calculation
of P can be time consuming, even if � is efficiently computed.
Naively, we need to iterate calculations of �(i, x) and additions
M times.

As an example of such a case, we can take parameter
estimation in a gravitational wave (GW) detection experiment
(see the review [13] and references therein). In a GW laser
interferometer such as LIGO and Virgo [14–17], a GW signal
is explored in noisy detector output data by matched filter-
ing [18–21], and, if detected, estimation of parameters in the
waveform of the GW is performed in the Bayesian approach.
The log-likelihood in this parameter estimation is given as
a sum of contributions from various Fourier modes of the
data and thus has the aforementioned form. More generally,
many statistical inference problems with a large number of
independent samples fall into the considered case.

As far as the author knows, previous studies on quantum
MCMC algorithms have not focused on the difficulty to com-
pute a target distribution of the above type. References [1–5]
assumed the availability of the quantum circuit to generate the
quantum state that encodes the transition matrix of the Markov
chain. Although Refs. [6,7] broke down the operators needed
in the quantum MH algorithm in more detail, they assumed the
availability of the quantum circuit to determine acceptance or
rejection, and did not consider the detail of target distribution
calculation. When it comes to quantum algorithms for data
analysis in GW experiments, although there are studies on
GW detection [22–25] and the quantum MH algorithm for
GW parameter estimation [26], the issue of log-likelihood
computation has not been focused on. The focus in Ref. [26] is
the comparison between the classical and quantum MH algo-
rithms with respect to the time to solution (TTS), a metric for
the time to obtain the maximum likelihood parameter set with
high probability, by the numerical simulation, and Ref. [26]
did not consider the issue of the log-likelihood computation
cost.

B. Our contributions

In this paper, we consider how to speed up calculation of
P using another quantum algorithm as a subroutine of the
quantum MH algorithm. Concretely, we use quantum Monte
Carlo integration (QMCI) [27,28]. Based on quantum ampli-
tude estimation (QAE) [29], QMCI estimates E [F (X )], the
expectation of a function F of a random variable X , providing
quadratic speedup compared to classical Monte Carlo integra-
tion. For example, if we have a bound σ 2 on the variance
of F (X ), QMCI yields an estimate with accuracy ε, calling
the quantum circuits to generate a quantum state encoding
X ′s distribution and compute F Õ(σ/ε) times. As a special
case, we can use QMCI to estimate the sum of many terms. In
fact, QMCI is utilized for calculating the signal-to-noise ratio
(SNR) in the quantum algorithm for GW matched filtering
proposed in Ref. [23], and using QMCI in the quantum MH
algorithm is a similar idea.

We note that QMCI gives an erroneous estimate and thus
the Markov chain based on it has a stationary distribution
different from the original one P. Fortunately, MCMC with
such a perturbation has been studied [30–32], and, according

to their results, we can set the accuracy in QMCI to obtain the
distribution close to P.

We make a further consideration from a practical perspec-
tive. Some previous studies considered only preparing the
quantum state |P〉, but what we want in real life is not the
quantum state but the results of some statistical analysis on
P as classical data. Then, this paper presents not only how
to prepare |P〉 but also the procedure to obtain the credible
interval of a parameter θ in a statistical model. It is an interval
where θ falls with a prefixed probability in the distribution
P and a quantity we often aim to find in Bayesian inference.
Given a quantum circuit VP to prepare |P〉, we can estimate the
cumulative distribution function (CDF) of θ by QMCI using
VP iteratively. We then find the credible interval via binary
search on the CDF. We also consider applying this method to
credible interval calculation for GW parameters.

C. Main result

Table I is a summary of the complexities in state generation
and credible interval calculation, which means the numbers of
calls to the oracle to compute �, in various methods for suffi-
ciently small error tolerance ε. Here, the exact QSA method
is QSA with L calculated exactly by M iterative calculations
of �. We see that the complexity of the proposed method is
equal to that of the exact QSA method with the factor M
replaced with σ/�minε, where σ 2 is the variance of �, ε is
the required accuracy, and �min is the lower bound of spectral
gaps of Markov chains related to the considered problem. This
is because, following the result of Ref. [30], we estimate L by
QMCI with accuracy �minε in order to reach a distribution
close to P with accuracy ε, and thus its complexity becomes
Õ(σ/�minε). As a result, with respect to ε and �min, the com-
plexity of the proposed method is worse than the exact QSA
method and even the classical MH algorithm. Nevertheless,
it may be advantageous with respect to M, if σ scales on M
sublinearly. In fact, in the case of GW parameter estimation,
σ can be O(

√
M ), which means that the proposed method

is quadratically faster than the exact QSA method and the
classical MH algorithm with respect to M.

D. Organization

Section II is preliminary one, where we briefly explain the
MH algorithm, QSA, and QMCI. In Sec. III, we present our
methods for generating the state |P〉 and finding the credible
interval in details. In Sec. IV, we consider the application to
GW parameter estimation. Section V summarizes this paper.

II. PRELIMINARY

A. Notation

Here, we summarize some notations used in this paper.
R+ denotes the set of all positive real numbers. For n ∈ N,

we define [n] := {1, . . . , n} and [n]0 := {0, 1, . . . , n − 1}.
We hereafter consider systems consisting of quantum

registers (or simply registers), sets of single or multiple
qubits. A ket |ψ〉 denotes a state vector of a quantum state
on a register, and we sometimes put a subscript to clarify
the register on which the state is generated: |ψ〉R is a state
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TABLE I. The complexities (number of queries to the oracle to compute �) in various tasks in various methods for sufficiently small ε

[precisely speaking, ε satisfying Eq. (78)]. Here, ε represents the total variation distance between the generated state and |P〉 and the error in
the cumulative distribution function for state generation and credible interval calculation, respectively (see Secs. III C and III D for details).
�min is a lower bound of spectral gaps of some Markov chains (see Sec. III C for details). ρ is the SNR in GW matched filtering (see Sec. IV
for details).

Task Proposed method Exact QSA Classical MH

Generate |P〉 Õ
(

σ L̄1/2

�
3/2
minε

)
Õ
(

ML̄1/2

�
1/2
min

)
Not applicable

Credible interval (general) Õ
(

σ L̄1/2

�
3/2
minε2

)
Õ
(

ML̄1/2

�
1/2
minε

)
Õ
(

M
�ε2

)
Credible interval (GW) Õ

(
ρM1/2 L̄1/2

�
3/2
minε2

)
Õ
(

ML̄1/2

�
1/2
minε

)
Õ
(

M
�ε2

)

on a register R. Similarly, we sometimes put a subscript to
a symbol representing an operator to indicate the register on
which the operator acts. In particular, IR denotes the identity
operator on a register R.

For x ∈ R, |x〉 denotes the computational basis state on a
register whose bit string corresponds to a finite-precision bi-
nary representation of x. This representation includes the sign
of x in some way (e.g., the two’s complement method [33]).
We assume that any number considered in this paper is rep-
resented with a sufficiently large number of qubits and thus
neglect rounding errors. For a real vector x = (x1, . . . , xd ) ∈
Rd , |x〉 denotes a computational basis state on d-register sys-
tem |x〉 = |x1〉 · · · |xd〉.

For a vector x = (x1, . . . , xd ) ∈ Cd , we define its k-norm
as ‖x‖k := (

∑d
i=1 |xi|k )1/k with k ∈ N and max norm as

‖x‖∞ := max{|x1|, . . . , |xd |}. For a matrix A ∈ Cm×n, we de-
fine ‖A‖k := sup x∈Cn

‖x‖k=1
‖Ax‖k with k ∈ N ∪ {∞}, and denote

by ‖A‖F its Frobenius norm. We simply write ‖ · ‖2 as ‖ · ‖.
‖|ψ〉‖ is a 2-norm of the (unnormalized) state vector |ψ〉.

If x, y ∈ Cd satisfy ‖x − y‖ � ε with some ε ∈ R+, we
say that x is ε-close to y and x is an ε approximation of
y. If quantum states |ψ〉 and |φ〉 on a same register satisfy
‖|ψ〉 − |φ〉‖ � ε with some ε ∈ R+, we say that |ψ〉 is ε-
close to |φ〉 and |ψ〉 is an ε approximation of |φ〉.

For a nonsingular matrix A, we define its condition number
as ‖A‖ · ‖A−1‖.

Letting (�, 2�, P) be a probability space with a finite sam-
ple space �, we write P(x) = P({x}) for x ∈ � and also call
the measure P the probability distribution or distribution. We
denote by EP[·] the expectation with respect to P.

The indicator function 1C takes 1 if the condition C is
satisfied and 0 otherwise.

B. Metropolis-Hastings algorithm

1. Outline

We briefly summarize the MH algorithm [11,12], whose
aim is sampling a random variable X that obeys some target
probability distribution. For more details, see Ref. [8].

Every value X can take is called a state, and the set of the
states is called the state space and hereafter denoted by �. In
this paper, we consider the situation that � is a finite subset
in Rd , where d ∈ N. This is because a quantum computer
can only represent real numbers in finite precision using a
finite number of qubits, which is the case also on a classical

computer. Of course, X can take continuous values in many
situations, but we assume that continuous X is well approxi-
mated in a discrete manner and errors from this are negligible,
as stated in Sec. II A.

For every x ∈ �, we denote by P(x) ∈ (0, 1) the probabil-
ity that X takes x in the target distribution. We assume that
P(x) can be written as P(x) = p(x)/Z , where p(x) is an easily
computable function and Z :=∑x∈� p(x) is the normaliza-
tion factor. Although Z is often hard to be computed, the MH
algorithm works even if we do not know Z , as explained later.

In the MH algorithm, starting from some initial state x0,
we sequentially get states by making transitions over � as fol-
lows. For every x ∈ �, we set some easy-to-sample proposal
distribution T (x, ·) : � → (0, 1), for example, the normal dis-
tribution centered at x (strictly, its discrete approximation).
Letting xi ∈ � be the ith state, we randomly choose x̃i+1 ∈ �

with probability T (xi, x̃i+1) as a candidate for the next state.
Then, calculating the acceptance ratio A(xi, x̃i+1), which is
defined for x, y ∈ � as

A(x, y) := min

{
1,

P(y)T (y, x)

P(x)T (x, y)

}
, (1)

we set the next state xi+1 to x̃i+1 with probability A(xi, x̃i+1) or
stay at xi otherwise. Note that the target distribution P appears
in A in the form of the ratio P(y)/P(x), which means that we
need to compute only p(x), not Z .

As a consequence, the sequence generated by the MH
algorithm is a Markov chain with a following transition matrix
W = (Wx,y): it is indexed by x, y ∈ � and its (x, y) entry,
which corresponds to the probability that the transition to y
occurs provided that the current state is x, is

Wx,y =
{

T (x, y)A(x, y) if x �= y

1 −∑z∈�\{x} T (x, z)A(x, z) if x = y.
(2)

The convergence property of this Markov chain is affected
by the spectral gap �. It is defined as

� := 1 − |λ1|, (3)

where λ1 is the eigenvalue of W with the second largest
modulus. It is known that the eigenvalue of W with the largest
modulus is 1 and it is nondegenerate (Lemmas 12.1 and 12.2
of Ref. [8]), which means |λ1| < 1 and 0 < � < 1. To present
the formal statement on the convergence rate, we introduce
the total variance distance, a metric to measure the difference
between two probability distributions.

Definition 1. For probability measures P and Q on a
measurable space (�,F ), the total variance distance is
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Algorithm 1. Metropolis-Hastings algorithm.

Require:
• Initial probability distribution P0 on �

• Burn-in length nb ∈ N
• Number n of sample values of X we need
• Function to sample from the proposal distribution T
• Function to compute T
• Function to compute the target probability P

except for the normalization constant
1: Sample the initial point x0 ∈ � from P0.
2: for i = 0, . . . , nb + n − 1 do
3: Sample x̃i+1 ∈ � from the distribution T (xi, ·).
4: Compute A(xi, x̃i+1) in Eq. (1).
5: Set xi+1 = x̃i+1 with probability A(xi, x̃i+1) or xi+1 =

xi otherwise.
6: end for
7: Output xnb+1, . . . , xnb+n.

defined as

‖P − Q‖TV := sup
A∈F

|P(A) − Q(A)|. (4)

Since we are now considering finite �, Eq. (4) becomes
‖P − Q‖TV = maxA∈2� |P(A) − Q(A)|.

Then, we have the following theorem.
Theorem 1 (Theorem 12.4 in Ref. [8]). Let W be the tran-

sition matrix of a reversible irreducible Markov chain with a
finite state space � and a stationary distribution �. Let � be
the spectral gap of the chain. Let P be a set of all probability
distributions on � and, for n ∈ N and μ ∈ P , denote by μW n

the probability distribution after n steps of the Markov chain
with the initial distribution μ. Then, for any n ∈ N,

d (n) � (1 − �)n

2
√

�min
, (5)

where d (n) := supμ∈P ‖μW n − �‖TV and �min :=
minx∈� �(x), and thus, for any ε ∈ R+,

tmix(ε) := min{n ∈ N | d (n) � ε} � 1

�
log

(
1

ε�min

)
. (6)

Since the early part of the Markov chain has not con-
verged yet, we usually discard it, which is called burn-in.
Then, the procedure of the MH algorithm is summarized in
Algorithm 1.

The obtained sequence can be used for, e.g., calculating
expectations of random variables. On the error in this, we have
the following theorem.

Theorem 2 (Theorem 11 in Ref. [34]). Consider the Markov
chain on a finite sample space � generated with a transition
matrix W and initial distribution P0. Denote its stationary
distribution and spectral gap by � and �, respectively. Let
the second largest eigenvalue of W be λ′

1 and let �′ := 1 − λ′
1.

Then, for any function f : � → R and nb, n ∈ N,

e2
n,nb, f := EMC[(Sn,nb, f − E�[ f (x)])2]

� 2‖ f ‖2
∞

n�′ + 4
∥∥P0

�
− 1
∥∥1/2

∞ ‖ f ‖2
∞(1 − �)nb

n2�2
(7)

holds. Here,

Sn,nb, f := 1

n

n∑
i=1

f
(
xnb+i

)
, (8)

xi, i ∈ [nb + n] is the ith entry in the chain, EMC[·] de-
notes the expectation with respect to the randomness of the
generated chain, ‖ f ‖∞ := maxx∈� | f (x)|, and ‖P0

�
− 1‖∞ :=

maxx∈� |P0(x)
�(x) − 1|.

Sn,nb, f is an estimate of E�[ f (x)], the expectation of f
based on n samples from the Markov chain with nb burn-in
samples discarded. Then the theorem implies that, to suppress
the root mean square error en,nb, f of Sn,nb, f to ε ∈ (0, ‖ f ‖∞),
it is sufficient to take the burn-in length

nb = O

⎛⎜⎝ log
(∥∥P0

�
− 1
∥∥1/2

∞
)

�

⎞⎟⎠ (9)

and the sample number

n = O

(
max

{‖ f ‖2
∞

�′ε2
,
‖ f ‖∞
�ε

})
. (10)

Since �1 � � holds, n is also upper bounded as

n = O

(‖ f ‖2
∞

�ε2

)
. (11)

If �′ = �, which holds when λ′
1 is the second largest eigen-

value also in modulus, that is, λ1 = λ′
1, bound (10) becomes

Eq. (11). Including the burn-in, the total step number is also
of order (11).

2. Perturbed acceptance ratio

We consider the case where we can compute not the exact
acceptance ratio but some approximation of it. We expect
that, in such a situation, although the chain converges to some
distribution different from the original target distribution, the
difference is small as far as the error in the acceptance ratio
is small. The bound on such a difference has been studied in
previous studies [30–32], and, in this paper, we use the result
of Ref. [30]. As a preparation to present it, we introduce and
a concept called uniform ergodicity [35].

Definition 2. If, for a Markov chain on a finite state space,
there exist ρ ∈ (0, 1) and C ∈ R such that

‖�n − �‖ � Cρn (12)

holds for any initial distribution and n ∈ N, where �n is the
distribution after n steps and � is the stationary distribution,
we say that the Markov chain is (C, ρ)-uniformly ergodic.

Apparently, for a reversible irreducible Markov chain, an
upper bound of ρ is 1 − �.

Then, the theorem we will later use is the following. This
is the restriction of Corollary 2.3 in Ref. [30] to the case
that we can compute an approximate acceptance ratio that is
deterministic and has a bounded error.

Theorem 3. Consider Algorithm 1. Suppose that the gen-
erated Markov chain C is (C, ρ)-uniformly ergodic. Also
consider another chain C ′ the same as C except that the ac-
ceptance ratio A is replaced with A′ : � × � → [0, 1] such
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that

max
x,y∈�

|A′(x, y) − A(x, y)| � ε (13)

with some ε ∈ R. Then, the stationary distributions � and �′
of C and C ′ satisfy

‖� − �′‖TV � ε

(
λ + Cρλ

1 − ρ

)
(14)

with λ :=  log(1/C)
log ρ

�.
Because of Theorem 1, for a reversible irreducible Markov

chain, we obtain

‖� − �′‖TV � ε

(⌈
log(2

√
�min)

log(1 − �)

⌉
+ 1

�

)
, (15)

by substituting ρ = 1 − � and C = 1
2
√

�min
in Eq. (14).

C. Quantum walk operator

Among several versions of quantum walk operators pro-
posed so far, this paper adopts that in Ref. [6]. It is dedicated
for the MH algorithm for Ising models, and will be gener-
alized in Sec. III A. Suppose that we are now considering
an Ising system with nsp spins, which means that � =
{−1, 1}×nsp . We use a system of two quantum registers RS and
RM and a qubit RC. RS holds a string x of ±1 with length nsp,
that represents the current spin configuration. RM holds a bit
string z ∈ {0, 1}×nsp that represents the next spin flip: if the ith
bit zi of z is 1 (respectively 0), the ith spin xi in x ∈ {−1, 1}×nsp

is changed to −xi (respectively unchanged). We denote by
x � z the spin configuration generated by x and z under this
rule. Then, we consider the following operator:

UIS = RISV †
ISB†

ISFISBISVIS. (16)

The component operators are as follow. VIS is a unitary on RM

that acts as

VIS|0〉RM
=
∑
z∈M

√
pfl(z)|z〉RM

. (17)

Here, M ⊂ {0, 1}×nsp is the set of possible spin flips and
pfl : M → (0, 1) is a probability distribution on M, which
we use as the proposal distribution of the next flip. Note that
it is assumed that possible flips M and the probability pfl(z)
that a flip z ∈ M is proposed are independent of the current
spin configuration. We can associate pfl with the proposal
distribution T in Algorithm 1 as

T (x, y) =
{

pfl(z) if y = x � z with some z ∈ M
0 otherwise,

(18)

where x, y ∈ {0, 1}×nsp . BIS is the rotation gate on RC con-
trolled by RS and RM, whose rotation angle is determined by

the acceptance ratio. That is, it acts as1

BIS|x〉RS
|z〉RM

|φ〉RC

= |x〉RS
|z〉RM

⊗
(√

1 − A(x, x � z) −√
A(x, x � z)√

A(x, x � z)
√

1 − A(x, x � z)

)
|φ〉RC

(19)

for any x ∈ �, z ∈ M and state |φ〉RC
on RC, where A(x, x �

z) = P(x � z)T (x � z, x)/P(x)T (x, x � z) with some target
distribution P on x ∈ {−1, 1}×nsp . FIS is a gate to apply the
spin flip under the control by RC, which acts as

FIS|x〉RS
|z〉RM

|φ〉RC

=
{|x〉RS

|z〉RM
|0〉RC

if |φ〉RC
= |0〉RC

|x � z〉RS
|z〉RM

|1〉RC
if |φ〉RC

= |1〉RC
.

(20)

Finally,

RIS = 20,IS − IRS ⊗ IRM ⊗ IRC , (21)

where

0,IS := IRS ⊗ |0〉〈0|RM
⊗ |0〉〈0|RC

. (22)

Although this is different from quantum walk operators in
previous studies [1–5,10,36], it has the following property on
its spectrum, which is same as previous ones, and thus can be
used as an alternative.

Theorem 4. Consider the Markov chain generated by Al-
gorithm 1 with the state space � = {−1, 1}×nsp , the target
distribution P, and the proposal distribution T in Eq. (18). De-
note by � its spectral gap. Let A = span{|x〉RS

|0〉RM
|0〉RC

|x ∈
�} and B = V †

ISB†
ISFISBISVISA. Then, on A + B, |P〉 is the

unique eigenstate of UIS with eigenvalue 1, and any other
eigenvalue is written as eiθ with θ ∈ R such that |θ | �
arccos(1 − �).

We call operators that have this property the quantum walk
operators for the Markov chain. Although this theorem only
considers the phase gap of the quantum walk operator unlike
the previous results such as Theorem 1 in Ref. [10] and Theo-
rem 1 in Ref. [3], which consider the entire spectrum in more
detail, it is sufficient for our purpose for the reason explained
in Sec. II D.

D. Quantum simulated annealing

In previous studies on quantum versions of MCMC [1–5],
the aim is generating a quantum state in which the target
distribution P is encoded in the amplitude, that is,

|P〉 :=
∑
x∈�

√
P(x)|x〉. (23)

In this paper, we use the method proposed in Ref. [5]. In that
paper, following Ref. [3], the author took the strategy called

1Note that this BIS is equivalent to B in Ref. [6]. For the latter,
only the action on states in the form of |x〉RS

|z〉RM
|0〉RC

is shown, but
Eq. (19) shows the operator as an entire matrix. In this definition
of BIS, there is an ambiguity of an overall constant factor in the
second column in the matrix acting on |φ〉RC

, and it does not affect
the discussions in this paper.

033059-5



KOICHI MIYAMOTO PHYSICAL REVIEW RESEARCH 5, 033059 (2023)

QSA, which was inspired by simulated annealing. That is,
assuming that P is in the form of

P(x) ∝ P0(x) exp(−L(x)) (24)

with the prior distribution P0 and the negative log-
likelihood L(x), we sequentially prepare the quantum states
|Pβ1〉, . . . , |Pβl 〉 from the initial state |P0〉. Here, these states
encode the distributions in the form of

Pβ (x) ∝ P0(x) exp(−βL(x)) (25)

with parameters called temperatures β0 = 0 < β1 < · · · <

βl = 1, and largely overlap: |〈Pβi |Pβi+1〉|2 � p with p = �(1).
The method in Ref. [5] is twofold: obtain a set of appropriate
values of {βi} and transform |P0〉 to |Pβl 〉 via |Pβ1〉, . . . , |Pβl−1〉.
Both phases are based on the following result, how to approx-
imately construct the phase gate, which multiplies a phase
factor ω to the state vector for the state |Pβi〉 but not for
orthogonal states, using the quantum walk operator for the
Markov chain converging to Pβi . This is summarized as the
following theorem.

Theorem 5 (Corollary 2 in Ref. [3]). Consider a Markov
chain C on a finite state space � with the transition matrix W ,
the stationary distribution P, and the spectral gap �. Let ω be
a complex number with unit modulus and define a unitary

Rω
|P〉 := ω

‖
|P〉 + ⊥

|P〉, (26)

where 
‖
|P〉 and ⊥

|P〉 are the projection onto the subspace
spanned by a state |P〉 on a register R and that onto the or-
thogonal subspace, respectively, Then, for any δ ∈ (0, 1), we
have access to a unitary operator R̃ω

|P〉,δ that has the following
properties:

(i) It acts on a system of R and nanc ancillary qubits, where
nanc = O(log( 1

�
) log( 1

δ
)).

(ii) It uses the controlled version of the quantum walk
operator U for C and its inverse O( log(1/δ)√

�
) times.

(iii) For any state |�〉 on R, R̃ω
|P〉,δ|�〉|0〉⊗nanc =

(Rω
|P〉|�〉)|0〉⊗nanc + |ξ 〉, where |ξ 〉 is an unnormalized state on

the entire system with ‖|ξ 〉‖ � δ.
Note that, as special cases, this theorem covers the original

version of Corollary 2 in Ref. [3] with ω = ωπ/3 := ei π
3 , and

Theorem 6 in Ref. [36] with ω = −1, which corresponds to
the reflection operator with respect to |P〉.

The outline of constructing Rω
|P〉 with U is as follows. Given

|ψi〉 an eigenstate of U with the corresponding eigenvalue
λi = eiθi , we can compute an estimate of the phase θi onto an-
other register Rph by quantum phase estimation (QPE) [37,38].
Because of Theorem 4, the difference between the phase of the
eigenstate |P〉, which is zero, and that of any other eigenstate
is larger than arccos(1 − �) = �(

√
�), and thus |P〉 can be

distinguished from other eigenstates via QPE with accuracy
O(

√
�). Thus, the above QPE followed by a phase gate con-

trolled by the register Rph is the phase gate that acts only on
|P〉, that is, Rω

|P〉. Because QPE outputs an estimate within
the desired accuracy not certainly but with a finite failure
probability, this implementation of Rω

|P〉 gives an approximate
gate R̃ω

|P〉,δ .
Given the phase gate with ω = ωπ/3, we can generate

|Pβi+1〉 from |Pβi〉 by Grover’s π
3 -amplitude amplification [39],

which is summarized as follows.

Theorem 6. Let |φ1〉 and |φ2〉 be quantum states on the
same register satisfying |〈φ1|φ2〉|2 � p with some p ∈ (0, 1].
For i ∈ {1, 2}, denote by 

‖
|φi〉 and ⊥

|φi〉 the projection on
the subspace spanned by |φi〉 and that on the orthogo-
nal subspace, respectively, and define the unitary R

ωπ/3

|φi〉 :=
ωπ/3

‖
|φi〉 + ⊥

|φi〉. Define the unitaries Ui,m recursively as fol-
lows:

Ui,0 = I,

Ui,m+1 = Ui,mR
ωπ/3

|φi〉 U †
i,mR

ωπ/3

|φi+1〉Ui,m. (27)

Then, for any m ∈ N,

|〈φ2|Ui,m|φ1〉|2 � 1 − (1 − p)3m
(28)

holds. This implies that, for any ε ∈ R+, we can pre-
pare |̃φ2〉 ε-close to |φ2〉 from |φ1〉 using the unitaries in

{Rωπ/3

|φ1〉 , R
ωπ/3

|φ2〉 , (Rωπ/3

|φ1〉 )†, (Rωπ/3

|φ2〉 )†} O(
log( 1

ε
)

log 1
1−p

) times.

Strictly speaking, we do not have the exact operator
R

ωπ/3

|P〉 but an approximate one R̃
ωπ/3

|P〉,ε . According to Ref. [3],

we can transform |P0〉 to a state |̃P1〉 ε-close to |P1〉, via˜|Pβ1〉, . . . , ˜|Pβl−1〉 the approximate states of |Pβ1〉, . . . , |Pβl−1〉,
by π

3 -amplitude amplifications with R̃
ωπ/3

|Pβi 〉,ε′ used instead of

R
ωπ/3

|Pβi 〉, where ε′ is some real number set depending on l , ε, and
p. We hereafter call this method the approximate π

3 -amplitude
amplification (A π

3 AA) with accuracy ε and overlap p. Its
complexity is summarized as follows.

Theorem 7 (Theorem 5 in Ref. [5], originally Theorem 2
in Ref. [3]). Consider l Markov chains C1, . . . , Cl on a fi-
nite state space � with stationary distributions p1, . . . , pl

and spectral gaps lower bounded by � ∈ (0, 1). Let p0 be
another probability distribution on � and suppose that the
state |p0〉 is given on a register R. Assume that, for some
p ∈ (0, 1), |〈pi|pi+1〉|2 � p holds for any i ∈ [l]0. Then, for
any ε ∈ (0, 1), we have an access to a unitary operator UQSA

on the system of R and nanc qubits that acts as

UQSA|0〉R|0〉⊗nanc = |pl〉R|0〉⊗nanc + |ζ 〉, (29)

making O( l√
�

log2 l
pε log 1

p ) queries to the controlled quan-
tum walk operators for C1, . . . , Cl . Here,

nanc = O

(
log

(
1

�

)
log

(
l log

(
l
ε

)
log
(

1
1−p

))), (30)

and |ζ 〉 is an (unnormalized) state on the entire system with
‖|ζ 〉‖ � ε.

Besides, given the phase gate with ω = −1, which is,
namely, the reflection operator, we can use nondestructive
amplitude estimation (NAE) [5], a modification of QAE [29],
to estimate |〈Pβi |Pβi+1〉|2.

Theorem 8 (Theorem 6 in Ref. [5]). Given a quantum state
|φ〉 on a register R and two operators Rφ = 2|φ〉〈φ| − I and
Rφ′ = 2|φ′〉〈φ′| − I , where |φ′〉 is another state on R, for any
ε, δ ∈ (0, 1), there exists a quantum algorithm with the fol-
lowing properties:

(i) With probability at least 1 − δ, it outputs an ε approxi-
mation of |〈φ′|φ〉|2 and a flag 1, and restores the state |φ〉.

(ii) Otherwise, output a flag 0.
(iii) It uses Rφ and Rφ′ O( log(1/δ)

ε
) times.
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Algorithm 2. Quantum simulated annealing (Algorithm 1 in
Ref. [5], modified).

Require:
• Access to a unitary operator OP0 to generate |P0〉:

OP0 |0〉 = |P0〉. (31)

• For any β ∈ (0, 1], an access to a quantum walk operator Uβ

for a Markov chain that has Pβ in Eq. (25) as the stationary
distribution and the spectral gap lower bounded �min.

• Accuracy ε ∈ R+ for the final state.
• Failure probability η ∈ (0, 1).

Output: Either of
(A) sequence β0 = 0 < β1 < · · · < βl−1 < βl = 1 such that

l � lmax and |〈Pβi |Pβi+1 〉|2 � 9
10e2 for any i ∈ [l]0, and

flg = 1
(B) flg = 0

1: Set |̃P0〉 = |P0〉.
2: for i = 0, 1, . . . , lmax − 1 do
3: Find the largest β ′ ∈ (βi, 1] such that |〈Pβi |Pβ ′ 〉|2 � e−2 by

binary search with precision 1/Lmax. Here, |〈Pβi |Pβ ′ 〉|2 is
computed by ANAE with accuracy 1/10e2 and failure
probability η/lmaxLmax, with |̃Pβi 〉 used instead of |Pβi 〉.

4: if at least one ANAE in line 3 returns a flag 0 then
5: Output flg = 0 and stop.
6: end if
7: Let the result in line 3 be βi+1.
8: if βi+1 = 1 then
9: Output β0 = 0, β1, . . . , βi+1 and flg = 1, and stop.
10: end if

11: Generate ˜|Pβi+1 〉 from |̃Pβi 〉 by A π

3 AA with accuracy ε

lmax
and

overlap 9
10e2 .

12: end for
13: Output flg = 0.

Again, we can use only approximations of reflection op-
erators. Reference [5] showed that, with probability at least
1 − δ, NAE using approximate reflection operators instead
of exact ones output an ε approximation of |〈�′|�〉|2 for
stationary distributions � and �′ of some Markov chains. We
hereafter call this approximate NAE (ANAE) with accuracy ε

and failure probability δ. The following theorem states on its
complexity.

Theorem 9 (Theorem 9 in Ref. [5]). Consider Markov
chains C1 and C2 on a finite state space � with stationary
distributions �1 and �2 and spectral gaps lower bounded by
� ∈ (0, 1). Suppose that the state |�1〉 is given. Then, there is
a quantum algorithm with the following properties:

(i) With probability at least 1 − δ, it outputs an ε approxi-
mation of |〈�1|�2〉|2 and a flag 1, and restores the state |�1〉.

(ii) Otherwise, output a flag 0.
(iii) It uses the controlled quantum walk operators for C1

and C2 O( 1
ε
√

�
log( 1

ε
) log( 1

δ
)) times.

Then, combining the above building blocks yields
the method proposed in Ref. [5]. It is summarized as
Algorithm 2.

Here, lmax :=
√

L̄ log L̄, where L̄ := EP0 [L(x)], and
Lmax := maxx∈� L(x).

The complexity of this algorithm is stated in Theorem 10.

Theorem 10 (Theorem 10 in Ref. [5]). Algorithm 2 yields
output (A) with probability at least 1 − η, calling operators in
{Uβ | β ∈ (0, 1]}

O

(
lmax√
�min

(
log2 lmax + log Lmax log

(
lmaxLmax

η

)))
(32)

times. For the obtained β0, β1, . . . , βl , using A π
3 AA with

accuracy ε and overlap 9
10e2 for Markov chains with stationary

distributions Pβ0 , Pβ1 , . . . , Pβl , we can generate the state

|̃Pβl 〉 := ∣∣Pβl

〉|0〉⊗nanc + |ξ 〉, (33)

where nanc = O(log( 1
�min

) log( lmax
ε

)) and |ξ 〉 is an unnormal-
ized state such that ‖|ξ 〉‖ � ε. In this process, operators
Uβ1 , . . . ,Uβl are called

O

(
lmax√
�min

log2

(
lmax

ε

))
(34)

times.

E. Quantum Monte Carlo integration

Reference [27] presented a quantum algorithm to calculate
an expected value of a random variable, which we call QMCI
in this paper.

Theorem 11 (Theorem 2.3 in Ref. [27]). Let P be a proba-
bility distribution on a finite sample space � ⊂ Rd . Suppose
that we have a quantum circuit OP on a two-register sys-
tem that acts as OP|0〉|0〉 =∑x∈�

√
P(x)|φx〉|x〉, where |φx〉

is some state on the first register. Also suppose that, for a
function F : � → [0, 1], we have a quantum circuit OF on a
two-register system that acts as OF |x〉|0〉 = |x〉|F (x)〉 for any
x ∈ �. Then, for any ε ∈ R+ and δ ∈ (0, 1), there is a quan-
tum algorithm that, with probability at least 1 − δ, outputs an
ε approximation of μF :=∑x∈� P(x)F (x), making

O

(
1

ε
log δ−1

)
(35)

uses of OP and OF .
The above theorem is on a version of the algorithm for

a bounded integrand F . Reference [27] presented another
version for an integrand with a bounded variance. We now
present a modification of this so that it can be used in QSA.
Namely, we aim to obtain not an approximate value of an
expectation but a quantum state in which approximations are
encoded, making no measurement. Besides, we concentrate
on the situation that we compute the mean of a finite number
of real numbers, which is sufficient for our purpose.

Theorem 12. Let M be a positive integer and X be a
set of M real numbers, X0, . . . , XM−1, whose mean is μ :=
1
M

∑M−1
i=0 Xi and sample variance satisfies 1

M

∑M−1
i=0 X 2

i −
μ2 � σ 2 with some σ ∈ R+. Suppose that we are given access
to a unitary operator OX that acts as

OX |i〉|0〉 = |i〉|Xi〉, (36)

for any i ∈ [M]0. Then, for any ε ∈ R+ and δ ∈ (0, 1), we
have access to a unitary operator Omean

X ,ε,δ,σ that acts on a system
of two registers R1 and R2 as

Omean
X ,ε,δ,σ |0〉R1

|0〉R2
= |0〉R1

|μ̃〉R2
+ γ |ψ〉R1,R2

, (37)
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where μ̃ is an ε approximation of μ, |ψ〉R1,R2
is a state on the

entire system, and γ ∈ C satisfies |γ |2 � δ. In Omean
X ,ε,δ,σ , OX

is used

O

(
σ

ε
log3/2

(σ

ε

)
log log

(σ

ε

)
log

(
1

δ

))
(38)

times. The total qubit number in the system of R1 and R2 is of
order

O
((

log M + log
(σ

ε

))
log
(σ

ε

)
log log

(σ

ε

)
log δ−1

)
. (39)

Although this theorem resembles Theorem 5 in Ref. [23],
there is the following difference. Omean

X ,ε,δ,σ in Ref. [23],
which we rename Õmean

X ,ε,δ,σ , generates a superposition of
|y1〉, |y2〉, . . ., where {yi} are real numbers close to μ. On the
other hand, the state in Eq. (37) is almost equal to a product
state of |μ̃〉, a computational basis state corresponding to one
approximation of μ, and |0〉, except for a small residual term
γ |ψ〉. This is realized by combining Õmean

X ,ε,δ,σ and rounding.
Including this point, the proof of Theorem 12 is presented in
Appendix B.

III. PROPOSED ALGORITHM

Now, let us present the proposed algorithm, the quantum
MH algorithm with the target distribution estimated by QMCI.

A. Modified quantum walk operator

We start from generalizing the quantum walk operator in
Eq. (16) for Ising models to that for the Markov chain gener-
ated by Algorithm 1 with a general finite state space � ⊂ Rd .
We define

U = RV †B†SFBV. (40)

This acts on a system of two quantum registers RS and RM,
which now have a sufficient number of qubits to represent real
vectors, and a qubit RC. V acts on the system of RS and RM as

V |x〉RS
|0〉RM

= |x〉RS

∑
�x∈�x

√
T (x, x + �x)|�x〉RM

(41)

for any x ∈ �, where

��x := {�x ∈ Rd | x + �x ∈ �} (42)

is the set of all the possible jumps in a transition from x. B acts
as

B|x〉RS
|�x〉RM

|φ〉RC

= |x〉RS
|�x〉RM

⊗
(√

1 − A(x, x + �x) −√
A(x, x + �x)√

A(x, x + �x)
√

1 − A(x, x + �x)

)
|φ〉RC

(43)

for any x ∈ �, �x ∈ �x, and state |φ〉 on RC. In this operation,
we compute A(x, x + �x) on an ancillary register using |x〉RS

and |�x〉RM
as inputs, and use the rotation gate on RC with

the angle controlled by the ancillary register. F makes a state
transition, which is implemented by an adder gate controlled

by RC, that is,

F |x〉RS
|�x〉RM

|φ〉RC

=
{

|x〉RS
|�x〉RM

|0〉RC
if |φ〉 = |0〉RC

|x + �x〉RS
|�x〉RM

|1〉RC
if |φ〉RC

= |1〉RC
.

(44)

The unitary S, for which Eq. (16) has no counterpart, acts on
the system of RM and RC to flip the sign of the value on RM

under the control by RC:

S|�x〉RM
|φ〉RC

=
{

|�x〉RM
|0〉RC

if |φ〉RC
= |0〉RC

|−�x〉RM
|1〉RC

if |φ〉RC
= |1〉RC

.
(45)

In other words, S converts the jump from x to y to the inverse
jump from y to x. We can consider that an identity operator
is contained in Eq. (16) as a counterpart for S, since any spin
flip is the inverse transform of itself. Finally, R is same as RIS

in Eq. (21). U in Eq. (40) also has the following property, the
same as UIS in Eq. (16).

Theorem 13. Consider the Markov chain generated by Al-
gorithm 1 and denote by � its spectral gap. Define

A := span{|x〉RS
|0〉RM

|0〉RC
|x ∈ �}, B := V †B†SFBVA.

(46)

Then, on A + B, |P〉 is the unique eigenstate of U with eigen-
value 1, and any other eigenvalue is written as eiθ with θ ∈ R
such that |θ | � arccos(1 − �).

This is proven in Appendix A. Note that, as seen in the
proofs in Appendix A, S is needed so that U holds the property
stated in this theorem.

Let us consider how to implement the building-block oper-
ators in U . F and S are an addition and a sign flip controlled
by the qubit RC, respectively. Various quantum circuits for
arithmetic have been proposed so far (see Ref. [40] as a review
on circuits for four arithmetic operations and Refs. [41,42]
as studies on circuits for elementary functions), and making
them controlled is straightforward. R is an operator that mul-
tiplies −1 to the state vector when all the qubits in RM and RC

take |0〉 and thus implemented with a multicontrolled Pauli Z
gate. V is a circuit for loading a probability distribution into
a quantum state, which has been also studied widely so far.
If T can be calculated by some arithmetic, V can be imple-
mented by the so-called Grover-Rudolph method [43], using
a logarithmic number of arithmetic circuits with respect to the
number of grid points for discrete approximation. Recently,
some methods that avoid usage of arithmetic circuits have
been proposed [44–48], including variational ones such as the
quantum generative adversarial network [49–56].

Compared with these operators, B can be costly in some
situations. Specifically, calculating the target distribution P,
which is needed to evaluate the acceptance ratio, can be
costly. For example, in parameter estimation in GW detection
experiments, which was mentioned in the Introduction and
will be explained in more detail in Sec. IV, P is obtained
via calculating the log-likelihood function. It is determined
by GW parameters and detector output data and evaluated as
a sum of many terms that correspond to contributions from
various frequency modes of the data. Naively calculating and
summing up these terms leads to a large number of operations
proportional to the number of terms. More generally, a similar

033059-8



QUANTUM METROPOLIS-HASTINGS ALGORITHM WITH … PHYSICAL REVIEW RESEARCH 5, 033059 (2023)

issue can arise in big-data analysis, specifically when we
estimate parameters of a statistical model based on a lot of
independent sample data and the log-likelihood is a sum of
contributions from them.

B. Approximate quantum walk operator via calculating the
target distribution by quantum Monte Carlo integration

Then, we are motivated to develop some faster way to cal-
culate P in the aforementioned situation. We consider whether
QMCI can be used to speed up summation of many terms in
calculation of P.

We start from presenting the setup we consider. We make
the following assumption.

Assumption 1. For every x ∈ �, P is written as

P(x) = P0(x)e−L(x). (47)

Here, P0 is a probability distribution on �. L : � → R+ is
called the negative log-likelihood and written as

L(x) = Lsum(x) + �0(x) + C (48)

with �0 : � → R, C a constant independent of x, and

Lsum(x) := 1

M

M−1∑
i=0

�(i, x), (49)

where M ∈ N and � : [M]0 × � → R. Besides, we are given
the quantum circuit O�, which acts on a three-register system
as

O�|x〉|i〉|0〉 = |x〉|i〉|�(i, x)〉 (50)

for any i ∈ [M]0 and x ∈ �. Moreover, we are given σ ∈ R+
such that

1

M

M−1∑
i=0

(�(i, x))2 −
(

1

M

M−1∑
i=0

�(i, x)

)2

� σ 2 (51)

for any x ∈ �.
This assumption is threefold. The first part, the form of P,

is in line with the aforementioned situation, where the log-
likelihood contains a sum of many terms. The second one is
availability of the quantum circuit O� to calculate the terms �,
which is used in QMCI. For large M, O� is the circuit queried
most, and thus we hereafter focus on the number of queries to
this as a metric of the complexity of our algorithm. The third
one, the boundedness of the variance of �, is needed to bound
the error in QMCI.

Note that the form of Lsum is in fact an average rather
than a sum. This is just for convenience in applying QMCI
to computing it. Also note that the order of σ can depend
on the term number M. For example, if Lsum is a sum of
contributions from M independent samples, which applies to
many cases in estimating parameters of statistical models,
putting an overall factor 1/M and redefining M� as � leads
to the form in Eq. (49), but this makes the order of � O(M ) if
it is originally independent of M.

Hereafter, we denote by CL the Markov chain generated by
Algorithm 1 with P written as Eq. (47) with L.

We also assume the availability of the quantum circuits to
generate the states that encode the proposal distribution T and
the prior distribution P0 in amplitudes.

Assumption 2. We are given quantum circuits V that acts
as Eq. (41).

Assumption 3. We are given quantum circuits OP0 that acts
as Eq. (31).

Furthermore, we assume that we can use a quantum circuit
to compute the acceptance ratio A(x, y), given estimates L̂x

and L̂y of Lsum(x) and Lsum(y).
Assumption 4. We are given the quantum circuit OAR that

acts as

OAR|x〉|y〉|L̂x〉|L̂y〉|0〉

= |x〉|y〉|L̂x〉|L̂y〉
∣∣∣∣∣P0(y)T (y, x) exp(−(L̂y + �0(y)))

P0(x)T (x, y) exp(−(L̂x + �0(x)))

〉
(52)

for any x, y ∈ � and L̂x, L̂y ∈ R.
In many cases, the formulas for P0 and T are explicitly

given with elementary functions and thus OAR is implemented
with arithmetic circuits.

Under these assumptions, Theorem 12 leads to the follow-
ing lemma.

Lemma 1. Let � be a finite subset of Rd and P be a distri-
bution on it. Under Assumptions 1 and 4, for any δ, ε ∈ (0, 1),
we have access to a unitary operator ˜̃Bδ,ε on a system of three
registers RS, RM, and RA and a qubit RC such that, for any
x ∈ �, �x ∈ ��x, and state |φ〉RC

on RC,

˜̃Bδ,ε |x〉RS
|�x〉RM

|φ〉RC
|0〉RA

= B̃ε (|x〉RS
|�x〉RM

|φ〉RC
)|0〉RA

+ γx,�x,δ,ε |�〉. (53)

Here,

B̃ε |x〉RS
|�x〉RM

|φ〉RC

= |x〉RS
|�x〉RM

⊗
(√

1 − Ã(x, x + �x) −
√

Ã(x, x + �x)√
Ã(x, x + �x)

√
1 − Ã(x, x + �x)

)
|φ〉RC

,

(54)

where Ã : � × � → R is written as

Ã(x, y) = min

{
1,

P0(y)e−L̃(y)T (y, x)

P0(x)e−L̃(x)T (x, y)

}
(55)

with L̃ : � → R+ such that

max
x∈�

|L̃(x) − L(x)| � ε. (56)

|�〉 is some state on the entire system. γx,�x,δ,ε ∈ C satisfies
|γx,�x,δ,ε | � δ. ˜̃Bδ,ε makes queries to O�, whose number is
of order (38). The qubit number in the entire system is of
order (39).

Proof. Because of Theorem 12, given O�, we have access
to a unitary operator O

Lsum,ε, δ2
16 ,σ

on the system of three regis-

ters that, for any x ∈ �, acts as

O
Lsum,ε, δ2

16 ,σ
|x〉|0〉|0〉 = |x〉(|0〉|L̃sum(x)〉 + γ

x, δ2
16

|ψx〉), (57)

where γ
x, δ2

16
∈C satisfies |γ

x, δ2
16

|2� δ2

16 , |ψx〉 is some state on the

system of the second and third registers, and L̃sum : � → R
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satisfies

max
x∈�

|L̃sum(x) − Lsum(x)| � ε. (58)

Equipped with this, we can construct the quantum circuit for the following operation on the system of RS, RM, RC, and ancillary
registers RA,1, . . . , RA,6:

|x〉RS
|�x〉RM

|0〉RA,1
|0〉RA,2

|0〉RA,3
|0〉RA,4

|0〉RA,5
|0〉RA,6

|φ〉RC

→ |x〉RS
|�x〉RM

|x + �x〉RA,1
|0〉RA,2

|0〉RA,3
|0〉RA,4

|0〉RA,5
|0〉RA,6

|φ〉RC

→ |x〉RS
|�x〉RM

|x + �x〉RA,1

(|0〉RA,2
|L̃sum(x)〉RA,3

+ γ
x, δ2

16
|ψx〉RA,2,RA,3

)|0〉RA,4
|0〉RA,5

|0〉RA,6
|φ〉RC

:= |x〉RS
|�x〉RM

|x + �x〉RA,1
|0〉RA,2

|L̃sum(x)〉RA,3
|0〉RA,4

|0〉RA,5
|0〉RA,6

|φ〉RC
+ γ

x, δ2
16

∣∣� (1)
x,�x

〉
→ |x〉RS

|�x〉RM
|x + �x〉RA,1

|0〉RA,2
|L̃sum(x)〉RA,3

(|0〉RA,4
|L̃sum(x + �x)〉RA,5

+ γ
x+�x, δ2

16
|ψx+�x〉RA,4,RA,5

)|0〉RA,6
|φ〉RC

+ γ
x, δ2

16

∣∣� (2)
x,�x

〉
:= |x〉RS

|�x〉RM
|x + �x〉RA,1

|0〉RA,2
|L̃sum(x)〉RA,3

|0〉RA,4
|L̃sum(x + �x)〉RA,5

|0〉RA,6
|φ〉RC

+ γ ′
x,�x

∣∣� (3)
x,�x

〉
→ |x〉RS

|�x〉RM
|x + �x〉RA,1

|0〉RA,2
|L̃sum(x)〉RA,3

|0〉RA,4
|L̃sum(x + �x)〉RA,5

|Ã(x, x + �x)〉RA,6 |φ〉RC
+ γ ′

x,�x

∣∣� (4)
x,�x

〉
→ |x〉RS

|�x〉RM
|x + �x〉RA,1

|0〉RA,2
|L̃sum(x)〉RA,3

|0〉RA,4
|L̃sum(x + �x)〉RA,5

|Ã(x, x + �x)〉RA,6

⊗
(√

1 − Ã(x, x + �x) −
√

Ã(x, x + �x)√
Ã(x, x + �x)

√
1 − Ã(x, x + �x)

)
|φ〉RC

+ γ ′
x,�x

∣∣� (5)
x,�x

〉
→ |x〉RS

|�x〉RM
|x + �x〉RA,1

|0〉RA,2
|L̃sum(x)〉RA,3

|0〉RA,4
|L̃sum(x + �x)〉RA,5

|0〉RA,6

⊗
(√

1 − Ã(x, x + �x) −
√

Ã(x, x + �x)√
Ã(x, x + �x)

√
1 − Ã(x, x + �x)

)
|φ〉RC

+ γ ′
x,�x

∣∣� (6)
x,�x

〉
→ |x〉RS

|�x〉RM
|x + �x〉RA,1

|0〉RA,2
|0〉RA,3

|0〉RA,4
|0〉RA,5

|0〉RA,6

⊗
(√

1 − Ã(x, x + �x) −
√

Ã(x, x + �x)√
Ã(x, x + �x)

√
1 − Ã(x, x + �x)

)
|φ〉RC

+ γ ′′
x,�x

∣∣� (7)
x,�x

〉
→ |x〉RS

|�x〉RM
|0〉RA,1

|0〉RA,2
|0〉RA,3

|0〉RA,4
|0〉RA,5

|0〉RA,6

⊗
(√

1 − Ã(x, x + �x) −
√

Ã(x, x + �x)√
Ã(x, x + �x)

√
1 − Ã(x, x + �x)

)
|φ〉RC

+ γ ′′
x,�x

∣∣� (8)
x,�x

〉
=: |�̃x,�x〉, (59)

where |� (1)
x,�x〉, . . . , |� (8)

x,�x〉 are some states on the entire sys-
tem and γ ′

x,�x, γ
′′
x,�x ∈ C. In Eq. (59), we use an adder circuit

at the first arrow. At the second and third arrows, we use
O

Lsum,ε, δ2
16 ,σ

on the system of RS, RA,2, and RA,3 and that of RA1 ,

RA,4, and RA,5, respectively. At the fourth arrow, we use OAR

to compute Ã(x, x + �x) as Eq. (55) with L̃ = L̃sum + �0 + C,
which satisfies Eq. (56) because of Eq. (58). The fifth arrow is
by the Y rotation (cos ϕ

2 − sin ϕ

2
sin ϕ

2 cos ϕ

2
) on RC with the rotation angle

specified by RA,6, which is implemented as follows [57]: we
compute ϕ = 2 arcsin(

√
Ã(x, x + �x)) onto another ancillary

register using arithmetic circuits [40–42] and apply fixed-
angle Y-rotation gates controlled by qubits in that ancillary
register to RC. At the sixth arrow, we perform the inverse of
the operation at the fourth arrow. The seventh arrow is by
the inverses of the operations at the second and third arrows,

which act as

(
O

Lsum,ε, δ2
16 ,σ

)†|x〉RS
|0〉RA,2

|L̃sum(x)〉RA,3

= (O
Lsum,ε, δ2

16 ,σ

)†|x〉RS

⊗ (|0〉RA,2
|L̃sum(x)〉RA,3

+ γ
x, δ2

16
|ψx〉RA,2,RA,3

)
− γ

x, δ2
16

(
O

Lsum,ε, δ2
16 ,σ

)†|ψx〉RA,2,RA,3

= |x〉RS
|0〉RA,2

|0〉RA,3
− γ

x, δ2
16

(
O

Lsum,ε, δ2
16 ,σ

)†|ψx〉RA,2,RA,3

(60)
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and, similarly,(
O

Lsum,ε, δ2
16 ,σ

)†|x + �x〉RA,1
|0〉RA,4

|L̃sum(x + �x)〉RA,5

= |x + �x〉RA,1
|0〉RA,4

|0〉RA,5

− γ
x+�x, δ2

16

(
O

Lsum,ε, δ2
16 ,σ

)†|ψx+�x〉RA,4,RA,5
. (61)

At the last arrow, we perform the inverse of the operation at
the first arrow.

Then, let us show that |�̃x,�x〉 is in the form of Eq. (53),
with RA,1, . . . , RA,6 collectively seen as RA. Since we have
seen that Eq. (56) holds, it is sufficient to check |γ ′′

x,�x| � δ.
This is done as follows. We see that γ ′

x,�x, which is introduced
by two O′

Lsum,ε, δ2
16 ,σ

s in the second and third arrows in Eq. (59),

is bounded as

|γ ′
x,�x| �

∣∣γ
x, δ2

16

∣∣+ ∣∣γ
x+�x, δ2

16

∣∣ � √ δ2

16
+
√

δ2

16
= δ

2
. (62)

Similarly, applying (O
Lsum,ε, δ2

16 ,σ
)† twice at the eighth arrow in

Eq. (59) increases this by at most δ
2 :

|γ ′′
x,�x| � |γ ′

x,�x| + δ

2
� δ. (63)

Thus, we have |γ ′′
x,�x| � δ.

The statements on the number of queries to O� and the
qubit number immediately follow from Theorem 12, which
gives the bounds on the query number and qubit number in
O

Lsum,ε, δ2
16 ,σ

as Eqs. (38) and (39). �
We now define the approximate quantum walk operator,

˜̃Uδ,ε := R̃Ṽ † ˜̃B†
δ
2 ,ε

S̃F̃ ˜̃B δ
2 ,εṼ (64)

on the system of RS, RM, RA, and RC, with R̃, Ṽ , S̃, and F̃
defined as R ⊗ IRA and so on. We then have the following
lemma immediately.

Lemma 2. Let � be a finite subset of Rd and P be a
distribution on it. Under Assumptions 1, 2 and 4, for any
δ, ε ∈ (0, 1), we have access to a unitary operator ˜̃Uδ,ε on a
system of three registers RS, RM, and RA and a qubit RC, which
is given as Eq. (64), and, for any x ∈ �, �x ∈ ��x, and state
|φ〉RC

on RC, acts as

˜̃Uδ,ε |x〉RS
|�x〉RM

|φ〉RC
|0〉RA

= (Ũε |x〉RS
|�x〉RM

|φ〉RC
)|0〉RA

+ γ̃x,�x,φ,δ,ε |�̃〉, (65)

where |�̃〉 is some state on the entire system, γ̃x,�x,φ,δ,ε ∈
C satisfies |γ̃x,�x,φ,δ,ε | � δ, and Ũε := RV †B̃†

εSFB̃εV . ˜̃Uδ,ε

makes a number of order (38) of calls to O� and uses a number
of order (39) of qubits.

Note that ˜̃Uδ,ε has two types of differences from the exact
quantum walk operator U . First, ˜̃Uδ,ε does not exactly act as
a quantum walk operator because it generates the residual
term γ̃x,�x,φ,δ,ε |�̃〉 in Eq. (65). Second, even if there were no

residual term, ˜̃Uδ,ε would not be the quantum walk operator
for the Markov chain CL we consider but that for another
one, CL̃, because of the error in the approximation L̃ of the
exact negative log-likelihood L. This difference makes the
stationary distribution differ from the target distribution P.
Nevertheless, we can use ˜̃Uδ,ε , controlling these differences
by taking sufficiently small δ and ε.

C. Quantum simulated annealing with the approximate
quantum walk operator

Now, we can construct an approximation of the phase
gate Rω

|P〉 using this ˜̃Uδ,ε instead of the exact quantum walk
operator U .

Lemma 3. Let δ, ε ∈ (0, 1). Under Assumptions 1, 2,
and 4, consider a Markov chain CL. Denote its transition
matrix by W and its spectral gap by �. Denote by κ the con-
dition number of the matrix Q such that Q−1W Q is diagonal.
Let ω be a complex number with unit modulus. Then, we
have access to a unitary operator ˜̃Rω

L,δ,ε that has the following
properties:

(i) ˜̃Rω
L,δ,ε acts on a system of RS and nanc ancillary qubits.

Here,

nanc = O

(
log

(
1

�

)
log

(
1

δ

)
+
(

log M + log
(σ

ε′
))

× log
(σ

ε′
)

log log
(σ

ε′
)

log

(
1

δ
√

�

))
, (66)

where

ε′ := min

⎧⎪⎨⎪⎩ε,
�

16
√

maxy∈�

∑
x∈�\{y} Txyκ

⎫⎪⎬⎪⎭. (67)

(ii) ˜̃Rω
L,δ,ε uses O�

O

(
σ

ε′√�
log3/2

(σ

ε′
)

log log
(σ

ε′
)

log

(
1

δ
√

�

)
log

(
1

δ

))
(68)

times.
(iii) For any state |�〉 on RS,

˜̃Rω
L,δ,ε |�〉|0〉⊗nanc = (Rω

|P̃〉|�〉)|0〉⊗nanc + |ξ 〉. (69)

Here, Rω
|P̃〉 is a unitary defined as Eq. (26), where P̃ is a

distribution on � in the form of

P̃(x) ∝ P0(x)e−L̃(x) (70)

with some function L̃ : � → R+ satisfying

max
x∈�

|L̃(x) − L(x)| � ε′, (71)

and |ξ 〉 is an unnormalized state vector with ‖|ξ 〉‖ � δ.
To prove this, we use the following lemma on the spectral

gap of the Markov chain with replacement of L with L̃. The
proof of this is presented in Appendix C.

Lemma 4. Let L̃ : � → R+ be a function on � and denote
by �̃ the spectral gap of CL̃. Let � and κ be the same as
Lemma 3. Then, if ε := maxx∈� |L̃(x) − L(x)| � 1

4 ,

�̃ � � − 16

⎛⎝max
y∈�

∑
x∈�\{y}

Txy

⎞⎠1/2

κε (72)

holds.
This lemma means that, although the MH Markov chain

with L̃ instead of L is different from the original one, the
change of the spectral gap is small if L̃ is close to L.

Then, the proof of Lemma 3 is as follows.
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Proof of Lemma 3. Note that, because of Lemma 4 and
Eq. (71), the spectral gap �̃ of CL̃ satisfies �̃ � �

2 . Then,
because of Theorem 5, if we had access to Ũε′ , we could
construct R̃ω

|P̃〉, δ
2

making O( log(1/δ)√
�

) uses of Ũε′ , with P̃ having

the stated property. In reality, we can use ˜̃Uδ′,ε′ , an approx-
imation of Ũε′ with some δ′ ∈ (0, 1). Recalling Lemma 2,
we see that the unitary Rδ′ we obtain by using ˜̃Uδ′,ε′ in-
stead of Ũε′ in construction of R̃ω

|P̃〉, δ
2

acts as Rδ′ |�〉|0〉⊗nanc =
R̃ω

|P̃〉, δ
2
|�〉|0〉⊗nanc + |ξ ′〉, where ‖|ξ ′〉‖ = O(δ′ log(1/δ)√

�
). Thus,

there exists δ′ = �( δ
√

�
log(1/δ) ) that makes ‖|ξ ′〉‖ � δ

2 . Since

‖R̃ω

|P̃〉, δ
2
|�〉|0〉⊗nanc − (Rω

|P̃〉|�〉)|0〉⊗nanc‖ � δ
2 , Rδ′ with this δ′ is

in fact ˜̃Rω
L,δ,ε that satisfies Eq. (69).

The statement on the qubit number follows since
constructing R̃ω

|P̃〉, δ
2

with Ũε′ uses O(log( 1
�

) log( 1
δ
))

qubits and using ˜̃Uδ′,ε′ instead of Ũε′ adds O((log M +
log( σ

ε′ )) log( σ
ε′ ) log log( σ

ε′ ) log(δ′)−1) qubits, whose sum is of
order (66).

The upper bound (68) on the number of queries to O� is
obtained by substituting δ′ = �( δ

√
�

log(1/δ) ) for δ and ε′ for ε

in Eq. (38), which yields the query number in one ˜̃Uδ′,ε′ , and
multiplying O( log(1/δ)√

�
). �

We can use this approximate phase gate instead of the exact
one in QSA. Before we make a statement on this approximate
QSA, let us make some preparation. First, we make the fol-
lowing assumptions.

Assumption 5. There exists �min ∈ (0, 1) such that, for
any β ∈ (0, 1], the spectral gap of the Markov chain CβL is
equal to or larger than �min.

Assumption 6. There exists κmin ∈ R+ such that, for any
β ∈ (0, 1], the condition number of the matrix Qβ that diag-
onalizes the transition matrix Wβ for the Markov chain CβL,
which means Q−1

β WβQβ is diagonal, is equal to or smaller than
κmin.

Besides, we also present the following lemma, whose proof
is presented in Appendix D.

Lemma 5. Consider the Markov chains CL and CL̃ with
L : � → R+ and L̃ : � → R+. Then, for their stationary dis-
tributions P ∝ P0e−L and P̃ ∝ P0e−L̃,

‖P̃ − P‖TV � 8

(⌈
log(2

√
Pmin)

log(1 − �)

⌉
+ 1

�

)
× max

x∈�
|L̃(x) − L(x)|

(73)

holds, where � is the spectral gap of CL and Pmin :=
minx∈� P(x).

Then, we have the following theorem.
Theorem 14. Suppose that Assumptions 1 through 6 are

satisfied. Then, for any ε, δ ∈ (0, 1), there exists an algorithm
that makes

O

(
σ lmax

ε′′√�min
log3/2

( σ

ε′′
)

log log
( σ

ε′′
)

log

(
1√
�min

)
×
(

log lmax + log Lmax log

(
lmaxLmax

δ

)))
(74)

queries to O�, where

ε′′ := min

⎧⎪⎨⎪⎩ �minε

8
(
�min

⌈ log(2
√

Pmin )
log(1−�min )

⌉+ 1
) ,

× �min

16
√

maxy∈�

∑
x∈�\{y} Txyκmin

,
L̄

2

⎫⎪⎬⎪⎭, (75)

and, with probability at least 1 − δ, outputs a sequence
β̃0 = 0 < β̃1 < · · · < β̃l−1 < β̃l = 1 with the following prop-
erties:

(i) l � lmax.
(ii) Given this sequence, we have a unitary operator that

generates a state |̃P̃〉 ε-close to |P̃〉|0〉⊗nanc , where P̃ is a prob-
ability distribution on � such that ‖P̃ − P‖TV � ε and

nanc = O

(
log

(
1

�min

)
log

(
lmax

ε′′

)
+
(

log M + log
( σ

ε′′
))

log
( σ

ε′′
)

log log
( σ

ε′′
)

× log

(
lmax

ε′′√�min

))
. (76)

In that operator, O� is called

O

(
σ lmax

ε′′√�min
log3/2

( σ

ε′′
)

log log
( σ

ε′′
)

log

(
lmax

ε
√

�min

)
× log2

(
lmax

ε

))
(77)

times.
For ε such that

ε � min

⎧⎪⎨⎪⎩ 1

2
√

maxy∈�

∑
x∈�\{y} Txyκmin

,
4L̄

�min

⎫⎪⎬⎪⎭
×
(

�min

⌈
log(2

√
Pmin)

log(1 − �min)

⌉
+ 1

)
, (78)

Eq. (77) becomes

Õ

(
σ L̄1/2

ε�
3/2
min

)
. (79)

Proof of Theorem 14. First, note that, for any β ∈ (0, 1],
˜̃Rω
βL,δ′,ε′′ is equal to R̃ω

|P̃β 〉,δ′ , where δ′ ∈ (0, 1) and P̃β is a dis-

tribution on � in the form of P̃β ∝ P0e−βL̃ with some function
L̃ : � → R+ satisfying

max
x∈�

|L̃(x) − L(x)| � ε′′. (80)

On the other hand, according to Ref. [5], given R̃
ωπ/3

|P̃β 〉,δ′ and

R̃−1
|P̃β 〉,δ′ with some δ′ = �(1) for any β ∈ (0, 1], Algorithm

2 outputs the sequence β̃0 = 0 < β̃1 < · · · < β̃l−1 < β̃l = 1
such that l � l̃max and |〈P̃β̃i

|P̃β̃i+1
〉|2 � 9

10e2 with probabil-
ity at least 1 − δ, making O(l̃max log l̃max) uses of operators
in {R̃ωπ/3

|P̃β 〉,δ′ | β ∈ (0, 1]} and O(l̃max log L̃max log( l̃maxL̃max
δ

))

uses of operators in {R̃ω−1

|P̃β 〉,δ′ | β ∈ (0, 1]}. Here, l̃max :=
EP0 [L̃(x)] log(EP0 [L̃(x)]) and L̃max := maxx∈� L̃(x), which
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are of order O(lmax) and O(Lmax), respectively, because
of Eq. (80). Since we can construct ˜̃Rω

βL,δ′,ε′′ similarly to
˜̃Rω

L,δ′,ε′′ using O�, we can obtain the above {β̃i} by Al-
gorithm 2. Because of Lemma 3, the number of queries
to O� in ˜̃Rω

βL,δ′,ε′′ is

O

(
σ

ε′′
√

�̃min

log3/2
( σ

ε′′
)

log log
( σ

ε′′
)

log

(
1√
�̃min

))
.

(81)

Here, �̃min is a lower bound of the spectral gaps of {CβL̃ | β ∈
(0, 1]}, which satisfies �̃min � �min

2 because of Lemma 4 and
Eq. (80). Combining the above discussions, we see that in
finding β̃1, . . . , β̃l−1 the total number of calls to O� is of
order (74).

After that, as shown in Ref. [5], a series of A π
3 AA gen-

erates |̃P̃〉 ε-close to |P̃〉, where P̃ := P̃1 ∝ P0e−L̃. According
to Ref. [5], in this procedure, we makes O(l log( l

ε
)) uses of

˜̃Rω

β̃iL,δ′′,ε′′ with some δ′′ = �( ε
l log(l/ε) ). The number of calls to

O� in ˜̃Rω

β̃iL,δ′′,ε′′ is

O

(
σ

ε′′√�min
log3/2

( σ

ε′′
)

log log
( σ

ε′′
)

log

(
l

ε
√

�min

)
× log

(
l

ε

))
(82)

because of Lemma 3, and multiplying l log( l
ε

) to this and
replacing l with its upper bound lmax yields the bound on the
total query number in Eq. (77).

The statement on nanc is obtained by substituting δ′′ for δ

and ε′′ for ε′ in Eq. (66).
Last, ‖P̃ − P‖TV � ε is seen from Lemma 5 and

Eq. (80). �

D. Finding the credible interval

By the above method, we can get an approximation of the
quantum state in which the target distribution P is encoded
in amplitudes. However, in practice, our aim is not to get a
quantum state but some statistics on P. Although it seems
that the previous studies on quantum algorithms for MCMC
have not focused on this point, this paper considers it. Con-
cretely, as a quantity that we typically want, we consider the
equal-tailed credible interval of a random variable that obeys
P. Formally, writing x ∈ � ⊂ Rd as x = (x(1), . . . , x(d ) ) and
defining �(i) := {x(i)|x ∈ �}, we want x(i)

ub , x(i)
lb ∈ �(i) that sat-

isfy2

P
({

xi > x(i)
ub

}) = α

2
, P

({
xi < x(i)

lb

}) = α

2
(83)

with a credibility level α ∈ (0, 1) for each i ∈ [d]. In other
words, x(i) is in the interval [x(i)

lb , x(i)
ub ] with probability 1 − α.

2In the current setting that � is discrete and so is each �(i), x(i)
ub

and x(i)
lb satisfying Eq. (83) may not exist. However, for simplicity,

we now assume that such x(i)
ub and x(i)

lb exist. As long as the dis-
cretization is sufficiently fine as assumed in Sec. II A, it is reasonable
to expect that there are x(i)

ub , x(i)
lb ∈ �(i) such that P({xi > x(i)

ub }) and
P({xi < x(i)

lb }) are much closer to α

2 than the accuracy we require.

A typical example of this type of problem is parameter estima-
tion by Bayesian inference: with P the posterior distribution
of the parameters in some statistical model, we find the bound
for each parameter in the above form.

Given the quantum circuit to approximately generate |P〉, a
natural approach is finding x(i)

ub by binary search with the CDF
�P(a) := P({x(i) > a}) computed by QMCI (and x(i)

lb is found
in the same fashion). We hereafter elaborate this approach.
First, we describe how to compute �P(a).

Lemma 6. Suppose that Assumptions 1 through 6 are sat-
isfied. Then, for any i ∈ [d], ε, δ ∈ (0, 1), and a ∈ �(i), there
exists an algorithm that, with probability at least 1 − δ, out-
puts an ε approximation of �P(a), making

O

(
σ lmax

ε′′√�min
log3/2

( σ

ε′′
)

log log
( σ

ε′′
)

log

(
1√
�min

)
×
(

log lmax + log Lmax log

(
lmaxLmax

δ

))
+ σ lmax

εε′′√�min
log3/2

( σ

ε′′
)

log log
( σ

ε′′
)

log

(
lmax

ε
√

�min

)
× log2

(
lmax

ε

)
log

(
1

δ

))
(84)

uses of O�.
Proof. Because of Theorem 14, by Algorithm 2, we get

β0, . . . , βl , with which A π
3 AA generates |̃P̃�〉 ε

9 -close to
|P̃�〉|0〉nanc with nanc of order (76). Here, P̃� is a distribution
on � such that ‖P̃� − P‖TV � ε

3 . We denote this A π
3 AA by

VP.
Note that |̃P̃�〉 is written as follows:

|̃P̃�〉 =
∑
x∈�

√
P̃�(x)|x〉|0〉⊗nanc + ε̂

∑
x̂∈�̂

√
P̂(x̂)|x̂〉|ψx̂〉, (85)

where ε̂ ∈ [0, ε
9 ), �̂ is a finite subset of Rd that may differ

from �, P̂ is a distribution on �̂, and |ψx̂〉 is a state on nanc

ancillary qubits. |̃P̃�〉 can be rewritten as

|̃P̃�〉 =
∑
x∈�

|x〉(
√

P̃�(x)|0〉⊗nanc + ε̂

√
P̂(x)|ψx〉)

+ ε̂
∑

x̂∈�̂∩�

√
P̂(x̂)|x̂〉|ψx̂〉

=
∑
x∈�

√
P̃′

�(x)|x〉|ψ̃x〉 + ε̂
∑

x̂∈�̂∩�

√
P̂(x̂)|x̂〉|ψx̂〉. (86)

Here, |ψ̃x〉 is a state on nanc ancillary qubits and
√

P̃′
�(x) :=

‖
√

P̃�(x)|0〉⊗nanc + ε̂
√

P̂(x)|ψx〉‖. Then,
∑

x∈� P̃′
�(x) � 1 fol-

lows from ‖|̃P̃�〉‖ = 1 and

|
√

P̃′
�(x) −

√
P̃�(x)| � ε̂

√
P̂(x) (87)

follows from the triangle inequality.
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On the other hand, we can implement a quantum circuit
Ocomp

a that acts as

Ocomp
a |x〉|0〉 = |x〉|1x>a〉 (88)

using arithmetic circuits. Therefore, because of Theorem 11,
the capability to generate |̃P̃�〉 means that we can get an ε

3

approximation ˜̃�′(a) of

�̃′(a) :=
∑
x∈�

P̃′
�(x)1x>a + ε̂2

∑
x̂∈�̂∩�

P̂(x̂)1x̂>a (89)

by QMCI with probability 1 − δ. Let us see that ˜̃�′(a) is an
ε approximation of �(a) =∑x∈� P(x)1x>a. The difference
between �̃′(a) and �(a) is bounded as

|�̃′(a) − �(a)| � |�̃′(a) − �̃(a)| + |�̃(a) − �(a)|
�
∑
x∈�

∣∣P̃′
�(x) − P̃�(x)

∣∣
+ ε̂2

∑
x̂∈�̂∩�

P̂(x̂) + ε

3
. (90)

Here, �̃(a) :=∑x∈� P̃�(x)1x>a and we used |�̃(a) −
�(a)| � ε

3 that follows from ‖P̃� − P‖TV � ε
3 . The first term

in Eq. (90) is bounded as∑
x∈�

|P̃′
�(x) − P̃�(x)|

=
∑
x∈�

|
√

P̃′
�(x) −

√
P̃�(x)|(

√
P̃′

�(x) +
√

P̃�(x))

�
∑
x∈�

ε̂

√
P̂(x)(

√
P̃′

�(x) +
√

P̃�(x))

� ε̂

⎛⎝(∑
x∈�

P̂(x)

)1/2(∑
x∈�

P̃′
�(x)

)1/2

+
(∑

x∈�

P̂(x)

)1/2(∑
x∈�

P̃�(x)

)1/2
⎞⎠

� 2ε̂

� 2

9
ε, (91)

where we use Eq. (87) at the first inequality and the Cauchy-
Schwarz inequality at the second inequality. The second term
in Eq. (90) is bounded as

ε̂2
∑

x̂∈�̂∩�

P̂(x̂) � ε̂2 � ε̂ � ε

9
. (92)

Consequently, �̃(a) is a 2
3ε approximation of �(a), which

means that ˜̃�′(a) is an ε approximation of �(a).

Finally, let us check the query complexity. To get
β̃0, . . . , β̃l with probability at least 1 − δ

2 by Algorithm 2, we
make a number of order (74) of calls to O�. After this, to get
˜̃�′(a) with probability at least 1 − δ

2 by QMCI, we call the

circuit to generate |̃P̃�〉 O( 1
ε

log δ−1) times, and one call to
this circuit contains a number of order (77) of calls to O�.
Summing up these, we see that the total number of calls to O�

is of order (84). �
Then, we reach the algorithm to find x(i)

ub .
Theorem 15. Suppose that Assumptions 1 through 6 are

satisfied. Let i ∈ [d], α ∈ (0, 1), δ ∈ (0, 1), and ε ∈ (0, α
2 ).

Suppose that there exists x(i) ∈ �(i) such that
α

2
− ε

3
� �(x(i) ) � α

2
+ ε

3
. (93)

Then, there exists an algorithm that, with probability at least
1 − δ, outputs x̃(i)

ub ∈ �(i) such that

α

2
− ε � �

(
x̃(i)

ub

)
� α

2
+ ε, (94)

making

O

(
σ lmax

ε′′√�min
log3/2

( σ

ε′′
)

log log
( σ

ε′′
)

log

(
1√
�min

)

×
(

log lmax + log Lmax log

(
lmaxLmax

δ

))

+ σ lmax

εε′′√�min
log3/2

( σ

ε′′
)

log log
( σ

ε′′
)

log

(
lmax

ε
√

�min

)

× log2

(
lmax

ε

)
log

(
1

δ

)
log

(
log |�(i)|

δ

)
log |�(i)|

)
(95)

queries to O�.
For ε satisfying Eq. (78), Eq. (95) becomes

Õ

(
σ L̄1/2

ε2�
3/2
min

)
. (96)

Proof of Theorem 15. The algorithm is presented as Algo-
rithm 3.

Then, let us show that this algorithm has a property stated
in the theorem.

First, note that the loop in lines 11–21 ends in at most nmax

iterations. To see this, denoting jub and jlb at the end of the
kth iteration by jub,k and jlb,k , respectively, we notice that

jub,k+1 − jlb,k+1 � jub,k − jlb,k

2
+ 1

2
, (97)

which implies

jub,k − jlb,k � 2−k (ni − 2) + 1. (98)

Thus, jub,k − jlb,k becomes 2 or less in at least log2(ni − 2)�
iterations, and, even if it becomes 2, the next iteration makes it
1. Therefore, the loop ends in nmax iterations by the condition
jub − jlb = 1, or earlier by the condition | ˜̃�′(x(i)

jmid
) − α

2 | � 2
3ε.

Let us consider the case that all the QMCIs in the algo-
rithm, that in line 4 and those in the loop in lines 11–21,
successfully outputs ε

3 approximations of �(x(i)
1 ) and �(x(i)

jmid
).
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Algorithm 3. Algorithm to find x(i)
ub .

Require:
• Accuracy ε ∈ (0, 1)
• Failure probability δ ∈ (0, 1)
• Credibility level α ∈ (0, 1)

1: By Algorithm 2, get β̃0, . . . , β̃l , with which A π

3 AA generates a
state ε

27 -close to |P̃�〉|0〉⊗nanc , where nanc is of order (76) and P̃�

is a distribution on � satisfying ‖P̃� − P‖TV � ε

9 .
2: Using the obtained β̃0, . . . , β̃l , construct the above A π

3 AA as a
quantum circuit VP.

3: Sort the elements of �(i) in ascending order and denote them by
x(i)

1 , . . . , x(i)
ni

, where ni := |�(i)|.
4: By QMCI with VP, get an ε

3 approximation ˜̃�′(x(i)
1 ) of �(x(i)

1 )
with failure probability δ′ := δ

nmax+1 , where
nmax := log2(ni − 2)� + 1 (we do not need to compute �(x(i)

ni
)

since it is zero).

5: if | ˜̃�′(x(i)
1 ) − α

2 | � 2
3 ε then

6: Output x(i)
1 as x̃(i)

ub and stop.

7: else if ˜̃�′(x(i)
1 ) < α

2 − 2
3 ε then

8: Stop with no output.
9: end if

10: Set jub = ni and jlb = 1.
11: repeat
12: Set jmid =  jub+ jlb

2 �.

13: By QMCI with ṼP, get an ε

3 approximation ˜̃�′(x(i)
jmid

) of

�(x(i)
jmid

) with failure probability δ′.
14: if | ˜̃�′(x(i)

jmid
) − α

2 | � 2
3 ε then

15: Output x(i)
jmid

as x̃(i)
ub and stop.

16: else if ˜̃�′(x(i)
jmid

) > α

2 + 2
3 ε then

17: Set jlb = jmid.

18: else /* in this case, ˜̃�′(x(i)
jmid

) < α

2 − 2
3 ε */

19: Set jub = jmid.
20: end if
21: until jub − jlb = 1
22: Output x(i)

jmid
.

This occurs with probability at least (1 − δ′)nmax+1 � δ. In
these QMCIs, if we obtain | ˜̃�′(x(i) ) − α

2 | � 2
3ε for some x(i),

|�(x(i) ) − α
2 | � ε also holds because of | ˜̃�′(x(i) ) − �(x(i) )| �

ε
3 . In fact, we get such x(i) with certainty under the condition
that all the QMCIs succeed. This is seen by contradiction.
Suppose that, under this condition, the loop in lines 11–21
ends with jub − jlb = 1. This means that ˜̃�′(x(i)

jlb
) > α

2 + 2
3ε

and ˜̃�′(x(i)
jub

) < α
2 − 2

3ε, which leads to

�
(
x(i)

jlb

)
>

α

2
+ ε

3
, �

(
x(i)

jub

)
<

α

2
− ε

3
. (99)

Since � is monotonically decreasing and there is no �(i)

element between x(i)
jlb

and x(i)
jub

, Eq. (99) contradicts with the
assumption that Eq. (93) holds for some x(i) ∈ �(i).

In summary, with probability at least 1 − δ, x̃(i)
ub satisfying

Eq. (94) is output after either of the QMCIs.
The statement on the query complexity immediately fol-

lows from Lemma 6. The first term in Eq. (95) correspond to
finding β̃0, . . . , β̃l and is similar to the first term in Eq. (84).
The second term in Eq. (95) corresponds to QMCIs and is

obtained by multiplying the number of QMCIs, which is of
order O(log |�(i)|), to the second term in Eq. (84), and substi-
tuting δ′ for δ. �

Seemingly, the statement in Theorem 15 is tricky: it as-
sumes the existence of x(i) for which �(x(i) ) is ε

3 -close to α
2 ,

but only guarantees that the algorithm’s output is ε-close. This
is because of the erroneous nature of QMCI. Suppose that
we search x(i) such that |�(x(i) ) − α

2 | � ε and there exists x(i)

that marginally satisfies this. Then, even if we require high
accuracy in QMCI, it may output an estimate of �(x(i) ) out of
the ε neighborhood of α

2 , which makes us fail to notice that
x(i) is what we want. We thus conduct QMCIs with accuracy
ε
3 and pick up x(i) with ˜̃�′(x(i) ) 2

3ε-close to α
2 as an answer.

Under this policy, we never miss x(i) satisfying Eq. (93),
since the ε

3 approximation of �(x(i) ) is never out of the 2
3ε

neighborhood of α
2 . Of course, we might pick up x(i) for which

|�(x(i) ) − α
2 | > 2

3ε, given the erroneous QMCI estimate of
�(x(i) ) accidentally lying in the 2

3ε neighborhood of α
2 . Even

if so, the chosen x(i) at least satisfies |�(x(i) ) − α
2 | � ε, since

the ε
3 approximation of a number distant from α

2 by more than
ε never lies in the 2

3ε neighborhood of α
2 .

A similar discussion is found in consideration on setting
the threshold of the SNR in the quantum algorithm for GW
matched filtering proposed in Ref. [23].

E. Comparison with other approaches

We now make a comparison of the above method for find-
ing the credible interval with other approaches. We compare
the order of the number of queries to O� in the various ap-
proaches except logarithmic factors. Since the binary search
adds only logarithmic factors, it is sufficient to consider the
complexity of calculating the CDF within accuracy ε.

First, let us consider QSA without QMCI. That is, the state
|P〉 that encodes the target distribution P is prepared via Algo-
rithm 2 and A π

3 AA with the obtained {βi}, with L computed
by not QMCI but M-time iterated calculations and additions of
�. Then, using this state-preparing circuit as VP, we estimate
x(i)

ub by Algorithm 3. We call this the exact QSA approach.
Note that the quantum walk operator U , which is now the
exact one in Eq. (16), makes O(M ) calls to O�. Combining
this with Eq. (34), we see that the number of calls to O� in
generating |P〉 by QSA is

Õ

(
ML̄1/2

�
1/2
min

)
. (100)

Besides, considering the complexity of QMCI in Eq. (35), we
estimate the total number of calls to O� in finding a credible
interval in the exact QSA approach as

Õ

(
ML̄1/2

�
1/2
minε

)
. (101)

Next, let us consider the fully classical approach: on a
classical computer, generating the Markov chain by the MH
method in Algorithm 1, with L obtained by M-time iterative
calculations. We now regard O� as a classical subroutine to
compute �. Based on the bound (11) on the step number
in MCMC-based expectation estimation, the total number of
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calls to O� in finding the credible interval is

Õ

(
M

�ε2

)
. (102)

Also note that we do not need binary search with respect to
the CDF in the classical approach. We can store the sampled
states on a classical memory, and thus, sorting them and taking
the 100(1 − α

2 )th percentile yields an estimate on x(i)
ub .

Note that the complexity of the proposed method in
Eq. (96) is not better than those of the exact QSA approach
and the fully classical approach in Eqs. (101) and (102) with
respect to the spectral gap and accuracy. On the other hand,
unlike Eqs. (101) and (102), the complexity of the proposed
method is not explicitly dependent on M, the number of terms
in L, but on σ , the standard deviation of �. Thus, the proposed
method can be advantageous with respect to M if σ scales
with M sublinearly, and this actually holds in the case of GW
parameter estimation considered in Sec. IV.

IV. APPLICATION: PARAMETER ESTIMATION IN
GRAVITATIONAL WAVE DETECTION EXPERIMENTS

As an application of the credible interval calculation
method proposed above, we consider parameter estimation in
GW experiments. Since the first detection in 2015 [14], GW
events have been detected by laser interferometers such as
LIGO and Virgo [15–17]. Given a GW event, we want to esti-
mate the parameters of the GW, such as masses of the sources
for a GW from a compact binary coalescence (CBC). For this
purpose, Bayesian inference with MCMC is widely used (for a
review, see Ref. [13]). This is a time-consuming task and thus
a target of quantum speedup. Although a previous paper [26]
considered the application of the quantum MH method to
this task, unlike that paper focusing on the simulation-based
comparison of the TTS between the existing classical and
quantum MH methods, our aim is now the application of the
QMCI-based method proposed above.

The problem is formulated as follows. Given the detector
output s(t ) as time-series data with time length T and interval
�t , the negative log-likelihood for a point x in the parameter
space is given as follows:

L(x) = −2Re(h(·, x)|s) + (h(·, x)|h(·, x)) + C,

Re(h(·, x)|s) = 4

M

M
2 −1∑
k=1

�
(

h̃∗( fk; x)s̃( fk )

Sn( fk )�t

)
,

(h(·, x)|h(·, x)) = 4

M

M
2 −1∑
k=1

|h̃( fk; x)|2
Sn( fk )�t

. (103)

Here, M = T
�t , fk := k

T , the tilde represents the Fourier trans-
form of a function of time, h(t, x) is the GW waveform
for x, Sn is the single-sided power spectrum density of the
noise, and C is a term independent of x. Since h̃(·, x) and
Sn are smooth functions evaluated by explicit formulas, we
assume that (h(·, x)|h(·, x)) is approximated by the integral
4
∫∞

0
|h̃( f ;x)|2

Sn ( f ) df and this is further approximated by some for-
mula efficiently computable by arithmetic circuits. Then, L in
Eq. (103) is in the form of Eq. (48). In fact, M can be as large

as 106–1010 in typical cases [23], and thus we are motivated
to apply our QMCI-based method in Sec. III to find credible
intervals for GW parameters, regarding −2Re(h(·, x)|s(t )) as
Lsum and −4Re( h̃∗( fk ;x)s̃( fk )

Sn ( fk )�t ) as �(k, x).
Note that other conditions to apply the proposed method

are met. Usually, we have found a high SNR point in the
parameter space by matched filtering conducted prior to pa-
rameter estimation, and thus we can set a parameter region
to be searched, for example, a hyperrectangle around such a
point. We can set � to the sufficiently dense discrete points
in that region. Commonly, the prior distribution P0 is set
to uniform on � and the proposal distribution T (x, ·) is set
to some easy-to-sample one such as the normal distribution
around x, which means Assumptions 2, 3, and 4 are satisfied.
On the other hand, since the detector output is affected by
the random noise and unable to be expressed as an analytic
formula, O� is not implemented as a combination of arithmetic
circuits. Nevertheless, if we assume the availability of quan-
tum random access memory (QRAM) [58], we can implement
O� using a QRAM that stores the values of s̃( fk ), and thus
Assumption 1 is satisfied. The preparation of such a QRAM
takes O(M ) time, but this is needed only once at the very
beginning of calculation.

Let us estimate the query complexity of credible inter-
val calculation for GW parameters by the proposed method.
To do so, we need to bound the variance σ 2 of terms in
Re(h(·, x)|s(t )). According to Ref. [23], σ = O(γ M1/2) with

γ := max
x∈�

k∈[ M
2 −1]

h̃( fk, x)√
Sn( fk )�t

, (104)

which is O(1) in some cases if h is normalized so that
(h(·, x)|h(·, x)) = 1 as in matched filtering [23]. If we get
the highest SNR ρ = (h(·, x�)|s) at the parameter point x�

with (h(·, x�)|h(·, x�)) = 1 in matched filtering, � should be
set in the neighborhood of the parameter that corresponds to
the waveform ρh(·, x�), which leads to γ = O(ρ) and σ =
O(ρM1/2). Then, Eq. (96) becomes

Õ

(
M1/2ρL̄

ε2�
3/2
min

)
. (105)

Compared to the complexity of the exact QSA approach
in Eq. (101), the proposed method provides the quadratic
speedup with respect to M, in compensation for the worse
scaling on ε and �min.

V. SUMMARY

In this paper, with the usage in Bayesian inference in mind,
we have considered the quantum version of the MH algorithm
in the case that the target probability P is in the form of
Eq. (47) and L is given as Eqs. (48) and (49) with large M,
based on QSA. In such a case, calculating L takes the O(M )
query complexity naively, and thus we have proposed applica-
tion of QMCI, which may speed up a costly summation. We
have presented not only the procedure to generate the state
that encodes P but also that for finding a credible interval of a
parameter in a statistical model. Setting the accuracy in QMCI
based on the result in Ref. [30] on the MH algorithm with
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the perturbed acceptance ratio, we have derived the bound on
the complexity, the number of calls to the quantum circuit to
compute �, as summarized in Table I. Comparing QSA with
L calculated exactly, the complexity of the proposed method
scales worse on the required accuracy ε and the spectral gap
�min. On the other hand, if σ , the standard deviation of �,
scales on M sublinearly, the proposed method is advantageous
with respect to M. As an example in which this holds, we have
considered estimation of GW parameters in a GW detection
experiment. In this example, σ scales on M as O(

√
M ) and

this results in the complexity shown in Table I, which is
quadratically smaller with respect to M compared to the exact
QSA method.

One future direction of this work is searching other appli-
cations of the proposed framework, the combination of QSA
and QMCI. The sublinear scaling of σ on M in GW parame-
ter estimation, which makes the proposed method beneficial,
stems from the nature of the problem: the random noise in the
detector output overwhelming the GW signal and the power
spectrum of this noise [23]. Thus, if a similar situation holds
for other problems in the fields such as scientific experimental
data analysis or signal processing, the proposed method might
be also beneficial to them.

This work is a theoretical one and we have not created any
code.
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APPENDIX A: PROPERTIES OF THE WALK OPERATOR

Here, we present the proof of Theorem 13 on the spectrum
of the quantum walk operator. That of Theorem 4 is almost
the same with S seen as I .

First, we present the following theorem on which our proof
is based.

Theorem 16 (Theorem 1 in Ref. [10]). Let H be an N-
dimensional Hilbert space. Let A (B) be an n-dimensional
subspace of H spanned by orthonormal vectors u1, . . . , um

(v1, . . . , vn). Denote by VA (VB) the N × m (N × n) ma-
trix whose ith column is ui (vi). Define RA = 2VAV †

A − I
and RB = 2VBV †

B − I . Then, on A + B, the unitary opera-
tor RARB has an eigenvalue 1 with multiplicity 1, and any
other eigenvalue is either of e2iθ1 , e−2iθ1 , . . . , e2iθl , e−2iθl or
−1, where θ1, . . . , θl ∈ (0, π

2 ) are written as θi = arccos λi

with singular values {λi} of V †
AVB that lie in (0,1).

In the current case, A and B are defined as Eq. (46).
We also use the following lemmas.

Lemma 7. On A, �0V †B†SFBV �0 has the same eigenvalues as W including multiplicity, where �0 is the projector
onto A.

Proof. By a straightforward calculation, we see that, for any x ∈ �, applying �0V †B†SFBV to |x〉RS
|0〉RM

|0〉RC
yields⎡⎣ ∑

�x∈�x\{�0d }

√
T (x, x + �x)T (x + �x, x)A(x, x + �x)A(x + �x, x)|x + �x〉RS

+
⎛⎝1 −

∑
�x∈�x\{�0d }

T (x, x + �x)A(x, x + �x)

⎞⎠|x〉RS

⎤⎦|0〉RM
|0〉RC

=
∑
y∈�

√
Wx,yWy,x|y〉RS

|0〉RM
|0〉RC

, (A1)

where �0d is the d-dimensional zero vector. This means that

�0V
†B†SFBV �0 =

∑
x,y∈�

√
Wx,yWy,x|y〉RS

|0〉RM
|0〉RC

〈x|RS
〈0|RM

〈0|RC
. (A2)

Using the detailed balance condition P(x)Wx,y = P(y)Wy,x, which is satisfied in the MH algorithm (Exercise 3.1 of Ref. [8]), we
have

�0V
†B†SFBV �0 =

∑
x,y∈�

√
P(x)

P(y)
Wx,y|y〉RS

|0〉RM
|0〉RC

〈x|RS
〈0|RM

〈0|RC

=
∑

x,y∈�

(DPW D−1
P )x,y|y〉RS

|0〉RM
|0〉RC

〈x|RS
〈0|RM

〈0|RC
, (A3)

where DP is a diagonal matrix indexed by x, y ∈ � and its (x, x) entry is
√

P(x). Thus, since �0V †B†SFBV �0 is expressed as
the conjugation of W by DP, it has the same eigenvalues as W on A. �

Lemma 8. |P〉 is the eigenstate of UW = RV †B†SFBV with eigenvalue 1.

Proof. This is shown by a straightforward calculation. Applying FBV to |P〉 =∑x∈�

√
P(x)|x〉RS

|0〉RM
|0〉RC

yields∑
x∈�

∑
�x∈�x

(√
P(x)T (x, x + �x)A(x, x + �x)|x + �x〉RS

|�x〉RM
|1〉RC

+
√

P(x)T (x, x + �x)(1 − A(x, x + �x))|x〉RS
|�x〉RM

|0〉RC

)
. (A4)
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By using the detailed balance condition

P(x)T (x, x + �x)A(x, x + �x) = P(x + �x)T (x + �x, x)A(x + �x, x) (A5)

and substituting �x and x + �x with −�x and x, respectively, in the first term in Eq. (A4), we get∑
x∈�

∑
�x∈�x

(√
P(x)T (x, x + �x)A(x, x + �x)|x〉RS

|−�x〉RM
|1〉RC

+
√

P(x)T (x, x + �x)(1 − A(x, x + �x))|x〉RS
|�x〉RM

|0〉RC

)
, (A6)

and, by applying S to this, we obtain∑
x∈�

∑
�x∈�x

√
P(x)T (x, x + �x)|x〉RS

|�x〉RM

⊗ (
√

A(x, x + �x)|1〉RC
+
√

(1 − A(x, x + �x))|0〉RC
).

(A7)

Thus, applying V †B† to this yields |P〉. Applying R at last does
not change |P〉. �

Lemma 9. The restriction of �0V †B†SFBV �0 to A is
equal to V †

AVB.
Proof. Label the elements in � with integers 1, . . . , |�|

and denote the kth element by xk . Then, for k, l ∈ [|�|], the
(k, l ) entry of the restriction of �0V †B†SFBV �0 to A is

〈xk|RS
〈0|RM

〈0|RC
�0V

†B†SFBV �0|xl〉RS
|0〉RM

|0〉RC

= 〈xk|RS
〈0|RM

〈0|RC
V †B†SFBV |xl〉RS

|0〉RM
|0〉RC

. (A8)

From the definitions of VA and VB, we see that this is also the
(k, l ) entry of V †

AVB. �
Lemma 10. On A + B

(SF )† = SF. (A9)

Proof. For any x ∈ � and �x ∈ �x,

SFSF |x〉RS
|�x〉RM

|0〉RC
= |x〉RS

|�x〉RM
|0〉RC

, (A10)

since both S and F are not activated if the state on RC is |0〉RC
.

Besides, applying F , S, F , and S to |x〉RS
|�x〉RM

|1〉RC
in this

order transforms the state as

|x〉RS
|�x〉RM

|1〉RC

F−→ |x + �x〉RS
|�x〉RM

|1〉RC

S−→ |x + �x〉RS
|−�x〉RM

|1〉RC

F−→ |x〉RS
|−�x〉RM

|1〉RC

S−→ |x〉RS
|�x〉RM

|1〉RC
. (A11)

Thus, we see that SFSF acts as I for any state in the form of
|x〉RS

|�x〉RM
|φ〉RC

, where |φ〉RC
is any state on RC. This means

that SFSF = I and thus (SF )† = SF on A + B. �
Then, combining these lemmas, we can prove Theorem 13.
Proof of Theorem 13. Combining Theorem 16 with Lem-

mas 7 and 9, we see that RARB has eigenvalue 1 with
multiplicity 1 and that any other eigenvalue is −1 or in the
form of exp(±2iθl ), where θ1, θ2, . . . ∈ (0, π

2 ) are written as
θl = arccos |λl | with {λl}, the eigenvalues of W with modulus
less than 1.

On the other hand, RA and RB are now

RA = 2
∑
x∈�

|x〉RS
|0〉RM

|0〉RC
〈x|RS

〈0|RM
〈0|RC

− I (A12)

and

RB = 2
∑
x∈�

V †B†SFBV |x〉RS
|0〉RM

|0〉RC
〈x|RS

〈0|RM
〈0|RC

× (V †B†SFBV )† − I

= V †B†SFBV RAV †B†SFBV, (A13)

respectively. In Eq. (A13), we used Lemma 10. Note that, on
A + B, R in Eq. (21) acts as RA and V †B†SFBV RV †B†SFBV
acts as RB. Thus, RV †B†SFBV RV †B†SFBV = U 2 acts as
RARB. Therefore, on A + B, the eigenvalues of U are equal
to the square root of those of RARB. They include 1 or −1
with multiplicity 1, and, because of Lemma 8, it is in fact 1
with the corresponding eigenstate |P〉. Any other eigenvalue
of UW is e±iθl , −e±iθl = ei(±θl +π ), or ±i = e± π

2 i, whose phase
has modulus no less than

arccos (max{|λl |}) = arccos(1 − �) (A14)

in any case. �

APPENDIX B: DETAILS OF QUANTUM MONTE
CARLO INTEGRATION

First, let us recall Theorem 5 in Ref. [23].
Theorem 17 (Theorem 5 in Ref. [23], modified). Let M ∈

N and X be a set of M real numbers, X0, . . . , XM−1,
whose mean is μ := 1

M

∑M−1
i=0 Xi and sample variance satisfies

1
M

∑M−1
i=0 X 2

i − μ2 � σ 2 with some σ ∈ R+. Suppose that we
are given an access to a unitary operator OX that acts as
Eq. (36) for any i ∈ [M]0. Let ε ∈ (0, 4σ ) and δ ∈ (0, 1).
Then, we have an access to a unitary operator Õmean

X ,ε,δ,σ that
acts on a system of two registers as

Õmean
X ,ε,δ,σ |0〉|0〉 =

∑
y∈Y

αy|φy〉|y〉. (B1)

Here, Y is a finite set of real numbers that includes a subset
Ỹ consisting of ε approximations of μ, {αy}y∈Y are complex
numbers satisfying

∑
ỹ∈Ỹ |αỹ|2 � 1 − δ, and {|φy〉}y∈Y are

states on the first register. In Õmean
X ,ε,δ,σ , queries to OX are made,

whose number is of order (38). Õmean
X ,ε,δ,σ uses qubits whose

number is of order (39).
We construct Omean

X ,ε,δ,σ in Theorem 12 using Õmean
X ,ε,δ,σ and

adding some operations afterward.
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Proof of Theorem 12. Any x ∈ R can be written as x =∑i=∞
i=−∞ xi2i, where {xi}i∈Z are binaries (0 or 1), that is, the

binary representation of x. We call xi the ith bit of x. For x ∈ R
and a ∈ Z, we define

�x�a :=
∞∑

i=a

2ixi. (B2)

Namely, �x�a is the rounding of x at the ath bit. We de-
note by Oround

a the operator for rounding: Oround
a |x〉|0〉 =

|x〉|�x�a〉. This is simply implemented by copying the higher-
order qubits in the first register to the second register with
controlled-NOT gates.

Then, we can perform the following operation:

|0〉|0〉|0〉 →
∑
y∈Y

αy|φy〉|y〉|0〉

→
∑
y∈Y

αy|φy〉|y〉|�y�b〉 =: |�〉. (B3)

Here, we use Õmean
X ,ε′,δ′,σ at the first arrow and Oround

b at the sec-
ond arrow, where b = �log2 ε�, ε′ := 2b−1, and δ′ := δ/4. Y is
a finite set of real numbers that has a subset Ỹ consisting of ε′
approximations of μ and the complex numbers {αy}y∈Y satisfy∑

ỹ∈Ỹ |αỹ|2 � 1 − δ′. Note that, for any ε′ approximation y
of μ, yb, yb+1, . . . and μb, μb+1, . . . are equal, respectively,
since any discrepancy in the bth or higher-order bits means
that |y − μ| � 2b > ε′. Thus, we have

|�〉 =
⎛⎝∑

y∈Ỹ
αy|φy〉|y〉

⎞⎠⊗ |�μ�b〉 +
∑

y∈Y\Ỹ
αy|φy〉|y〉 ⊗ |�y�b〉.

(B4)
Therefore, letting |�̃〉 := (

∑
y∈Y αy|φy〉|y〉) ⊗ |�μ�b〉, we

have

‖|�̃〉 − |�〉‖

=
∥∥∥∥∥∥
∑

y∈Y\Ỹ
αy|φy〉|y〉|�μ�b〉 −

∑
y∈Y\Ỹ

αy|φy〉|y〉 ⊗ |�y�b〉
∥∥∥∥∥∥

�

∥∥∥∥∥∥
∑

y∈Y\Ỹ
αy|φy〉|y〉|�μ�b〉

∥∥∥∥∥∥+
∥∥∥∥∥∥
∑

y∈Y\Ỹ
αy|φy〉|y〉 ⊗ |�y�b〉

∥∥∥∥∥∥
� 2
√ ∑

y∈Y\Ỹ
|αy|2

� 2
√

δ′

=
√

δ. (B5)

This means that we can write

|�〉 = |�̃〉 + γ |ψ̃〉

=
⎛⎝∑

y∈Y
αy|φy〉|y〉

⎞⎠⊗ |�μ�b〉 + γ |ψ̃〉, (B6)

where γ := ‖|�〉 − |�̃〉‖ �
√

δ and |ψ̃〉 := 1
γ

(|�〉 − |�̃〉).

Then, performing (Õmean
X ,ε′,δ′,σ )† on the first and second registers

transforms |�〉 to

|0〉|0〉|�μ�b〉 + γ |ψ〉, (B7)

where |ψ〉 is a state on the entire system. Since �μ�b is an ε

approximation of μ, we see that the above operation yields a
state in the form of Eq. (37), with the first and second registers
together seen as R1 and the third one seen as R2.

The number of queries to OX in the entire process is that
in Õmean

X ,ε′,δ′,σ and (Õmean
X ,ε′,δ′,σ )†, that is, the double of that in

Õmean
X ,ε′,δ′,σ , which is of order (38) since ε′ = �(ε) and δ′ =

�(δ). The number of qubits used in the entire process is also
the same as Õmean

X ,ε′,δ′,σ , and is of order (39). �

APPENDIX C: PROOF OF LEMMA 4

We use the following theorem.
Theorem 18 (Theorem IIIa in Ref. [59]). Let n ∈ N and

B, B̃ ∈ Cn×n. Assume that B is diagonalizable and denote by
Q the matrix that diagonalizes B: Q−1BQ is diagonal. Denote
by κ the condition number of Q. Then, for each eigenvalue λ

of B, there exists an eigenvalue λ̃ of B̃ that satisfies

|λ̃ − λ| � κ‖B − B̃‖. (C1)

We also use the following lemma.
Lemma 11. Define A as Eq. (1) with P in the form of

Eq. (47), and Ã as Eq. (55). Then, if ε := maxx∈� |L̃(x) −
L(x)| � 1

4 ,

|Ã(x, y) − A(x, y)| � 8ε (C2)

holds for any x, y ∈ �.
Proof. We consider the following two cases.
Case (i). For x, y ∈ � such that P(y)T (y,x)

P(x)T (x,y) � 2. Note that

|ea − 1| � 2|a| (C3)

holds for any a ∈ [−1, 1]. Since

|(L̃(x) − L(x)) − (L̃(y) − L(y))|
� |L̃(x) − L(x)| + |L̃(y) − L(y)|
� 2ε

� 1, (C4)

we have∣∣∣∣∣P0(y)e−L̃(y)T (y, x)

P0(x)e−L̃(x)T (x, y)
− P(y)T (y, x)

P(x)T (x, y)

∣∣∣∣∣
=
∣∣∣∣P(y)T (y, x)

P(x)T (x, y)
e(L̃(x)−L(x))−(L̃(y)−L(y)) − P(y)T (y, x)

P(x)T (x, y)

∣∣∣∣
� 2|e(L̃(x)−L(x))−(L̃(y)−L(y)) − 1|
� 8ε. (C5)

Since min{1, ·} is a 1-Lipschitz function on R, we obtain
Eq. (C2).

Case (ii). For x, y ∈ � such that P(y)T (y,x)
P(x)T (x,y) > 2. Because of

Eq. (C4),

e(L̃(y)−L(y))−(L̃(x)−L(x)) � e−2ε � e− 1
2 � 1

2 (C6)
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holds, which means

P0(y)e−L̃(y)T (y, x)

P0(x)e−L̃(x)T (x, y)
= P(y)T (y, x)

P(x)T (x, y)
e(L̃(x)−L(x))−(L̃(y)−L(y))

� 1 (C7)

and thus Ã(x, y) = 1 = A(x, y).
Thus, in both cases, Eq. (C2) holds. �
Then, Lemma 4 is proven as follows.
Proof of Lemma 4. Theorem 18 implies that

�̃ � � − κ‖δW ‖, (C8)

where δW := W̃ − W and W (W̃ ) is the transition matrix of
CL (CL̃).

Then, let us bound ‖δW ‖. To do this, we use a well-known
inequality (Corollary 2.3.2 or Ref. [60]):

‖δW ‖ �
√

‖δW ‖1‖δW ‖∞. (C9)

We also have

‖δW ‖∞ = max
x∈�

∑
y∈�

|δWx,y|

= max
x∈�

⎛⎝|δWx,x| +
∑

y∈�\{x}
|δWx,y|

⎞⎠
= max

x∈�

⎛⎝∣∣∣∣∣∣
∑

y∈�\{x}
T (x, y)(A(x, y) − Ã(x, y))

∣∣∣∣∣∣
+

∑
y∈�\{x}

|T (x, y)(Ã(x, y) − A(x, y))|
⎞⎠

� 2 max
x∈�

∑
y∈�\{x}

T (x, y)|Ã(x, y) − A(x, y)|

� 16ε max
x∈�

∑
y∈�\{x}

T (x, y)

� 16ε, (C10)

where we used Lemma 11 at the second inequality. Similarly,
we have

‖δW ‖1 = max
y∈�

∑
x∈�

|δWx,y|

� 16ε max
y∈�

∑
x∈�\{y}

T (x, y)

� 16ε max
y∈�

∑
x∈�

T (x, y). (C11)

Combining Eqs. (C9)–(C11) with Eq. (C8), we obtain
Eq. (72). �

APPENDIX D: PROOF OF LEMMA 5

Proof of Lemma 5. If ε := maxx∈� |L̃(x) − L(x)| � 1
4 ,

Eq. (C2) holds for any x, y ∈ � because of Lemma 11.
Combining this with Eq. (15), we obtain Eq. (73).

If ε > 1
4 , Eq. (73) holds trivially since the right-hand side

is larger than 1 and the left-hand side is not larger than 1 by
definition. �
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