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Time-varying quantum channels (TVQCs) have been proposed as a model to include fluctuations of the
relaxation (T1) and dephasing times (T2). In previous works, realizations of multiqubit TVQCs have been
assumed to be equal for all the qubits of an error correction block, implying that the random variables that
describe the fluctuations of T1 and T2 are block-to-block uncorrelated but qubit-wise perfectly correlated for
the same block. In this article, we perform a correlation analysis of the fluctuations of the relaxation times of
five multiqubit quantum processors. Our results show that it is reasonable to assume that the fluctuations of the
relaxation and dephasing times of superconducting qubits are local to each of the qubits of the system. Based
on these results, we discuss the multiqubit TVQCs when the fluctuations of the decoherence parameters for an
error correction block are qubit-wise uncorrelated (as well as from block-to-block), a scenario we have named
the fast time-varying quantum channel (FTVQC). Furthermore, we lower-bound the quantum capacity of general
FTVQCs based on a quantity we refer to as the ergodic quantum capacity. Finally, we use numerical simulations
to study the performance of quantum error correction codes when they operate over FTVQCs.
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I. INTRODUCTION

Fault-tolerant quantum computers have the potential to
revolutionize the fields of computing and industry as we
know them [1]. However, the societal upheaval heralded by
quantum computers will only be facilitated if these ma-
chines are equipped with quantum error correction (QEC)
strategies, the primary ingredient to make these devices fault-
tolerant. The purpose of QEC methods, commonly known
as QEC codes, or QECCs, is to identify and correct the
errors that inherently corrupt quantum information. These
errors are inevitable given that they arise naturally as a re-
sult of the interaction of quantum-mechanical systems with
their surrounding environment. The different physical mecha-
nisms through which quantum information can be corrupted
are commonly amalgamated under the term known as de-
coherence [2]. Understanding the way decoherence corrupts
quantum information and mathematically modeling such ef-
fects is of paramount importance to construct QECCs that
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can successfully correct the errors that occur in real quantum
hardware.

The quantum noise experienced by qubits constructed as
two-level coherent quantum-mechanical systems can be de-
scribed accurately by considering two different phenomena:
relaxation and pure dephasing. The effects of these mech-
anisms are quantified by the relaxation time T1 and the
dephasing time T2. Thermal interactions between the quantum
information system and the environment can be neglected
if the temperature of the system is low enough, which is a
valid premise for state-of-the-art superconducting quantum
processors, as these devices are cooled down to temperatures
in the order of millikelvins [3–8]. Generally, the effects of
decoherence on quantum information are modeled by means
of quantum channels, which are completely positive trace-
preserving (CPTP) linear maps between spaces of operators
[2]. Most of the literature on QEC assumes that the quantum
noise level experienced by the qubits in a particular system
will be identical for each quantum information processing
task, independently of when the task is performed [9–19]. This
means that the relaxation and pure dephasing times of the
qubits are assumed to be fixed and time-invariant. However,
this behavior has been disproven in recent experimental stud-
ies on quantum processors [3–7,20–22]. In fact, these works
have shown that T1 and T2 can experience time variations of
up to 50% of their mean value with coefficients of variation of
approximately 25%. To correctly account for the time-varying
nature of the decoherence defining parameters of supercon-
ducting qubits, researchers have come up with the class of
time-varying quantum channels (TVQC), a mathematical ab-
straction that enables the inclusion of time fluctuations to the
models of quantum noise [23,24].
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The multiqubit TVQCs in Refs. [23,24] were constructed
considering that the realizations of T1 and T2 would be identi-
cal for all the qubits in each particular error correction block
but would change from block to block. This assumption im-
plies that the random variables that describe the fluctuations
of the decoherence parameters of each of the qubits are per-
fectly correlated for the same block, a scenario reminiscent of
the classical block, slow fading channel. In reality, the time
fluctuations of these decoherence parameters are conjectured
to occur because of the incoherent coupling of an ensemble
of environmentally unstable near-resonant two-level systems
(TLSs) with each particular qubit [3–5,7]. These TLSs actu-
ally emerge due to atomic-scale defects that are present in
the Josephson junctions (JJ) that are used to make up the
superconducting qubits [25,26]. In light of this, it is reason-
able to assume that the origin of the time-dependent nature
of T1 and T2 is local to each of the constituent qubits of the
quantum machine, which ultimately means that the realiza-
tions of the random variables that describe the fluctuations
of those parameters in the TVQC model may be considered
qubit-wise uncorrelated for each particular QEC block. This
intuition has been confirmed by experiments conducted for
a 2-qubit superconducting system (see Supplementary Note
D of Ref. [3]), where the authors simultaneously measured
the relaxation times of both qubits and studied the correlation
between the obtained data for each of them.

In this article, we further cement the observation that the
local TLS defects that are responsible for the fluctuations of
the decoherence parameters of superconducting qubits are not
significantly correlated and we show that these TLS defects
will only affect each of the particular qubits within which they
arise. To do so, we repeatedly estimate the relaxation times
of the 5-qubit quantum processors ibmq_quito, ibmq_belem,
ibmq_lima, ibmq_santiago, and ibmq_bogota and then per-
form a correlation analysis on the measured fluctuations based
on the Pearson correlation coefficient. We conclude that the
obtained values of the Pearson correlation coefficients are
not sufficiently high to observe significant correlation effects
on the system. In consequence, we introduce the concept of
fast time-varying quantum channels (FTVQCs) as the ap-
propriate mathematical model to describe the decoherence
effects experienced by n-qubit superconducting systems. In
this context, multiqubit time-varying quantum channels are
then constructed with independent realizations of the de-
coherence parameters from qubit-to-qubit. In addition, we
study the quantum channel capacity for the proposed family
of quantum channels. Since the FTVQC channel resembles
the classical scenario of fast fading, we discuss the ergodic
quantum capacity, whose units are expressed in logical qubits
per physical qubits, as a lower bound to the capacity of the
FTVQC channels. Moreover, we prove that, for the family
of fast time-varying amplitude damping channels (FTVAD
channels), the ergodic capacity is indeed equal to its quan-
tum capacity. We also show that, although a capacity loss
is incurred in comparison with quantum channels that are
assumed to be static, this change is not significant. Finally,
we use numerical simulations to study the performance of
planar codes and quantum turbo codes (QTCs) when they
operate over the FTVQC noise model. It is concluded that
the performance of the codes worsens when compared with

the static quantum channels, although this degradation is not
as significant as the one codes experience over the previously
considered multiqubit TVQCs [23,24]. Interestingly, we ob-
serve that the threshold of the surface codes deteriorates by
a similar amount to the quantum capacity when the FTVQC
multiqubit model is considered.

II. TIME-VARYING QUANTUM CHANNELS

Time-varying quantum channels [23] N (ρ, ω, t ) are de-
fined as

N (ρ, ω, t ) =
∑

k

Ek (ω, t )ρE†
k (ω, t ), (1)

where the Ek (ω, t ) linear operators are the so-called Kraus
operators of the operator-sum representation of a quantum
channel, and are continuous-time random processes. Addi-
tionally, ρ refers to the density matrix describing the quantum
system subjected to noise for a time given by t and for a noise
realization ω.

Decoherence arises from a wide range of physical pro-
cesses involved in the interaction of qubits with their
environment. In the context of superconducting technologies,
the principal vehicles for decoherence are energy relaxation
and pure dephasing. The time-varying amplitude and phase
damping quantum channel, NAPD(ρ, ω, t ) [23], is a model that
includes relaxation and pure dephasing effects, whose inten-
sity (which is given by the relaxation time, T1, and dephasing
time, T2) varies as a function of time. Note that whenever the
Ramsey limit is saturated (T2 ≈ 2T1), the channel is reduced
to a time-varying amplitude-damping channel NAD(ρ, ω, t )
[3,23,24]. The noise level of these quantum channels is char-
acterized by the damping, {γ (ω, t )}, and scattering, {λ(ω, t )},
stochastic processes, which are functions of the qubit relax-
ation time {T1(ω, t )} and the qubit dephasing time {T2(ω, t )}
as

γ (ω, t ) = 1 − e− t
T1 (ω,t ) and (2)

λ(ω, t ) = 1 − e
t

T1 (ω,t ) − 2t
T2 (ω,t ) . (3)

The experimental analysis presented in Refs. [3,23] shows
that T1(t, ω) and T2(t, ω) can be modeled by wide-sense
stationary (WSS) random processes with means μT1 , μT2 , stan-
dard deviations σT1 , σT2 , and a stochastic coherence time,Tc in
the order of minutes. Since the processing times for quantum
algorithms and error correction rounds, talgo, are on the order
of microseconds (the surface code cycle time is estimated to
be 1 µs for superconducting devices) [8,23,27–29], talgo � Tc,
it is reasonable to assume that the processes remain constant
during the execution of a quantum algorithm. In other words,
{Ti(ω, t )}2

i=1 can be modeled as a set of random variables (t =
0 has been selected without loss of generality due to the fact
that the process is WSS.) {Ti(ω)}2

i=1 = {Ti(t, ω)|t=0}2
i=1,∀t ∈

[0, T ], T � Tc. Given that the random processes are assumed
to be Gaussian, the random variables will also be Gaussian
with distributions {GN (μTi , σ

2
Ti

)}2
i=1. However, since any and

all realizations of {Ti(ω)}2
i=1 should be positive, they must

be modeled as truncated Gaussian random variables in the
region [0,∞]. Therefore, the probability density functions are
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modeled as

fTi (ti ) =

⎧⎪⎪⎨
⎪⎪⎩

1
σTi

√
2π

e
−

(ti−μTi
)2

2σ2
Ti

1−Q
(

μTi
σTi

) if ti � 0

0 if ti < 0,

(4)

where in the above expression, i = {1, 2} and Q(·) is the Q-
function defined as

Q(x) = 1√
2π

∫ ∞

x
e− x2

2 dx. (5)

The twirled approximations of those time-varying quantum
channels are also interesting since they can be simulated in an
efficient manner using classical computers [2,23]. The time-
varying Pauli twirl approximation (TVPTA) NPTA(ρ, ω, t ) is
the Pauli channel [2,23] obtained by twirling a time-varying
quantum channel by the n-fold Pauli group Pn. Twirling the
TVAD channel will lead to the Pauli channel (TVADPTA)
described by the probabilities that each of the Pauli matrices
has of taking place. Note that in this context these probabilities
are realizations of the random processes:

pI(ω, t ) = 1 − px(ω, t ) − py(ω, t ) − pz(ω, t ),

px(ω, t ) = py(ω, t ) = 1
4

(
1 − e− t

T1 (ω,t )
)
, and

pz(ω, t ) = 1
4

(
1 + e

− t
T1(ω,t ) − 2e− t

2T1 (ω,t )
)
. (6)

For the TVAPD channel, the TVAPDPTA approximation
is described by the realizations of the following stochastic
processes for each of the Pauli matrices

pI(ω, t ) = 1 − px(ω, t ) − py(ω, t ) − pz(ω, t ),

px(ω, t ) = py(ω, t ) = 1
4

(
1 − e

− t
T1(ω,t )

)
, and

pz(ω, t ) = 1
4

(
1 + e

− t
T1(ω,t ) − 2e− t

T2 (ω,t )
)
, (7)

where, once again, T1(ω, t ) and T2(ω, t ) are stochastic pro-
cesses.

Another twirled channel of interest is the time-varying
Clifford twirl approximation (TVCTA) NCTA(ρ, ω, t ) [2,23],
which for the TVAD channel will be a depolarizing channel
with depolarizing parameter

p(ω, t ) = 3
4 − 1

4 e− t
T1 (ω,t ) − 1

2 e− t
2T1 (ω,t ) , (8)

and for the TVAPD channel a depolarizing channel with de-
polarizing parameter

p(ω, t ) = 3
4 − 1

4 e− t
T1 (ω,t ) − 1

2 e− t
T2 (ω,t ) , (9)

where, once more, T1(ω, t ) and T2(ω, t ) are stochastic pro-
cesses.

III. MULTIQUBIT TIME-VARYING QUANTUM
CHANNELS

Time-varying quantum channels (TVQC) describe the co-
herence loss of a qubit when the relaxation and dephasing
times that describe the rate of interaction between the qubit
and its environment fluctuate as functions of time for the same
cooldown [23]. The proposal of this theoretical framework
of quantum noise was motivated by the repeated observation

of such intracooldown stochastic behavior of superconducting
qubit decoherence parameters in the literature [3–7,20,21].

TVQCs successfully account for the experimentally ob-
served time-varying nature of the decoherence experienced by
single superconducting qubits. However, quantum informa-
tion processing tasks (algorithms, error correction, memories
or communications) require sets of qubits to appropriately
achieve the tasks that they are designed for. Thus, it is nec-
essary to consider multiqubit time-varying quantum channels
to accurately assess the impact of T1 and T2 fluctuation on
practical quantum computing. In this section, we discuss the
way in which the noise of such multiqubit systems can be
modeled when time fluctuations are present. To do so, we
study the locality of the time fluctuations before discussing
the multiqubit time-varying noise models for superconducting
chips.

A. Decoherence parameter fluctuations are local to each qubit

We have conducted simultaneous measurements of the re-
laxation times of the IBM quantum processors ibmq_quito,
ibmq_belem, ibmq_lima, ibmq_santiago, and ibmq_bogota
[30] spaced out over time (see Appendix C for a detailed de-
scription of the experiments). All of these quantum processors
are comprised of five superconducting qubits (with different
architectures and connectivity). The aim of this experiment is
to verify that the fluctuations of the decoherence parameters of
each of the constituent qubits of these 5-qubit superconduct-
ing processors are local to the particular qubits themselves. In
this way, we want to extend the analysis undertaken in Ref. [3]
for a 2-qubit processor to more complex noisy intermediate-
scale quantum (NISQ) devices.

Table I shows the results obtained for the Pearson corre-
lation tests we conducted on the measured relaxation times
(see Appendix A for the description of the statistical analysis).
Based on these outcomes, it is clear that the T1 fluctuations
are not significantly correlated between the qubits of the
systems in the majority of the scenarios. In fact, the values
of the correlation coefficients are all below the threshold of
significant correlation (which stands at 0.6) that is generally
considered for classical scenarios (see Appendix A). This
holds even when considering 95% confidence intervals. These
results support the hypothesis that the fluctuations of the de-
coherence parameters of superconducting qubits are caused
by local effects, making it reasonable to assume that the local
TLS defects responsible for these fluctuations are not coupled
among themselves. We must note that there is an outlier
among our results where correlation appears to be present.
This occurs for qubits 0 and 3 of the ibmq_quito S2 scenario,
whose correlation coefficient has a value of 0.53 and the
upper limit of the confidence interval is set to 0.6. However,
the 0th qubit of such scenario shows a step size transition
at the end of the experiment (see Appendix C), an effect
that may have impacted the value of the obtained Pearson
correlation. In fact, considering just the samples before the
hard transition, the results are rQ0Q3 = 0.091(−0.026, 0.217),
which are well within the range of uncorrelated values. In light
of these results, it is safe to assume that the fluctuations of the
decoherence parameters of superconducting qubits will be due
to local effects.
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TABLE I. Pearson correlation coefficients for the T1 measurements obtained for the IBM quantum processors. Relaxation time is measured
for two different calibration cycles for each of the machines. rQiQ j is the obtained Pearson correlation coefficient for the relaxation times of
qubit i and qubit j of the processor. Bootstrapping was used to determine the 95% confidence intervals, presented in parentheses.

Scenario rQ0Q1 rQ0Q2 rQ0Q3 rQ0Q4 rQ1Q2

ibmq_quito S1 −0.207(−0.066, −0.35) 0.036(−0.094, 0.17) −0.287(−0.17, −0.41) −0.076(−0.194, 0.049) −0.083(−0.223, 0.05)
ibmq_quito S2 0.096(0.022,0.167) 0.154(0.054,0.256) 0.53(0.444,0.6) 0.133(0.052,0.26) 0.024(−0.081, 0.125)
ibmq_belem S1 −0.002(−0.081, 0.173) 0.013(−0.248, 0.024) −0.008(−0.047, 0.059) −0.019(−0.033, 0.163) −0.028(−0.085, 0.03)
ibmq_belem S2 −0.141(−0.23, −0.05)−0.153(−0.25, −0.057) −0.15(−0.24, −0.06) −0.38(−0.46, −0.29) 0.2(0.096,0.3)
ibmq_lima S1 −0.028(−0.09, 0.03) −0.09(−0.16, −0.024) 0.295(0.24,0.35) 0.27(0.221,0.31) −0.024(−0.086, 0.037)
ibmq_lima S2 0.244(0.131,0.346) 0.347(0.24,0.45) −0.0049(−0.125, 0.113) 0.044(−0.077, 0.166) −0.011(−0.138, 0.13)
ibmq_santiago S1−0.035(−0.175, 0.11) 0.1(−0.033, 0.255) 0.16(0.005,0.31) −0.05(−0.17, 0.06) −0.035(−0.18, 0.11)
ibmq_bogota S1 0.15(0.006,0.29) 0.093(−0.05, 0.22) −0.066(−0.19, 0.055) −0.11(−0.23, 0.014) −0.032(−0.17, 0.11)
ibmq_quito S1 0.116(−0.032, 0.262) 0.0031(−0.128, 0.138) −0.128(−0.25, 0.002) −0.161(−0.275, −0.025)−0.0159(−0.154, 0.133)
ibmq_quito S2 0.0028(−0.078, 0.08) −0.093(−0.197, 0.003) 0.031(−0.051, 0.115) 0.049(−0.0438, 0.14) 0.0799(−0.00441, 0.159)
ibmq_belem S1 0.059(10−5, 0.117) 0.297(0.233,0.35) 0.069(−0.001, 0.142) 0.023(−0.031, 0.079) −0.004(−0.055, 0.04)
ibmq_belem S2 0.117(0.026,0.205) 0.227(0.131,0.317) 0.062(−0.03, 0.152) −0.027(−0.131, 0.069) 0.214(0.115,0.3)
ibmq_lima S1 0.057(−0.006, 0.11) −0.033(−0.09, 0.025) 0.163(0.1,0.23) 0.196(0.13,0.26) 0.49(0.437,0.54)
ibmq_lima S2 −0.013(−0.156, 0.126) −0.085(−0.2, 0.03) 0.047(−0.085, 0.18) 0.147(0.04,0.25) −0.13(−0.25, −0.008)
ibmq_santiago S1 −0.66(−0.21, 0.065) −0.27(−0.39, −0.14) 0.162(0.017,0.3) 0.063(−0.11, 0.21) 0.078(−0.07, 0.22)
ibmq_bogota S1 0.19(0.054,0.33) 0.267(0.13,0.39)) −0.09(−0.22, 0.051) −0.086(−0.21, 0.05) 0.13(−0.02, 0.27)

B. Fast time-varying quantum channels

In Refs. [23,24], the authors proposed a multiqubit time-
varying quantum channel under the assumption that the
relaxation and dephasing times are constant for all the qubits
inside a particular error-correction block but vary from block
to block. Thus, a realization of the multiqubit time-varying
quantum channel for block m ∈ N of duration talgo can be
described mathematically as1

N (n)(ρ, tm
1 , tm

2 , t = talgo
)

= N⊗n
(
ρ, tm

1 , tm
2 , t = talgo

)
=

∑
E∈({Ek}k )⊗n

E
(
tm
1 , tm

2 , t = talgo
)
ρE†

(
tm
1 , tm

2 , t = talgo
)
, (10)

where tm
1 and tm

2 refer to the realizations of the sequences of
independent random variables {T m

1 (ω)}m∈N and {T m
2 }(ω)} j∈N ,

respectively, and E (tm
1 , tm

2 , t = talgo) = E1(tm
1 , tm

2 , t =
talgo) ⊗ · · · ⊗ En−1(tm

1 , tm
2 , t = talgo) ⊗ En(tm

1 , tm
2 , t = talgo)

with E j (tm
1 , tm

2 , t = talgo) ∈ {Ek (tm
1 , tm

2 , t = talgo)}k referring
to the Kraus operators of the single qubit TVQCs associated
with those realizations of the decoherence parameters.
({Ek}k )⊗n refers to the set of n-fold tensor products of the
Kraus operators of the single-qubit TVQCs. Note that, here,
those Kraus operators are related to some TVQC that depends
on the relaxation and dephasing times. This, however, does
not exclude the construction of similar time-varying quantum
channels depending on other parameters that may show
similar behavior to T1 and T2.

This means that the multiqubit channel considered in
Refs. [23,24] assumes that the realizations of the random vari-

1Note that, from this point, the channels descriptions are not a func-
tion of ω but of the realizations of the relaxation and dephasing time
random variables tm

1 and tm
2 for a block m. This is done to represent

that, for each realization of the random variables, the channel will
be fixed by those two values, and for such block the Kraus operators
will be constructed using those realizations.

ables that describe the noise experienced by each of the qubits
of the system are identical, i.e., that these random variables
are perfectly correlated. As discussed in Refs. [23,24], this
model is reminiscent of the classical slow-fading scenario. For
simplicity, we adopt this terminology to refer to the multiqubit
TVQCs that add perfectly correlated noise to each qubit.
Hence, we name these types of channels as slow time-varying
quantum channels (STVQCs). If we recall our discussion in
the previous section, we now know that the STVQCs consid-
ered in Refs. [23,24] are not the most accurate type of multi-
qubit time-varying quantum channels for the superconducting
NISQ devices we are considering in this paper. This has to
do with the fact that the origin of the decoherence parameter
fluctuations of superconducting qubits are local to each qubit.

Based on our discussions thus far, we know that the way to
construct multiqubit time-varying quantum channels to accu-
rately model the superconducting hardware considered in this
article is by considering that the individual TVQCs that make
up the multiqubit channel for each QEC block m ∈ N are
defined by sequences of random variables {T m j

1 (ω)}n
j=1 and

{T m j

2 (ω)}n
j=1 whose elements are independent among them-

selves. Thus, the realizations of the decoherence parameter
random variables will not only be independent from block
to block, but also from qubit to qubit inside a block. In this
way, a realization of the multiqubit time-varying quantum
channel for block m ∈ N of duration talgo can be described
mathematically as

N (n)
(
ρ,

{
tm j

1

}n

j=1,
{
tm j

2

}n

j=1, t = talgo
)

=
n⊗

j=1

N
(
ρ, tm j

1 , tm j

2 , t = talgo
)

=
∑

E∈⊗n
j=1({Ek (tm j

1 ,tm j
2 )}k ),

E
({

tm j

1

}n

j=1,
{
tm j

2

}n

j=1

)
ρE†

({
tm j

1

}n

j=1,

× {
tm j

2

}n

j=1

)
, (11)
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where {tm j

1 }n
j=1 and {tm j

2 }n
j=1 refer to the realizations of the

sequences of independent random variables {T m j

1 (ω)}n
j=1

and {T m j

2 (ω)}n
j=1, respectively, and E ({tm j

1 }n
j=1, {tm j

2 }n
j=1) =

E1(tm1

1 , tm1

2 ) ⊗ · · · ⊗ En−1(tmn−1

1 , tmn−1

2 ) ⊗ En(tmn

1 , tmn

2 ) with
E j (tm j

1 , tm j

2 ) ∈ {Ek (tm j

1 , tm j

2 )}k referring to the Kraus operators
of the single qubit TVQCs associated with those realizations
of the decoherence parameters, where we have incurred
in the slight abuse of notation Ek (·, ·) = Ek (·, ·, t = talgo).
Note that the sequence of random variables will also be
independent from block to block, i.e., the elements of
{T m j

1 (ω)}m, j ∀ m, j ∈ N and {T m j

2 (ω)}m, j ∀ m, j ∈ N will be
independently distributed.

In this way, each of the realizations of this multiqubit
TVQC will have a different noise “intensity” (the actual noise
operators will be the same, but the noise level will change) for
each of the qubits of the superconducting quantum processor.
This model resembles the classical scenario of fast fading
[31,32]. In such scenarios, the fading process changes so
quickly that each of the symbols of a transmitted codeword
is subjected to a different fading gain (where the fading gain
for each of the symbols is independent) and, thus, to different
noise levels. Note that for the multiqubit TVQC that we are
discussing, the values of the T1 and T2 parameters will vary
slowly, but since their particular realizations are indepen-
dent from qubit to qubit, the channel actually resembles the
fast-fading scenario. Thus, we once again borrow from the
classical realm and refer to these quantum channels as fast
time-varying quantum channels (FTVQCs).

In this context, we refer to the most commonly considered
construction of multiqubit channels as static quantum chan-
nels. A widespread assumption in the QECC community is
that all the qubits of a quantum processor experience the same
noise through time [2,23]. This implies that all of the qubits
of the system have the same decoherence parameters T1 and
T2, and that these will not vary with the passage of time. Thus,
multiqubit static channels are constructed by evaluating the
Kraus operators of the channels with the mean values of those
parameters. Consequently, the static multiqubit time-varying
quantum channel for every block ∀ m ∈ N of duration talgo is
described mathematically as

N (n)
(
ρ,μT1 , μT2 , t = talgo

)
= N⊗n

(
ρ,μT1 , μT2 , t = talgo

)
=

∑
E∈({Ek}k )⊗n

E
(
μt1 , μt2 , t = talgo

)
ρ E†

(
μt1 , μt2 , t = talgo

)
,

(12)

where it can be seen that the channel will be equal for
all the QEC blocks, since E (μT1 , μT2 ) = E1(μT1 , μT2 , t =
talgo) ⊗ · · · ⊗ En−1(μT1 , μT2 , t = talgo) ⊗ En(μT1 , μT2 , t =
talgo) with E j (μT1 , μT2 , t = talgo) ∈ {Ek (μT1 , μT2 , t = talgo)}k

independent of block m. ({Ek}k )⊗n denotes the set of n-fold
tensor products of the Kraus operators of the single-qubit
TVQCs.

1. Comparison using the experimental data

Now we compare the differences among the discussed
channel models with the FTVQC model proposed in this

article. To accomplish this, we will use some of the experi-
mentally obtained data using IBM quantum processors. Note
that the damping γ and scattering λ rates that describe the
noise “intensities” of the channels are functions of the dura-
tion of the block, talgo. As explained before, the typical surface
code cycle in superconducting devices is estimated to be
around talgo = 1 µs. Henceforth, we will use such value for the
following discussion. In addition, we will restrict the analysis
to the data obtained in the scenario ibmq_santiago S1 (see
Appendix C), while the channels considered will be static-,
slow-, and fast-amplitude damping channels, i.e., we assume
that T2 ≈ 2T1 (we assume this for the sake of simplicity and
due to the lack of T2 fluctuation experimental data). In this
sense, the damping parameter for the first five realizations
of those channels are summarized in Table II. In such table
it can be seen that each of the models considers noise in a
very distinct way. Importantly, note how the FTVQC captures
the important differences in the noise level for each of the
qubits. For example, note that qubit Q1 is much noisier than
all the other four. By inspecting this table, it can be seen that
the FTVQC model resembles the independent, nonidentically
distributed noise models that have been recently discussed
through the literature [33–35]. However, it essentially dif-
fers from those as for each round, there will be a different
instance of an independent and non-identically distributed
(i.ni.d.) noise model. These differences in the way that each
of the qubits experience noise will significantly change the
way in which QECCs correct errors as it will be seen in the
numerical simulations performed in Sec. IV C.

IV. QUANTUM CHANNEL CAPACITY

The quantum channel capacity CQ for a static quantum
channel N is defined as the supremum of all achievable
quantum coding rates (the quantum coding rate is defined as
RQ = k/n, where k is the number of logical qubits and n is the
number of physical qubits). A rate RQ is said to be achievable
for N if there exists a sequence of [[n, k]] quantum codes of
rate RQ such that the probability of error of the codes goes to
zero as the blocklength n of the code goes to infinity, n → ∞.
The definition of the quantum capacity, often referred to as the
Lloyd-Shor-Devetak (LSD) capacity, is given by the following
theorem [36,37]:

Theorem 1. (LSD capacity) The quantum capacity,
CQ(N ), of a quantum channel, N , is equal to the regularized
coherent information of the channel

CQ(N ) = Qreg(N ), (13)

where

Qreg(N ) = lim
n→∞

1

n
Qcoh(N⊗n). (14)

The channel coherent information, Qcoh(N ), is defined as

Qcoh(N ) = max
ρ

(S(N (ρ)) − S(ρE)), (15)

where S is the von Neumann entropy and S(ρE) measures how
much information the environment has.

There is no general single-key formula to compute the
regularization necessary to calculate the quantum channel ca-
pacity given in Theorem 1. This is due to the fact that the
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TABLE II. Examples of the damping parameters for the static, slow and fast AD channels for the scenario ibmq_santiago S1. We consider
the first 5 realizations of the relaxation time. The STVQC is calculated by averaging the relaxation times of the qubits for each realization.

Noise model γ m=1 γ m=2 γ m=3 γ m=4 γ m=5

Static AD (Q0-Q4) 0.0069 0.0069 0.0069 0.0069 0.0069
STVQC AD (Q0-Q4) 0.0075 0.0082 0.0076 0.0086 0.0082
FTVQC AD (Q0) 0.0067 0.0076 0.0065 0.0072 0.0077
FTVQC AD (Q1) 0.0152 0.0156 0.0153 0.0195 0.014
FTVQC AD (Q2) 0.0059 0.0055 0.0063 0.0065 0.0054
FTVQC AD (Q3) 0.0059 0.0074 0.0063 0.0069 0.0079
FTVQC AD (Q4) 0.009 0.0103 0.0084 0.011 0.0101

coherent information of the channel is not generally additive
[36,38]. However, for specific classes of degradable quantum
channels, such as the amplitude damping (AD) channel, the
channel coherent information has been shown to be additive,
reducing the expression of the regularization shown earlier to
a single-letter formula:

CQ(N ) = lim
n→∞

1

n
Qcoh(N⊗n) = lim

n→∞
1

n
nQcoh(N )

= Qcoh(N ), (16)

that is, the quantum channel capacity is actually the same as
the channel coherent information. Degradable and antidegrad-
able quantum channels are defined as [36] follows:

Definition 1. (Degradable and antidegradable channels) A
channel N from system A to system B is said to be degradable
if there exists a CPTP map D from system B to the envi-
ronment E such that N c = D ◦ N , where N c is named the
complementary channel from system A to the environment E .
Additionally, a channel N from system A to system B is said
to be antidegradable if there exists a CPTP map D from the
environment E to system B such that N = D ◦ N c, where
N c is named the complementary channel from system A to
the environment E .

Both degradable and antidegradable channels have the
property of having additive channel coherent information
[38]. Moreover, antidegradable channels have always vanish-
ing quantum channel capacity [36].

The quantum capacity of an AD channel with damping
parameter γ ∈ [0, 1] is equal to [36,37]

CQ(γ ) = max
ξ∈[0,1]

H2((1 − γ )ξ ) − H2(γ ξ ), (17)

whenever γ ∈ [0, 1/2], and zero for γ ∈ [1/2, 1]. H2(x) is the
binary entropy. This comes from the fact that the AD channel
is a degradable channel for γ ∈ [0, 1/2] and antidegradable
for γ ∈ [1/2, 1].

An expression for the quantum capacity of the widely
used Pauli channels remains unknown since its coherent in-
formation is not additive [2,36]. However, a lower bound
that can be achieved by stabilizer codes, the hashing bound
(which equals the single-qubit coherent information of the
channel), CH, [36] is known. The reason why the quantum
capacity of a Pauli channel can be higher than the hashing
bound (this is the same as saying that the coherent information
is superadditive), i.e., CQ � CH, is the degenerate nature of
quantum codes [39–41], a quantum-exclusive phenomenon
through which several distinct channel errors affect encoded

quantum states in an indistinguishable manner. In fact, the
depolarizing channel has been proven to be superadditive for
very noisy depolarizing probabilities [36].

The hashing bound for a Pauli channel defined by the
probability mass function p = (pI, px, py, pz) is given by [36]

CH(p) = 1 − H2(p). (18)

H2(p) = −∑
j p j log2(p j ) is the entropy in bits of a discrete

random variable with probability mass function given by p.

A. Classical fast-fading channels

As stated in the previous section, the FTVQC model is
similar to the classical scenario of fast-fading channels and,
thus, we introduce the capacity of the latter channels before
we discuss the one of their quantum counterparts. Consider
the classical scenario where the received symbols y[m] are
given by

y[m] = α[m]x[m] + w[m], (19)

where x[m] refers to the transmitted symbols, α[m] refers to
the fading gains, and w[m] refers to independent and iden-
tically distributed (i.i.d.) complex additive white Gaussian
noise [32]. If the fading process has a stochastic coherence
time that is lower than the duration of a symbol, then the set of
fading gains will be given by the realization of a sequence of
i.i.d. random variables. This classical scenario is known as the
fast fading channel, and has a well-defined capacity, known as
the ergodic capacity, defined as [32]

Cerg = E{C(ω)} = E{log2[1 + |α(ω)|2SNR]}, (20)

where SNR refers to the signal-to-noise ratio. The intuition
behind this limit is that one can average over many indepen-
dent fades of the channel by coding over a large number of
coherence time intervals. In this way, a reliable rate given
by the mean of the “instantaneous” capacities can indeed be
achieved.

B. Capacity of fast time-varying quantum channels

We have seen that the quantum capacity is the maximum
rate at which quantum information can be communicatedor
corrected over many independent uses of a noisy quan-
tum channel. Therefore, the quantum channel capacity is a
quantity of interest for quantum coding theorists because it
represents the maximum rate at which QECCs can correct the
effects of a specific noise map.
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For this reason, studying the quantum capacity of time-
varying quantum channels becomes a fundamental task if we
are to correctly design QECCs to operate over such decoher-
ence models. In Ref. [24], the concept of the quantum outage
probability as the asymptotically achievable error rate was
discussed for slow time-varying quantum channels. The need
for a new concept like the outage probability stems from the
fact that the quantum capacity of the aforementioned channels
is strictly zero, which makes it necessary to employ other
information-theoretical limits to study this particular family of
channels. Given the similarity that exists between slow time-
varying quantum channels and the classical scenario of slow
fading, it makes good sense to adapt the outage probability
(the theoretical quantity used to study classical slow fading)
to the quantum paradigm. This has resulted in the proposition
of the quantum outage probability as the most appropriate
metric to study STVQCs [24].

Let us now consider fast time-varying quantum channels
(FTVQC). Because the capacity of these channels is not
strictly zero (generally), we will be able to use it to deter-
mine the maximum coding rate over these channels. As stated
in the previous section, the elements of the sequences of
random variables {T j

1 (ω)}n
j=1 and {T j

2 (ω)}n
j=1 in a particular

QEC block are independent. From this point we assume that
those elements are identically distributed, too. The rationale
behind this is that one needs to know how the T1 and T2 of
each of the qubits is distributed (in general each qubit might
have different means and standard deviations) in order to
analyze the capacity and to perform numerical simulations. In
addition, this assumption makes sense since experimentalists
constructing superconducting hardware look for qubits that
behave as similar as possible,2 implying that the results ob-
tained here apply to such objective. Under such assumption, a
lower bound for the quantum capacity of the combined ampli-
tude and phase damping FTVQC is provided in the following
theorem:

Theorem 2. (Quantum capacity of APD FTVQCs) The
quantum capacity of the combined amplitude and phase
damping FTVQC is lower-bounded by its ergodic quantum
channel capacity:

CQ(γ̄ , λ̄) � Cerg
Q (γ̄ , λ̄)

= E{Qcoh(ω)} =
∫∫

Qcoh(γ , λ)pγ ,λ(γ , λ)dγ dλ

=
∫∫

Qcoh(talgo, t1, t2)pT1,T2 (t1, t2)dt1dt2, (21)

where Qcoh refers to the channel coherent information, opera-
tor E{·} is the mean, and γ̄ and λ̄ refer to the damping and
scattering probabilities defined by the mean relaxation and
dephasing times.

Proof. We can actually use the quantum channel capacity
to quantify the maximum coding rate that can be achieved
over fast time-varying quantum channels. To clarify this, let
us look at how the capacity of a FTVQC is computed. We

2The qubits of the system present decoherence parameters with the
same mean and standard deviation

first obtain the realizations {tm j

1 }n
j=1 and {tm j

2 }n
j=1 for a block

m ∈ N of the sequences of the relaxation {T m j

1 (ω)}n
j=1 and

dephasing {T m j

2 (ω)}n
j=1 random variables and integrate them

in the FTVQC channel model [see Eq. (11)]. Then, we can
bound the capacity of the realization of the fast time-varying
quantum channel (which will be fixed) for block m ∈ N as

CQ
(
N

(
ρ,

{
tm j

1

}n

j=1,
{
tm j

2

}n

j=1

))

= lim
n←∞

1

n
Qcoh

⎛
⎝ n⊗

j=1

N
(
ρ, tm j

1 , tm j

2

)
⎞
⎠

� lim
n→∞

1

n

n∑
j=1

Qcoh
(
N

(
ρ, tm j

1 , tm j

2

))
, (22)

where we incurred in the abuse of notation N (·, ·, ·) =
N (·, ·, ·, t = talgo) for simplicity. The inequality arises from
the fact that the channel coherent information might be
superadditive in general, i.e., Qcoh(N ⊗ M) � Qcoh(N ) +
Qcoh(M). The combined amplitude and phase damping chan-
nel has been proven not to be degradable for the region where
its coherent information is positive [42] and, thus, the addi-
tivity of its coherent information remains an open question.
For the Pauli channels (the twirled approximations of the are
included in this family), the channel coherent information
has been proven to be strictly superadditive for some channel
instances (very noisy depolarizing channel, for example).

Moreover, note that the sequence of values {tm j

1 }n
j=1 and

{tm j

2 }n
j=1 specify the relaxation and dephasing parameters for

each one of the n qubits in the mth block. Therefore, the
channel capacity in (22) will depend on such realizations of
the decoherence parameters, which means that, once again,
the channel capacity will itself become a random variable,
CQ(ω). In fact, the bound we derived will also become a ran-
dom variable, limn→∞ 1

n

∑n
k=1 Qcoh(N (ρ, T m j

1 (ω), T m j

2 (ω))).
However, because of the law of large numbers and due to the
fact that the elements of the sequences of random variables
{T m j

1 (ω)}n
j=1 and {T m j

2 (ω)}n
j=1 are independent (this is the case

for FTVQCs) and identically distributed (assumed before) the
following holds:

lim
n→∞

1

n

n∑
j=1

Qcoh
(
N

(
ρ, tm j

1 , tm j

2

))

= E
{
Qcoh

(
N

(
ρ, T m j

1 (ω), T m j

2 (ω)
)} = E

{
Qcoh(ω)

}
. (23)

The above expression is true for almost all realizations of the
sequences of random variables of the decoherence parameters,
or similarly, for almost all blocks m. This is similar to what
happens with the channel capacity of classical fast-fading
channels [31,32], where the capacity is usually referred to
as the ergodic channel capacity. That is why we refer to the
quantity in (23) as the ergodic quantum channel capacity Cerg

Q ,
and the bound in (22) can be written as

CQ(N ) � Cerg
Q (N ) = E{Qcoh(ω)}. (24)

�
In the obtained bound, the ergodic quantum capacity is a

function of T1 and T2, as well as of talgo. This comes from
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the fact that γ and λ are functions of those three parameters,
and in the integral talgo is fixed (its value can be obtained
from γ̄ , λ̄). Note that the quantum capacity of the combined
amplitude and phase damping channel is unknown at the time
of writing [42]. This comes from the fact that the channel
is not degradable in the region where the channel coherent
information is positive, implying that it might be superad-
ditive [42]. This unknown superadditivity problem extends
to its FTVQC version, implying that we can only provide a
bound. The time-varying amplitude damping channel (TVAD)
is typically used to describe the noise that manifests when
working with T1-limited qubits, such as those of Ref. [3],
since the pure dephasing effects suffered by this type of
qubits are negligible (the Ramsey limit, T2 ≈ 2T1 is saturated).
The following theorem shows how the quantum channel ca-
pacity coincides with the ergodic capacity for this class of
FTVQCs:

Theorem 3. (Quantum capacity of amplitude damping
FTVQCs) The quantum capacity of the amplitude damp-
ing FTVQC is equal to its ergodic quantum channel
capacity

CQ(γ̄ ) = Cerg
Q (γ̄ ) = E{Qcoh(ω)}

=
∫

Qcoh(γ )pγ (γ )dγ

=
∫

Qcoh(talgo, t1)pT1 (t1)dt1, (25)

where Qcoh refers to the channel coherent information, opera-
tor E{·} is the mean, and γ̄ refers to the damping probabilities
defined by the mean relaxation time.

Proof. We need to prove that the bound CQ(N ) � Cerg
Q (N )

is actually an equality. To do so, we must prove that the
channel coherent information in (22) is actually additive for
the family of FTVAD channels. The static amplitude damping
channel exhibits degradability for damping parameters γ ∈
[0, 1/2] and antidegradability otherwise, i.e., γ ∈ [1/2, 1]. In
this way, the tensor product of the limit

lim
n→∞

1

n
Qcoh

⎛
⎝ n⊗

j=1

N
(
ρ, tm j

1 , t = talgo
)
⎞
⎠, (26)

will consist of some amplitude damping channels that are
degradable and some others that are antidegradable. In this
sense, additivity of the channel coherent information is as-
sured for such a combination of channels:

(i) Degradable channels fulfill additivity, i.e., Qcoh(N ⊗
M) = Qcoh(N ) + Qcoh(M), when both N and M are
degradable [36].

(ii) Degradable and antidegradable channels fulfill addi-
tivity, i.e., Qcoh(N ⊗ M) = Qcoh(N ) + Qcoh(M), when N is
degradable and M is antidegradable [38,43].

(iii) Antidegradable channels fulfill additivity, i.e.,
Qcoh(N ⊗ M) = Qcoh(N ) + Qcoh(M), when both N and
M are antidegradable [38,44].

FIG. 1. Quantum capacity of the FTVAD channel. The metric is
calculated for FTVADs with cv(T1) = {1, 25, 50}%.

Consequently, the following holds for FTVAD channels

lim
n→∞

1

n
Qcoh

⎛
⎝ n⊗

j=1

N
(
ρ, tm j

1 , t = talgo
)
⎞
⎠

= lim
n→∞

1

n

n∑
k=1

Qcoh
(
N

(
ρ, tm j

1 , t = talgo
))

. (27)

Finally, considering the discussion from before (see
Eq. (23)], we can conclude that the quantum capacity is
actually equal to the ergodic quantum capacity for FTVAD
channels:

CQ(γ̄ ) = Cerg
Q (γ̄ ) = E{Qcoh(ω)}

=
∫

Qcoh(γ )pγ (γ )dγ

=
∫

Qcoh(talgo, t1)pT1 (t1)dt1, (28)

where in the last step we use the fact that the coherent infor-
mation for AD channels is a function of the relaxation time
T1, which will be the random variable, as well as of the error
correction cycle time (algorithm time), talgo. γ̄ refers to the
damping probability defined by the mean relaxation time, μT1

for the cycle time in consideration. �
Figure 1 shows the quantum capacity of the fast TVAD as a

function of the coefficient of variation of the relaxation time.
In this figure, it can be observed that the capacity of the chan-
nel changes as a function of the coefficient of variation of the
relaxation time. For low coefficients of variation (≈1%), the
difference between the capacity of the FTVAD channel and
the quantum capacity of the static AD channel is negligible.
When the coefficient of variation increases to about cv ≈ 20%
differences in the capacity of the FTVAD channel and the
quantum capacity of the static AD channel become greater.
Note also that for very noisy scenarios γ̄ > 0.35, the quantum
capacity of the FTVAD channel is higher than the quantum
capacity of the static AD channel. This is a consequence of the
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FIG. 2. Ergodic hashing bounds for the twirled approximations of the AD channel. The metric is calculated for cv(T1) = {1, 25, 50}%.
(a) Fast time-varying amplitude damping Pauli twirl approximation. (b) Fast time-varying amplitude damping Clifford twirl approximation.

fact that, even if the mean value of the damping probability is
the antidegradable region [γ̄ ∈ (1/2, 1]] of the AD channel,
the fluctuations of the parameters imply that some of the
actual γ will lay in the degradable region (γ ∈ [0, 1/2]).

We wrap up this discussion by analyzing the capacity of
the twirled approximated versions of the TVAPD and TVAD
channels. Similarly to the combined amplitude and phase
damping channel, the quantum capacity of the static versions
of these channels is not known because they belong to the
family of Pauli channels, which are not degradable. Actually,
these channels have been proven to have strictly superaddi-
tive coherent information for some very noisy scenarios [36],
which makes it impossible to reduce the calculation of the
quantum capacity to a single-key formula. For this reason,
the so-called hashing bound (the hashing bound is equivalent
to bounding the capacity with the coherent information of
the channel) is used as a good lower bound on the capacity
of the aforementioned channels [36]. Thus, we can derive
a lower bound for the ergodic quantum capacity of the fast
time-varying twirled approximated channels as

CQ(p̄) � Cerg
H (p̄)

= E{CH(ω)}

=
∫

CH(p)pp(p)dp

=
∫∫

CH(talgo, t1, t2)pT1,T2 (t1, t2)dt1dt2, (29)

where p refers to the array (px, py, pz) and p̄ refers to a similar
vector derived considering the mean relaxation and dephas-
ing times. Note that here CH(p̄) = Qcoh(p̄). The expression
given in (29) is reduced to a single integral that depends
only on the relaxation time if the twirled versions of the
amplitude damping channel are considered. We refer to this
lower bound as the ergodic hashing bound, Cerg

H , in order to be
consistent with the terminology used for static Pauli channels.
Figure 2 presents the ergodic hashing bounds of the twirled

approximated channels of the amplitude damping channel.
These results show how the ergodic hashing bounds deviate
from the static hashing bound when the coefficient of variation
of the relaxation time increases and how both metrics coincide
when cv(T1) ≈ 1%.

C. Performance of quantum error-correcting codes over fast
time-varying quantum channels

The performance of QECCs has been shown to worsen
significantly when operating over slow time-varying quantum
channels [23,24]. In this section, we present the outcomes
of simulations we have conducted to study the performance
of QTCs and planar codes when their qubits are subjected
to the effects of the FTVQC (see Appendix B for the de-
tails of the Monte Carlo numerical simulations). To conduct
the simulations, we use slow and fast time-varying ampli-
tude damping Clifford twirl approximations, STVADCTA and
FTVADCTA, respectively, whose static counterpart is the de-
polarizing channel. The asymptotic limits for error correction
associated with these noise operations will be the hashing
bound and the ergodic hashing bound, respectively. In our
simulations we consider a coefficient of variation of cv(T1) =
25%, a value that is typical in experimental superconducting
qubits [3,23].

Figure 3 shows the simulation outcomes obtained for the
rate 1/9 quantum turbo code when it operates over static
channels, STVQCs and FTVQCs.

The results in Fig. 3 show how the performance of the
QTC, assessed in terms of the word error rate (WER), is
worse over the FTVQC than over its static counterparts. In
fact, as seen by comparing the hashing bound to the ergodic
hashing bound, the loss in code performance is similar to the
loss in quantum capacity. It should be noted that the flattening
of the performance curve that QTCs suffered over STVQCs
is not observed over FTVQCs. In fact, when comparing the
performance curves obtained for the FTVQC channels and
those derived for the static channels, the only difference is
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FIG. 3. QTC operating over static, STVQCs, and FTVQCs. The
coefficient of variation considered is cv(T1) = 25%, which is a value
that is typical in superconducting qubits [3,23]. (a) (red) Static
performance (solid) and hashing bound (dashed), p∗ = 0.1602.
(b) (blue) STVQC performance (solid) and quantum outage prob-
ability [24] (dashed). (c) (green) FTVQC performance (solid) and
ergodic hashing bound (dashed), p∗

erg = 0.1545.

that the operation point of the code, the point where the
waterfall region starts, is worse (the curves themselves have
the same shape). Thus, even though the fluctuations of the
decoherence parameters also worsen the performance of the
code, this loss is much less significant if the fluctuations
are local to each qubit of the system (as is the case with
the qubits that are considered in this paper) than if they are
completely correlated.

To provide further context, we have also studied the perfor-
mance of d ∈ {3, 5, 7, 9} planar codes over the fast multiqubit
TVQC proposed in this paper. These results, along with the
performance of the planar codes over static channels, are
presented in Fig. 4. For the sake of clarity, in this figure we

FIG. 4. Planar codes operating over FTVQCs and static chan-
nels. The coefficient of variation considered is cv(T1) = 25%, which
is a value that is typical in superconducting qubits [3,23]. A zoom
to the code threshold region is also presented. (a) (red) Planar codes
over static noise. (b) (green) Planar codes over FTVQCs.

have omitted the performance results of these codes when they
operate over STVQCs [23].

Figure 4 shows how, in a similar manner to what was
observed for QTCs, the performance of the planar codes is
slightly worse over the FTVQCs than when considering time-
invariant noise. Notably, this decrease in performance is less
significant than for QTCs, but this is reasonable, since the
performance of these planar codes over the static scenario is
much worse than that of the turbo codes in this same context.
Against this backdrop, the performance of planar codes can
be said to deteriorate when the fluctuations of the decoherence
parameters are considered. However, if the fluctuations are lo-
cal to each of the qubits of the system, the loss in performance
will not be catastrophic (a phenomenon that does actually
occur over the STVQCs [23]).

Generally, surface codes are benchmarked based on a met-
ric known as the code threshold pth, which is defined as the
physical error probability below which increasing the code
distance actually implies lowering the WER. In this sense,
the surface code threshold is a capacity-like metric (the fact
that operating over noise levels above the threshold does not
make sense from the coding point of view is reminiscent
of operating at rates higher than the capacity) that serves to
assess the true error correction potential of this family of
codes. The close-up image shown on the top-right of Fig. 4
presents the threshold for planar codes both for static and
fast time-varying scenarios. It can be observed that the planar
code threshold is pth ≈ 0.112 when the static noise model is
considered, while it degrades to pth ≈ 0.105 when the codes
operate over the FTVADCTA with cv(T1) = 25%. This slight
degradation of the code threshold is in line with the slight
decrease in quantum capacity discussed previously.

V. DISCUSSION

In this paper, we have discussed the way multiqubit time-
varying quantum channels are constructed. In previous works,
the fluctuations of the qubit decoherence parameters that
describe multiqubit TVQCs were assumed to be qubit-wise
perfectly correlated in a block and independent from block
to block [23,24]. However, recent experimental results have
shown that the fluctuations of the T1 and T2 parameters of
superconducting qubits are caused by the coupling of the qubit
with an ensemble of environmental unstable near-resonant
two-level systems that arise from atomic-scale defects in
the Josephson junctions that make up these superconducting
qubits [3–5,7,25,26]. This means that the origin of the de-
coherence parameter fluctuations is local to each particular
superconducting qubit in the system, granted that there is no
coupling between the defects. The fact that the individual-
qubit decoherence parameter fluctuations are uncorrelated
was proven in Ref. [3] for a system made up of two su-
perconducting qubits. In this work we extend this study to
quantum hardware made up of five superconducting qubits by
concurrently and repeatedly measuring the relaxation times of
the qubits. To do so, we have used the quantum processors
ibmq_quito, ibmq_belem, ibmq_lima, ibmq_santiago, and
ibmq_bogota, which can be accessed through the cloud using
the IBM Quantum Lab platform (see Appendix C for details
about the experiments). We have studied the correlation that
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exists between various measurements of T1 values for each of
the qubits in different operational scenarios. Our results show
that for most of these scenarios the correlation coefficients
are not significant enough to indicate any correlation. Thus,
we have provided further evidence to support the claims that
fluctuations of the decoherence parameters are local to each of
the superconducting qubits for the superconducting quantum
hardware considered here. Based on previous research and
our own results, it is clear that considering the fluctuations
of the decoherence parameters of superconducting qubits to
be local to each particular qubit of the system is a reasonable
assumption.

Earlier, we also discussed different ways of constructing
multiqubit time-varying quantum channels depending on the
qubit-wise correlation of the fluctuations of T1 and T2. We
analyzed the mathematical formalism of the previously con-
sidered multiqubit TVQCs [23,24], which we named slow
TVQCs due to their similarity with classical slow fading chan-
nels, and we proposed fast TVQCs as the appropriate way
to construct multiqubit decoherence models with parameter
fluctuations that are local to each qubit. We saw how this phe-
nomenon of local fluctuations is present in superconducting
hardware. We have provided a numerical example of how the
noise parameters of an AD channel differ whenever static,
slow or fast noise models are considered by using the data ob-
tained from the experiments. Moreover, and due to their sim-
ilarity with classical fading channels, we discussed the quan-
tum capacity of FTVQCs and proposed the ergodic quantum
capacity as a lower bound on the asymptotically achievable er-
ror rate for QEC for these noise models. Moreover, we proved
that the ergodic quantum capacity coincides with the quantum
capacity for the family of fast time-varying amplitude damp-
ing channels. We computed the ergodic quantum capacity nu-
merically for fast time-varying amplitude damping channels
and concluded that the loss in capacity caused by decoherence
parameter fluctuations is small, similar to what happens in
classical fast fading. Finally, we discussed the performance
of quantum error correction codes when the noise operation
is defined as a FTVQC by conducting numerical simulations
of the performance of quantum turbo codes and planar codes.
Interestingly, our results indicated that the word error rate of
the codes worsens only slightly, similar to what happens to
the quantum capacity, and in stark contrast to the drastic dete-
rioration that the performance of these codes suffers over the
previously considered STVQCs, where their WER curves flat-
ten substantially. In summary, when operating over FTVQCs
the shape of the performance curve of a QECC is the same
as in the conventional noise model in the literature (all qubits
suffer the same static noise), but its operating point is defined
for lower physical error probabilities than for the static case.
We also studied the threshold of the considered planar codes
and we observed how it was slightly lowered over FTVQCs,
similar to what happens to the quantum capacity.

Another important matter that we discussed is that under-
standing the nature of the qubit-to-qubit relationship of the
fluctuations of the decoherence parameters of superconduct-
ing qubits is vital in order to characterize the real quantum
noise that affects the quantum information that they encode.
The slow TVQCs that have been presented in the literature
[23,24] predict a substantial QECC performance loss due to

the time-varying behavior of T1 and T2. However, we have
seen that a silver lining exists when building QEC codes in
superconducting hardware. Although superconducting qubits
present substantial (cv � 20%) parameter fluctuations, these
fluctuations are local to each of the elements of the processor
and, thus, are uncorrelated between qubits. While it is true that
a slight performance loss is inevitable, our numerical simula-
tions show that it is significantly milder than the deterioration
predicted by the STVQCs which assume that the fluctuations
are fully qubit-wise correlated for a QEC block. To provide
specific examples, the QTC considered in this article operates
over FTVQCs at a physical error rate ≈7% lower than over
static channels for a WER = 10−2, and the threshold of the
planar codes will be ≈6% lower over FTVQCs than over static
channels. These losses, despite being important, are much less
restrictive than the flattening effect that takes place when fully
correlated fluctuations are considered [23,24]. These results
imply that constructing qubits whose qubit-to-TLS defect
interactions are local and uncorrelated with other qubits is crit-
ical to maintaining the excellent performance of QECCs when
the decoherence parameters of the superconducting qubits
fluctuate over time. The coupling between qubits, and the TLS
defects themselves, are directly dependent on the architecture
of each particular quantum chip. Thus, the numerical results
we present herein suggest that experimentalists must consider
these effects when designing and characterizing hardware be-
cause they will play a pivotal role in suppressing the amount
of errors the hardware suffers. In this sense, we consider that
quantifying the stability of superconducting systems is an
important thing when characterizations of qubits constructed
with this technology are provided. It must also be mentioned
that minimizing the decoherence parameter fluctuations of
superconducting qubits may also be important to obtain error
correction codes that perform as well as it would be expected
based on the results obtained using the static noise model
prevalent in the literature. Another important research topic
is to study the time-varying behavior of the decoherence pa-
rameters that other qubit technologies [such as trapped ions,
nitrogen vacancy (NV) center qubits or silicon spin qubits]
experience. This would allow us to understand if their noise
dynamics are more accurately described by the time-varying
quantum channels discussed in this article or by the traditional
static noise models.

It is also critical to further study the fluctuations of the
decoherence parameters that superconducting qubits exhibit.
It must be noted that interest in these effects has recently
picked up, especially in the experimental research commu-
nity [3–5,7,25,26]. Nonetheless, more work on this topic is
needed to completely understand the time-fluctuating behav-
ior of superconducting qubits and its causes. This will enable
the creation of an accurate theoretical model and, ultimately,
to mitigate the impact of time-dependant noise on quantum
information. For example, in this article, we have studied the
correlations that exist between the fluctuations of the qubits
of some 5-qubit quantum processors and we have concluded
that there is no correlation significant enough to warrant
the application of slow multiqubit time-varying noise mod-
els. However, this might not be the case for other quantum
processors that might have other architectures or may be com-
prised of more qubits. Note that the absorption of high-energy
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particles can also generate correlated errors in superconduct-
ing devices [45–47]. Additionally, we must also mention
that the objective of our experiments was not to obtain very
accurate values of the correlation coefficients. Instead, our
goal was to verify that, for the typical case, assuming that
fluctuations are qubit-to-qubit uncorrelated is grounded on
and backed up by experimental results (note that although
the obtained 95% confidence intervals are wide, they all con-
tain negligible correlation values and prove that fluctuations
are qubit-to-qubit uncorrelated). In any case, more accurate
experiments on this topic should be conducted, as they will
serve to better understand the dynamics of multiqubit su-
perconducting quantum processors. If significant correlation
values are observed in future experiments, it may become
necessary to invoke TVQCs with finite correlation (perhaps
by modeling these events with hidden Markov models) to
better represent multiqubit time-varying noise. Another phe-
nomenon that must be further explored is the sharp transition
of the relaxation times that our results show for particular
qubits (see Appendix C). This behavior must be better under-
stood and possibly included in the noise models if it is shown
to be common for superconducting qubits. Furthermore, note
that we have considered that the decoherence parameters of
all the qubits have the same mean and standard deviation
for the derivation of the capacity and the numerical simula-
tions. This assumption was necessary to discuss the topics
that comprise this paper, but the most accurate FTVQC for
a multiqubit superconducting channel will most likely have
a set of parameters for each of the qubits of the proces-
sor (at least for the NISQ devices that exist at the time of
writing).

Even though we have only studied the impact of param-
eter fluctuations from the point of view of quantum error
correction, the time-varying decoherence models discussed in
this article may also have an impact on near-term quantum
algorithm implementations on superconducting NISQ devices
and on the error-mitigation techniques used to “clean” the
outcomes of NISQ devices. When implementing quantum
algorithms in NISQ processors, the physical qubits that exe-
cute the operations of these algorithms will be subjected to
decoherence (as well as gate and measurement errors) that
will corrupt the desired outcomes. So far we have seen how
FTVQCs are an effort to theoretically describe the experi-
mentally observed fluctuations of T1 and T2 and that, since
we have discussed experiments that back up the claim that
those are uncorrelated, capture those better than STVQCs or
static channels, in principle. One way to obtain the “best”
version of quantum algorithms in the presence of fast varying
quantum noise might be to allocate their resources (qubits)
as functions of the noise itself (some qubits might be able to
perform longer-lasting tasks than others). This might allow
quantum software developers to determine exactly what limits
the algorithm (how many gates can be applied before there is
too much noise). Note that in the numerical example given
in Table II using the experimental data from IBM computers,
the qubit labeled as Q1 is much noisier than the other ones,
implying that it will strongly limit the whole system. An-
other possibility might be to apply error mitigation techniques
based on the calibration of the device in order to postprocess

results and derive more accurate outputs than the raw yield of
the NISQ device. However, these techniques and simulations
strongly depend on the calibration data of the system. For this
reason, fluctuations of decoherence parameters must also be
taken into account for all these design and simulation tasks
if they are be run in NISQ devices based on superconducting
technologies. For example, whenever zero-noise extrapolation
(ZNE) [20] is used for mitigation the noise of a NISQ algo-
rithm, the circuit depth should be limited by the characteristic
timescale of the fluctuations of the noise parameters, since
when the noise in the system fluctuates, the noise scaling used
for such technique will actually not scale as it should. This
has been observed in the experiments that have been done in
this article. It is noteworthy to say that this effects are already
being considered in QEM [48]. In this way, it will become
possible to build better mitigation techniques and more noise
resilient NISQ algorithms.

Regarding quantum information theory, additional work is
still required to fully understand the behavior of the quantum
capacity of the channels proposed in this article. Although we
have been able to prove that the ergodic quantum capacity
is actually the quantum capacity for the fast time-varying
amplitude damping channels, we have just lower bounded
this quantity for the more general fast time-varying com-
bined amplitude and phase damping channel that includes
non-negligible pure dephasing channels. Since most of the su-
perconducting qubits that exist in the literature do not saturate
the Ramsey limit (the Ramsey limit refers to the scenario T2 ≈
2T1), their dynamics (including pure dephasing) are described
by the latter channel. However, as mentioned previously, it is
not known if the coherent information of the combined am-
plitude and phase damping channel is additive. Thus, it may
be that this quantity is superadditive, which implies that our
understanding of this topic should increase before the capacity
of the FTVQC version of this channel can be studied. This is
especially relevant, since including the fluctuations of the pure
dephasing time in a quantum noise model will worsen the ca-
pacity more than when only T1 is considered. Additionally, the
time-varying quantum channel models discussed herein might
also be adapted to other channels (aside from the family of
amplitude damping and dephasing channels considered in this
article) if the noise parameters that define them also present
behavior similar to the relaxation and dephasing times of the
superconducting qubits.

All in all, the FTVQC model proposed in this article incor-
porates the uncorrelated nature of the fluctuations of the noise
suffered by superconducting multiqubit systems, at least for
the hardware considered in this article. This claim is backed
up by the experiments we have conducted and by previous
literature on qubit-to-TLS defect interactions. Consequently,
we expect that quantum error correction codes implemented
in these types of quantum processors will perform worse than
what would be expected based on results obtained for static
quantum channels. Once more, it is necessary for more re-
search on the topic of decoherence parameter fluctuation and
its incorporation to the decoherence models to be conducted
in order to unveil the true performance of near- and long-term
quantum error correction codes as well as NISQ algorithms
and error mitigation techniques.
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TABLE III. Relaxation-time measurement specifications for each of the scenarios. The table includes the timestamp of the beginning of
the experiments and their duration as well as the number of measurements and the calibration data provided by IBM. The calibration relaxation
times are provided in μs units.

Scenario Timestamp # Meas. T cal(0)
1 T cal(1)

1 T cal(2)
1 T cal(3)

1 T cal(4)
1

ibmq_quito S1 15/04 00:00 (4 hours) 213 61.208 92.812 156.228 90.232 119.197
ibmq_quito S2 27/04 12:06 (11 hours) 401 76.5 109.8 93.71 143.49 57.27
ibmq_belem S1 08/04 13:55 (24 hours) 999 120.88 103.85 94.75 88.54 83.65
ibmq_belem S2 26/04 15:39 (7 hours) 401 67.4 77.56 83.35 86.44 64.2
ibmq_lima S1 15/04 14:21 (27 hours) 1000 136.87 125.03 108.45 126.02 21.45
ibmq_lima S2 25/04 10:25 (6 hours) 239 122.99 100.58 73.9 97.38 22.74
ibmq_santiago S1 18/04 01:26 (12 hours) 200 157.41 138.6 143.18 118.58 166.08
ibmq_bogota S1 17/04 21:21 (4 hours) 200 123.06 187.98 175.79 217.003 168.35
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APPENDIX A: PEARSON CORRELATION TESTS

In Sec. III A we studied the statistical dependence between
the fluctuations of the relaxation times of the qubits of various
different IBM quantum processors. The objective of this anal-
ysis was to determine if the aforementioned fluctuations were
local to each particular qubit. To do so we used the Pearson
correlation coefficient because it provides a measure of the

correlation that exists between measured sequences [49–51].
For a pair of random variables (X, Y), the sample Pearson
correlation coefficient rXY is defined as [49]

rXY = cov(X, Y)

σXσY

= n
∑n

i=1 xiyi − ( ∑n
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(A1)

where cov(X, Y) denotes the covariance and σ refers to the
standard deviation.

In the main text, we calculated the correlation coefficient
of the measured qubit relaxation times for each of the studied
quantum processors. To ensure the statistical significance of
the obtained correlation coefficients, we calculate the 95%
confidence intervals via bootstrapping [52]. Bootstrapping is
a method that uses random resampling and replacement of
samples to mimic the original population from which the
samples were extracted. The bootstrap probability distribution
can then be used to derive a significance confidence interval.
For the analysis we have conducted in this paper, we obtain

FIG. 5. Schematic representation of each of the experiments
done in the IBM quantum processors in order to estimate the decay
curve of each of the qubits.
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FIG. 6. T1 measurements of the qubits of ibmq_quito S1.

the 95% confidence interval as the interval that encompasses
the 2.5th and the 97.5th percentiles of the resampled Pearson
correlation coefficient values. In this way, we can be 95%
confident that the correlation parameter that exists between
those random variables will fall within said confidence inter-
val. Confidence intervals can also be used to reject or retain
the null hypothesis of a hypothesis test [53]. Note that here
we are actually performing a hypothesis test to determine if
the variables are fully correlated (null hypothesis) or if they
show some degree of correlation (alternate hypothesis). Thus,
if the null hypothesis lays in the derived confidence interval,
we cannot exclude it as being the population parameter at the
chosen level of confidence.

The final component of the statistical dependence anal-
ysis we conduct herein is an accurate interpretation of the
obtained values. This allows us to determine if significant
correlations exist or not. The ranges of values for which two
parameters might be strongly correlated depend on the actual
problem (field). However, for physical sciences, there should
be no doubt about the dependence between two variables,
implying that strong or significant correlation values should
be high (|rXY| � 0.9) [49,50]. For low values of rXY, no con-
siderable dependence (weak) relationship can be concluded.
Specifically, for classical fading channels, whenever the spa-
tial correlation coefficient values are approximately lower

than 0.6, it is often assumed that the fading gains of the
Rayleigh channel are i.i.d. since both channels will be very
similar, i.e., the correlation is negligible [54–56].

APPENDIX B: QUANTUM ERROR CORRECTION CODE
NUMERICAL SIMULATION

Monte Carlo computer simulations of the d × d planar
codes with d ∈ {3, 5, 7, 9} [19,57] and of the QTC of rate 1/9
in Ref. [16] have been carried out to estimate changes in their
performance over various different operational scenarios. Pla-
nar codes belong to the more general family of surface codes
[19,57] and are [[d2 + (d − 1)2, 1, d]] QECCs defined by the
grid length of the code d . A blocklength of k = 1000 logical
qubits has been selected for the QTC, as in Refs. [15,16].

Planar codes are decoded using a minimum weight perfect
matching (MWPM) decoder, which is implemented using the
QECSIM tool [57]. The QTC is decoded via the decoding
algorithm presented in Refs. [13,14], which combines two
soft-in soft-out (SISO) decoders.

Each round of the numerical simulation is performed by
generating an N-qubit Pauli operator, calculating its associ-
ated syndrome, and finally running the decoding algorithm
using the syndrome as its input. Once the logical error is

FIG. 7. T1 measurements of the qubits of ibmq_quito S2.
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FIG. 8. T1 measurements of the qubits of ibmq_belem S1.

estimated, it is compared with the channel error in order
to decide if the decoding round was successful. The opera-
tional figure of merit we use to evaluate the performance of
these quantum error correction schemes is the word error rate
(WER). The WER represents the probability that at least one
qubit of the received block has been incorrectly decoded.

For the numerical Monte Carlo methods employed to es-
timate the WER of the Kitaev toric codes and the QTC, we
have applied the following rule of thumb to select the number
of blocks to be transmitted, Nblocks [15,16], as

Nblocks = 100

WER
. (B1)

As explained in Refs. [15,16], under the assumption that the
observed error events are independent, this results in a 95%
confidence interval of about (0.8 ˆWER, 1.25 ˆWER), where

ˆWER refers to the empirically estimated value for the WER.

APPENDIX C: INTRACALIBRATION DECOHERENCE
PARAMETER FLUCTUATION FOR THE QUBITS OF IBM

QUANTUM HARDWARE

In the main article, we discussed the fact that the fluc-
tuations of the decoherence parameters of superconducting

qubits are local; that is, the random variables T1(ω) and
T2(ω) are qubit-wise uncorrelated. In Ref. [3], the authors
proved this to be true for the relaxation-time fluctuations
by using their two-qubit superconducting system. In this
Appendix, we perform a similar analysis for five IBM 5-
qubit superconducting processors that are accessible online:
ibmq_quito, ibmq_belem, ibmq_lima, ibmq_santiago, and
ibmq_bogota [30].

Qubit relaxation time T1 refers to the characteristic
timescale at which a qubit in an excited state |1〉 decays to
its ground state |0〉 caused by simple spontaneous emission.
Consequently, the experiment that is usually performed in
order to estimate the parameter T1 of a qubit consists in
collecting the statistics of the decay curve for the proba-
bility of measuring the excited state over time, P1(t ). This
is done by choosing a set of delay times t1, . . . , tn and
then repeating the following protocol N times for each of
them [58]:

(i) Prepare the qubit in the |1〉 state. This is usually done
by exciting the qubit in the ground state via a Pauli X operator.

(ii) Wait a delay time, t j .
(iii) Measure the qubit in the computational basis

(|0〉, |1〉).

FIG. 9. T1 measurements of the qubits of ibmq_belem S2.
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FIG. 10. T1 measurements of the qubits of ibmq_lima S1.

Once the decay curve, P1(t ), is obtained, a fit to exponential
decay is performed in order to estimate the value of the qubit
relaxation time [58]. As explained in the main text, we are
interested in studying the locality of the fluctuations of the
relaxation times of some of the IBM 5-qubit quantum proces-
sors. Thus, we run the previously presented experiment over
time and simultaneously for the all the qubits of the systems in
question. Figure 5 portrays the schematic of each of the exper-
iments that we have conducted. We run each experiment 4000
times (4000 shots) for 20 uniformly separated delay times
starting from a delay of t1 = 1 µs to t20 = 2 T cal(i)

1 , where by
T cal(i)

1 we refer to the relaxation time for the ith qubit provided
by IBM for the specific calibration cycle in which the exper-
iments are done. Note that the calibration data provided by
IBM refer to measurements performed during that precise cal-
ibration round. However, these values actually fluctuate within
the calibration cycle itself, similarly to the superconducting
qubits of Ref. [3]. These intracalibration fluctuations of the
relaxation parameter are precisely what we are interested
in observing.

As discussed in the article, we have conducted these intra-
calibration T1 measurements for the ibmq_quito, ibmq_belem,

ibmq_lima, ibmq_santiago, and ibmq_bogota 5-qubit quan-
tum processors on different days. In Table III, we detail the
information related to each of the scenarios that we have
tested. Note that the number of measurements for each of
the considered scenarios or processors, as well as the dura-
tion of the experiments themselves, is different. The reason
for this is that the IBM machines are calibrated at differ-
ent times with different frequencies. We observed that the
ibmq_santiago and ibmq_bogota, which are of the Falcon r4L
type, are more frequently (several times each day) calibrated
than the ibmq_quito, ibmq_belem, and ibmq_lima processors
(calibrated once a day approximately), which belong to the
Falcon r4T class. Since we are interested in the intracalibra-
tion fluctuations, the duration of those cycles is something
that must be accounted for, which leads to some scenarios
having more T1 measurements than others. Another limitation
that must be disclosed is the fact that these machines can be
accessed by the general public, resulting in queues and wait
times to run the experiments. Consequently, whenever a large
number of tasks are sent to a machine (high demand for the
processor in question), our experiments will be more spread
out in time (implying that less measurements will be made
in these specific calibration cycles). To be more specific, we

FIG. 11. T1 measurements of the qubits of ibmq_lima S2.
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FIG. 12. T1 measurements of the qubits of ibmq_santiago S1.

have been able to run most of the experiments on days where
the demand for the IBM systems was low, approximately
running the measurement of the T1 of the five qubits of the
system once every two minutes (with the exception of the
ibmq_santiago processor where the experiment was run once
every four minutes).

It is important to mention that conducting the relaxation-
time measurements every few minutes is not actually a
problem for this study. The stochastic processes that typi-
cally define the fluctuations of T1 were previously studied
in Ref. [3]. This work concluded that the stochastic process
coherence times Tc (the time for which the stochastic process
can be considered to be approximately constant) are typically
in the order of minutes [23]. Consequently, the stochastic
process can be modeled as a random variable T1(ω) that is
considered to be constant for a time Tc. Since we are interested
in studying the correlation that exists between the random
variables of T1 for each of the qubits of a processor, the mea-
surements must be performed sufficiently apart in time so that
they do not belong to the same stochastic coherence period.
As discussed before, our measurements are conducted several
minutes apart from each others; hence, they are consistent
with this reasoning.

Figures 6–13 show the results of the relaxation-time mea-
surements of the qubits of the IBM quantum processors we
have considered. The estimated mean relaxation times, as
well as the estimated standard deviations and coefficients of
variation(cv = σ/μ) are provided in Table IV. It can be seen
that the fluctuations exhibited by the relaxation times of the
qubits of the systems are considerable, ranging from coeffi-
cients of variation of approximately 5% up to even 47%. It is
worth noting that the error bars (we actually do not plot these
for the sake of clarity) are not beyond 5% of the estimated
data, indicating that the fluctuations are actually relevant and
are not related to errors that may have arisen due to the fitting
of the data to the relaxation decay curves [20]. We must also
mention that the circuits we have built are also affected by gate
and state preparation and measurement (SPAM) errors, which
are unavoidable in current quantum hardware. However, our
experiments contain a small number of gates (5 X Pauli gates,
which present errors in the order of 10−4 [30]) and postdecay
measurements (which present errors in the order of 10−2), and
the contributions of these error sources are suppressed by the
multiple executions we are doing for each delay of each of
the experiment (4000 shots for each delay). Consequently,
following the rationale in Ref. [58], we can say that even if

FIG. 13. T1 measurements of the qubits of ibmq_bogota S1.
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TABLE IV. Sample mean relaxation times μ̂, sample standard deviation σ̂ , and the coefficients of variation cv = σ/μ for each of the qubits
of the considered scenarios. Qubit j is labeled by T ( j)

1 .

Scenario cv(T (0)
1 )(

σ̂
T (0)
1

μ̂
T (0)
1

) cv(T (1)
1 )(

σ̂
T (1)
1

μ̂
T (1)
1

) cv(T (2)
1 )(

σ̂
T (2)
1

μ̂
T (2)
1

) cv(T (3)
1 )(

σ̂
T (3)
1

μ̂
T (3)
1

) cv(T (4)
1 )(

σ̂
T (4)
1

μ̂
T (4)
1

)

ibmq_quito S1 15.5%( 11.23
72.51 ) 19.96%( 11.21

56.15 ) 22.44%( 21.02
93.63 ) 12.76%( 12.42

97.33 ) 7%( 1.73
24.762 )

ibmq_quito S2 30.2%( 17.63
58.37 ) 15.62%( 10.02

64.16 ) 24.43%( 16.23
66.46 ) 26%( 15.61

60.02 ) 9.39%( 5.4
57.14 )

ibmq_belem S1 13.76%( 12.86
93.5 ) 12.32%( 11.2

90.87 ) 7.88%( 6.73
85.4 ) 11.71%( 12.21

104.22 ) 20.14%( 13.54
67.23 )

ibmq_belem S2 14.03%( 9.1
64.66 ) 14.93%( 9.26

62.1 ) 8.9%( 6.38
71.78 ) 24.38%( 19.6

80.41 ) 47.41%( 22.79
48.1 )

ibmq_lima S1 31.66%( 26.26
82.94 ) 9.94%( 11.11

111.66 ) 26%( 27.54
105.85 ) 12.04%( 12.81

106.33 ) 11.8%( 2.52
21.36 )

ibmq_lima S2 13.4%( 13.9
111.25 ) 11.97%( 12.93

108.06 ) 16.27%( 9.31
57.27 ) 19.9%( 18.7

93.91 ) 5.14%( 1.1
21.52 )

ibmq_santiago S1 14.97%( 21.03
140.48 ) 21.32%( 15.67

73.47 ) 22.67%( 32.85
144.93 ) 11.79%( 13.91

117.98 ) 17.36%( 21.96
126.56 )

ibmq_bogota S1 9.69%( 9.71
100.1 ) 12.91%( 17.2

133.15 ) 12.64%( 21.14
167.21 ) 11.95%( 21.26

177.76 ) 10.9%( 15.64
143.42 )

errors of this type are present in the data, their impact on the
results will be unimportant when enough shots are run.

As stated previously, the results obtained for the fluctua-
tions of T1 for each of the considered scenarios are presented
in Figs. 6–13. As expected, it can be observed that the fluc-
tuations are notable for most of the studied cases. In fact,
there are qubits in particular scenarios that exhibit sharp tran-
sitions in the level where the relaxation time fluctuates [see
Figs. 7(a), 8(e), and 9(e)]. In these cases, the qubits manifest
a step-like transition at a given point in time, at which point
the relaxation time fluctuates around a different “mean” level.
Notice how, for the scenario of Fig. 8(e), the relaxation time
exhibits this effect before going back to its original level. The
reason behind these sudden changes is unclear, but speculation
regarding this topic is possible. Sharp drops in the relaxation
times of qubits have previously been observed due to the
absorption of high-energy particle impacts by superconduct-
ing qubits [45–47]. However, such events result in correlated
errors over the array of superconducting qubits (global drop
of the T1 of those qubits), an effect that has not been observed
in our scenarios. We consider that further experimental study
of these types of events is necessary to fully understand what
causes such sharp drops of the relaxation times and their
subsequent return to the original level.

We finish this discussion by analyzing the dephasing
times of the superconducting qubits. To obtain values for the
Ramsey dephasing times T ∗

2 , we need to employ a similar
procedure to the one used to measure the relaxation time,
albeit with a circuit that includes a Hadamard gate (neces-
sary to obtain a |+〉 state), the variable delay, and another
Hadamard gate applied prior to the measurement itself. If
there were no decoherence, then the obtained result would
always be the |0〉 state (Hadamard gates are unitary), but
dephasing (recall that T ∗

2 is a combination of both relaxation
and pure dephasing) will increase the probability of measuring
the |1〉 state. This probability of measuring 1 will have an ex-
ponentially decaying cosine shape [58], and then the obtained
results can be fit to such a function, obtaining the Ramsey
dephasing time. However, this is a significantly more nuanced
experiment than the one used to measure the relaxation time,
and measuring Ramsey times in IBM quantum processors has
been shown to be unreliable [58]. Consequently, we will not
conduct experiments to measure the Ramsey times. In any
case, fluctuations of the dephasing time have also been ex-
perimentally observed [3,21] and assuming that they are local
to each of the qubits seems reasonable (part of the dephasing
phenomenon is caused by relaxation, which in itself is local to
each qubit).
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