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Dynamics and phase separation of active Brownian particles on curved
surfaces and in porous media
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The effect of curvature on an ensemble of repulsive active Brownian particles (ABPs) moving on a spherical
surface is studied. Surface curvature strongly affects the dynamics of ABPs, as it introduces a new time scale
τ = R/v0, with curvature radius R and propulsion velocity v0, in addition to the rotational diffusion time τr . The
time scale τ is related to a stop-and-go motion caused by the recurrent alignment of the propulsion direction
with the surface normal. This implies that motility-induced phase separation (MIPS) disappears for small R.
Furthermore, it causes a narrowing of the MIPS regime in the phase diagram of Péclet number Pe and particle
area fraction φ. Also, the phase-separation boundary at low φ attains a turning point at small R, allowing for the
possibility of a reentrant behavior. For a system of two pores with unequal radii connected by a small passage, the
density in each pore is found to be inversely proportional to local particle mobility. Notably, this relation breaks
down when MIPS occurs in either sphere or when the noise is high. ABPs move against the density gradient
owing to their spatially varying velocity. The magnitude of the directional flux from one pore to the other is
proportional to the particles effective diffusion constant in the pore. Moreover, fluctuations in the number of
ABPs within the pores near the MIPS transition are found to induce transient MIPS states.

DOI: 10.1103/PhysRevResearch.5.033054

I. INTRODUCTION

Ensembles of self-propelling particles display rich dy-
namical behaviors, which arise from their out-of-equilibrium
nature [1–3]. A prominent example is motility-induced phase
separation (MIPS) in systems with no attractive or alignment
interactions between the particles, which have been studied
in detail for active Brownian particles (ABPs) both in sim-
ulations [4–9] and experiments [10–12]. In more complex
systems, several other factors have been found to affect and
modify the onset of activity-induced clustering, such as shape
anisotropy [13–19], hydrodynamic interactions [20–23], de-
formability of the confinement [24,25], and dimensionality
[26,27].

In biophysical systems, active particles are often exposed
to curved geometries and confinement. Examples include bac-
teria motion in porous media [28], cell migration on curved
tissues of the gut [29], embryonic development [30], and
actomyosin flows during cell division [31]. Theoretical stud-
ies of single active particles indicate that for a tangential
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propulsion direction, their dynamics depends on the surface
curvature [32,33], while for an unconstrained propulsion di-
rection, particles predominantly accumulate in regions of
higher curvature [34,35]. Steric interactions among active
elongated particles, which favor polar or nematic alignment,
generate complex flow patters on spherical geometries, such
as circulating band states [36–38]. Further studies have shown
topology-dependent collective dynamics of self-propelled
rods [39], as well as segregation dynamics in binary mixtures
of active and passive particles on spherical surfaces [40].

We study here the dynamics and clustering behavior of
repulsive ABPs, with a freely diffusing propulsion direction,
but constrained to move on a curved surface in two/three
spatial dimensions (2D/3D). We show that the confinement
radius R introduces a new time scale that changes qualitatively
the dynamics of ABPs on curved surfaces, such that their
ballistic motion for large Péclet numbers Pe is suppressed at
distances smaller than R, where Pe = v0τr/σ , with propulsion
velocity v0, rotational diffusion time τr = D−1

r and rotational
diffusion coefficient Dr , and ABP diameter σ . The diagram
of phase separation on a sphere is constructed, and shows
that curvature drastically changes the phase boundaries, and
completely suppresses MIPS at small R. A simple model that
considers the effective persistence length of particle motion
on the sphere is then used to rationalize the observed effects
of sphere curvature on MIPS.

Furthermore, we study MIPS in porous media, represented
by a paradigmatic example of two spheres with unequal radii
connected by a small passage. We find that for large Pe and
small particle numbers, the density within each pore is in-
versely proportional to its tangential velocity, similar to other
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studies of active matter systems [41,42]. However, MIPS in
the pores destroys this correlation due to reduced particle
densities near the passage. As ABP number is increased,
MIPS occurs first in the smaller pore, followed by the larger
pore. There can be intermittent MIPS for moderate Péclet
numbers driven by the particle fluxes between the two spheres.
A steady-state exchange flux of ABPs through the passage
is found to decrease with increasing Pe, due to the reduced
effective diffusion constant of ABPs. Importantly, we find that
Péclet number and not velocity determines the dimensionless
flux between the two pores. The flux initially increases with
increasing particle number. However, MIPS leads to lowered
density near the passage and consequently to a sudden de-
crease in the particle fluxes.

II. MODEL AND METHODS

Self-propelled particles are simulated as active Brownian
particles (ABPs) embedded in 3D but restricted to move on
a two-dimensional spherical surface. An ABP experiences a
propulsion force fp acting along its orientation vector ei. The
equation of motion for the position ri of an APB is given by

mr̈i = fpei − γ ṙi − ∇i(Uconf + Uint ), (1)

where m is the particle mass, γ is the friction coefficient,
Uconf is the confinement potential, Uint is the pairwise inter-
action potential between different ABPs, and ∇i is the spatial
derivative at particle i. The orientation vector ei is subject to a
diffusive rotation modeled as

ėi = ζi × ei, (2)

where ζi is a Gaussian and Markovian random process with
〈ζi(t )〉 = 0 and 〈ζi(t ) · ζ j (t

′)〉 = 6Drδi jδ(t − t ′) with a rota-
tional diffusion coefficient Dr . Note that we neglect the effect
of translational noise in Eq. (1). The confinement and particle-
particle interactions are represented by the Lennard-Jones
(LJ) potential as

U (r) =
{

4ε
[(

σLJ
r

)12 − (
σLJ
r

)6]
, if r < rc,

0, if r � rc,
(3)

where σLJ is the distance at which U (σLJ ) = 0 and ε is the
potential strength. For the confinement interactions, the cut-
off radius is set to rc = 21/6σLJ/2, while for the ABP-ABP
interactions, rc = 21/6σLJ , so that interactions between par-
ticles are purely repulsive. Confinement of the ABPs to a
two-dimensional spherical surface of radius R is achieved by
placing two concentric spherical surfaces with radii R ± σLJ/2
at which the LJ potential is centered. Similarly, confinement
of ABPs to a ring geometry (particle is embedded in 2D
and restricted to move in 1D) is achieved with two repulsive
concentric rings.

Activity of the ABPs is described by the dimensionless Pé-
clet number Pe = fp/(γ σDr ) = v0τr/σ , where σ = 21/6σLJ

is the ABP diameter and fp = γ v0, where v0 is the ABP
velocity. The propulsion force (velocity) is kept constant, with
v0 = 0.5 (γ = 1) and Pe is varied through the rotational dif-
fusion time τr . This implies that the effective ABP diameter
does not decrease with increasing Pe [44] (for details see
Appendix B). Moreover, we have τrelax � τr and τrelax �

σ/v0, where τrelax = m/γ is the relaxation time, so that we are
in the overdamped regime. The surface density of the ABPs
on a sphere is given by φ = Nσ 2/(16R2), where N is the total
number of ABPs.

III. RESULTS

A. Single ABP dynamics

We consider first a model of an ABP as a disk of diameter
σ in 2D, confined to a ring of radius R. While the ABP motion
is restricted to 1D, the propulsion vector e is free to rotate in
2D, see Fig. 1(a). Then, the equations of motion (1) and (2)
for the position r = (R cos θ, R sin θ ) and propulsion direction
e = (cos ψ, sin ψ ) of the ABP become

θ̇ = −v0

R
sin(θ − ψ ), ψ̇ =

√
2Dr
ψ, (4)

where θ is the positional angle, ψ is the orientational an-
gle, and 
ψ is the rotational noise with 〈
ψ 〉 = 0 and
〈
ψ (t )
ψ (t ′)〉 = δ(t − t ′).

In the limit of small misalignment angles δ ≡ θ − ψ , with
|δ| � 1, Eq. (4) can be linearized and analytically solved
(Appendix A), resulting in the angular mean-squared dis-
placement (MSD)

〈(θ (t ) − θ (0))2〉 = 2Drt − 2DrR

v0
(1 − e−v0t/R). (5)

Thus, irrespective of τr , the crossover between the diffusive
and ballistic regime is determined by the new time scale
τ = R/v0, see Fig. 1(b). The shift of the onset of the diffu-
sive behavior to earlier times for smaller radii R originates
from a fast alignment of particle orientation with the surface
normal, as the ABP moves along the surface, upon which the
translational motion of the particle nearly stops [45].

The discussion above suggests that the misalignment angle
δ plays an essential role. The Fokker-Planck equation (Ap-
pendix A) corresponding to the Langevin equations (1) and
(2) yields the stationary-state distribution

P(δ) = 1

2π I0(τr/τ )
exp

[
cos δ

τDr

]
. (6)

In the limit τ/τr � 1, we obtain 〈δ2〉 = τ/τr = R/(σPe).
For the tangential velocity vt = v0| sin(δ)|, this implies that
〈vt 〉 � v0

√
τ/τr . Thus, the ABP slows down with increasing

curvature (or decreasing τ ), which is also reflected in Eq. (5)
where the MSD in the ballistic regime is given by R2〈[θ (t ) −
θ (0)]2〉 = 〈vt 〉2t2. Figure 1(c) shows excellent agreement of
the distribution of the misalignment angle from the linearized
theory and the corresponding simulations.

In 3D, the dynamic behavior of ABPs and the correspond-
ing MSD are more complex, as both time scales τ and τr

become important due to an additional angular degree of
freedom. The (positional) MSD in Fig. 2 shows that the
ratio τr/τ = σPe/R determines the particle dynamics. For
τr/τ � 1, the ABP does not notice the effect of curvature
and exhibits ballistic motion for times less than τr . However,
when τr/τ 	 1, the particle moves ballistically only up to
the shorter time τ . For t > τ , diffusive motion due to sphere
curvature dominates, and can be described as a stop-and-go
motion due to fast alignment of e along r. Figure 2 also

033054-2



DYNAMICS AND PHASE SEPARATION OF ACTIVE … PHYSICAL REVIEW RESEARCH 5, 033054 (2023)

FIG. 1. (a) Schematic diagram of an ABP confined to a ring, whose dynamics can be described by the positional angle θ and the
orientational angle ψ . δ = θ − ψ is the misalignment angle. (b) Angular MSD of a particle moving on a ring where the ballistic-to-diffusive
transition occurs at time t = τ = R/v0, irrespective of τr = D−1

r . (c) Comparison of stationary state distributions P(δ) from theory and
simulations.

demonstrates the reduction of effective particle velocity with
increasing Pe as the magnitude of the MSD in the ballistic
regime drops. Note that the MSD on a sphere is bounded and
therefore the curves saturate for large times.

B. Motility-induced phase separation

We consider an ensemble of N ABPs on a sphere with
area packing fraction φ, to study how MIPS is affected by
the sphere curvature 1/R. Figure 3 shows the local density
distribution (Appendix C) for two different curvatures and
corresponding simulation snapshots. The single/double peaks
in Fig. 3(a) for the small/large radii R/σ = 16.1 and R/σ =
26.8 at the same Péclet number mark the absence/presence
of MIPS, respectively. The full phase diagram for differ-
ent R values is presented in Fig. 4(a). Here, the binodal is
constructed by measuring coexisting densities in the phase

FIG. 2. Positional MSD of a particle moving on a sphere for dif-
ferent τr (or Pe), with v0 fixed. For τr/τ < 1 (green and red curves),
the ballistic-to-diffusive transition occurs at time τr/τ , whereas for
τr/τ > 1 (blue and orange curves), the time scale τ determines the
ballistic-to-diffusive transition irrespective of τr .

separated state, as seen in Fig. 3(a). The spinodal is obtained
by computing the particle pressure [46] (Appendix D) as
shown in Fig. 5. A sudden drop/change in pressure marks the
transition from the homogeneous to the phase-separated state
[46–49]. Two main effects of curvature can be seen in Fig. 4(a)
for decreasing R: (i) the lower part of binodals and spinodals
shifts to larger Pe, and (ii) the two-phase region becomes

FIG. 3. Curvature-dependent MIPS. (a) Local density distribu-
tions for two different radii, indicating the absence of MIPS at large
curvatures with φ = 0.5. Simulation snapshots for (b) R/σ = 26.8,
N = 5760, and (c) R/σ = 16.1, N = 2074. Parameters are Pe = 890
and φ = 0.5. See also movies S1 and S2 in the Supplemental Mate-
rial [43].
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FIG. 4. (a) Pe-φ phase diagrams of motility-induced phase separation (MIPS) for three R values. Coexisting densities from the local
density distributions (circles) and abrupt pressure drops (squares) are employed to identify the transition. The simulations for determining
the coexisting densities are performed for an average area fraction of φ = 0.5. (b) Critical Péclet number Pec(R, 0.5) at which MIPS is first
observed for increasing Pe at fixed φ = 0.5. The color-bar shows the variance of the local density distribution. Symbols mark the identification
of no-MIPS [unimodal P(φloc )] (circles) and MIPS [bimodal P(φloc )] (triangles). The black line with bullets is obtained from the threshold
σ 2

φ = 0.0305 of variance of the local density, and it follows well the boundary where the two peaks in the local density distribution merge. The
lower x axis shows the changing radius R/σ and the upper curve shows the corresponding number of particles N (for a fixed φ = 0.5). The
planar simulations for measuring finite-size effects [squares, Pec(∞, 0.5)] is equivalent to the simulations on there sphere by particle number
(N) and density φ = 0.5. (c) Heat map of the effective Péclet number Peeff at the sphere surface as a function of Pe and R. The black and red
dashed lines represent Peeff = 25 [i.e., Peeff = Pec(∞, 0.5)] and Peeff = 35, and match well the lower and upper MIPS boundaries from the
simulations.

narrower and the slope of the left spinodal/binodal changes
sign for large Pe. We denote the phase boundary for different
radii as Pec(R, φ), where R = ∞ corresponds to the planar
case.

Figure 4(b) shows the variation of the critical Péclet num-
ber Pec(R, 0.5) for a fixed initial density of φ = 0.5. For
R/σ � 12.5, MIPS is observed (binodal) with increasing
Pe, while for R/σ � 12.5, MIPS does not occur. Since the
value of R sets the total number N of particles for a fixed
φ, the phase separation for small R may inherently suffer
from finite-size effects (i.e., small N). To separate the effects
of curvature and finite system size, planar simulations (Ap-
pendix E) for different N with a fixed φ are performed, which
is not possible for spherical geometries. As particle number
decreases, particle out-flux from the dense phase increases
with increasing interface curvature, implying higher particle
concentrations in the low-density phase [50]. This causes a
shift of the spinodals Pec(∞, φ) upward with decreasing par-
ticle number, as seen in Fig. 4(b) for Pec(∞, 0.5). A similar
increase in Pec(R, 0.5) with decreasing R/σ (and also N) is
observed for particles moving on a sphere within the range
of 12.5 � R/σ � 25. However, the increase in Pec(∞, 0.5)
within the range of N corresponding to 12.5 � R/σ � 25 is
much less pronounced, demonstrating that finite-size effects
on the sphere are subdominant. Furthermore, the width of
the MIPS region becomes narrower with increasing Pe [see
Fig. 4(a)], which explains the sudden disappearance of MIPS
at R/σ ≈ 12.5 and φ = 0.5 in Fig. 4(b) (i.e., the spinodal has
a turning point before φ = 0.5 is reached for R/σ � 12.5).
This also supports that the loss of MIPS at R/σ ≈ 12.5 is not
due to finite-size effects.

MIPS occurs as a result of slowing down of ABPs
due to crowding, which promotes a further reduction in
velocity and clustering through a positive feedback mech-
anism [11,51]. A requirement for MIPS is that the life-
time of small clusters is larger than the persistent travel
time of ABPs [22,52]. This means that the directed self-
propelled motion should dominate over diffusive motion
on the length scale of particle diameter σ , i.e., σ/τr � v0

or Pe = v0τr/σ 	 1. For ABP motion on a curved sur-
face, this argument has to be modified as follows. First,
the propulsion velocity v0 has to be replaced by a tan-
gential velocity vt (R, Pe), which depends on R and Pe. In
general, vt (R, Pe) decreases with decreasing R or increas-
ing Pe, e.g., in 2D, vt (R, Pe) = v0(τr/τ )−0.5 for R/Pe < 1.
Figure 6(a) shows the average magnitude of the tangential
velocity vt (R, Pe) = 〈vt 〉 for a single ABP on a sphere as a
function of τr/τ (or Pe/R). In qualitative agreement with the
two-dimensional results, a power-law decay of the average
tangential velocity, i.e., 〈vt 〉 � (τr/τ )−β is observed, with the
exponent β increasing with decreasing radius R, see the inset
in Fig. 6(a).

Second, on a curved surface, the time scale τ becomes
relevant in addition to τr . Thus, we have to distinguish the
two cases ατ > τr and ατ < τr , which represent large and
small radii R, respectively. The coefficient α is a weight factor
that measures the relative importance of the two time scales.
In both cases, the shorter time scale τmin = min(ατ, τr ) deter-
mines the dynamics. As a result, we can define an effective
Péclet number

Peeff = vt (R, Pe)τmin/σ, (7)
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FIG. 5. Pressure P as a function of surface density φ (a) for
various R at a fixed Pe = 45, and (b) for various Pe at a fixed
R/σ = 26.8. Pid is the pressure in the absence of interparticle in-
teractions. The effect of decreasing R is qualitatively similar to that
of decreasing Pe. At the MIPS transition, a sudden drop in pressure
occurs, which is more pronounced at large Pe. For large Pe, the φ

value at the pressure drop increases, in agreement with local density
measurements.

and the variation of the phase boundary can be described by
the relation Peeff (Pec(R, φ)) = Pec(∞, φ), i.e., for a fixed φ,
the phase boundary shifts along the contour Peeff = Pec(∞).

From this argument, all the trends observed in Fig. 4 can
be understood. With decreasing R, Pec (R, 0.5) first increases,
because τr is the relevant time scale and vt (R, Pe) decreases,
which has to be compensated by a larger Pe (or τr). Note that
Peeff increases with increasing τr only as long as τr < ατ .
When τr = ατ , Peeff reaches a maximum as a function of Pe
for a fixed R. A further increase in Pe only causes a decrease
in the tangential velocity vt (R, Pe), without any increase in
τmin = ατ . This leads to a decrease in Peeff and the turning
of the low-φ branch of two-phase coexistence toward larger φ

values in Fig. 4(a).
At low-to-intermediate particle densities (φ < 0.5) and

small radii R � 12.5, with τr > ατ , MIPS is absent for all
Pe. This inversion of time scales and disappearance of MIPS
occur when particle diffusion dominates over the minimum
run length for cluster formation. In this case, an increase
of τr cannot lead to MIPS, because the slowing down of
translational ABP motion on a curved surface always precedes
rotational diffusion.

Figure 4(c) shows a heat map of Peeff for various radii,
where α = 6 is selected for a good fit of the simulation data

FIG. 6. (a) Normalized average tangential velocity 〈vt 〉/v0 as a
function of τr/τ for different radii exhibiting a power-law decay
〈vt 〉/v0 ∼ (τr/τ )−β . The inset shows the value of β extracted for
different radii R, suggesting a stronger decay for large sphere curva-
tures. (b) Weight factor α as a function of surface density φ. The gray
dashed line is the minimum value of α estimated for a free particle.

for MIPS (a more detailed discussion on α is provided later in
the text). Lower and upper boundaries of the MIPS region for
a fixed φ = 0.5 agree well with the line Peeff = Pec(∞, 0.5).
Furthermore, the heat map of Peeff nicely explains the loss of
MIPS at small R. Figure 4(c) also shows that for a smaller
φ [i.e., a larger critical Peeff = Pec(∞, φ < 0.5)], the MIPS
regime becomes narrower as a function of R, consistent with
the onset of MIPS at larger φ for decreasing R. Noteworthy,
for a fixed R, Peeff reaches a maximum and then decreases
as a function of Pe, which explains the turning of the phase
boundary at large Pe. This supports the existence of a reen-
trant behavior (i.e., from homogeneous to MIPS and back to
homogeneous density) with increasing Pe for a wide range of
radii.

From the phase diagram in Fig. 4(a), α is determined by
the relation α(φ) = 〈vt 〉lPelσ/〈vt 〉uR, where the indices l and
u correspond to the lower and upper branches of the spinodal
respectively and we have equated Peeff,l = Peeff,u. Figure 6(b)
shows that α increases with increasing surface area fraction φ.
In the dilute limit, the value of α can be estimated by fitting
the MSD curve of an ABP on a sphere in the limit τr/τ 	 1
with the solution for the planar case [53] [with a reduced
velocity v � v0(τr/τ )−β] to get α = 1.5. With increasing φ,
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FIG. 7. Two connected pores with different radii R1/σ = 16.1
and R2 = 0.6R1, connected by a passage of radius Rp = 3.2σ with
N = 2500 at Pe = 90 (see also movie S3 [43]).

interparticle collisions become relevant, so that the particle
dynamics is significantly affected and the simple estimate
based on single-particle α is not valid, thus leading to shift
of α with φ. The increase in the value of α with φ explains
why a significant change in the right binodal/spinodal at large
φ with curvature is not observed.

C. Two spherical pores connected by a small passage

Next, we make a further step toward the understanding of
the behavior of ABPs at curved surface with complex geome-
tries. Confinement strongly affects transport in active-matter
systems, and leads to a plethora of new behaviors, such as
robust swimming of bacteria under strong confinement [54],
development of self-sustained density oscillations in a system
of microchambers connected via a narrow channel [55], and
different transport properties of motile and nonmotile bacteria
in porous media [28].

As a paradigmatic example for complex geometries and
porous media, we consider two spherical pores with unequal
radii, which are connected by a small passage of radius Rp, as
shown in Fig. 7. The setup consists of two confining spheres
of radii R1 + 21/6σ/2 and R2 + 21/6σ/2, with their centers at
(−R1, 0, 0) and (R2 − �, 0, 0), respectively, where � is the
overlap of the two spheres along the line connecting their
centers. These particles interact with the spheres via the LJ
potential (3) with a minima at a distance R1 and R2. The
interaction is cut off at a distance r = σ from the sphere so
that only up to a single layer of ABPs is attracted towards the
spherical walls. At the intersection of the two outer sphere
surfaces, a ring of particles, which interact with the ABPs
via the repulsive LJ potential is placed, to prevent the escape
of ABPs near the passage. The system is initiated with a
homogeneous (equilibrium) ABP distribution on both spher-
ical surfaces. Simulations are performed for varying particle
numbers and activity. Note that in this setup, there can be more
than one layer of SPPs on the sphere surface as there is no in-
ner sphere constraining the particles to the wall; however, the
formation of multiple layers is not observed in the simulations
reported below. We consider two connected pores with radii
R1/σ = 16.1, R2/R1 = 0.6, and a passage sizes Rp = 3.2σ

and Rp = 3 = 6.2σ .
In the absence of excluded volume effects, theoretical re-

sults for particles with spatially varying velocities predict the

single-particle density to be proportional to the inverse of
the particle velocity, i.e. φ(x) ∼ 1/v(x), for a surface with a
coordinate system x [41,42]. Since the particles have different
velocities in the two pores, we therefore expect φ1vt1 = φ2vt2,
where vt1 and vt2 are the tangential velocities of the ABPs in
the two spheres in the dilute limit. Here φi = NiAσ /Ai for each
pore i = 1, 2, where Ni is the particle number, Ai is the area
of the pore, and Aσ = πσ 2/4 is the area occupied by an ABP,
which is approximated to be equal to its value on a flat surface.
Figure 8(a) shows the product of φ1vt1 vs φ2vt2, for varying N
with fixed Pe (circles) and varying Pe with fixed N (squares).
We find that the agreement with the theory (i.e., the diagonal)
is good for low N and/or high Pe. As N is increased, excluded
volume effects become more significant, causing the deviation
from theory. Similarly, phase separation within either of the
two pores invalidates the relation, as the local density near the
passage becomes lower than the average density in the pore.
Moreover, at lower Pe, particles have larger tangential veloc-
ities, implying a higher effective pressure and an increased
prevalence of interactions between ABPs.

The simple relation φ(x) ∼ K (x) for a surface with a local
(Gaussian) curvature K (x) no longer holds in our system (cf.
Fig. 11 Appendix F) due to the presence of a non-convex
boundary at the passage between the pores [34,35]. The va-
lidity of φ(x) ∼ 1/v(x) can be understood as arising by the
gliding motion of the particles at the passage, with different
velocities on either side.

Our results in Fig. 4(a) for MIPS in a single pore facili-
tate the interpretation and understanding of the steady-state
behavior of ABPs in the two pores. As N is increased for
a given Pe, the particles in either sphere can phase separate
only when their surface density exceeds φc(R, Pe) for MIPS.
Due to lower velocities in the smaller pore, it is expected to
fill first and phase separate for φ2 > φc(R2, Pe). The number
density of particles in the small pore cannot exceed the close-
packing density φcp. Combing this with the equations φ1vt1 =
φ2vt2 and φ1A1 + φ2A2 = N , we get φ2(N ) = min(N[A2 +
A1vt2/vt1]−1, φcp). Similarly, the particles in the larger pore
will phase separate for the N , which satisfies φ1 > φc(R1, Pe),
where φ1 = φ2(N )vt2/vt1. From the single-pore results in
Fig. 4(a), MIPS in the larger pore is expected at φ1 � 0.4
and φ1 � 0.5 for Pe = 90 and Pe = 890, respectively. This
corresponds to the values N � 2300 and N � 2900, and is
confirmed by the simulation results in Fig. 8(b), where the
onset of phase separation as a function of N is characterized
by a sudden rise in the fraction ncl of particles occupying clus-
ters of size greater than N1/2. Note that the reduction of the
effective Péclet number at large Pe implies that a larger N is
required for MIPS. An increase in the passage radius Rp would
result in a decrease in the required N for phase separation
due to a reduction in the pore areas A1 and A2. For a passage
radius Rp = 6.2σ , MIPS is predicted to occur at N � 2200
and N � 2800 for Pe = 90 and Pe = 890, respectively. The
shift due to increasing passage radius can nicely be seen in
Fig. 8(b), where ncl � 0.7 is considered as an indicator for a
stable phase-separated state.

It is also interesting to study the steady-state number fluxes
F12 and F21 through the passage leaving and entering the large
pore, respectively (i.e., the number of particles per unit time
and circumference). This is related to more general questions
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FIG. 8. (a) Plot of φ1vt1 vs φ2vt2, for varying N with fixed Pe (circles) and varying Pe with fixed N (squares) for Rp = 6.2σ . (b) Fraction
ncl of particles in the large sphere occupying clusters of size larger than N1/2 as a function of N for different Pe and passage size Rp. The
sudden jump identifies a MIPS transition. Number fluxes F12, F21, and Ftotal as a function (c) of Pe for fixed N = 1200, and (d) of N for
fixed Pe, with passage size Rp = 6.2σ . F12 is the flux from pore 1 to 2 and the black dashed line in indicates the power law Pe−2β , where
β = [β(R1/σ ) + β(R2/σ )]/2. The gray dashed line is the flux obtained by varying Pe via v0 (i.e., propulsion force), with a fixed τr = 100 and
γ = 10. For Pe <1000, σ/v0 	 τrelax ensuring the over-damped limit and the choice ε = fpσ ensures a fixed ABP diameter even for large
activities. Fraction ncl of particles in large clusters as a function of time for (e) Pe = 90 and (f) Pe = 890, with Rp = 3.2σ .

of the escape of active particles from geometrical confine-
ment [56,57]. The simulation results for the flux, displayed
in Figs. 8(c), 8(d) show that the total steady-state flux Ftotal =
F12 + F21 vanishes, as it should.

For large Pe values (>100), the relation φ1vt1 = φ2vt2

applies [Fig. 8(a)], and therefore φ2 > φ1, due to a lower
tangential velocity in the small sphere. At the same time, there
is a significant nonzero flux F12 from the large to the small
pore, Such that ABPs move against the density gradient. The
spatially varying velocity of particles (i.e., between the two
pores) leads to a drift of the particles toward regions of lower
mobility [42]. Thus, two competing mechanisms contribute
to the flux in this system, one arising from the diffusion of
the particles due to the concentration gradient and the other
due to their spatially varying mobility. Both of these (dimen-
sionless) fluxes are proportional to the ratio v2

t /τmin [42]. At
large Pe, τmin saturates, so that the flux can be expected to
vary as F ∼ v2

t ∼ Pe−2β [Fig. 6(a)]. Choosing the mean value
of β = [β(R1/σ ) + β(R2/σ )]/2 as the exponent, we obtain a
good agreement with the data, as seen in Fig. 8(c). Notably,

it is the Péclet number that controls the (dimensionless) flux
and not the particle velocity. We confirm this by varying Pe
via v0 instead of τr and observe a universal scaling with Pe. It
is important to note that in the regime of low Pe, we observe
φ1 > φ2, and so both diffusive and drift fluxes are expected to
favor accumulation in the smaller sphere. However, the results
in Fig. 8(c) suggest that the flux is balanced by particle motion
from the small sphere to the large sphere, whose physical
origin remains to be clarified. Considering that we observe
a plateau of the flux at low Pe, it is possible that the flux is
mainly thermal in nature. Note that the plateau arises because
the flux in Fig. 8(c) is normalized by the velocity v0, which
implies that the flux decreases linearly with decreasing Pe.

At fixed Pe, the particle flux grows linearly with particle
number N , as shown in Fig. 8(d). However, phase separation
in the smaller pore causes a sudden drop in the density near
the passage, leading to a reduction in the particle flux, see
Fig. 8(d) for N � 2000, Pe = 90. The deviation from linear
growth is less pronounced at higher Pe, as the binodals curve
inward at large Pe, implying a smaller difference between the
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mean density and the gas-phase density in the phase-separated
state. The larger tangential mobility of the particles at Pe = 90
leads to higher magnitude of the individual fluxes F12 and F21.

Another interesting behavior is the temporal evolution
of the system starting from an initial uniform equilibrium
distribution of ABPs near the MIPS transition. For φ1 �
φc(R1, Pe), the larger pore shows a dynamic MIPS state, as
seen in Figs. 8(e), 8(f) for N = 2500 (Pe = 90) and N = 3000
(Pe = 890). For the higher Pe = 890, there is an initial MIPS
state in the larger sphere at small times followed by the disap-
pearance of MIPS at longer times tv0/σ > 4000, see Fig. 8(f).
This occurs because the larger sphere starts out with a suffi-
cient number of particles for phase separation, but with time,
loses particles to the smaller sphere as the system relaxes to
the steady state. In contrast, for lower Pe = 90, fluctuations in
particle number within the different pores become important
in the transition regime, and can lead to dynamic restoration
and loss of MIPS, see Fig. 8(e), where strong fluctuations in
ncl are present. Note that the fluctuations of ABP numbers
within the different pores are larger at a lower Pe, which is
consistent with the absence of intermittent MIPS at Pe = 890.

IV. SUMMARY AND CONCLUSIONS

We have studied the dynamics and phase behavior of ABPs
on curved surfaces and in porous media. When the propulsion
direction of ABPs can vary diffusively in 3D (i.e., it is not
aligned with the local tangent plane of the surface), the be-
havior of active particles on curved surfaces is very different
compared to ABPs with propulsion direction confined to a
plane. Nonzero curvature results in a stop-and-go motion,
such that particles slide along the surface when their orien-
tation is different from the local surface normal, and then stop
after their orientation becomes perpendicular to the surface.
This behavior governs motility-induced phase separation on
curved surfaces, e.g., the MIPS region rapidly shrinks with
increasing curvature and eventually disappears. Furthermore,
curved surfaces lead to a possible reentrant behavior, where
MIPS for a fixed surface density of ABPs first appears with
increasing Pe, and then can disappear. This behavior should
not be confused with the reentrant behavior in 2D observed
for soft interaction potentials, where the effective particle di-
ameter (and thus packing fraction) is reduced with increasing
propulsion strength.

Our results for the two-pore system suggest that particle
exchange between the pores depends strongly on the pore
curvatures and MIPS within the pores. The mean density in
a pore is found to be proportional to its inverse tangential
velocity only for large Péclet numbers. Moreover, MIPS in
either pore leads to different local densities near the entrance
of the passage, causing a reduction in the directional flux
between the two pores. Such a system is also capable of
showing transient MIPS phases, due to fluctuations of particle
numbers that drive it in and out of the MIPS state. We also find
that the (dimensionless) particle flux is inversely proportional
to Péclet number.

We hope that our work will contribute to a better under-
standing of a variety issues related to the behavior of active
particles at curved surfaces, such as the preferred occupation
of certain geometries and niches by bacterial colonies [58], the

behavior of microbial communities in complex environments
such as porous rocks [59] and water droplets [60], and the
self-jamming on microbes growing in complex environments
[61,62].

While we have presented a comprehensive picture of the
effect of curvature on phase separation and particle dynamics
in single and connected pores, our study is by no means
exhaustive. Further work needs to be done for understanding
the effective Péclet number and the relevance of the parameter
α in its definition. A theoretical approach using mean-field
approximations may provide a proper definition of the effec-
tive Péclet number and how it modifies the resulting phase
diagram, particularly the asymmetry between the high-φ and
low-φ branches. In the two-pore system, at low Pe, there is
a counteracting flux from the small to the large sphere that
balances the incoming flux, despite the higher particle density
and mobility in the larger sphere. The origin of this flux
needs further study. Furthermore, it would be very interest-
ing to take hydrodynamic interactions between particles into
account, which should lead to significantly different behaviors
depending on the type of propulsion of a microswimmer.

APPENDIX A: ANALYTICAL SOLUTION OF THE
LANGEVIN EQUATION FOR AN ABP ON A RING

The equation of motion for an active Brownian particle
(ABP) with a position vector r = R(cos θ, sin θ ), orientation
vector e = (cos ψ, sin ψ ), confined to move on a ring with
radius R in 2D, is given by

ṙ = v0(e · eθ )eθ , θ̇ = −v0

R
sin(θ − ψ ), ψ̇ =

√
2Dr
ψ,

(A1)

where v0 is the ABP propulsion velocity, eθ = r/R, Dr is
the rotational diffusion, and 
ψ is the rotational noise with
〈
ψ 〉 = 0 and 〈
ψ (t )
ψ (t ′)〉 = δ(t − t ′). After the lineariza-
tion of these equations in the limit of large Pe (i.e., small
misalignment angle |δ| ≡ |θ − ψ | � 1) and normalization of
time by τ = R/v0, we obtain the dimensionless equations

θ̇ = −θ + ψ, ψ̇ = τ
√

2Dr
ψ, (A2)

θ̈ = −θ̇ + τ
√

2Dr
ψ. (A3)

The Fokker-Plank equation for θ̇ is given by

∂

∂t∗ P(θ̇ , t∗) = ∂

∂θ̇
(θ̇P(θ̇ , t∗)) + Drτ

∂2

∂θ̇2
P(θ̇ , t∗), (A4)

where t∗ denotes the dimensionless time. In the stationary
state, we obtain

P(θ̇ ) = 1√
2πDrτ

exp

[ −θ̇2

2Drτ

]
, 〈θ̇2〉 = Drτ. (A5)

Integration of Eq. (A3) leads to

θ̇ (t∗) = θ̇ (0)e−t∗ + τe−t∗
∫ t∗

0

√
2Dr
ψ (s)esds,

〈θ̇ (t∗
1 )θ̇ (t∗

2 )〉 = θ̇2(0)e−(t∗
1 +t∗

2 ) + τDr[e−|t∗
1 −t∗

2 | − e−(t∗
1 +t∗

2 )].
(A6)
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Then, the angular mean-squared displacement (MSD) can be
calculated using θ (t∗) − θ (0) = ∫ t∗

0 θ̇ (s)ds, and is given by

〈(θ (t∗) − θ (0))2〉 =
∫ t∗

0

∫ t∗

0
〈θ̇ (s′)θ̇ (s)〉dsds′

= (θ̇2(0) − τDr )(1 − et∗
)2 + 2τDrt

∗

− 2(1 − e−t∗
)τDr . (A7)

Finally, using the result 〈θ̇2〉 = τDr from Eq. (A5), we
obtain

〈(θ (t∗) − θ (0))2〉 = 2τDrt
∗ − 2(1 − e−t∗

)τDr . (A8)

MSD in the dimensional form becomes

〈(θ (t ) − θ (0))2〉 = 2Drt − 2τDr[1 − exp (t/τ )], (A9)

and in the limit of small and large times, MSD is given by

〈(θ (t ) − θ (0))2〉 =
{

(τrτ )−1t2, t → 0,

2Drt, t → ∞,
(A10)

where τr = D−1
r is the rotational diffusion time and 〈θ̇2〉 =

(τrτ )−1. Therefore, the transition from ballistic to diffusive
motion takes place at t ∼ τ , suggesting that for large curva-
tures (or small R), the particle moves ballistically for times
shorter than τ = R/v0.

For the misalignment angle δ = θ − ψ , we have the di-
mensionless equation

δ̇ = − sin δ + τ
√

2Dr
ψ, (A11)

with the corresponding Fokker-Planck equation

∂

∂t∗ P(δ, t∗) = ∂

∂δ
[(sin δ)P(δ, t∗))] + τDr

∂2

∂δ2
P(δ, t∗).

(A12)

Equation (A12) can be solved to obtain the stationary-state
distribution

P(δ) = 1

2π I0(τr/τ )
exp

[
cos δ

τDr

]
, (A13)

where I0(τr/τ ) is the modified Bessel function of the first
kind. In the limit |δ| � 1, θ̇ = δ, and the resulting distribu-
tions for δ and θ̇ are identical and given in Eq. (A5). In the
limit |δ| � 1, the dimensional tangential velocity v = v0 sin δ

becomes √
〈v2〉 = v0

√
τ/τr, (A14)

where we have used that 〈δ2〉 = τ/τr . Thus, the particle
tangential velocity decreases with both increasing activity
(equivalently increasing τr) and increasing curvature (or de-
creasing τ ).

APPENDIX B: RADIAL DISTRIBUTION FUNCTION

Radial distribution function (RDF) of the particles is
plotted in Fig. 9 for different Pe at R/σ = 16.1 in the phase-
separated state to check whether there is any change in the
effective particle radii. RDFs for different Pe show no visible
change in the peak positions, supporting that simulations do
not suffer from any possible artifacts due to the softness of

FIG. 9. Radial distribution function (RDF) of particles for differ-
ent Pe at R/σ = 16.1. Location of the peaks is nearly independent of
Pe, suggesting that the effective density is not altered. Moreover, the
RDF for Pe = 40 is similar to that for Pe = 710, consistent with the
observation of the turning of the phase diagram at large Pe.

the particles. Therefore, the choice of ABP diameter as σ =
21/6σLJ is well justified. Note that the peaks in RDF broaden
for large Pe, suggesting that the effective Péclet number Peeff

on the sphere decreases at large Pe.

APPENDIX C: LOCAL DENSITY MEASUREMENTS

Two different methods are employed for local density mea-
surements: (i) direct sampling of local density, and (ii) the
construction of a Voronoi diagram. In the first method, a
sampling grid of Ns points is considered, and the local density
for each sampling point j at the position s j is calculated as

φloc, j = πσ 2
np

j

4Aloc
, (C1)

where np
j is the number of ABPs within the cutoff distance

rcut = 4.5σ from the position s j and Aloc = πr2
cut is the local

area around each sampling point. This method is used for
determining the coexisting densities in the phase-separated
state, as a uniform placement of sampling points ensures that
the two peaks in local density are well separated and can easily
be localized.

The second method involves the construction of a Voronoi
diagram given the particle positions as the generating points.
After the Voronoi diagram is built, the area Ai of each Voronoi
cell associated with a particle i is used to determine the local
area as

φloc,i = πσ 2/(4Ai ). (C2)

In this method, the peak in local density representing the gas
phase is low in intensity and broad due to a large variation
in polygon areas for the low-density state. On the other hand,
the high-density phase often exhibits multiple peaks, corre-
sponding to variations in local ordering in the large MIPS
cluster (locally crystalline, locally hexatic, and locally liquid).
However, these local variations do not give a proper measure
of the average local density in the MIPS cluster. This is why
the local sampling method is used for the determination of
coexisting densities. However, the Voronoi analysis can be
performed much faster and does not depend on the choice of
the cutoff distance rcut, whose selection becomes increasingly
harder as the system size decreases for decreasing R. As a
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result, both methods are employed in the analysis of MIPS, as
they show the shift from unimodal to bimodal distribution of
local density near the same (critical) Pe.

APPENDIX D: PRESSURE MEASUREMENTS

Pressure in the simulated system is calculated using the
virial theorem [48,49,63], which states that for a confined
system of N particles in the overdamped limit, we have

N∑
i=1

〈Fi(t ) · ri(t )〉 = 0, (D1)

where Fi(t ) is the total force acting on particle i. Equa-
tion (D1) is expanded by considering different forces present
in the simulated system as

N∑
i=1

〈 fpei(t ) · ri(t )〉 + 1

2

N∑
i=1

N∑
j=1

〈Fi, j (t ) · (ri(t ) − r j (t ))〉

+
N∑

i=1

〈Fi,conf(t ) · ri(t )〉 = 0, (D2)

where Fi,conf(t ) is the confinement force on particle i, and
Fi, j (t ) is the inter-ABP force between particles i and j. Now,
the internal virial Vint due to internal forces and the external
virial Vext due to forces from the confining potential can be
defined as

Vint =
N∑

i=1

〈 fpei(t ) · ri(t )〉+1

2

N∑
i=1

N∑
j=1

〈Fi, j (t ) · (ri(t )−r j (t ))〉,

Vext =
N∑

i=1

〈Fi,conf(t ) · ri(t )〉, (D3)

where Vext = −Vint. Then, the pressure in the system is related
to the internal virial as

3pV � Vext = −Vint, (D4)

where V = 4πR2σ . Thus, the pressure can be calculated us-
ing either the internal or external virial. In our simulation
setup, the particles continuously interact with the confining
wall, and therefore, even Vext gives a good estimate of the
system pressure due to sufficient averaging. We have verified
the equality Vext = −Vint for a few simulations. To compute
pressure, the external virial is used for all simulations, as
the computational cost of the external virial scales as ∼N ,
whereas for the internal virial, it scales as ∼N2.

APPENDIX E: PLANAR SIMULATIONS

To study the finite-size effects due to a finite number N
of particles for a spherical confinement, we also perform
simulations of ABPs moving in a planar (slitlike) geome-
try. This is achieved by confining the particles to the x-y
plane using two planar surfaces placed at z = σLJ/2 and
z = −σLJ/2, at which the LJ potential is applied. In the x
and y directions, periodic boundary conditions are employed.
The simulation domain corresponds to a square with a side
length L, where the surface density of ABPs is given by

FIG. 10. Simulation snapshots for a fixed Pe = 890 and φ = 0.5.
(a) Spherical geometry with R/σ = 16.1 and N = 2074, and (b) pla-
nar confinement (R = ∞) with N = 1834. The two systems have
nearly same number of particles, indicating that the absence of MIPS
for R/σ = 16.1 is not predominantly due to finite-size effects.

φ = Nπσ 2/(4L2). The corresponding simulation on a sphere
has the same N and φ with a sphere radius of R/σ =
L/(2

√
πσ ).

Finite-size effects lead to a shift of the critical Péclet num-
ber Pec for motility-induced phase separation (MIPS) toward
larger Pe values for decreasing L (or R), see Fig. 4(b). Thus,
the boundary for MIPS in Fig. 4(b) representing Pec as a
function of R is corrected for finite-size effects measured in
the planar simulations. Furthermore, to compare the effective
Péclet number Peeff on a sphere with that for the planar
case, we also compute the planar Péclet number Pepl based
on the average mean-squared planar velocity v, i.e., Pepl =
Pe

√
〈v2〉/v0. For example, MIPS for φ = 0.5 is first observed

at Pe = 31, which corresponds to Pepl � 25.
Figure 10 shows the simulation snapshots of ABPs on

a sphere with radius R/σ = 16.1 and confined to a plane
(R = ∞) at Pe = 890. Both simulations have nearly same
number of particles, however, MIPS is not observed on the
sphere, indicating that the absence of MIPS for small spheres
is indeed a curvature effect.

APPENDIX F: PORE DENSITY

Figure 11 shows the product φR2 of the density and the
inverse local Gaussian curvature (R2) for the two-pore system

FIG. 11. φR2 as a function of Pe for the two-pore system at a
fixed N = 1200, indices 1 and 2 correspond to the two pores.
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as a function of Pe. It is clear that the simple relation φ ∼ 1/R2

for large Pe, does not hold for this system, as φ1R2
1 �= φ2R2

2.
This is due to the presence of the nonconvex boundary at the
passage connecting the two systems.
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