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Anomalous skin effects in disordered systems with a single non-Hermitian impurity
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We explore anomalous skin effects at non-Hermitian impurities by studying their interplay with potential
disorder and by exactly solving a minimal lattice model. A striking feature of the solvable single-impurity
model is that the presence of anisotropic hopping terms can induce a scale-free accumulation of all eigenstates
opposite to the bulk hopping direction, although the nonmonotonic behavior is fine tuned and further increasing
such hopping weakens and eventually reverses the effect. The interplay with bulk potential disorder, however,
qualitatively enriches this phenomenology leading to a robust nonmonotonic localization behavior as directional
hopping strengths are tuned. Nonmonotonicity persists even in the limit of an entirely Hermitian bulk with a
single non-Hermitian impurity.
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I. INTRODUCTION

Non-Hermitian (NH) physics has been extensively ex-
plored in recent years, uncovering a wide range of phenomena
richer than the Hermitian picture and with applications in both
classical and quantum regimes [1,2]. Significant emphasis has
been placed on the systematic study of the topological phases
of non-Hermitian systems [1–5], which revealed a breakdown
of the correspondence between bulk topology and the appear-
ance of boundary modes [6,7]. Subsequent theoretical efforts
were successful in formulating a generalized bulk-boundary
correspondence [8–21] consistent with experiments [22–25].

A unique feature of NH systems, which has no counterpart
in the Hermitian domain, is the accumulation of an exten-
sive number of eigenstates at the boundaries, a phenomenon
coined as the non-Hermitian skin effect (NHSE) [9]. The
phenomenology and origin of this remarkable effect, includ-
ing the connection to the existence of nontrivial topological
invariants, remains an active field of current research [26–36].
Crystal defects in NH systems [37] have also turned out to be
an alternative platform to induce the NHSE, even when it is
not present under open boundary conditions (OBC) [38–41].
This extensive theoretical research has effusively led to the
exploration of different experimental platforms on which
NHSE could be observed [42,43]. Underpinning the NHSE
lies an extreme sensitivity of the spectrum to boundary con-
ditions [8,44,45], which opens up new potential avenues for
sensor applications [46–50].

Much more well established is the phenomenon known
as Anderson localization [51,52], present in disorder media.
In recent years, the interplay between non-Hermiticity and
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transitions to Anderson localization or nonperiodic potentials
has also been of increasing interest [53–69].

On the other hand, the impact of single local impurities on
physical properties have also been the subject of much current
interest in many other areas of physics [70–75]. In Ref. [76],
it was first observed how nonreciprocal impurities in a non-
Hermitian Hatano-Nelson chain induced scale-free localized
(SFL) states. It was also discussed how the variation of the im-
purity strength could produce transitions between NHSE and
SFL, including the counterintuitive behavior of localization
in the direction opposite to the predominant hopping term.
Moreover, solutions for an on-site impurity in NH Hatano-
Nelson and SSH chains were discussed in Ref. [77], showing
how the impurity effectively can act as an open boundary
condition for the system. Similarly, tight connections between
the NHSE and the presence of an impurity in one-dimensional
lattices were also studied in Refs. [17,78], where an on-site
infinite impurity (site vacancy) was considered to develop a
method to calculate the eigenstates of the system based on
the Green’s function method. Further work includes the study
of the effect of NH impurities on the properties of Dirac
systems [79] or the introduction of topological defects in NH
electrical circuits [80].

Here we combine the aforementioned notions of localiza-
tion by considering a single NH impurity in a one-dimensional
tight-binding model subject to on-site disorder [Fig. 1(a)].
A rich interplay between different phases of the system is
observed, including the NHSE, Anderson localization and
the appearance of scale-free skin localization [Figs. 1(b)
and 1(c)]. We refer to these as anomalous skin effects for sev-
eral reasons. First, the scale-free localization in the presence
of impurities is qualitatively distinct from the NHSE occurring
at open boundaries both in that its localization is not dictated
by the bulk [Fig. 1(b)] and that the localization length is not
fixed but instead proportional to the system size [76]. Second,
in presence of disorder, there is a nonmonotonic localization
behavior as a function of the hopping terms [cf. Fig. 1(b)].
Third, the key features including a scale-free skin localization
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FIG. 1. (a) Sketch of the system considered in this work, con-
sisting of a chain of sites with hopping tr (to the right) and tl (to
the left), on-site potentials Vn, and impurity hopping between first
and last site γr (|N〉 → |1〉) and γl (|1〉 → |N〉). [(b)–(c)] Sketch of
the phase diagram of the model as a function of right hopping tr

and impurity strength γr . In (b) tl = 0 and in (c) tl = tr (Hermitian
hopping).

and nonmonotonic dependence of localization as a function
of hopping strength persist even in the limit of a NH impurity
in an otherwise Hermitian bulk [Fig. 1(c)]. To elucidate these
points we begin by fully analytically solving a special limit
of this system that nevertheless contains key ingredients that,
together with the standard phenomenology of Anderson lo-
calization, explains our numerically obtained phase diagrams
[Figs. 1(b) and 1(c)].

II. MODEL

Throughout this work we consider an extension of the
Hatano-Nelson model [81–83], a paradigmatic example of a
one-dimensional chain in which the nonreciprocity of nearest-
neighbor hoppings leads to the NHSE under OBC. The
Hatano-Nelson Hamiltonian reads

H =
N−1∑
n=1

(tr |n + 1〉 〈n| + tl |n〉 〈n + 1|)

+
N∑

n=1

Vn |n〉 〈n| + γr |1〉 〈N | + γl |N〉 〈1| , (1)

where tr and tl indicate nearest-neighbor hopping, respec-
tively, to the right and to the left, Vn is an on-site disorder
potential that we take from a random uniform distribution
[−V,V ] [84], and γr and γl are hopping strengths between the
first and last site, which parametrize an impurity. This model
is sketched in Fig. 1(a). In general Eq. (1) is non-Hermitian.
However, we consider tr, tl , γr, γl ,V to be real, thus H has
a real matrix representation, H = H∗. Eigenvalues are conse-
quently real or appear in complex conjugate pairs.

III. RESULTS

A. Solvable limits

Key insights can already be understood through the study
of simple particular cases. Solving the Hamiltonian Eq. (1)
in the simplest nontrivial case when tr = tl = V = γl = 0 but
γr �= 0, we find an order two exceptional point and N-fold
energy degeneracy at E = 0. The N − 1 distinct right eigen-
states can be taken as localized at sites n = 1, . . . , N − 1.
This solution, however, is highly unstable towards hopping.

As we turn on the hopping, tr , while keeping
tl = V = γl = 0, we get a more nontrivial case in which
the Hamiltonian reads as

H =
N−1∑
n=1

tr |n + 1〉 〈n| + γr |1〉 〈N | . (2)

Again the eigenspectrum En and the (right) eigenvectors
|�R,n〉 can be found exactly as [83]

En = e
2π in

N γ
1
N

r t
1
N (N−1)

r , (3)

|�R,n〉 = N
(

N∑
�=1

e− 2π in
N �

(
tr
γr

) �
N

|�〉
)

, (4)

with some normalization constant N and where n = 1, . . . , N
labels the eigenstates and their corresponding eigenvalues,
which occur on a circle in the complex plane with radius

γ
1
N

r t
1
N (N−1)

r . Here it is important to note that the tr → 0 limit is
not smooth as can be seen by comparing with the first solvable
example described at the beginning of the previous paragraph.

In Eq. (4) one can readily see that in the limit γr → 0
all right eigenvectors are completely localized on the right
boundary: |�R,n〉 ∼ (0 0 · · · 1)T . Dual to this limit, when
γr → ∞, i.e., the boundary coupling is infinitely strong, there
also exists perfect boundary localization. In the dual limit,
however, all right eigenvectors are completely localized at
the left boundary: |�R,n〉 ∼ (1 0 · · · 0)T [85]. Note that this is
more general: interchanging tr and γr changes the localization
to the opposite side.

In this toy model we can thus control the localization of
the eigenstates through the strength of the impurity γr . Since
the expression Eq. (4) is only valid for a finite tr (analogous
results and conclusions would hold for finite tl , γl ), this clearly
implies that adding finite tl/r immediately localizes all eigen-
states, even if the added hopping is directed opposite to the
direction of localization. The reason for this is essentially that
the sites need to be connected in order to make the localization
possible. The nature of the connections are, however, not
crucial, hence allowing for the counterintuitive phenomenon
of localization in the opposite direction compared to the
added terms. This counterintuitive effect highlights a different
behavior compared to the NHSE, where the localization is
towards the leading unbalanced hopping.

We remark that while biorthogonality and simultaneously
considering both left and right eigenstates is fundamental for
understanding some aspects such as the appearance of bound-
ary modes [8,50], the phenomenology of the skin effect is
readily highlighted by considering the localization properties
of (either left or) right states as we do in this work. Analytical
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investigation of the toy model in Eq. (2) and its experimental
realization based on a non-Hermitian circuit platform has been
performed in Ref. [86].

B. Phenomenology beyond the solvable limits

From the above exact solutions it is possible to understand
the full behavior of the generic model in Eq. (1) in detail.
To begin with, we keep the maximum nonreciprocity in both
the hopping and impurity terms, setting γl = tl = 0, while
introducing disorder in the form of a random uncorrelated on-
site potential of maximal strength ±V . We then scan the tr-γr

parameter space and report the behavior of the eigenstates, as
shown in Fig. 1(b).

For small values of the impurity strength γr , making the
hopping tr larger (i.e., the non-Hermiticity of the bulk) will
gradually increase the localization of the eigenstates to the
hopping direction, as expected in the NHSE regime. This
behavior can be easily quantified by calculating the average
eigenstate localization in the form of the mean center of mass
(mcom) of the amplitude squared of all eigenvectors |�R,n〉,
averaged over many disorder realizations Nr , i.e.,

〈A(�)〉V =
〈

1

N

N∑
n=1

|〈�|�R,n〉|2
〉

V

, (5)

mcom =
∑N

�=1 �〈A(�)〉V∑N
�=1 〈A(�)〉V

, (6)

where 〈·〉V indicates disorder averaging. We plot the mcom in
Fig. 2(a) over six orders of magnitude for both tr and γr and
disorder strength V = 0.1. From this plot, we can clearly see
that in the limit of small γr and large tr , all eigenstates pile up
on the right end of the chain.

We remark that there are other quantities that could be used
to probe the localization, but the information they provide
should be essentially equivalent to that of the mcom because
of the noninteracting nature of the system. In Appendix B, for
instance, we show results for the disordered-averaged inverse
participation ratio (IPR). However, while the IPR performs
very well in detecting Anderson localization, its measure
of the NHSE localization is inferior to that obtained via
the mcom. In Appendix D, we show plots of biorthogonal
quantities, calculated using both left and right eigenvectors.
Since the left and right eigenstates are localized on opposite
boundaries in the NHSE phases, biorthogonal quantities are
not useful in determining localization properties and can at
most only discriminate whether a phase is Anderson local-
ized or not. We also remark that the information provided by
the eigenspectrum, such as the complex eigenvalue fraction,
is also redundant for our purposes of determining NHSE
localization.

More interestingly, increasing the impurity strength causes
the system to exhibit a different behavior. For small values
of the right hopping tr , the disorder introduced through the
on-site potential will always dominate, leading the eigen-
states to localize on the basis of Anderson localization. This
corresponds to a mcom ≈ N/2 in Fig. 2(a) (purple region).
However, at sufficiently large values of tr , we can distinguish

FIG. 2. (a) mcom as a function of right impurity hopping γr and
right bulk hopping tr for V = 0.1, showing the three different phases
discussed in the main text. [(b)–(d)] mean eigenvector amplitude
squared for Nr = 1000 disorder realizations (colored lines) and disor-
der averaged (thick black line) for the four points indicated in (a). The
vertical dashed lines indicate the mcom in each case. (f) Localization
length ξL/R extracted from the scale-free left- and right-localized
phases (red squares and yellow dots, respectively), compared to the
same results obtained from the toy model (green crosses and cyan
triangles). We can observe perfect agreement between the scaling of
the toy model and that of the disordered model. The scaling of the
standard NHSE phase at γr = 0.0 is also depicted as blue pluses and
clearly shows no N dependence. The colored dashed lines indicate
linear fits to the data points.

two different behaviors of the system when γr is ramped up to
progressively larger values.

At first, when tr 
 γr , the increase of the right hopping
tr causes the eigenstates to pile up to the left of the chain,
following the counterintuitive picture already observed in the
toy model at V = 0. In Fig. 2(a), this is signaled by mcom ≈ 1
(dark-colored region). The localization is exponential, i.e., the
disorder-averaged mean amplitude squared of all eigenvectors
can be very well fitted by 〈A(�)〉V = AL exp(− �

ξL
) with the

localization length ξL and some amplitude AL.
Upon increasing the right hopping beyond tr � γr , how-

ever, the localization is rapidly inverted and all eigenstates
pile up again towards the right end of the chain (next to
the impurity) as observed for small γr and large tr . Again,
the localization is exponential, with the form 〈A(�)〉V =
AR exp(−N−�

ξR
). The progression from Anderson-localized, to
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left-localized, to right-localized skin effects is depicted explic-
itly in Figs. 2(b)–2(e), where the mean amplitude squared of
all eigenvectors is plotted for Nr = 1000 disorder realizations.

In both skin-localized phases, the localization length ξL/R is
proportional to the system size N , as can be seen in Fig. 2(f).
We find that ξL � ξR over many orders of magnitude in N ,
indicating that the underlying scaling is the same for both
left and right localization. Furthermore, the scaling matches
perfectly with what we can obtain exactly for the clean limit
of the toy model (2), i.e., when V = 0.0, tl = rl = 0.0. This
agreement demonstrates that the core mechanism for the lo-
calization physics lies within the interplay between hopping
and impurity, but is stabilized by the disorder to a proper
phase. This linear N dependence is to be starkly contrasted
with the standard NHSE occurring at γr = 0.0, where the
localization length remains instead constant for any value
of N (green markers and line). This unique phenomena of
scale-free eigenstates, representing an anomalous skin effect
are always accompanied by the emergence of complex eigen-
spectrum, as observed in Ref. [76].

We remark that the nonmonotonicity in the localiza-
tion arises not from the NHSE phase, but rather from the
Anderson-localized phase. The disorder element is therefore
crucial: at low values of disorder the nonmonotonicity namely
disappears completely and the same behavior is observed in
presence of a periodic potential, see the Appendixes. A heuris-
tic explanation for the lack of nonmonotonicity in the periodic
potential case is that the eigenstates remain delocalized in
absence of the NH impurity, and hence immediately feel its
presence when turned on. We also note that larger values of
V will lead to qualitatively similar phase diagrams to the one
shown in Fig. 2, but where the appearance of the left-localized
phase is shifted to larger values of the parameters. Similarly,
nonzero values of tl and γl might shift the detailed shape of
the phase diagram, but do not alter the generic features we
presented.

C. Analytical mcom in the clean case

By using the exact solutions of the toy model, Eq. (4), it
is possible to obtain an analytical expression for the mcom in
the limit of zero disorder V = 0 (see Appendixes for detailed
derivation):

mcom
∣∣
V =0 = N + 1

1 − ( tr
γr

)2/N + N( tr
γr

)2 − 1
. (7)

Figure 3 shows the analytical mcom normalized with the chain
length for various values of N . The analytical result showcases
the change in localization from the left to the right of the chain
as a function of the ratio tr/γr , and is corroborated by the
numerical results. Furthermore, we can appreciate how in the
limit of large N , all curves fall on top of each other, indicating
scale-free localization.

D. Hermitian hopping case

As we have explored in the solvable model, large values of
the right impurity strength γr dominate the system behavior,
localizing eigenstates to the left. This means that the increase
of the hopping in the direction of the localization (i.e., tl ) will

FIG. 3. Behavior of the mean center-of-mass as a function of
the ratio tr/γr and for increasing values of chain length N in the
clean case V = 0. Solid lines are calculated analytically with formula
Eq. (7), while dashed lines correspond to numerical results.

have no effect on the localization behavior, i.e., the scale-free
localization to the left will prevail. Thus adding such hopping
to the solvable model Eq. (2) to make it Hermitian in the bulk,
i.e., tl = tr preserves the localization property of Eqs. (3)–(4).
This sheds light on the provenance of the scale-free localiza-
tion induced by local non-Hermitian impurities in otherwise
Hermitian systems as noticed very recently in Refs. [87,88].
In the Hermitian case, however, neither scale-free localization
to the right nor NHSE is observed, as would be expected.

The sketch of the phase diagram in the Hermitian case
is displayed in Fig. 1(c). A more detailed description of
the localization properties is instead presented in Fig. 4. In
Fig. 4(a), the phase diagram is obtained by means of the
mcom, where we can clearly see the absence of localization
at right boundary. Note that from the perspective of the
mcom, the Anderson-localized phase and the phase where the
hopping dominates (for tr > γr > V ) cannot be distinguished
from each other. In this case, the inverse participation ratio
could be used as additional tool (see Appendix B). However,
here we are mainly interested in scale-free localization behav-
ior. Figures 4(b)–4(e) show the mean amplitude squared of all
eigenvectors Nr = 1000 disorder realizations, and increasing
value of tr corresponding to the points displayed in Fig. 4(a).
While the left localization is achieved upon increasing the
right hopping to values comparable to but smaller than γr ,
further increasing tr simply delocalizes the eigenstates across
the entire chain. Finally, Fig. 4(f) shows the localization length
ξL obtained by fitting the disorder-averaged mean amplitude
squared with an exponential function. Again, we observe a
linear behavior with the system size N indicating scale-free
localization, and indeed with the same slope observed for the
non-Hermitian hopping case.

IV. CONCLUSIONS

We have explored anomalous skin-localization phenomena
induced by non-Hermitian impurities. On a basic level this
showcases fundamental properties of NH spectra [45] and
their associated novel eigenvector properties [89]. At the same
time it relates directly to experimental realities in a vari-
ety of systems ranging from robotic metamaterials [25] and
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FIG. 4. (a) mcom as a function of right impurity hopping γr

and Hermitian bulk hopping tl = tr for V = 0.1. [(b)–(d)] Mean
eigenvector amplitude squared for Nr = 1000 disorder realizations
(colored lines) and disorder averaged (thick black line) for the four
points indicated in (a). The vertical dashed lines indicate the mcom
in each case. (f) Localization length ξL extracted from the scale-free
left-localized phase. The dashed line indicates a linear fit to the data
points.

electrical circuits [23,24] to optical systems [22,90,91] in
which the standard NHSE has already been observed.

While the effect of impurities in NH one-dimensional tight-
binding models has been explored in previous works, here we
have added several important aspects. First, we have identified
a minimal analytically solvable model that exhibits anoma-
lous skin effects. The solution of our model does not involve
any approximations and yields all eigenenergies and eigen-
states at any finite size. This model highlights a previously
overlooked nonanalytic weak hopping limit and a counterin-
tuitive nonmonotonic relation between (directional) hopping
and localization. Second, we have established that, by adding
bulk disorder, the aforementioned nonmonotonic behavior is
promoted from a highly fine-tuned point in parameter space
into a generic and stable phenomenon. Third, we have shown
that adding bulk hopping in the direction of the scale-free
localization cannot undo it (in fact it leaves it unchanged)
hence explaining why a single non-Hermitian impurity can
also induce a scale-free skin localization in an otherwise Her-
mitian system.

These results corroborate the potential for harnessing im-
purities for local sensing and control of a large class of

effectively non-Hermitian systems. That the phenomenol-
ogy also extends to systems that are Hermitian in the bulk,
which follows transparently from perturbing away our solv-
able model, further extends the scope of these insights.

Note added. Recently, several preprints pointed out the
possibility of inducing scale-free localization through NH im-
purities in a Hermitian bulk based on tight-binding models
distinct from ours [87,88], as well as by solving dissipat-
ing spin chains in the thermodynamic limit using Bethe
ansatz [92].
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APPENDIX A: LOCALIZATION AS A FUNCTION
OF ON-SITE POTENTIAL

In this section, we summarize the behavior of the mean
center-of-mass (mcom) Eq. (6) as a function of different on-
site potential strengths. This quantity was used in the main
text as an effective order parameter to classify the system
into phases with different localization properties. We have
calculated the mcom as a function of the parameters tr and
γr for N = 50 sites and tl = γl = 0.0. The results are shown
in Fig. 5. Figure 5(a) shows the results for the clean limit given
by the toy model of Eq. (2). As discussed in the main text, the
nonmonotonic behavior in the eigenstate (left) localization is
not present in this limit: for any value of γr > tr , increasing tr
will only localize the eigenstates more to the right.

The same behavior is observed also when we add an alter-
nating on-site potential to the toy model, i.e., for V2n−1 = V ,
V2n = −V , n = 1, . . . , N in Eq. (1). Remarkably, the local-
ization properties are identical to those of the toy model, as
shown in Fig. 5(b).

In order to introduce a nonmonotonic behavior in the
eigenstate localization, we need to add a disordered potential
as explained in the main text. This leads to the emergence
of an Anderson-localized phase at small values of the right
hopping tr . For large enough values of the impurity hopping
γr , it is then possible to left localize the eigenstates by in-
creasing the hopping to the right. We find that this qualitative
picture persists for all values of the disorder potential strength
V , whereas V controls the onset of the left localization as seen
in Figs. 5(c) and 5(d).

In the Hermitian hopping regime tl = tr , it is still possible
to control the eigenstate localization by increasing tr and large
values of γr , much like in the non-Hermitian case. This feature
is shown in Figs. 5(e) and 5(f). Here, however, the right-
localized phase disappears completely and the localization is
only possible on the left end of the chain. Again, increasing
the value of V will not change this qualitative picture, but
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FIG. 5. Mean eigenvector center of mass for a generalized Hatano-Nelson chain of N = 50 sites under different conditions, plotted as a
function of γr and tr . (a) Clean limit (toy model) with V = 0, tl = γl = 0, obtained analytically from (7) (numerical results are identical).
(b) Alternating on-site potential of strength V = 10.0, tl = γl = 0. (c) Disordered on-site potential of magnitude V = 0.1, tl = γl = 0.
(d) Disordered on-site potential of magnitude V = 10.0, tl = γl = 0. (e) Disordered on-site potential of magnitude V = 0.1, tl = tr (Hermitian
hopping), γl = 0. (f) Disordered on-site potential of magnitude V = 10.0, tl = tr (Hermitian hopping), γl = 0.

will simply shift the left-localized phase to larger values of tr
and γr .

A comprehensive analysis of the localization behavior as a
function of all system parameters (tr , γr , and V ) is shown in

Fig. 6. The picture that comes out of these phase diagrams is
consistent with the expectation that when V is the dominant
energy scale, the states are Anderson localized with a mcom
of around N/2; when tr is the dominant energy scale, the states

FIG. 6. Mean eigenvector center of mass for a generalized Hatano-Nelson chain of N = 50 sites as a function of tr , γr , and V .
[(a)–(c)] Dependence on V and tr at fixed γr for (a) γr = 0.001, (b) γr = 1.0, (c) γr=100. [(d)–(f)] Dependence on V and γr at fixed tr

for (d) tr = 0.001, (e) tr = 0.1, (f) tr = 10.
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FIG. 7. Scaling of the (left) localization length as a function of
chain length N up to N = 50 for increasing values of the disorder
strength V . The other parameters are tl = 0.0, tr = 103, γr = 10,
γl = 0.0.

localize on the right end of the chain; when γr is the dominant
energy scale, the states localize on the left end of the chain.

The strength of the disorder can also impact how the lo-
calization length scales with system size. More precisely, we
find that when V becomes comparable to the hopping strength
tr , the slope of ξ (N ) begins to increase and deviate from the
clean limit of the toy model already at values N ∼ 50, as
shown in Fig. 7. This can be understood as a consequence
of the shift of the localized phases towards larger values of
tr and γr induced by increasing values of V , already seen in
Figs. 5(c) and 5(d). When γr is kept fixed at a large enough
value such that the system lies in the left-localized phase
(dark area in Fig. 5), increasing V will progressively shift
the mcom towards more central values (dark purple region in
Fig. 5), affecting the scaling of the localization length in the
process. This behavior indicates that disorder might be used
as an additional lever in controlling the scale-free localization
observed in the generalized Hatano-Nelson model.

APPENDIX B: INVERSE PARTICIPATION RATIO

In this section, we present numerical results for the
disordered-averaged inverse participation ratio, or IPR, de-
fined as

IPR =
〈

1

N

N∑
n=1

N∑
m=1

|�R,n(m)|4
〉

V

, (B1)

where we have additionally assumed that the eigenvectors
|�R,n〉 are normalized to one, i.e.,

∑N
m=1 |�R,n(m)|2 = 1. The

IPR is a standard measure of Anderson localization in nonin-
teracting systems. Our numerical results are shown in Fig. 8.
As we can see from the panels, the IPR is a very good diag-
nostic tool to discriminate the Anderson-localized phase from
the anomalous NHSE. However, it performs poorly when
distinguishing the NHSE phase from each other, because it
only gives a measure of the total localization, and not of the
position of the localization. Even at V = 0, in Fig. 8(a), while
the two anomalous NHSE phases can be distinguished, the
transition line is completely obscured. In contrast, the mcom
gives a much clearer signal.

FIG. 8. Disordered-average IPR in the (γr, tr )-parameter space
for increasing values of disorder potential V . (a) V = 0, (b) V = 0.1,
(c) V = 1.0, and (d) V = 10.0.

APPENDIX C: DERIVATION OF THE ANALYTICAL
EXPRESSION FOR THE MCOM IN THE CLEAN CASE

Here we derive Eq. (7) for clean case V = 0. We start from
the definition of the mcom, Eq. (6), which for zero disorder is
simply

mcom
∣∣
V =0 =

1
N

∑N
�,n=1 �| 〈�|�R,n〉 |2

1
N

∑N
�,n=1 | 〈�|�R,n〉 |2 . (C1)

By inserting the analytical result for the right eigenvector,
Eq. (4), we simplify the expression further:

mcom
∣∣
V =0

=
∑N

�,n=1 �|N (n)
∑N

�′=1 e−2π in�′/N
( tr

γr

)�′/N 〈�|�′〉 |2∑N
�,n=1 |N (n)

∑N
�′=1 e−2π in�′/N

( tr
γr

)�′/N 〈�|�′〉 |2

=
∑N

�=1 �θ�∑N
�=1 θ�

, (C2)

where we have used 〈�|�′〉 = δ�,�′ and introduced the ratio θ ≡
( tr
γr

)2/N . The above geometric sums can finally be evaluated
exactly with the formulas

N∑
k=0

θ k = 1 − θN+1

1 − θ
, (C3)

N∑
k=0

kθ k = θ (NθN+1 − (N + 1)θN + 1)

(1 − θ )2
, (C4)

to yield the compact expression

mcom
∣∣
V =0 = N + 1

1 − θ
+ N

θN − 1
. (C5)

APPENDIX D: BIORTHOGONAL QUANTITIES

Since we are dealing with a non-Hermitian system,
one might wonder whether using biorthogonal quantities
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FIG. 9. [(a)–(b)] Biorthogonal inverse participation ratio as
a function of γr and tr for (a) V = 0.0 and (b) V = 1.0.
[(c)–(d)] Biorthogonal polarization as a function of γr and tr for
(a) V = 0.001 and (b) V = 1.0.

constructed from both left and right eigenvectors would be
more appropriate. As we can see in Figs. 9(a)–9(b), the

biorthogonal generalization of the IPR [93]

IPRbi =
〈

1

N

∑
n

∑
j |ψL,n( j)|2|ψR,n( j)|2(∑
j |ψL,n( j)||ψR,n( j)|)2

〉
V

(D1)

gives exactly the same information of the usual IPR and is
able to only discriminate between Anderson localization and
NHSE. The disorder-averaged biorthogonal polarization, in-
stead, defined as [8,13]

P =
〈∑

m

(
1 − 1

N

∑
n

n〈ψL,m|n〉〈n|ψR,m〉
)〉

V

(D2)

with |ψL/R,m〉 the mth left (right) eigenstate, is trivial in every
phase as shown in Figs. 9(c)–9(d). This can be explained by
the fact that the left and right eigenstates are localized on
opposite boundaries, and thus constructing biorthogonal over-
laps completely smears out any information about boundary
localization. Since we are mainly interested in the localization
properties of the left and right eigenstates separately, exam-
ining quantities that only stem from left or only from right
eigenstates is the appropriate way to extract information about
NHSE phases.
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