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Propagating single photons from an open cavity: Description from universal quantization
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Over the last decades, quantum optics has evolved from high-quality-factor cavities in the early experiments
toward new cavity designs involving leaky modes. Despite very reliable models, in the concepts of cavity
quantum electrodynamics, photon leakage is most of the time treated phenomenologically. Here, we take a
different approach, and starting from first principles, we define an inside-outside representation which is derived
from the original true-mode representation, in which one can determine the effective Hamiltonian and Poynting
vector. Unlike the phenomenological model, they allow a full description of a leaking single photon produced
in the cavity and propagating in free space. This is applied for a laser-driven atom-cavity system. In addition,
we propose an atom-cavity nonresonant scheme for single-photon generation, and we rigorously analyze the
outgoing single photon in time and frequency domains for different coupling regimes. Finally, we introduce
a particular coupling regime ensuring adiabatic elimination for which the pulse shape of the outgoing single
photon is tailored using a specifically designed driving field envelope.
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I. INTRODUCTION

Single photons are nowadays key elements in quan-
tum technologies, as quantum networking for distributed
computation, communication, and metrology [1–7]. Sources
producing single photons have been widely developed [8,9].
Their quantization and treatment as wave functions in con-
nection with a corpuscular viewpoint have been debated until
recently [10–12]. From a practical point of view, one can, for
instance, mention the need for such a description in quantum
cryptography [13] over the use of attenuated laser pulses for
making the security of quantum key distribution device inde-
pendent, or for extending quantum communication over very
long distances [3,4,14–16]. An envisioned quantum network
makes use of single-photon wave packets as carriers of quan-
tum information (encoded, for instance, in the polarization
state giving flying qubits) to map the states between distant
quantum nodes [3,5,6,17], such as individual atoms in cavity
quantum electrodynamics (cavity QED) [18–30], atomic en-
sembles [31,32], trapped ions [33,34], or spins in quantum
dots [35,36]. One key point is to control the node-photon
interfacing, i.e., to have control over the produced photon
frequency, bandwidth, and temporal shape such that the node
can send, receive, store, and release photonic quantum in-
formation [33,37–41]. This control is in general achieved
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by control laser pulses. Recent studies have investigated the
control of the shape of the single-photon wave packets in �

atoms by a resonant stimulated Raman process [42–45] in
order, for instance, to improve the impedance matching of
the atom-photon interface [25,26]. The possible production of
more complex traveling photonic states featuring N > 1 pho-
tons [46–49] can be envisioned for the transport of complex
information. For instance, the delays and relative amplitudes
between the pulse-shaped individual photons offer a large
variety of encoding, which generalizes the possibility of pro-
ducing a train of well-separated pulses [50].

Cavity QED, the theory of atoms coupled to single-mode
cavities, is nowadays well known [5,51–53]. More recently,
transposition of cavity QED to leaky cavities has, however, led
to misinterpretations in nanophotonics [54]. These issues are
mainly due to a misuse of the models derived for high-quality-
factor (high-Q) cavity QED experiments, as opposed to full
quantized treatment [55,56]. Indeed, they were derived with
a phenomenological system-reservoir approach to describe
the cavity leakage, where a flat continuum with a constant
coupling is assumed for the reservoir, perturbatively broaden-
ing the cavity resonances (see, e.g., comments in Ref. [37]).
Derivation from first principles is highly desirable, even for
the case of high-Q cavities, since it will provide the commu-
nity with clearer aspects in the limits of the applicability of
these well-known models.

In this paper, we establish such a derivation: Starting from
the universal quantization of the true modes in a semi-infinite
system composed of a perfectly reflecting boundary and a
semitransparent mirror, we determine effective models for a
laser-driven atom in a cavity and characterize the resulting
propagating photon field. To this aim, we define and con-
nect concepts, namely, photon fluxes, input-output operators,
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the quantized Poynting vector, the effective master equation,
photonic wave packets, and states, to this concrete physical
situation [51–53]. We derive an inside-outside representation
from first principles, allowing us to characterize the leaking
photon in the time domain as well as in the frequency domain.
We analyze the validity of different representations, i.e., the
true-mode picture, the inside-outside representation, and the
pseudomode picture, by comparing the dynamics obtained in
each representation. We apply the model for a nonresonant
scheme in a three-level atom trapped in a cavity and show
that it allows a direct and simple way to design the photonic
wave packet on demand. This is obtained for a particular cou-
pling regime, which ensures single-photon production without
populating the cavity state. This leads to the production of a
single photon with broad bandwidth, which can be of advan-
tage when coupling photon states with materials of distinct
resonances.

This paper is organized as follows: In Sec. II, we intro-
duce different representations: true-mode, inside-outside, and
pseudomode pictures. From the equivalence of true-mode and
inside-outside representations, we write the cavity-reservoir
coupling function [57], which is later used to analyze the
dynamics of the leaking photon. The explicit form of this cou-
pling function allows one to derive the standard input-output
formulation without applying any a priori approximations
[53,58–60] leading to false mathematical justifications of the
Markov approximation (see, e.g., comments in Appendix A).
We connect the photon flux, corresponding to the propagation
of the photonic state in free space leaking from the cavity to
the quantum average of a reservoir photon number operator,
in the Heisenberg picture, using the quantized Poynting vec-
tor derived from the true-mode representation. The condition
of correspondence of this reservoir photon number operator
to the standard output photon number operator is derived.
We next establish that the photon flux is proportional to the
quantum average of the cavity photon number operator in
the condition of an initial ground state reservoir. The mas-
ter equation, which allows one to determine the state of the
atom-cavity system, is finally derived. In Sec. III, we apply
the derived model to the production of shaped single-photon
wave packets, using a nonresonant laser pulse scheme for a
three-level atom in a “�” configuration inside of a high-Q
cavity. We provide a summary in Sec. IV.

II. DERIVATION OF THE MODEL

In this section, we introduce different representations for
deriving the dynamics of an atom trapped in an optical cavity
and driven by a classical field. In particular, we introduce
the inside-outside representation, which assumes separation
between the modes of the inside and the outside of the cavity.
We analyze the validity of this separation by comparing the
dynamics obtained via inside-outside representation to that
obtained from the universal quantization of the true, unsep-
arated modes of Maxwell’s equations in a one-dimensional
semi-infinite space [27,57,61]. We then connect the photon
flux [62,63], corresponding to the propagation of the photonic
state in free space leaking from the cavity, to the quantum
average of a reservoir photon number operator, in the Heisen-
berg picture, constructed with an integrated reservoir operator.

We derive the quantized Poynting vector from the true-mode
representation, which we then write in terms of the reservoir
operators corresponding to the inside-outside representation.
We derive the condition of correspondence of this reservoir
photon number operator to the standard output photon number
operator derived in the input-output formulation [51]. We next
establish that the photon flux is proportional to the quantum
average of the cavity photon number operator when the reser-
voir is initially in the ground state [50]. We finally derive
the master equation [51,53,64] by tracing out the reservoir
degrees of freedom, which allows one to determine the state
of the atom-cavity system, necessary to obtain the quantum
averages describing the relevant physical observables.

A. Hamiltonian in the Schrödinger picture

We consider a single � atom with ground |g〉, metastable
| f 〉, and excited |e〉 states trapped in a cavity, which is de-
signed to sustain a field of wavelength λc and frequency ωc.
The | f 〉 ↔ |e〉 transition, with frequency ωe f and dipole mo-
ment d f e, is assumed to be nearly resonant with a cavity mode
of area A and length L, with the detuning �c = ωe f − ωc; the
|g〉 ↔ |e〉 transition, with frequency ωeg and dipole moment
dge, is assumed to be independently driven by a classical laser
field E (t ) cos(ω0t + ϕ), corresponding to the time-dependent
Rabi frequency �(t ) = −E (t )dge/2h̄, with a detuning � =
ωeg − ω0. In this paper, we assume the mirrors of the cavity to
be large enough that the spontaneous emission of the atom in
modes propagating in directions perpendicular to the optical
axis can be neglected. Thus we consider the cavity to be a
one-dimensional Fabry-Pérot resonator.

1. True-mode representation

The universal quantization procedure [27,57,61,65,66] is
a derivation from first principles, which allows the treatment
of the cavity as part of the environment and the derivation
of true (exact) modes for such a closed system (see Fig. 1).
Here we consider the same physical situation as the one in
Ref. [57], where the cavity is delimited by a perfect mirror on
the left and a semitransparent mirror on the right, the latter
being made of a single layer of a dielectric material. The
length of the dielectric layer is considered to be negligible
with respect to the cavity length. By introducing an atom in
such a cavity, we can write the Hamiltonian for the full system
A ⊕ E in a rotating frame defined by the unitary operator
URW = exp(−iω0t )σg + σe + σ f :

H̃ (t ) = HA(t ) + Hint + HE , (1a)

HA(t ) = h̄(� − �c − ωc)σ f + h̄�σe + h̄�(σge + σeg), (1b)

HE =
∫ +∞

0
dω h̄ωa†

ωaω, (1c)

Hint = ih̄
∫ +∞

0
dω (η(ω)aωσ † − η∗(ω)a†

ωσ ), (1d)

where HA ≡ HA(t ) denotes the atomic Hamiltonian in the ro-
tating wave approximation (RWA). Here, we have introduced
the atomic operators σk
 ≡ |k〉〈
|, σk ≡ σkk , and σ ≡ σ f e. HE

describes the environment with the cavity as part of it. Opera-
tors aω, a†

ω are the annihilation and creation operators for the
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FIG. 1. (a) True-mode picture corresponding to the modes ob-
tained from universal quantization, where the cavity is treated as part
of the environment. In such a representation, the atom is coupled
to the universal modes aω with a frequency-dependent coupling
strength η(ω). (b) For cavities with sufficiently small transmission
it is possible to approximately separate modes into cavity (inside)
and reservoir (outside) modes, with an effective frequency-dependent
coupling κc(ω). In this picture, the atom couples mainly to the cavity
mode c, to which it is resonant (or near resonant), with coupling
strength g. (c) Unlike the two other representations, in the pseudo-
mode picture, the reservoir is eliminated and accounted for via the
cavity decay rate �c, in a non-Hermitian description.

true modes, satisfying the commutation relation

[aω, a†
ω′ ] = δ(ω − ω′). (2)

Hint represents the interaction between the atom and the struc-
tured environment, with the coupling factor

η(ω) = i

√
ω

h̄ε0πcAd f e ei ω
c L sin

(
ω

c
(xA + L)

)
T (ω) (3a)

≈ i

√
ω

h̄ε0LAd f e ei ω
c L sin

(
ω

c
(xA + L)

)

×
√

�c

2π

1

ω − ωc + i �c
2

, (3b)

where T (ω) is the single-layer cavity response function and xA

is the position of the atom. For a cavity with sufficiently high
reflectivity the response function can be represented as a sum
of mode-selective Lorentzian functions, whose width �c (de-
cay rate of the cavity) is much smaller than the spacing �ω =
πc/L between the neighboring resonances (high-finesse cav-
ity) [27,57,61] (see details in Appendix B). For a single-layer
partially transparent cavity mirror, high reflectivity can be
achieved by assuming a fictitiously large refractive index of
the dielectric material, while for more realistic models high
reflectivity implies a cavity mirror made of a large number

FIG. 2. Atom-field interaction in the cavity. Left panel: A sin-
gle � atom is driven by an external classical laser field of Rabi
frequency � and a quantized cavity field with coupling strength g.
Right panel: The fields are in two-photon resonance (� = �c), and
the one-photon detuning is �. Initially, the atom is in the ground state
|g〉. In the course of the excitation process, one photon is taken from
the laser field and transferred to the cavity, which eventually leaks
out of the cavity through a semitransparent mirror characterized by
the decay rate �c.

of dielectric layers [27]. In the literature, these assumptions
usually correspond to the high-Q cavity limit. However, as we
show below, the high-Q assumption by itself is not sufficient,
by definition. Instead, we should require a high-finesse cavity,
which satisfies all the conditions necessary to perform the
above approximations.

In Eq. (3b), we assume that the atom couples to a single
mode (ωc), reducing the sum of Lorentzians into a single
one. The Hamiltonian (1) with the coupling (3) describes a
true-mode representation, i.e., with continuous frequencies,
but with a structured reservoir [67]. In the following we break
these true modes into inside and outside modes, which de-
scribe the cavity and the reservoir separately.

2. Mode separation into inside and outside modes

We now consider an approximately equivalent model to the
one obtained previously via splitting the modes aω into two
parts: cavity modes c (inside) and the continuum of reservoir
modes bω (outside) [Fig. 1(b)]. The derivation is formally
shown in Ref. [57], exhibiting an error of order O(|t |2), where
t is the transmission rate of the (single layer) mirror. This
representation can be interpreted as replacing the semitrans-
parent mirror with a perfect one, forming a perfect cavity (C),
which is coupled to the reservoir (R) [57] (see Fig. 2 for the
coupling scheme of the atom with the cavity). We refer to it
as the inside-outside representation. The RWA Hamiltonian of
the full system A ⊕ C ⊕ R reads, in the Schrödinger picture:

H (t ) = HA(t ) + HAC + HC + HRC + HR, (4a)

HC = h̄ωcc†c, (4b)

HAC = h̄g(c†σ + σ †c), (4c)

HR =
∫ +∞

0
dω h̄ω b†

ωbω, (4d)

HRC = ih̄
∫ +∞

0
dω (κc(ω)b†

ωc − κ∗
c (ω)c†bω ), (4e)

with the atom-cavity coupling factor g = −d f e
√

ωc/h̄ε0LA
(one-photon Rabi frequency), assuming the atom is localized
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at the field maximum. The coupling factor η(ω) for the true-
mode picture [Eq. (3b)] can then be approximated as [27]

η(ω) ≈ η̂(ω) = − ig

√
�c

2π

1

ω − ωc + i �c
2

. (5)

This form allows the direct derivation of the pseudomode
representation described below [see Eq. (8)].

In Eq. (4), HA(t ) is the same as Eq. (1b), HC is the free-
cavity Hamiltonian, HAC describes the coupling between the
atom and the cavity, HR is the free-reservoir Hamiltonian,
and HRC describes the coupling between the empty cavity
and the free reservoir. The reservoir annihilation and creation
operators bω, b†

ω satisfy the commutation relation

[bω, b†
ω′ ] = δ(ω − ω′). (6)

The cavity-reservoir coupling function κc(ω) can be evalu-
ated in the limit of small transmission and near resonance as
[57]

κc(ω) = −i

√
�c

2π
e−i ω

c Lsinc

(
(ω − ωc)

L

c

)
. (7)

To derive this function, as demonstrated in Ref. [57], one
should first derive the modes corresponding to Maxwell’s
equations in a one-dimensional semi-infinite space incorporat-
ing a cavity made of a partially transparent single-layer mirror
with negligible mirror thickness. Then, one can consider a
model where the actual cavity is replaced by a perfect one
which is then coupled to the semi-infinite reservoir delimited
by the perfect cavity. By equating the inside modes of the par-
tially transparent cavity obtained from Maxwell’s equations to
the discrete perfect cavity modes, and doing the same for the
corresponding modes describing the outside, the expression
in (7) can be obtained for sufficiently small transmission. We
highlight that in this derivation there is no emitter initially
considered in the system, and the coupling function κc(ω)
describes the coupling of the empty cavity to the environment.

One can notice that the derived inside-outside representa-
tion does not feature the constant cavity-reservoir coupling
that is generally assumed in the standard derivation under
certain conditions [51]. The standard approach, albeit lead-
ing to physically accurate results, can lead to mathematical
inconsistencies (see Appendix A). Here, however, the cavity-
reservoir coupling has a specific form (7), which is obtained
under mathematically explicitly defined conditions [57] and
can be treated straightforwardly.

3. Pseudomode representation

We can define a pseudomode representation via [27]

Ĥ (t ) = HA(t ) + ĤAC + ĤC, (8a)

ĤAC = h̄g(a†σ + σ †a), (8b)

ĤC = h̄

(
� − �c − i

�c

2

)
a†a, (8c)

where, for a single mode,

a†|∅〉 = |1〉. (9)

This representation is derived directly from the true-mode
picture with the approximate coupling (5). In general, the

cavity mode c in (4) and a in (8) are different. c is the perfect
cavity mode, while a is defined as [27]

a = 1

g

∫
dω η̂(ω)âω, (10)

where âω is the annihilation operator of the mode defined for
the approximate coupling η̂(ω).

We highlight that Hamiltonian (8) is for the open system
A ⊕ C, where the reservoir is eliminated, while Hamilto-
nians (1) and (4) both describe closed systems. Here, the
annihilation operators a and c represent physically the same
approximate modes but are derived differently. In the follow-
ing we analyze these different representations by comparing
the dynamics obtained via each Hamiltonian.

4. Comparison and validity of the different representations

We numerically analyze the validity of different repre-
sentations described in Fig. 1. We consider a single atom
trapped in the cavity and assume an initial condition with
zero photons. To differentiate the parameters of different rep-
resentations, we denote the quantities corresponding to the
true-mode picture and the pseudomode picture with a tilde and
a hat, respectively. We commence by deriving the dynamics
corresponding to the true-mode representation. Here, one can
denote the basis as |i〉|α〉 ≡ |i, α〉, with i labeling the atomic
states and α describing the state of the continuum. The state
in this basis can then be given by the following wave function:

|ψ̃〉 = c̃g,0(t )|g,∅〉 + c̃e,0(t )|e,∅〉 +
∫ +∞

0
dω c̃ f ,1(ω, t )| f , 1ω〉,

(11)

with

a†
ω|∅〉 = |1ω〉, (12a)

aω|1ω′ 〉 = δ(ω − ω′)|∅〉. (12b)

Using Hamiltonian (1) in the time-dependent Schrödinger
equation with state (11), we obtain the following dynamical
equations:

i ˙̃cg,0(t ) = � c̃e,0(t ), (13a)

i ˙̃ce,0(t ) = � c̃e,0(t ) + � c̃g,0(t )

+ i
∫ +∞

0
dω η(ω) c̃ f ,1(ω, t ), (13b)

i ˙̃c f ,1(ω, t ) = (� − �c + ω − ωc)c̃ f ,1(ω, t ) − iη∗(ω)c̃e,0(t ),

(13c)

where η(ω) is the actual coupling function (3a). If we take into
account the approximation in (5), similar equations to (13) can
be obtained for a state given by

|ψ̂〉 = ĉg,0(t )|g,∅〉 + ĉe,0(t )|e,∅〉 +
∫ +∞

0
dω ĉ f ,1(ω, t )| f , 1ω〉,

(14)

with |1ω〉 = â†
ω|∅〉. Here, we can define the photon state of the

cavity as [27]

|1〉 = 1

g

∫ +∞

0
dω η̂∗(ω)â†

ω|∅〉, (15)
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which follows from the definition (10). Consequently, by
using Hamiltonian (8) we get the dynamics correspond-
ing to the pseudomode representation, on a reduced basis
{|g,∅〉, |e,∅〉, | f , 1〉}, for the state given by

|ψeff〉 = ĉg,0(t )|g,∅〉 + ĉe,0(t )|e,∅〉 + ĉ f ,1(t )| f , 1〉,

i ˙̂cg,0(t ) = � ĉe,0(t ), (16a)

i ˙̂ce,0(t ) = � ĉe,0(t ) + � ĉg,0(t ) + g ĉ f ,1(t ), (16b)

i ˙̂c f ,1(t ) =
(

� − �c − i
�c

2

)
ĉ f ,1(t ) + g ĉe,0(t ). (16c)

Unlike the case of the true-mode picture, in the inside-outside
representation there is a separation of the photon state into
inside and outside ones. Thus the basis splits into the follow-
ing states: {|g,∅〉, |e,∅〉, | f , 1in,∅out〉, | f ,∅in, 1ω,out〉}, where
the indices “in” and “out” indicate the photon state inside and
outside the cavity, respectively, and

c†|∅〉 = |1in〉, (17a)

c|1in〉 = |∅〉, (17b)

b†
ω|∅〉 = |1ω,out〉, (17c)

bω|1ω′,out〉 = δ(ω − ω′)|∅〉. (17d)

The dynamical equations corresponding to the Hamilto-
nian (4) with the state

|ψ〉 = cg,0(t )|g,∅〉 + ce,0(t )|e,∅〉 + c f ,1,0(t )| f , 1in,∅out〉

+
∫ +∞

0
dω c f ,0,1(ω, t )| f ,∅in, 1ω,out〉 (18)

become

iċg,0(t ) = � ce,0(t ), (19a)

iċe,0(t ) = � ce,0(t ) + � cg,0(t ) + gc f ,1,0(t ), (19b)

iċ f ,1,0(t ) = (� − �c)c f ,1,0 + gce,0(t )

− i
∫ +∞

0
dω κ∗

c (ω) c f ,0,1(ω, t ), (19c)

iċ f ,0,1(ω, t ) = (� − �c + ω − ωc)c f ,0,1(ω, t )

+ iκc(ω) c f ,1,0(t ). (19d)

In order to examine the validity limits of the approximate
models derived above, we compare the dynamics via solving
Eqs. (13), (16), and (19) [see details of the integration of
Eqs. (13) and (19) in Appendix C]. For this analysis, the
way the atom is driven to its excited state is irrelevant. Thus
we assume that the atom is initially in the excited state |e〉
and there is no laser field applied, i.e., � = 0. We analyze a
regime where there are no Rabi oscillations between the atom
and the produced photon, i.e., the leakage from the cavity
is stronger than the atom-cavity coupling: �c > g. Both the
effective Hamiltonian and the inside-outside representation

are derived under the assumption of having a high-Q cavity,
i.e., �c  ωc. In Fig. 3, we present the results obtained via
different representations for a cavity with a fixed quality fac-
tor: ωc/�c ≈ 1200. This factor is obtained either by fixing the
mirror refractive index and changing the length of the cavity
or vice versa. In Fig. 3(a), the cavity length is such that it
sustains half a wavelength of cavity resonance wavelength λc:
L = L0 = λc/2. Therefore there is only a single mode that the
atom can couple to, making the cavity finesse the same as the
quality factor: �ω/�c ≈ 1200. As we can see from the figure,
both for detuned and nondetuned cases, the photons obtained
with pseudomode and inside-outside representations match
the true-mode representation obtained from Eq. (13), with the
coupling (3a) [68]. Furthermore, in Fig. 3(b), we consider a
cavity of longer length and a mirror of lower refractive index.
To have the same atom-cavity coupling rate, we change the
value of the dipole moment of the atom. While having the
same quality factor, here we get a cavity finesse �ω/�c ≈ 7.
This low finesse makes the transition from Eq. (3a) to Eq. (3b)
less accurate, i.e., the Lorentzians corresponding to each mode
are not separated well enough to consider

√∑
fm ≈ ∑√

fm.
We emphasize that the approximation (3b) is used in the
derivation of the pseudomode picture as well as the inside-
outside representation. Hence it leads to a mismatch between
the approximate and the actual representations. Equivalently,
as shown in Ref. [27], in order for the pseudomode deriva-
tion to work, the following condition should hold: ( �c

c (xA +
L))2  1. Evidently, when we increase the cavity length while
keeping �c the same, this condition is not well satisfied,
breaking the validity of this representation. On the other
hand, as mentioned before, the inside-outside representation
is derived for the cavities with low transmission rate, given
by |t |2 = 1 − e−2L�c/c (see Appendix B). For this long-cavity
scenario, similar to the previous argument, this term fails to
satisfy the condition |t |2  1 (|t |2 ≈ 0.58), which leads to
the mismatch between the inside-outside and the true-mode
representations. Finally, we can notice that even in the case of
�c = 0, the photon obtained from the actual model is slightly
shifted from the resonance frequency ωc. This is because in
the actual model where we use the response function T (ω),
apart from the fundamental mode ωc, there are other modes,
which, combined with the low finesse of the cavity, affect the
produced photon.

In Figs. 3(c) and 3(d), we study the corresponding pho-
ton shape in the time domain. Here we compare the cavity
photon state obtained from the pseudomode [ĉ f ,1(t )] and the
inside-outside representations [c f ,1,0(t )]. As we can see from
Eq. (16), the photon state ĉ f ,1(t ) depends only on the param-
eters �c and g, and these parameters are fixed; hence P̂f ,1

is the same for both high-finesse [Fig. 3(c)] and low-finesse
[Figs. 3(d)] scenarios. On the other hand, in the inside-outside
representation, the coupling κc(ω) explicitly depends on the
cavity length, leading to different curves for the state Pf ,1.
This, combined with the arguments introduced in the analysis
of Figs. 3(a) and 3(b), leads to the differences between the
photons obtained via pseudomode and inside-outside repre-
sentations.

In the following, we derive the well-known master equa-
tion starting from the inside-outside representation. We use
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FIG. 3. Comparison of the single-photon shape obtained via true-mode, inside-outside, and pseudomode pictures. (a) and (b) Spectral
shapes of the outgoing photon with (|g|, �c, ωc ) × T = (0.6, 2, 2416), where ωc = m πc

L , m being the number of antinodes inside the cavity.
Each curve corresponds to a different representation: P̃p,out = |c̃ f ,1(ω, tf )|2 (true-mode picture), P̂p,out = |ĉ f ,1(ω, tf )|2 (pseudomode picture), and
Pp,out = |c f ,0,1(ω, tf )|2 (inside-outside picture; see the definition of the dimensionless parameters ci in Appendix C), where tf is the final time
when the photon is in its steady state. In (a), tf/T = 10, �c = 2/T is obtained for a cavity with a length L = L0 and a fictitious refractive index
n = 27.735, leading to the reflectivity R = |r|2 = e−2L�c/c ≈ 0.995 (with L0

cT = 0.0013), where L0 is the length for which the cavity sustains
a single fundamental mode, i.e., m = 1. In (b), tf/T = 20, L = 165L0, and n = 2.1756, leading to the same �c = 2/T , for the m = 165th
mode, with the reflectivity R ≈ 0.42. (c) and (d) Time profiles of the outgoing photon, obtained via the same parameters introduced in (a) and
(b), respectively. P̂f ,1 = |ĉ f ,1(t )|2, Pf ,1 = |c f ,1,0(t )|2 are the photon states derived from the pseudomode and inside-outside representations,
respectively.

a method different from the standard derivation obtained by
phenomenological use of the pseudomode Hamiltonian.

B. Heisenberg-Langevin equations, Poynting vector,
and photon fluxes

We wish to derive the effective dynamics of the atom-
cavity system S = A ⊕ C, coupled to the reservoir, from first
principles. Our aim is to control the production of an outgoing
photon leaking from the cavity by driving specifically the
atom in the cavity by the external field. We will use the
convenient inside-outside representation as it will allow a
clear identification and characterization of the leaking photon
propagating in free space. Here, we study the case presented
in Fig. 2, where the atom is initially in the ground state, and
we consider the two-photon resonance condition: � = �c,
leading to ωgf = ωc − ω0. We use the Poynting vector that
we derive from the true-mode representation and define in
the Heisenberg picture. We highlight that one could use the
Poynting vector derived in Ref. [62] and generalize it to the
situation with the presence of a cavity; however, as we show
below, the Poynting vector that we derive from first principles
is different from this one. We then derive the effective model
in two steps: We first define an outgoing flux of photons
which is connected to the quantum average of the Heisenberg
evolution of the cavity operator c†c. Next, we derive a master
equation of the system S by eliminating the reservoir degrees
of freedom, which will allow the calculation of the quantum
averages.

1. Equations of motion for the operators

First, we derive the equations of motion in the Heisenberg
picture for the reservoir operator bω(t ) ≡ U †(t, t0)bωU (t, t0)
with U (t, t0) being the propagator of the total Hamil-
tonian H (t ), whose Heisenberg picture reads H (H )(t ) =
U †(t, t0)H (t )U (t, t0). From Ȯ = − i

h̄ [O(t ), H (H )(t )] for an
operator O, assumed to be time independent in the
Schrödinger picture and written as O(H )(t ) ≡ O(t ) =
U †(t, t0)OU (t, t0) in the Heisenberg picture, we write the
Heisenberg-Langevin equations:

ḃω(t ) = −iωbω(t ) + κc(ω)c(t ), (20a)

ċ(t ) = −iωcc(t ) −
∫ +∞

0
dω κ∗

c (ω)bω(t ) − igσ (t ). (20b)

In the following, we omit the “(H )” superscript for the
Heisenberg picture Hamiltonian H (H )(t ) ≡ H (t ). The energy
carried by the photons leaking from the cavity can be char-
acterized by the Poynting vector operator in the Heisenberg
picture. We derive the Poynting vector, using the electromag-
netic fields outside the cavity in the true-mode representation
[27,57,61] (see details of the derivation in Appendix D):

S(x, t ) = h̄

2πA

∫ ∞

0
dωdω′√ωω′RωR∗

ω′ei(ω−ω′ ) x
c a†

ω′ (t )aω(t ),

(21)

where the expression of Rω is given in Appendix D. Via
moving from the true-mode representation to the inside-
outside representation, we get the following Poynting vector
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FIG. 4. Sketch of the photodetection: The source system S emits
a photon with decay rate �c at position 0, towards a detector D at a
position x through the reservoir R. The photon flux � is measured
using the data on the averaged quantized Poynting vector 〈S(x, t )〉.

(Appendix D):

S(x, t ) = h̄ωc

A b†(x, t )b(x, t ), (22)

where we have introduced the integrated reservoir operator

b(x, t ) := 1√
�c

∫ ∞

0
dωκ∗

c (ω)ei ω
c xbω(t ). (23)

Taking this into account, we can define a single-photon state
propagating from the cavity via leakage �c (κc(ω)) and de-
fined for x > 0:

|1out (x, t )〉 = b†(x > 0, t )|∅〉, (24)

where we have assumed a propagation with increasing x and
the cavity emitter at position x = 0 (see Fig. 4). We emphasize
that the time dependence arises only from the Heisenberg
picture of the reservoir operator bω.

2. Integrated reservoir operators: Input-output relation

In Eq. (23) we have defined the integrated reservoir oper-
ator, which we calculate by integrating (20a) from an initial
time t0 to t ,

b(x, t ) := 1√
�c

∫ +∞

0
dω κ∗

c (ω)bω(t )eiω x
c (25a)

= bin

(
t − x

c

)
+

∫ t

t0

dt ′
∫ +∞

0
dω

|κc(ω)|2√
�c

c(t ′)

× e−iω(t−t ′ )eiω x
c , (25b)

with the input operator defined similarly:

bin

(
t − x

c

)
:= 1√

�c

∫ +∞

0
dω κ∗

c (ω)bω(t0)e−iω(t−t0− x
c ). (26)

One can notice that the definition (25a) is different from the
standard definition, where b(x, t ) is defined via a Fourier
transform of bω [51,69,70] and a flat continuum (see Ap-
pendix A). Instead, here we have the natural introduction
of the function κc(ω) in the definition, and its explicit form
allows one to straightforwardly derive the equation for the
output operator.

In order to evaluate the integral over the frequency in
(25b), we use the expression (7). This gives for the integrated
reservoir operator (see details in Appendix E):

b(x, t ) = bin

(
t − x

c

)
+

√
�cc

(
t − x

c

)
, (27)

where we have assumed t � 2L
c , t > t0 + x

c + 2L
c . We further

neglect the cavity length, assuming that the traveling distance
of interest is much larger than the cavity length. Also, consid-
ering that the dynamics evolves over a much longer period
of time than the round trip time 2L

c of the produced pho-
ton (coarse-grained approximation), we get t � 0, t > t0 + x

c ,
and x > 0. We define the output operator

bout(t − x/c) := b(x > 0, t ); (28)

hence

bout

(
t − x

c

)
= bin

(
t − x

c

)
+

√
�c c

(
t − x

c

)
, (29)

which is recognized as the input-output relation [51]. We
highlight that the input-output relation here is a consequence
of the concrete form of κc(ω) [Eq. (7)], which justifies thus
the Markov approximation. This formulation allows direct
and transparent interpretation of the bout operator through the
Poynting vector as shown below [see Eq. (33)].

At the cavity position, x = 0, we obtain the integrated
reservoir operator (see Appendix E):

b0(t ) ≡ b(x = 0, t ) = bin(t ) +
√

�c

2
c(t ). (30)

This expression (30) is used in the next section to derive the
master equation in the cavity.

We can also simplify the Heisenberg-Langevin equa-
tion for c(t ) as

ċ(t ) = −
(

iωc + �c

2

)
c(t ) −

√
�cbin(t ) − igσ (t ). (31)

3. Photon flux

Using the results obtained in the previous section, we can
write the Poynting vector (22) in the inside-outside represen-
tation as follows:

S(x > 0, t ) = h̄ωc

A b†

(
t − x

c

)
b

(
t − x

c

)
. (32)

For a given state (or density matrix), the amount of energy
going through the field mode area A, during the time dt , is
the quantum average of the flux of the Poynting vector through
this area: A〈S(x, t )〉dt = h̄ωc〈b†(x, t )b(x, t )〉dt . Normalizing
by h̄ωc, we get the averaged number of photons dn(x, t ) ≡
〈b†(x, t )b(x, t )〉dt going through the mode area during dt ,
defining the photon flux (written here for x > 0):

�(x, t ) := dn(x, t )

dt
=

〈
b†

(
t − x

c

)
b

(
t − x

c

)〉
. (33)

Recalling that b(t − x/c) is the output operator (28), we em-
phasize that this relation gives the connection between the
photon flux and this output operator.

If we choose the state of the reservoir to be initially a vac-
uum state, ρ(t0) = ρS (t0) ⊗ |∅〉〈∅|, the average of the terms
involving bin, b†

in in the expression of the flux is nullified. This
gives the expression of the outgoing photon flux through the
semitransparent mirror for t > t0 + x

c , x > 0:

�(x, t ) = �c

〈
c†

(
t − x

c

)
c

(
t − x

c

)〉
. (34)
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This key result shows that one can determine the flux from the
quantum average of the dynamics of the cavity photon number
in the Heisenberg picture [50].

In the following section, we derive the effective master
equation reduced to the system S which is used to calculate
the quantum average of (33) in order to derive the flux.

C. The master equation for the system dynamics

The system dynamics from the above inside-outside rep-
resentation can be characterized by a master equation which
is shown to be of Lindblad form. We follow the deriva-
tion of Refs. [51,53,71,72]. We need first to derive the
Heisenberg equation of motion of the operators XS (t ) =
U †(t, t0)XSU (t, t0) of the system in the Heisenberg picture.

The dynamics of XS (t ) is determined from the Heisenberg-
Langevin equation (see details of the following calculation in
Appendix F):

d

dt
XS (t ) = − i

h̄

[
XS (t ), H (H )

S (t )
] + D†

in,t (XS (t ))

+ �c

(
c†(t )XS (t )c(t ) − 1

2
{c†(t )c(t ), XS (t )}

)
,

(35)

where {A, B} = AB + BA denotes the anticommutation rela-
tion, D†

in,t (·) is a time-dependent dissipator part involving

bin(t ), acting on XS (t ), and H (H )
S (t ) = U †(t, t0)HS (t )U (t, t0),

with HS being the system Hamiltonian

HS (t ) = HA + HAC + HC . (36)

In Eq. (35) we have used the integrated reservoir operator (30)
at the position x = 0 of the cavity.

We define the expectation value of XS:

〈XS (t )〉 = TrS{XSρS (t )} = Tr{XS (t )ρ(t0)}, (37)

where ρ(t0) = ρS (t0) ⊗ ρR(t0) is the complete density oper-
ator and ρS (t ) = TrR{U (t, t0)ρ(t0)U †(t, t0)} is the reduced
density operator describing S with partial trace TrR{·} elim-
inating the degrees of freedom corresponding to its subscript.

We here assume that the reservoir is initially a vacuum state
ρR(t0) ≡ |∅〉〈∅| such that D†

in,t (·) cancels out in averaging.
Finally, averaging Eq. (35), we find the master equation of
Lindblad form for ρS (t ):

d

dt
ρS (t ) = − i

h̄
[HS (t ), ρS (t )]

+�c

(
cρS (t )c† − 1

2
{c†c, ρS (t )}

)
. (38)

Here, all system operators σ, c are time independent
(Schrödinger picture), and the remaining time dependence of
HS (t ) is due to the driving field �(t ).

III. PRODUCTION OF A SINGLE PHOTON BY A DRIVEN
ATOM TRAPPED IN A CAVITY

As an application, we derive from the preceding analysis
a model for the generation of a single photon using a leaking
cavity containing one atom driven by a pulsed laser of Rabi
frequency �(t ). The production of a single photon in such a

system has been demonstrated with an atom flying through
the cavity in a resonant stimulated Raman adiabatic passage
configuration [42,43,73] and for a trapped ion in a cavity [74].
We next show that a large cavity detuning and an effective
weak coupling regime allow direct and simple control of the
photon shape.

A. The model

Since the system of interest involves only the atom
and the cavity, in the effective model, the basis in-
troduced in the inside-outside representation reduces to
{|g,∅〉, |e,∅〉, | f , 1〉, | f ,∅〉} (see Fig. 2), where the third label
is dropped due to the elimination of the reservoir degrees
of freedom and the label “in” is omitted. Such dynamics
involves the Lindblad equation derived previously (we omit
the subscript S for ρ):

d

dt
ρ(t ) = − i

h̄
[HS (t ), ρ(t )] + L[ρ(t )], (39)

with the dissipator L[ρ] = �c(cρc† − 1
2 {ρ, c†c}). Equa-

tion (39) can be rewritten as

d

dt
ρ(t ) = − i

h̄
(H̃ (t )ρ(t ) − ρ(t )H̃†(t )) + �c cρ(t )c†, (40)

where we introduced an anti-Hermitian dissipative Hamilto-
nian H̃ (t ) = HS (t ) − ih̄ �c

2 c†c, equivalent to (8). Expressing
the Hamiltonian in a matrix form

HS (t ) = h̄

[
A(t ) [0]3×1

[0]1×3 −ωc

]
, (41a)

A(t ) =
⎡
⎣ 0 �(t ) 0

�(t ) � g
0 g 0

⎤
⎦ (41b)

shows two decoupled dynamical blocks, A(t ) and {−ωc}.
From the density matrix

ρ(t ) =
[
ρAA(t ) ρA0(t )
ρ0A(t ) ρ00(t )

]
, (42)

we split Eq. (40) into two equations:

ρ̇AA = −i(Ã(t )ρAA(t ) − ρAA(t )Ã†(t )), (43a)

ρ̇00 = �cDρAA(t )D†, (43b)

where D = [0, 0, 1] is a block from the matrix representa-
tion c of the annihilation operator c, Ã(t ) = A(t ) − i

2�cD†D.
Choosing the initial condition in |g,∅〉 makes the dynam-
ics not involve ρA0, and Eq. (43a) corresponds thus to a
Schrödinger equation with losses (i.e., with a non-Hermitian
Hamiltonian) derived in Eq. (16), i.e., TrρAA < 1:

i
∂

∂t
|ψeff〉 =

⎡
⎣ 0 �(t ) 0

�(t ) � g
0 g −i �c

2

⎤
⎦|ψeff〉 (44)

with ψeff being the state in the pseudomode picture. The
population lost from the subspace spanned by the states
{|g,∅〉, |e,∅〉, | f , 1〉} (on which the block A is defined) is
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FIG. 5. Dynamics corresponding to Eq. (44) for cavities with
different �c factors. The system parameters are �(t ) = �0 sin2 ( πt

T ),
(|g|, �, �0, ωc ) × T = (60, 150, 60, 2416). As we can see from the
figure, the stronger the leakage of the cavity is, the less the state Pf ,1

is populated.

collected in state | f ,∅〉 (on which the block {−ωc} is
defined), so that the whole system is closed: Pg,0(t ) +
Pe,0(t ) + Pf ,1(t ) + Pf ,0(t ) = 1 with the population Pi,n(t ) =
〈i, n|ρ(t )|i, n〉 = |ci,n|2. We highlight that Eq. (44) is obtained
from the inside-outside picture, for the cavity of mode c. This
equation coincides with Eq. (16), obtained from pseudomode
picture; hence in this limit the modes c and a are the same.

Rewriting (43b), we get

d

dt
Pf ,0(t ) = �cPf ,1(t ). (45)

On the other hand, from the definition of the average 〈O〉 =
Tr(ρO), one can write the photon flux (34) in terms of the
populations:

�(t ) ≡ dn(t )

dt
= �cPf ,1(t ). (46)

We can then identify Pf ,0(t ) as the number of outgoing
photons: Pf ,0(t ) ≡ n(t ). The scheme enables us to derive
the shape of the leaking photon, through its flux �(t )
from the atom-cavity dynamics, which is determined by the
Schrödinger equation (44).

B. The scheme for a large detuning

Here we start by analyzing the dynamics for different cou-
pling regimes for a single-mode cavity (L = L0). We compare
the strong coupling regime g > �c with an intermediate cou-
pling regime g � �c. The parameters are chosen such that
the approximate models described in Sec. II remain valid.
Particular cases for intermediate and strong coupling regimes
are presented in Fig. 5. As expected, in the strong coupling
regime the single-photon state inside the cavity is more pop-
ulated than the one in an intermediate coupling regime. In

FIG. 6. Produced single-photon shape in the time (a) and fre-
quency (b) domains for different values of the cavity decay rate �c.
The other parameters are the same as in Fig. 5.

Fig. 6, we study cavities with different decay rates and ana-
lyze the produced photon inside and outside the cavity, using
the full inside-outside representation [Eq. (19)]. In Fig. 6(a)
the produced photon inside the cavity is presented (Pf ,1). As
one would expect, with the decrease in �c the probability of
the photon state inside the cavity increases. We also notice
that for the given symmetric �(t ) the shape of the photon
takes an asymmetric form with the decrease in �c. Figure 6(b)
shows the shape of the leaked photon in the frequency domain
(Pp,out). As we can see from the figure, the better the quality
of the cavity is, the more the leaked photon is centered around
the cavity resonance frequency. As expected, the bandwidth
of the photon gets narrower with the decrease in �c.

The direct control of production of the shape of a single
leaking photon can be achieved for a large detuning � � �, g
(allowing the adiabatic elimination of the excited state |e,∅〉
[75]) and an effective weak coupling regime: �c � G, g2/�

with G = −g�/� being the (assumed positive) effective Ra-
man coupling [allowing the adiabatic elimination of the state
| f , 1〉 (Fig. 5)].

The adiabatic eliminations lead to

cg,0(t ) = eiζ (t )e− θ (t )
2 , (47a)

ζ (t ) =
∫ t

ti

dt ′ �
2(t ′)
�

, (47b)

θ (t ) =
∫ t

ti

dt ′ 4G2(t ′)
�c

. (47c)

We denote the initial time ti = 0. From cg,0(t ), i.e.,
for given g, �, and �(t ), one can infer c f ,1(t ) =
−i2(G(t )/�c)cg,0,0(t ), and Eq. (46) then gives the shape of
the photon flux:

�(t ) = θ̇ (t )e−θ (t ). (48)
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FIG. 7. (a) and (b) Rabi frequency �(t )T (50) with (|g|, �c, �) × T = (60, 90, 300), η = 0.99, determined from the desired Gaussian
shape flux �(t ) (51) [desired (dashed line) and numerically determined from the original model (44) (thick line)] of the single photon through
the semitransparent mirror (in units of T ); number of outgoing photons n = ∫ t

−∞ dt ′�(t ′) = �c

∫ t
−∞ dt ′|c f ,1(t ′)|2 during the process (thin line).

(c) and (d) Same as (a) and (b) but for �c = 10/T and a chosen Gaussian Rabi frequency �(t ) = 60 exp[−(πt/T )2]/T .

The inverse calculation allows one to tailor a desired photon
flux by deriving explicitly the corresponding �(t ) (for given
g and �). This is achieved by determining θ (t ) from (48):

θ (t ) = − ln

[
1 −

∫ t

0
dt ′�(t ′)

]
. (49)

We get the simple expression for the Rabi frequency by deriv-
ing this latter equation and from (47c):

�(t ) = �
√

�c

2g

√
�(t )

1 − ∫ t
0 dt ′�(t ′)

. (50)

We remark that this definition of the Rabi frequency can di-
verge at large time. To prevent this, we introduce an efficiency
parameter η < 1 which will ensure that �(t → +∞) = 0
when �(t → +∞) = 0 [42,43].

Numerical results for a chosen Gaussian probability for the
single-photon shape

�(t ) = η
√

π

T
e−( πt

T )2

,

∫ +∞

−∞
�(t )dt = η, (51)

are shown in Figs. 7(a) and 7(b). Using �c = 90/T , we obtain
maxt G(t ) ≈ 13/T  �c. We have also checked numerically
the resulting flux by determining it from the numerical so-
lution of the Schrödinger equation (44) (without considering
the adiabatic elimination) with the Rabi frequency (50). The
derived photon flux closely follows the desired shape as ex-
pected.

Other, more complex forms can be investigated through
(50) [76–78], such as the ones obtained by the resonant pro-
cess with flying atoms in Refs. [42,43].

Figures 7(c) and 7(d) show a different situation with a
cavity of better effective quality: �c = 10/T and maxt G(t ) =
12/T ≈ �c, where the second adiabatic elimination cannot be
made. In this case, the leakage of the photon occurs earlier
and faster due to the earlier peak of the coupling. The smaller

decay rate of the cavity leads to a deformation of the tail of
the photonic shape.

IV. CONCLUSION

We have derived and analyzed models for the system of a
� atom trapped in a cavity, featuring a semitransparent mirror
and driven by laser pulses allowing the production of a single
photon leaking out from the cavity. We introduced true-mode,
inside-outside, and pseudomode representations for describ-
ing the system from first principles. From the exact modes
of the system (the true-mode representation), we explicitly
introduce the cavity-reservoir coupling, which allows one to
describe the dynamics without any a priori approximations.
We have demonstrated that under suitable approximations that
we formulate, these different representations give accurate
results that are similar to each other, yet generally differ. We
particularly analyze a high-Q cavity scenario and show that
this requirement alone, in general, is not enough for these
approximate models to work. This is especially significant for
the models where we consider cavities with higher losses and
mode overlaps, namely, cavities with low refractive indices,
such as plasmonic cavities. In nanophotonics, it is common
to transpose these approximate models derived for optical
cavities to plasmonic cavities. However, as shown here, these
approximate models already yield different predictions for
optical cavities with relatively high transmission.

In the literature, it is common to phenomenologically in-
troduce the pseudomode representation. However, this kind
of phenomenological approach does not provide the full
description of the produced photon, namely, the outgoing
photon shape in the frequency domain. In contrast, here,
we recover the phenomenological model derived from first
principles; moreover, it is complemented with the complete
description of the system, including the full characteristics
of the photon in the time domain as well as in the fre-
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quency domain. This derivation justifies explicitly the Markov
approximation producing an input-output relation from first
principles via the nontrivial cavity-reservoir coupling (7). This
allows a precise definition of the propagating outside photon
state (24).

Finally, concepts, such as the Poynting vector, photon flux,
input-output operators, and photon state, that characterize
the propagation of the resulting leaking photons have been
defined and connected: We have formulated an input-output
relation taking into account the propagating effects, which
allows a direct interpretation of the bout operator through the
Poynting vector and the photon flux. The generated flux is
then determined from the quantum average of the dynamics of
the photon number in the cavity, which results from a standard
master equation that we have derived using the operators at
x = 0. Different coupling regimes have been discussed. In
particular, we have studied an effective weak coupling regime
with a large detuning and a strong cavity leakage, such that the
adiabatic elimination of the cavity state is performed. In this
case, one can directly link the envelope of the driving field to
the pulse shape of the outgoing single photon which can be
tailored at will.

In order to demonstrate the concepts in a straightforward
way, we have considered a simple model for the mirror, as
a single layer with a fictitious large index. In practice, a
large index is produced via a multilayer mirror. Such a (more
realistic) model will be considered in future work. We will
also take into account in a similar manner the reverse process
of photon absorption and the full process of generation and
absorption.
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APPENDIX A: INPUT-OUTPUT RELATION WITH THE
USE OF A DIRAC DELTA DISTRIBUTION

In this Appendix, we show the mathematical inconsistency
of the the standard development of the input-output relation
(29) from the Heisenberg-Langevin equations (20) within the
Markov approximation applied without a model for the cou-
pling (see, e.g., Ref. [51]). By assuming a “flat” continuum
via the approximation

κc(ω) ≈
√

�c

2π
(A1)

and pushing the ω integration from −∞, we approximate the
double integral in (25b) (considering for simplicity the case

ha
ε(t)

t(a − 1)ε aε

1/ε

FIG. 8. Representation of a family of noneven functions
parametrized by a real number 0 < a < 1 tending to the Dirac delta
distribution in the limit ε → 0.

x = 0) as ∫ t

t0

dt ′
∫ +∞

0
dω

|κc(ω)|2√
�c

c(t ′)e−iω(t−t ′ )

≈
√

�c

∫ t

t0

dt ′c(t ′)
∫ +∞

−∞

dω

2π
e−iω(t−t ′ ) (A2a)

=
√

�c

∫ t

t0

dt ′c(t ′)δ(t − t ′) (A2b)

=
√

�c

2
c(t ). (A2c)

The last step, which can be reformulated in a simpler case as∫ 0

−∞
dt c(t )δ(t ) = 1

2
c(0), (A3)

is mathematically undefined. Since the distributions are de-
fined on the real line via the integration on a test function, it
indeed necessitates the introduction of a multiplication with
the Heaviside distribution:∫ +∞

−∞
dt c(t )H (−t )δ(t ) =

∫ 0

−∞
dt c(t )δ(t ). (A4)

However such a product of two nonregular distributions is
undefined, here more specifically the product of the Dirac
delta distribution with the Heaviside distribution of disconti-
nuity localized where the Dirac delta is infinite. This has been
analyzed in Ref. [79].

An explicit analysis can be conducted by defining a model
for the Dirac delta distribution using a family of (noneven)
functions represented in Fig. 8,

ha
ε (t ) =

⎧⎨
⎩

0 for t < (a − 1)ε
1/ε for (a − 1)ε � t � aε

0 for t > aε,

(A5)

parametrized by a real number 0 < a < 1, in the limit ε → 0.
We can indeed check that they satisfy the Dirac delta distribu-
tion [applied on a test function ϕ(t )]:

lim
ε→0

∫ +∞

−∞
dt ϕ(t )ha

ε (t ) = lim
ε→0

1

ε

∫ aε

(a−1)ε
dt ϕ(t )

= lim
ε→0

∫ a

a−1
ds ϕ(εs)

= ϕ(0), (A6)
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where we have applied the change of variable s = t/ε. We
note that the limit ε → 0 guarantees that δ(t ) = limε→0 ha

ε (t )
is an even distribution.

Applying this model on (A3), we obtain

lim
ε→0

∫ 0

−∞
dt c(t )ha

ε (t ) = lim
ε→0

1

ε

∫ 0

(a−1)ε
dt c(t )

= lim
ε→0

∫ 0

a−1
ds c(εs)

= (1 − a)c(0). (A7)

This shows that the result depends on the details of the model
of the Dirac delta distribution [80]. We recover the result of
(A3) only for a particular even-function model (i.e., a = 1/2).

As a consequence, the derivation (A2) is not valid in gen-
eral. It necessitates a specific model for the coupling κc(ω), as
considered from first principles in this paper.

APPENDIX B: LORENTZIAN STRUCTURE OF THE
CAVITY RESPONSE FUNCTION

As shown in Refs. [27,57,61], for a one-dimensional,
single-layer dielectric cavity, having a perfect mirror placed
at x = −L and a semitransparent mirror at x = 0, the response
function and the quantized electric field inside the cavity are
written as follows:

T (ω) = t (ω)

1 + r(ω)e2i ω
c (L+ δ

2 )
, (B1)

Ein(x) =
∫ ∞

0
dω

√
h̄ω

πcAε0
sin

[
ω

c
(x + L)

]
ei ω

c LT (ω)aω,

+ H.c., (B2)

where t (ω) and r(ω) are single-layer spectral transmission and
reflection functions,

|t (ω)|2 + |r(ω)|2 = 1, (B3)

t (ω)r∗(ω) + t∗(ω)r(ω) = 0, (B4)

with

t (ω) = (1 − r2)ei(n−1) ω
c δ

1 − e2in ω
c δr2

, (B5)

r(ω) = e−i ω
c δ

r
(
e2in ω

c δ − 1
)

1 − e2in ω
c δr2

= |r(ω)|eiφr (ω), (B6)

and r = n−1
n+1 is the reflectivity of the mirror with thickness

δ = λc
4n , λc being the cavity resonance wavelength. It can be

shown [27,57,61] that this response function can be written
as a sum of Lorentzian-like functions, for a cavity with a low
transmission rate:

|T (ω)|2 ≈
∑

m

c

2L

�m

(ω − ωm)2 + (
�m
2

)2 , (B7)

where

�m = − c

L
ln |r(ωm)|, (B8)

ωm = m
πc

L
+ c

2L
(π − φr (ωm)). (B9)

For a high-Q cavity with a low transmission rate [|t (ω)| ≈
|t |  1, φr (ωm) ≈ π ], each Lorentzian of the sum (B7) is well
separated from the others (�m  πc/L), and we can deduce
the following:

T (ω) =
∑

m

√
c

2L

√
�m

ω − ωm + i �m
2

. (B10)

With (B2) one can write the atom-environment inter-
action Hamiltonian from the dipole approximation [27]:
Hint = −dEin, which, using the expression (B10), leads to the
single-mode coupling function of the form (3b).

APPENDIX C: DISCRETIZATION OF THE
CONTINUOUS INTEGRALS

Equations (13) and (19) are integrated numerically via
discretizing the continuum. In order to perform discretization
properly, we analyze the continuous parts of the states (11)
and (18), where the photon states |1ω〉 and |1ω,out〉 and the
coefficients c̃ f ,1(ω, t ) and c f ,0,1(ω, t ) all have units of 1/

√
ω,

making the corresponding integrals dimensionless. Thus we
can do the following discretization:∫ ∞

0
dω c̃ f ,1(ω, t )|1ω〉 =

m∑
i=1

√
dωc̃ f ,1(ωi, t )

√
dω|1ωi〉,

∫ ∞

0
dω c f ,0,1(ω, t )|1ω,out〉 =

m∑
i=1

√
dωc f ,0,1(ωi, t )

√
dω|1ωi,out〉,

where dω is the step of the discretization. By denot-
ing the dimensionless quantities of the sum as c̃ f ,1

(ωi, t ) = √
dω c̃ f ,1(ωi, t ), |1̃ωi〉 = √

dω|1ωi〉 and c f ,0,1(ωi, t )
= √

dω c f ,0,1(ωi, t ), |1ωi,out〉 = √
dω|1ωi,out〉, we can

calculate the probability amplitudes of finding the photon in
states |1̃ωi〉 and |1ωi,out〉, respectively:

P̃(ωi, t ) = |〈1̃ωi |ψ̃〉|2 = |c̃ f ,1(ωi, t )|2,
P(ωi, t ) = |〈1ωi,out|ψ〉|2 = |c f ,0,1(ωi, t )|2.

Taking this discretization into account, in Eq. (13),
the discretization of the function η(ω) becomes√

dω η(ω1),
√

dω η(ω2), . . . ,
√

dω η(ωm), and the equa-
tions become

i ˙̃cg,0(t ) = � c̃e,0(t ),

i ˙̃ce,0(t ) = � c̃e,0(t ) + � c̃g,0(t ) + i
∑

m

η̃ωm c̃ f ,1(ωm, t ),

i ˙̃c f ,1(ω1, t ) = (� − �c + ω1 − ωc)c̃ f ,1(ω1, t ) − iη̃∗
ω1

c̃e,0(t ),

...

i ˙̃c f ,1(ωm, t ) = (� − �c + ωm − ωc)c̃ f ,1(ωm, t ) − iη̃∗
ωm

c̃e,0(t ),

with η̃ωm = √
dω η(ωm).
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Similarly, Eq. (19) becomes

iċg,0(t ) = � ce,0(t ),

iċe,0(t ) = � ce,0(t ) + � cg,0(t ) + gc f ,1,0(t ),

iċ f ,1,0(t ) = (� − �c)c f ,1,0 + gce,0(t )

− i
∑

m

κ̃∗
c (ωm) c f ,0,1(ωm, t ),

iċ f ,0,1(ω1, t ) = (� − �c + ω1 − ωc)c f ,0,1(ω1, t )

+ iκ̃c(ω1) c f ,1,0(t ),

...

iċ f ,0,1(ωm, t ) = (� − �c + ωm − ωc)c f ,0,1(ωm, t )

+ iκ̃c(ωm) c f ,1,0(t ),

where κ̃c(ωm) = √
dω κc(ωm).

By solving these systems of equations numerically using
a sufficiently large number of (typically 100 000) states dis-
cretizing the continuum, we obtain the solutions presented in
Fig. 3.

APPENDIX D: POYNTING VECTOR DERIVATION

Following the definition of the Poynting vector [57,62], we
can write it in the true-mode representation, using the modes
derived for the outside of the cavity [27,57,61]:

S(x) = − 1

2μ0
(Bout (x)Eout (x) + Eout (x)Bout (x)),

where μ0 = 1/(c2ε0) is the vacuum permeability and

Eout (x) = − i√
2πcA

∫ ∞

0
dω

√
h̄ω

2ε0
((Rωei ω

c x − e−i ω
c x )aω − H.c.),

Bout (x) = i

c
√

2πcA

∫ ∞

0
dω

√
h̄ω

2ε0
((Rωei ω

c x + e−i ω
c x )aω − H.c.),

with

Rω = e2i ω
c L T (ω)

T ∗(ω)
≈

√
2π

�c

√
ωc

ω
α∗(ω)

(
ω − ωc − i

�c

2

)
.

α(ω) is the coefficient linking the true mode aω to the discrete
cavity mode c: aω = α(ω)c + ∫ ∞

0 dω′β(ω,ω′)bω′ . It can be
written as follows [57]:

α(ω) =
√

ω

ωc

√
L

πc
sinc

(
(ω − ωc)

L

c

)
e−i ω

c LT ∗(ω).

Taking these into account, we get the following Poynting
vector, for the propagation in the positive x direction:

S(x) = h̄

2πA

∫ ∞

0
dωdω′√ωω′Re{RωR∗

ω′ei (ω−ω′ )
c xa†

ω′aω}.

Furthermore, by writing aω in terms of the outside
operator corresponding to the inside-outside repre-
sentation, aω = ∫

dω′β(ω,ω′)bω′ , and recalling that
i
∫

dωdω′ωα∗(ω)β(ω,ω′)bω′ = ∫
dωκ∗

c (ω)bω [57], we
obtain the following:

S(x) = h̄

A
ωc

�c

∫ ∞

0
dωdω′κ∗

c (ω)κc(ω′)ei (ω−ω′ )
c xb†

ω′bω.

Via defining the integrated reservoir operator as

b(x) = 1√
�c

∫ ∞

0
dωκ∗

c (ω)ei ω
c xbω, (D1)

the expression for the Poynting vector becomes

S(x) = h̄

A
ωc

�c
b†(x)b(x). (D2)

APPENDIX E: EVALUATION OF THE INTEGRAL (25b)

In order to evaluate the integral in (25b), we use the fol-
lowing expression for κc(ω):

κc(ω) =
√

�c

2π
e−i ω

c Lsinc

(
(ω − ωc)

L

c

)
.

We calculate the following integral:

∫ ∞

0
dω |κc(ω)|2e−iωτ = �c

2π

(
c

L

)2

×
∫ ∞

0
dω

sin2
(
(ω − ωc) L

c

)
(ω − ωc)2

e−iωτ ,

(E1)

where τ = t − t ′ − x
c . This leads to the evaluation of the

integral of the following form (since ωc = πc
L , this is signifi-

cantly larger than c
L , such that the integral can be evaluated as∫ ∞

0 → ∫ ∞
−∞):

∫ ∞

−∞
dx

e±ixτ

x2
.

This integral can be evaluated in the complex plane, and
its value is different for negative and positive parameters τ .
Taking this into account, it can be shown that the integral in
(E1) becomes

�c

2π

(
c

L

)2 1

2
e−iωc (t−t ′− x

c )

×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, t ′ > t − x
c + 2L

c

−π
(
t ′ − t + x

c − 2L
c

)
, t − x

c < t ′ < t − x
c + 2L

c

π
(
t ′ − t + x

c + 2L
c

)
, t − x

c − 2L
c < t ′ < t − x

c

0, t ′ < t − x
c − 2L

c .

(E2)

Having calculated the integral over the frequency, we can now
evaluate the time integral in (25b). Taking into account the
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results in (E2), we can reduce the integration range to the
following ones:

∫ t

t0

=
∫ t− x

c

t− x
c − 2L

c

+
∫ t− x

c + 2L
c

t− x
c

, when x > 2L,

∫ t

t0

=
∫ t− x

c

t− x
c − 2L

c

+
∫ t

t− x
c

, when 0 < x < 2L

with t > t0 + x
c + 2L

c . Considering that we analyze the dy-
namics for times much bigger than the round trip time of
the produced photon, i.e., t � 2L

c (coarse-grained approxima-
tion), the integral for the case x < 2L can be evaluated the
same way as the integral for x > 2L, since t + 2L/c > t −
x/c + 2L/c ≈ t . Hence the integrals above can be evaluated
as follows:

∫ t− x
c + 2L

c

t− x
c

dt ′ f (t ′) = 1

2

[
f

(
t − x

c
+ 2L

c

)
+ f

(
t − x

c

)]2L

c
,

∫ t− x
c

t− x
c − 2L

c

dt ′ f (t ′) = 1

2

[
f

(
t − x

c
− 2L

c

)
+ f

(
t − x

c

)]2L

c
.

Hence, for the full integral, we obtain

∫ t

t0

dt ′
∫ ∞

0
dω |κc(ω)|2e−iω(t−t ′− x

c )c(t ′) = �cc
(

t − x

c

)
.

For the case x = 0, the integration over the frequency in (E1)
gives the following result:

�c

2π

( c

L

)2 1

2
e−iωc (t−t ′ )

×

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, t ′ > 2L
c

−π
(
t ′ − t + x

c − 2L
c

)
, t < t ′ < t + 2L

c

π
(
t ′ − t + x

c + 2L
c

)
, t − 2L

c < t ′ < t

0, t ′ < t − 2L
c .

(E3)

Since the upper limit of the time integration is t , the second
line of (E3) does not contribute to the integration over the
time, and the overall integral becomes∫ t

t0

dt ′
∫ ∞

0
dω |κc(ω)|2e−iω(t−t ′ )c(t ′) = �c

2
c(t ).

APPENDIX F: DERIVATION OF THE MASTER EQUATION

In the following, we derive the dynamics of XS (t ) from the
Heisenberg equation, using Eqs. (4) and (36):

d

dt
XS (t ) = − i

h̄
[XS (t ), H (H )(t )] = − i

h̄

[
XS (t ), H (H )

S (t )
]

+
∫ ∞

0
dω(κc(ω)b†

ω(t )[XS (t ), c(t )]

− κ∗
c (ω)[XS (t ), c†(t )]bω(t )). (F1)

From the definition (25a), we have
∫ ∞

0 dω κ∗
c (ω)bω(t ) =√

�cb(x = 0, t ), for which we can use the relation (30); hence

d

dt
XS (t ) = − i

h̄

[
XS (t ), H (H )

S (t )
] +

(√
�cb†

in(t ) + �c

2
c†(t )

)
[XS (t ), c(t )] − [XS (t ), c†(t )]

(√
�cbin(t ) + �c

2
c(t )

)

= − i

h̄

[
XS (t ), H (H )

S (t )
] +

√
�cb†

in(t )[XS (t ), c(t )] − [XS (t ), c†(t )]
√

�cbin(t ) + �c

(
c†(t )XS (t )c(t ) − 1

2
{c†(t )c(t ), XS (t )}

)
.

We further define the time-dependent dissipator
D†

in,t (XS (t )) = √
�cb†

in(t )[XS (t ), c(t )] − [XS (t ), c†(t )]
√

�c

bin(t ), leading to

d

dt
XS (t ) = − i

h̄

[
XS (t ), H (H )

S (t )
] + D†

in,t (XS (t ))

+�c

(
c†(t )XS (t )c(t ) − 1

2
{c†(t )c(t ), XS (t )}

)
.

(F2)

The expectation value of XS can be calculated as follows:

〈XS (t )〉 = Tr{XS (t )ρ(t0)}
= Tr{XSU (t, t0)ρ(t0)U †(t, t0)}
= TrS{TrR{XSU (t, t0)ρ(t0)U †(t, t0)}}
= TrS{XSρS (t )},

where we have used the cyclic property of the trace and de-
fined ρS (t ) = TrR{U (t, t0)ρ(t0)U †(t, t0)}. Similarly, using the
property Tr{A + B} = Tr{A} + Tr{B}, ∀ A, B, we can calculate
the averages on the right-hand side of Eq. (F2):

〈[
XS (t ), H (H )

S (t )
]〉 = Tr

{[
XS (t ), H (H )

S (t )
]
ρ(t0)

}
= Tr{[XS, HS (t )]U (t, t0)ρ(t0)U †(t, t0)}
= TrS{[XS, HS (t )]ρS (t )}
= TrS{XS[HS (t ), ρS (t )]},

〈c†(t )XS (t )c(t )〉 = TrS{c†XScρS (t )}
= TrS{XScρS (t )c†},

〈{c†(t )c(t ), XS (t )}〉 = TrS{{c†c, XS}ρS (t )}
= TrS{XS{ρS (t ), c†c}}.
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Assuming that the reservoir is initially a vacuum state
ρR(t0) = |∅〉〈∅|, for the dissipator part D†

in,t we get

Tr{b†
in(t ) [XS (t ), c(t )]ρ(t0)}

= Tr{[XS (t ), c(t )]ρ(t0)b†
in(t )}

= Tr{[XS (t ), c(t )]ρS (t0) ⊗ ρR(t0)b†
in(t )}

= Tr{[XS (t ), c(t )]ρS (t0) ⊗ |∅〉〈∅|b†
in(t )} = 0.

Similarly,

Tr{[XS (t ), c†(t )]bin(t )ρ(t0)} = 0.

Finally, Eq. (F2) becomes

TrS

{
XS

dρS (t )

dt

}
= TrS{XS[HS (t ), ρS (t )]}

+ �c

(
TrS{XScρS (t )c†} − 1

2
TrS{XS{ρS (t ), c†c}}

)
.

Furthermore, using the property ∀A, Tr{AB} = Tr{AC} ⇔
B = C, we obtain the master equation for ρS (t ):

d

dt
ρS (t ) = [HS (t ), ρS (t )] + �c

(
cρS (t )c† − 1

2

{
ρS (t ), c†c

})
.
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