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Robust control and optimal Rydberg states for neutral atom two-qubit gates
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We investigate the robustness of two-qubit gates to deviations of experimental controls on a neutral atom
platform utilizing Rydberg states. We construct robust controlled-Z gates—employing techniques from quantum
optimal control—that retain high Bell-state fidelity F > 0.999 in the presence of significant deviations of the
coupling strength to the Rydberg state. Such deviations can arise from laser intensity noise and atomic motion
in an inhomogeneous coupling field. We also discuss methods to mitigate errors due to deviations of the laser
detuning. The designed pulses operate on timescales that are short compared to the fundamental decay timescale
set by spontaneous emission and blackbody radiation. We account for the finite lifetime of the Rydberg state
in both the optimization and fidelity calculations—this makes the gates conducive to noisy intermediate-scale
quantum experiments, meaning that our protocols can reduce infidelity on near-term quantum computing
devices. We calculate physical properties associated with infidelity for strontium-88 atoms—including lifetimes,
polarizabilities, and blockade strengths—and use these calculations to identify optimal Rydberg states for our
protocols, which allows for further minimization of infidelity.
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I. INTRODUCTION

Neutral atoms trapped in optical tweezers are attractive
candidates for applications in quantum information. These
systems have proven scalable—arrays of up to 324 atoms
have been created [1] and large scale quantum simulations
have been carried out [2]. Quantum algorithms have also been
demonstrated on neutral atom quantum computers [3], and
highly entangled multiqubit states have been recently gener-
ated [3,4].

The problem of generating high-fidelity entanglement—
the fundamental resource towards constructing quantum
circuits—and quantum gates is a crucial one to the realization
of full-fledged quantum computers. In particular, a two-qubit
controlled-Z (CZ) gate combined with a full set of single-qubit
operations is sufficient to perform universal quantum com-
putation [5]. Generating the necessary entanglement between
neutral atoms involves excitation of the atoms using laser
pulses to electronic states of high principal quantum number
n, termed Rydberg states. Using such a scheme, high-fidelity
entangling operations between two qubits (with Bell state fi-
delity >0.991) have been recently demonstrated by Madjarov
et al. [6]. Theoretical predictions of two-qubit gate fidelities
F > 0.9999 [7,8] show that high-fidelity gates are possible on
this platform.

A high fidelity of logic gates is of importance, as the
fidelity limits the depth of quantum circuits that can be con-
structed, and thus constrains the complexity of the algorithms
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that can be implemented. Furthermore, strict requirements
are placed on gate fidelities and qubit coherence times
by quantum error correction [9], and current experimental
demonstrations—while highly promising—fall short of these
requirements. This era of quantum computing is termed the
noisy intermediate scale quantum (NISQ) era [10], where
multiple sources of decoherence and infidelity are present,
that must be carefully accounted for and mitigated. Following
the seminal proposal for realizing CZ gates with Rydberg
atoms [11], various two-qubit gate protocols have been pro-
posed that promise high fidelities. Gates that are robust to
deviations of controls have been proposed, using analytical
schemes based on adiabaticity [12,13]. Time-optimal gates—
gates that minimize the duration of operation, thus mitigating
error sources that propagate in time—have recently been iden-
tified [14,15]. These protocols were devised using quantum
optimal control (QOC)—a class of methods that aim to find
optimal ways to steer a quantum system from an initial state
to a desired final state using time-dependent controls [16]. Us-
ing QOC methods, quantum gates have been engineered and
experimentally demonstrated on superconducting platforms
[17–20], and nonclassical states have been generated on the
Rydberg platform [4,21].

Although such Rydberg experiments often employ al-
kali atoms, recent quantum information architectures have
been identified for alkaline-earth atoms [22–24]. Notably,
the high-fidelity two qubit entanglement study of Madjarov
et al. employs the metastable clock state of strontium-88
(88Sr) atoms along with the electronic ground state, result-
ing in a long-lived qubit configuration [25]. Moreover, the
rich electronic structure of these atoms allows for unique
applications and is expected to pave the path towards higher
gate fidelities—and, in the longer term, fault-tolerant quantum
computing [26].
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In this paper, we improve upon the current state of the
art in two ways, relating to two-qubit gate design and the
choice of Rydberg state. First, we use QOC methods to inves-
tigate the design of two-qubit gates operating on a timescale
comparable to the time-optimal gates that are also robust to
deviations of Rabi frequency, which quantifies the coupling
strength from the computational basis states to the Rydberg
state. These deviations arise due to laser intensity noise [6]
and motion of the atom in a spatially inhomogeneous coupling
laser field [12]. We achieve excellent robustness for gates that
are near time optimal and thus also mitigate errors due to
deviations of the detuning, such as those arising from thermal
Doppler shifts [12] and stray electric fields in the experiment.
The corresponding pulses are smooth and adhere to realistic
experimental constraints on Rabi frequency and detuning,
achievable in current experimental setups.

The second way in which we improve upon the state of
the art is with the identification of optimal Rydberg states
in 88Sr atoms to minimize the infidelity of our gate pro-
tocol. We achieve this by accounting for various sources
of error—including spontaneous emission from the Rydberg
state, blackbody radiation (BBR) and sensitivity to stray elec-
tric fields in the experiment—and investigating the scaling of
these errors with n.

The methods we develop for these results can be adapted
to other Rydberg atom experiments, and thus provide a closer
link between theoretical advances and experimental perfor-
mance of quantum computers.

This paper is structured as follows. In Sec. II, we motivate
the computation of atomic properties and formulate both the
two-qubit gate dynamics, and the variational framework. In
Sec. III, we discuss the results of our optimization, present two
new CZ gate protocols and compare them to the time-optimal
gates. Section IV identifies the regime of optimal Rydberg
states to minimize the infidelity of our protocols.

II. THEORY AND PROBLEM FORMULATION

A. Modeling of atomic properties

In Rydberg platforms, one encodes quantum information
in the electronic or nuclear states of an atom. The discussion
presented here considers strontium-88 atoms, but protocols
for atoms such as rubidium-87 [27], ytterbium-171 [24], and
cesium-133 [12] have been studied.

Our protocol employs the electronic ground state 5s2 1S0

and the long-lived metastable clock state 5s5p 3P0 as qubit
states |0〉 and |1〉, respectively. Entanglement is facilitated
with the Rydberg state |r〉, 5sns 3S1. Figure 1 presents the
main transitions of interest in our system. Single-photon tran-
sitions are achievable from the |1〉 state to the |r〉 state [6],
which eliminates decay from intermediate states—a source of
infidelity common to many Rydberg experiments [13].

The physical properties of atoms relevant to this discussion
can be captured with dipole matrix elements. The dipole ma-
trix element da,b between two states a and b is 〈b| ex |a〉, where
e is the electronic charge and x the position vector of the active
electron. Computing these elements is crucial to our work,
as it allows us to calculate lifetimes of the Rydberg states,
interaction strengths, and polarizabilities, and their scaling

FIG. 1. Energy-level diagram of the 88Sr states relevant for our
protocol. The |1〉 state is coupled to the |r〉 state with the laser field.
The detuning of the laser � is the difference of the frequency of this
transition ω1,r with the laser frequency ωL .

with the principal quantum number of the Rydberg state, n.
How these quantities translate to infidelities is discussed in
Sec. IV.

One can capture the physics of interest for Rydberg states
with modified eigenstates of Hydrogen atoms. The energy
levels for a series of Rydberg states is given as [28]

En = − 1

2(n − δl j (n))2
= − 1

2(n∗)2
, (1)

where the quantum defect δl j captures the deviation from
the hydrogenic states; n∗ is the effective principal quantum
number; l, j are the orbital angular momentum; and the to-
tal angular momentum numbers of the valence electron and
atomic units are used.

The scaling of the relevant physical properties with n is
well understood for alkali atoms. For instance, the lifetime
due to spontaneous emission, τsp of Rydberg states in alkali
atoms scales as (n∗)3 [29], whereas the BBR lifetime τBBR, as
well as the total lifetime (1/τsp + 1/τBBR)−1 [see Eq. (A4)]
both scale as (n∗)2 [30,31].

For alkaline-earth atoms, the presence of two valence elec-
trons can complicate the physics [32], although most of the
physical quantities relevant to our paper are straightforward to
compute. The corresponding calculations are carried out and
detailed in Appendix A.

B. Dynamics and two-qubit gates

For a single qubit—with the |1〉 state coupled to the Ry-
dberg state |r〉 by a laser field—the Hamiltonian is given by

H1q = �(t )

2
(|1〉 〈r| + |r〉 〈1|) − �(t ) |r〉 〈r| , (2)

where � is the Rabi frequency and � = ω1,r − ωL the de-
tuning of the laser, respectively (with ω1,r the frequency of
the transition and ωL the laser frequency)—see Fig. 1. The
Rabi frequency � ∝ √

P 〈r| ex |1〉, where P is the total power
of the driving laser and 〈r| ex |1〉 is the radial dipole matrix
element (RDME) [see Eq. (A1)] between the clock state and
the Rydberg state. In this context, a pulse is the profile of �(t )
and �(t ) in time.
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The Hamiltonian for a two-qubit system with both atoms
coupled to the same laser field is

H2q = H1q ⊗ I + I ⊗ H1q + Vint |rr〉 〈rr| , (3)

where Vint is the interaction strength between two atoms ex-
cited to Rydberg state |r〉. In our protocol, we utilize the van
der Waals interaction, Vint = −C6/R6, where R is the inter-
atomic distance and C6 a state-dependent coefficient.

The dynamics of the Hamiltonian in Eq. (3) can be em-
ployed to generate two-qubit quantum gates. We work in
the regime of the Rydberg blockade—where the interaction
strength between the two atoms is much larger than the Rabi
frequency, such that an atom excited to state |r〉 suppresses
the excitation of adjacent atoms to |r〉 [11]. While several
protocols assume Vint = ∞, this can lead to errors due to the
finite blockade strength of Rydberg states—hence, we include
the finite blockade strengths in our optimization. For the Ry-
dberg states considered in Sec. IV, we observe no infidelity
arising from the finite strengths, and consistently find gates
with (1 − F ) ∼ 10−5.

The general class of protocols enabled by Eq. (3) in the
blockade regime has been well studied, and is captured by
the dynamics of the computational states. The |0〉 state—and,
consequently, the |00〉 state—is dark to the laser field and is
not affected in our protocol. The dynamics of the |01〉 and
|10〉 states can thus be evaluated by considering the atoms
individually, and reducing them to two-level systems |1〉 , |r〉
with Rabi frequency �(t ). Further, the dynamics of |01〉 and
|10〉 are identical if the pulse is symmetric, i.e., the same laser
field is applied to both the atoms, which is the case in our
protocol. In the limit of infinite blockade, the dynamics of
the |11〉 state can also be described by a two-level system of
|11〉 , |b〉 for the bright state |b〉 = (|1r〉 + |r1〉)/

√
2 with Rabi

frequency
√

2�(t ) [12]. This description is valid as the large
Vint suppresses excitations to the |rr〉 state, and is valuable
to understand how entanglement is generated. However, to
account for finite Vint, we will consider the three-level system
|11〉 , |b〉 , |rr〉.

The dynamics mentioned above lead to accumulation of
phases on the states—these are state dependent due to the
different Rabi frequencies. By setting a constraint on the final
phases, and applying an additional single-qubit rotation, one
can realize CPHASE gates [15] characterized by the trans-
formation |00〉 → |00〉 , |01〉 → |01〉 , |10〉 → |10〉 , |11〉 →
eiφ |11〉. At φ = π , the CZ gate is obtained.

To account for various sources of error, corrections can
be made to Eqs. (2) and (3). The finite lifetime of the Ry-
dberg state is accounted for by including the term Hdecay =
−i 	

2 |r〉 〈r| in Eq. (2), with the total decay width 	 defined
in Eq. (A4). This assumes that the decay occurs only to
states outside of the computational subspace, and thus slightly
overestimates the error [33]. For the 5sns 3S1 Rydberg state
in 88Sr, branching ratios of the decay processes have been
calculated, that verify the validity of this assumption [25].
Deviations of the Rabi frequency and detuning, δ�, δ� are
included by making the substitutions �(t ) → �(t ) + δ� and
�(t ) → �(t ) + δ� in Eq. (2). We thus focus on shot-to-shot
deviations, and discuss the potential time-dependent devia-
tions in Appendix B.

Another question of interest for experiments is the choice
of Rydberg state that minimizes the infidelity of a gate. This
question has been considered in some detail. For higher-lying
states, we expect higher infidelity arising from the sensitiv-
ity of |r〉 to stray electric fields [13], but a decrease in the
infidelity arising from decay of |r〉. The scaling of intrinsic
gate error with n, for the gate proposed by Jaksch et al. [11]
was presented for Rubidium [34]. However, how the physical
quantities translate into errors is protocol dependent and it is
difficult to interpret the results in context of the robust gates
we will obtain, or of other recent gates proposed.

Further, as we consistently find high-fidelity pulses in the
presence of finite blockade strengths for the 88Sr Rydberg
states considered, the discussion by Saffman et al. [34] of mit-
igating this error by going to a higher n–or varying interatomic
distances–does not apply here. We also safely ignore the
effects of off-resonant scattering in our 5s5p3P0 ↔ 5sns3S1

transition, since these rates are negligible with respect to the
pulse durations, as detailed in Appendix B.

C. Variational optimization

We now discuss the dynamics formulation of Sec. II B
in the context of QOC towards variational optimization. As
mentioned in Sec. I, time-optimal CZ and C2Z gates—aiming
to find the fastest possible gate protocol—have been ob-
tained using QOC for a Rydberg atom platform [14]. In the
rest of this paper, we will compare and contrast our robust
gates to these specific time-optimal gates. Analytic protocols
which are robust to deviations of experimental controls have
also been proposed [12,35]—it is thus a worthwhile question
whether robustness can be included in a variational optimiza-
tion framework.

Numerical robustness has been studied for two-qubit gates
on the Rydberg platform before [36,37]—and while these
studies demonstrate excellent robustness is possible, we note
certain differences. For instance, robust gates were obtained
with single-site addressability, for atoms with two-photon
transitions to |r〉 [36]—the control parameters of the obtained
pulses oscillate on a timescale that is difficult to implement ex-
perimentally. In comparison to these pulses, the pulses we find
are smooth and do not require single-site addressability, sig-
nificantly easing experimental implementation [35]. As these
are optimized for one-photon transitions in 88Sr, the fidelities
F are inherently higher, but also cannot be directly compared
to fidelities of the two-photon gate as the experimental setups
considered differ.

Towards the optimization, we employ the augmented La-
grangian trajectory optimizer (ALTRO) method [38], used
before to study robust QOC for superconducting qubits [39].
Notably, ALTRO can satisfy constraints up to a specified
tolerance by using an augmented Lagrangian method (ALM)
to adaptively adjust Lagrange multiplier estimates for the con-
straint functions. This makes the optimizer well-suited for our
problem, which considers multiple constraints. In this method,
one formulates the problem to be solved as a trajectory opti-
mization problem [39]. The cost function we use is

J (c) = (xN − xT )ᵀQN (xN − xT ) +
N−1∑
k=1

cᵀ
k Rkck, (4)
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where the augmented control vector c encapsulates the experi-
mental controls of our system, x is the augmented state vector
consisting of the variables the control can influence—such
as the state populations and phases, xT denotes the target
augmented state, xN is the augmented state vector at the final
time step, and the sum runs over time steps of the discretized
problem. Rk and QN are diagonal weight matrices on the
control at each time step k, and on the augmented state at
the final time step N , respectively. Such a cost function can
be efficiently computed with ALTRO [38,39]. The number of
time steps N = 100 for all the results presented in this paper,
and we observe negligible errors due to this discretization.

With one notable exception discussed later on, the aug-
mented controls and states used in this paper are

c =
(

�̇

�̇

)
, x̂ =

⎛
⎜⎜⎜⎜⎜⎜⎝

∂��

∂��

φ

Ptot

T |r〉

⎞
⎟⎟⎟⎟⎟⎟⎠

, (5)

where � = (�01, �11) are the time-dependent wave functions
associated with initial computational basis states |01〉 and
|11〉, φ is the CPHASE gate angle as introduced in Sec. II B,
Ptot refers to the total population in the computational basis
states, and T |r〉 is the average integrated Rydberg lifetime [see
Eq. (C4)]. We use the notation ȧ = da/dt , and ∂ya = ∂a/∂y
for some parameter y. x̂ is the reduced state vector and consists
of the terms in x that are penalized in Eq. (4)—for the re-
maining terms, the corresponding element in QN is set to zero.
The complete augmented state vector x is given and motivated
in Appendix C. In Eq. (5), it is implicit that c has different
elements ck at each time step k. The dynamics of the system
are governed by the time-dependent Schrödinger equation.

Below, we motivate our formulation of the problem and
the individual terms in Eq. (5). As smooth pulses are more
feasible from an experimental point of view [35], we set �̇

and �̇ as the augmented controls—instead of � and �—to
penalize pulses with discontinuous jumps, with the weights
Rk in Eq. (4).

For a full description of the dynamics, we would have to
consider the wave functions associated with all basis states,
�00, �01, �10, and �11. We can, however, leave out �00 as
this state is not coupled to the Rydberg states in our pro-
tocol. Furthermore, as the protocol is symmetric, �01 and
�10 adhere to the same dynamics—thus, we can reduce the
computational expense by optimizing for only one of the two
basis states in this formalism.

There are various ways to encode robustness into the op-
timization objective [36,37]. We do so by including ∂��

and ∂�� as augmented states to penalize the sensitivity of
the desired wave function to deviations of the experimental
parameters � and �, respectively. This method, termed the
derivative method, is intuitive and computationally inexpen-
sive. For single-qubit gates on the superconducting platform,
it achieves significantly higher robustness at lower computa-
tional cost compared to other available methods [39].

φ|11〉 and φ|10〉 = φ|01〉 denote the phases accumulated by
the computational states at the end of the gate. Enforcing the

condition

φ = φ|11〉 − 2φ|01〉 = (2m + 1)π, (6)

for m an integer, results in a CZ gate [15], up to one-qubit
rotations. High fidelity in the noiseless case is ensured by
including φ in x and π as the corresponding element in xT —
such that the condition in Eq. (6) is ensured—and by including
Ptot [see Eq. (C2)] in x such that the controls return the compu-
tational basis states to themselves (up to the acquired phase),
in the final augmented state xN .

T |r〉 captures the total time spent in the Rydberg state,
averaged across the computational basis states—and Sec. III
uses this as a metric to compare decay errors from |r〉 between
different protocols. For a given configuration, minimizing T |r〉
reduces the error due to spontaneous emission and BBR.

To ensure that the solver does not trade optimization of φ

and Ptot with other terms in x, we also include the appropriate
constraints for these terms (treated with the ALM method) in
the variational optimization. Constraints on Rabi frequency
and detuning are also implemented, and will be discussed in
Sec. III.

We use the derivative method [39] to study robustness both
on the Rydberg platform and for two-qubit gates—we expect
use case scenarios for robust state preparation, multiqubit
gates, and quantum algorithms inspired by QOC [40].

III. CONSTRAINT-SPECIFIC ROBUST GATES

We now discuss the results of the optimization as detailed
in Sec. II C. We will quantify the performance of our gates
by computing the Bell state fidelities F . As discussed, in the
absence of sources of error—except finite Vint, which is always
included in our optimization—tight constraints are imple-
mented to ensure infidelity of the Bell state (1 − F ) ∼ 10−5.
While the results of this section can be understood by express-
ing quantities in units of the maximum Rabi frequency �max,
we set �max = 2π × 6.8 MHz–the Rabi frequency demon-
strated for the n = 61 state in 88Sr [6]–to provide a better
understanding of the physical values and time scales. We
set the lifetime of |r〉 as τn=61 = 96.5 µs— the calculation
of the lifetime is detailed in Appendix A. Unless specified
otherwise, the fidelities in this section account for decay from
the Rydberg state and finite blockade strengths.

We use the ARC3.0 library [41] to compute the van der
Waals coefficient C6 = −2π × 181GHz µm6—we find the
n = 61 state is well-resolved above R ≈ 2 µm. The inter-
atomic axis is taken perpendicular to the quantization axis
of |r〉. We set R = 3.5 µm in the simulation, both for the
optimizations and fidelity calculations—an experimentally
feasible value—and find negligible errors from the finite
blockade strength. The physical parameters used in our simu-
lation are collected in Table I. To provide context, we will also
compare our results to the time-optimal pulses [14,15].

To illuminate our method, the role of constraints and rel-
evant parameters (as introduced in Sec. II C), we present
two gates robust to deviations of Rabi frequency δ�—
protocols A and B—in Fig. 2. The protocols are differentiated
by the implemented constraints, gate times and states in-
cluded in Eqs. (4) and (5). Protocol A implements the
constraint |�(t )| � 1.25�max, has a total pulse duration of
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TABLE I. Physical parameters considered for 88Sr

Principal quantum number n 61
Rabi frequency �max 2π × 6.8 MHz
vdW coefficient C6 2π × −181 GHz µm6

Rydberg lifetime τ 96.5 µs
Interatomic distance R 3.5 µm

TA = 10/�max(≈ 0.23 µs), and accounts for robustness to
deviations of detuning δ� (see Sec. II C). This timescale is
comparable to the time-optimal protocols (Topt = 7.61/�max)
[14]—and thus benefits from the associated mitigation of
errors that propagate in time. This protocol is intended to
be implementable for current experiments. It places modest
requirements on the experimental controls and is near time-
optimal.

For protocol B, we relax the constraints to |�(t )| �
2.25�max, set a pulse duration of TB = 15/�max and do not
include d�/d� in the optimization. Protocol B is intended
to probe the limits of our optimization to explore how ro-
bust CZ gates can be made to δ� deviations, while still
operating on a short timescale. During our optimization, we
noticed that the optimizer tends to reach high values of �.
Hence, even for protocol B we find it useful to set bounds on

FIG. 2. Two protocols to implement robust CZ gates. We high-
light the smoothness of the pulses, the fast timescales [compared to
decay from |r〉, see Eq. (A5)], and realistic constraints on detuning,
ensuring that the gates can be implemented on current experimental
setups. (a) Protocol A : T = 10/�max, |�(t )| � 1.25�max. (b) Proto-
col B: T = 15/�max, |�(t )| � 2.25�max.

FIG. 3. Fidelities F of the protocols from Fig. 2 against varia-
tions in δ�, plotted in the absence of other error sources. Compared
to the time-optimal pulses, we observe significantly enhanced ro-
bustness for both protocols that we propose. Protocol A retains
F ∼ 0.996 and B retains F > 0.9997 for the range of variations
plotted here. Inset: We now consider decay from |r〉 and look at small
Rabi variations–for δ�/�max ∼ 0.5% both protocols achieve higher
fidelity than the time-optimal pulses.

|�(t )|—significant robustness is already achieved for pro-
tocol B with bounds set to |�| < 2.25�max, and we notice
negligible improvements over this protocol on relaxing the
constraints further.

From Fig. 3, we note significant improvements in robust-
ness of both protocols A and B compared to the time-optimal
pulses.

At δ� = ±0.05�max, the time-optimal pulse fidelity drops
to Fopt = 0.9896, while the fidelity of protocol A, FA =
0.9964, and the fidelity of protocol B, FB = 0.9989–these
values also account for decay from |r〉. Hence, both protocols
allow us to achieve high-fidelity gates in the presence of
significant δ� deviations and decay.

We find that pulses A and B still offer a significant advan-
tage for minor deviations of �–at δ� = 5 × 10−3�max (0.5%
of the maximum Rabi frequency) both protocols A and B
have higher fidelity F ∼ 0.999 than the time-optimal pulse
(see inset of Fig. 3). The robustness of the protocols–in the
presence of decay from |r〉–to δ� and δ� deviations is studied
in Fig. 4.

For the time-optimal gates, the average integrated Ry-
dberg lifetime T

opt
|r〉 = 3.86/�max [15]. Protocols A and B,

respectively, spend 24% (T
A
|r〉 = 4.79/�max) and 46% (T

B
|r〉 =

5.64/�max) more time in the Rydberg state, than the time-
optimal pulses. This is a worthwhile comparison as the
time-optimal pulses also minimize T |r〉 [15] and with that,
the losses due to decay of |r〉. It follows that one trades a
reduced lifetime in |r〉 for robustness–however, we find that
robust pulses with fidelities F ∼ 0.999 can be obtained over a
wide range of control deviations for current 88Sr experiments.

While two protocols were presented here, a large class
of pulses can be generated with the techniques presented in
Sec. II C. For example, we observed that pulses with time
Topt < T < TB—intermediate between the time-optimal pulse
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FIG. 4. Contour plot of fidelity F to investigate the robustness of
the proposed pulses against δ�, δ�. (a) Protocol A is slightly more
robust to δ� than (b) protocol B, whereas B is significantly more
robust to δ�. Both pulses lead to high-fidelity (F ∼ 0.999) gates
across a wide range of deviations.

and protocol B—can be found as well, with both the ro-
bustness and T |r〉 intermediate between the two protocols.
This presents a way to tailor pulses to a given experimental
setup—thus minimizing infidelity, conditional on the level of
deviations present.

IV. OPTIMAL RYDBERG STATE CHOICE

In this section, we identify the optimal Rydberg state for
our setup and show that this can further minimize the infidelity
of our gates. Strontium atoms have long been established for
use in optical lattice clocks and demonstrate accuracy and
precision above the Cesium standard [42,43]. A technique
crucial to the operation of these clocks is magic wavelength
trapping [44]. This technique aims to eliminate the differential
light shift caused by the trap laser by identifying wavelengths
that cause an identical shift on both clock transition states.
For the clock transition introduced in Sec. II A, the magic
wavelength λm = 813.4nm [45] is well understood and often
used in experiments.

Magic traps at this wavelength have also been employed
in a quantum information setting [6,25], as this allows for

FIG. 5. (a) The simulated fidelity F of protocol A [see Fig. 2(a)]
plotted against the principal quantum number n, for E = 0 mV/cm
(black, diamond), E = 1 mV/cm (violet, plus), and E = 5 mV/cm
(red, stars). As expected from theory, F increases monotonically
for the case with no background fields, (b) plots the maximum
fidelity (blue), and the n at which this fidelity is obtained (green,
plus), against the magnitude of the electric field E/(mVcm−1) ∈
[0.4, 10.0]. F is also plotted at n = 61 (orange).

long-lived qubits. For this trap, the Rydberg state is anti-
trapped [25], and this can lead to loss.

One strategy to avoid such loss is to switch off the trap
for the duration of the gate, then switch it on for recapture
[6]. The antitrapping behavior is then mitigated because the
spatial wave function will evolve under a free potential instead
of a concave Gaussian potential. In this section, we adopt
this strategy and thus do not consider trap physics (see Ap-
pendix A for further discussion).

In this section, we set again �n=61 = 2π × 6.8MHz. For
a fixed power of the laser, � ∝ (n∗)−3/2 [46], and we use
this relation to obtain Rabi frequencies at other values of n.
The fundamental source of infidelity is the decay from |r〉—
characterized by the decay rate 	 [see Eq. (A4)]. Although �

decreases with n, the ratio

�

	
∝ (n∗)−3/2

(n∗)−3 + k(n∗)−2
, (7)

for a constant k, increases with n. This ratio captures the two
competing timescales of our system—its increase should thus
correspond to an increase in F . Figure 5(a) reports fidelities
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of protocol A for the range n ∈ {40, . . . , 120} and this in-
crease is indeed observed. For this paper, lower bounds on
lifetimes of the |r〉 states were calculated and used as detailed
in Appendix A. For n > 120, the fidelity increases slowly. At
n = 200, we obtain F = 0.9997, compared to F = 0.9995 at
n = 100.

Stray electric fields in the experiment have been identified
as a potential source of infidelity [13,27,47,48]. As the po-
larizability of |r〉 , αS ∝ (n∗)7 [31], the associated DC Stark
shifts scale in a dramatic manner with n, leading to an unde-
sired shift in �—this is further described in Appendix A.

We note that while the shifts due to constant stray fields
can be compensated, the drifts in this field result in a shot-
to-shot deviation δ� and pose a significant challenge to the
operation of the gate. Thus, there are two competing effects
that scale with n—while the lifetime of |r〉 increases, reduc-
ing the infidelity due to decay, the infidelity due to stray
fields increases. This competition is illustrated in Fig. 5(a).
Figure 5(a) also plots fidelities in the presence of residual
fields with magnitude E = 5mV/cm—this corresponds to
significant field cancellations that have been experimentally
demonstrated [27]. In this case, Fmax = 0.9990 is obtained at
n = 62. Looking at another case, with E = 1mV/cm, Fmax =
0.9995 at n = 97.

Figure 5(b) plots Fmax and the optimal n for protocol A
against the residual field strength E . Here, we also plot the
fidelity of the n = 61 state Fn=61 and note the intersection
between the two fidelity curves at Eint = 5.3mV/cm. At E <

Eint , Fn=61 is limited by the lifetime of |r〉, and at E > Eint by
the DC Stark shifts [see Eq. (A6)].

We conclude that the characterization of residual electric
fields in an experiment allows the identification of the optimal
Rydberg state for operation. On a NISQ experiment, this al-
lows for F ∼ 0.999. Higher background field cancellation can
achieve F ∼ 0.9995, and a combination of higher laser power
and weaker fields would be required for F ∼ 0.9999.

V. CONCLUSION

In this paper, we have devised fast robust CZ gates—with
timescales much shorter than the lifetime of the Rydberg
states involved, and comparable to the time-optimal gates—
and investigated the associated errors. We found that fidelities
F > 0.999 are achievable over a wide range of deviations in
the laser field coupling δ� and the detuning δ�. We further
identified optimal Rydberg states to maximize fidelities on a
NISQ system.

In this paper, we have carried out a detailed analysis to-
wards the identification of optimal Rydberg states. We have
also shown in Sec. IV that such an analysis can lead to
significant gains in two-qubit fidelities when combined with
experimental mitigation of residual electric fields. These two
results pave the way towards realizing gates with higher fi-
delities in a 88Sr experimental setup. The techniques used in
our analysis can also be extended to experiments with other
neutral atoms.

Future studies could look at identification of optimal Ryd-
berg states for different computation schemes such as VQOC
[40], which would require a careful investigation of the trap-
ping of Rydberg states in the tweezer (over the duration of

the quantum circuit). Recent work has been carried out in
this direction for 88Sr atoms [49]. Optimizing gates to be
robust against deviation of the blockade strength is also a
worthwhile area of research [14], and the approach presented
in our paper can be adapted to consider such optimizations.
Additionally, it would be interesting to look at the generation
of larger multiqubit gates using these techniques. In the in-
terest of tailoring pulses to specific experiments, rise times of
the coupling laser field could be directly incorporated into the
optimization framework.

On the experimental side, further techniques to charac-
terize and mitigate background fields could lead to the use
of higher-lying Rydberg states towards even higher fidelities
F ∼ 0.9999 that are conducive to quantum error correction.
The verification of our findings on an experimental setup
would also greatly benefit the substance of this work—for
instance, through an experiment where laser intensity noise
can be controlled, in order to demonstrate the robustness of
our pulses.

Note added. Recently, we became aware of related work
carried out to investigate robust pulses for two-qubit gates on
the Rydberg platform [50,51].

The data and code that support the findings of the
study—including the optimized pulses—are available upon
reasonable request to the authors.
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APPENDIX A: CALCULATION OF POLARIZABILITIES
AND LIFETIMES

In this Appendix, we detail the calculation of atomic prop-
erties as introduced in Sec. II A.

First, we employ quantum defect theory (QDT) [28] to-
wards the calculation of the lifetimes of the 3S1 Rydberg states
of 88Sr. Our treatment is inspired by the work of Vaillant
et al. [32]—we point the reader to this reference for an in-
depth description of QDT towards computing various atomic
properties.

We will use atomic units in this section. L, S, J refer to the
total orbital angular momentum, the total spin, and the total
angular momentum of an atom—the corresponding lowercase
letters l, s, j refer to the momentum of individual electrons.
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The starting point of QDT is the Coulomb approximation:
for high lying states, the wave function of the active electron is
far extended and the potential it experiences can be regarded
as a Coulombic potential for large electron distances from
the core, x. QDT then provides a numerical recipe to calcu-
late wave functions, and thus to compute the dipole matrix
elements—that capture the atomic physics relevant to our
problem, as discussed in the main text.

Dipole matrix elements can be split into angular and
RDMEs. A dipole matrix element between two states with
quantum numbers n1, l1, m1 and n2, l2, m2 (for m the magnetic
quantum number), respectively, can be written as

〈n1l1m1| ex |n2l2m2〉 =
〈
l1m1

∣∣∣ x
x

∣∣∣ l2m2

〉
〈n1l1| ex |n2l2〉 ,

(A1)
where x is the magnitude of the atomic distance vector of the
electron x, e the electron charge. One begins by calculating
RDMEs, following which the angular components can be
incorporated.

For the calculation of the lifetime of the Rydberg state,
one must consider both spontaneous emission and BBR at
300 K in our setup. For transitions between states a and b,
the spontaneous decay width is [32]

	
sp
a,b = 4α

3c2
|ωa,b|3| 〈�b| ex |�a〉 |2, (A2)

where ωa,b = Eb − Ea is the difference in energies, α is the
fine-structure constant, and c the speed of light in vacuum.

The lifetime due to spontaneous emission for a state a,
then, is given by

τ sp
a =

(∑
b

	
sp
a,b

)−1

. (A3)

The effects of BBR can be incorporated with the following
equation [55]:

	a =
∑

b,Ea>Eb

	
sp
a,b

(
1 + 1

e|ωa,b|/kBT − 1

)

+
∑

b,Ea<Eb

	
sp
a,b

e|ωa,b|/kBT − 1
, (A4)

where the first term accounts for the states lying below a and
the second term for the higher lying states, for which only
BBR contributes to the width. The total lifetime is then τa =
	−1

a .
This treatment is, in general, valid for alkali atoms, and

the situation for 88Sr is complicated by the presence of two
valence electrons in the outermost shell—for instance, the
lifetimes of the 1S0 and 1D2 series in Sr are strongly quenched
because of the mixing of doubly excited low lying states
(termed perturbers) with the desired singly excited Rydberg
states [32]. Such perturbers can lead to reduced Rydberg state
lifetimes and energy shifts, and thus a careful approach is
required in the calculation of physical properties.

For such a general treatment one needs to consider mul-
tichannel quantum defect theory (MQDT), as treated in the
main reference, Vaillant et al. [32]. In this context, a channel
refers to a specific configuration of the core and the active

electron, and perturbers imply a contribution of multiple chan-
nels in the atomic properties.

The 3S1 series that we use as the Rydberg state is effec-
tively unperturbed [32,56,57]—there is a negligible mixture
of low-lying doubly excited states—and thus we do not ex-
pect a significant quenching of lifetimes. This also simplifies
considerably the theoretical treatment of the lifetimes.

Consider the MQDT equation (derived in Ref. [32]) for the
natural width of a state a,

	sp
a = 4α

3c2

∑
b

|ωa,b|3
[ ∑

i, j

(−1)l (i)
1,a+max

(
l (i)
2,a,l

( j)
2,b

)
+S(i)

a AaiAb j

×
√

max
(
l (i)
2,a, l ( j)

2,b

)(
2L( j)

b + 1
)(

2J ( j)
b + 1

)(
2L(i)

a + 1
)

×
{

J ( j)
b 1 J (i)

a

L(i)
a S(i)

a L( j)
b

}2{
L( j)

b 1 L(i)
a

l (i)
2a l (i)

1a l ( j)
2b

}2

R(i j)
b,a

]2

,

(A5)

where i, j are summation indices over the considered channels
for states a, b respectively, Aai and Ab j are the respective
channel fractions (that quantify the mixing of the perturbed
states), the curly brackets represent Wigner 6 j symbols and
R(i j)

b,a is the RDME corresponding to states a and b, in channels
i and j.

The lifetime due to spontaneous emission of state a is then
τ

sp
a = (	sp

a )−1. Given that the 3S1 state is effectively unper-
turbed, it is worth asking whether QDT (the single-channel
equivalent of MQDT) can be used. Further, the states that
the 3S1 state decays to—the 3P0,1,2 states—are still perturbed,
but lack enough experimental data to carry out a full MQDT
analysis [32].

We argue that a QDT approach in this case provides a lower
bound on the total lifetimes. This is for three reasons. First,
quenching of the lifetimes for divalent atoms arises due to
significant radial matrix elements between the doubly excited
states—as the 3S1 states do not have these states mixed in,
such contributions to the width are negligible. Second, the
single-excitation wave functions can be calculated—as for
Rubidium in Ref. [32], to excellent agreement with experi-
mental lifetimes—with QDT. Third, Rb,a between a doubly
excited state (mixed in the 3P0,1,2 state) and the singly excited
states is zero. Thus, we use QDT to obtain the lower bounds on
the lifetimes in Fig. 6. Further studies would have to involve
both theory and experiment to obtain MQDT characterizations
of the 3S1 state lifetimes. In neutral atom experiments in the
NISQ era, stray electric fields are often caused by charges on
the glass cell [27,58]. In Fig. 7, we diagonalize the Hamil-
tonian in the presence of electric fields to obtain the DC
Stark shifts and corresponding polarizabilities for the 5sns 3S1

Rydberg series. For the considered range of electric fields,
we find excellent agreement to models of scalar polarizability,
that is,

δ�DC

2π
= −1

2
αS|E|2, (A6)

and we extract the polarizability from fits of the DC Stark shift
to the electric field ranges in the inset of Fig. 7. The ARC3.0
library [41] was used for these calculations.
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FIG. 6. Lifetimes (including spontaneous emission and BBR at
300 K) for 88Sr as computed with quantum defect theory (QDT).
We find excellent fits to a function of the form f (n) = 1/(A(n∗)−2 +
B(n∗)−3) (for effective principal quantum number n∗) as is expected
from scaling laws [31].

We now briefly discuss the role of optical dipole traps
during the gate operation. Although the trap can be switched
off during the pulse (see Sec. III), the atom will still expand
under the free potential and eventually leave the trap for a
long enough duration [59]. There are also other challenges
when switching off the trap. The blinking on and off of the
traps can lead to heating of the atoms and thus heat the entire
qubit array. On a sequential gate-based platform, this limits
the depth of the gate circuit.

Another possibility is to simply leave the trap on for the
Rydberg excitation. It is often assumed that the antitrapping
will then lead to exponential loss of the atoms in time [15],
however, experimentally it is found that this is not the case
[6,50,60]. We note recent work on the calculation of an-
titrapping loss rates for Rydberg states in 88Sr atoms that
models this scenario [49]. Further, a recent trapping scheme
proposed for 88Sr [61]—employing the optical twist of atomic
eigenstates—presents an alternative to the optical tweezer
traps and holds promise to mitigate errors (including the an-
titrapping loss) associated with tweezers, as discussed in this
section.

APPENDIX B: POTENTIAL SOURCES OF INFIDELITY

In this Appendix, we elaborate on the error sources intro-
duced in the main text. Further, we discuss additional sources
that can be reasonably neglected, as they do not lead to sig-
nificant infidelities for the parameters considered in the main
text, as well as sources that might become important in order
to realize higher two-qubit gate fidelities F � 0.9999.

When driving the clock transition (5s2 1S0 ↔ 5s5p 3P0) in
88Sr, off-resonant scattering can limit the fidelity of operations
as the line width of this transition is extremely small [25]. For
this paper, we calculate off-resonant scattering rates on the
5s5p3P0 level and 5sns3S1 level [62], using

Rsc =
(

	

2

)
(I/Isat )

1 + 4(�/	)2 + (I/Isat )
, (B1)

FIG. 7. Scalar polarizabilities αS for the 5sns 3S1 series. (a) The
ranges n ∈ {60, . . . , 120} and |E|/(mV cm−1) ∈ [0.0, 10.0] are
plotted. The values obtained by diagonalization (green, circles) show
agreement with the fitting form f (n) = A(n∗)7 (black, line), as ex-
pected from theory [25]. (b) DC Stark shifts for the n = 81 state
(circled in red on (a)), from which αS can be deduced—see Eq. (A6).

with 	 the decay rate, I the intensity of the laser, and Isat the
saturation intesity given by

Isat = h̄ω3	

12πc2
, (B2)

where h̄ is the reduced Planck’s constant, ω is the frequency
of the transition, and c is the speed of light [62]. Decay rates
are taken from [63–65].

For both the 5s5p3P0 and 5s61s 3S1 levels, off-resonant
scattering to all low-lying 88Sr levels, together with all
5sns3S1 levels is considered. We found when driving the
5s5p 3P0 ↔ 5s61s3S1 transition at the max Rabi frequency
�max = 2π × 6.8 MHz, the total off-resonant scattering rate
from 5s5p3P0 equals 0.14 Hz, where the main contribution is
the scattering with 5s5p3P1 of 0.11 Hz. For the Rydberg level
5s61s3S1, a total off-resonant scattering rate of 0.235 nHz was
found for these parameters. On the level of the duration of the
pulses, both off-resonant scattering processes can be safely
ignored.

Now, considering the infidelity contribution due to Doppler
shifts, we require the distribution of atomic velocities δv ∝√

kBT/mSr [66], where kB is the Boltzmann constant, T the
atomic temperature, and mSr the mass of 88Sr. The corre-
sponding deviation in detuning is given by δ�=(2π/λ1r )×δv,
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for λ1r the wavelength of the Rydberg laser. We take T =
2.5/

√
10 µK, where the factor of

√
10 arises from adiabati-

cally ramping down the traps by a factor of 10 before carrying
out the entangling protocol [6]. Thus, the detuning shift is
δ� = 4 × 10−3 �max and the infidelities (1 − F ) ∼ 10−4 for
both protocols. We further note that while deviations of this
order do not cause significant infidelity in 88Sr, larger δ�

deviations are expected for platforms employing other neutral
atom species [12] and we expect our protocols to be beneficial
in reducing the arising infidelities.

The interaction strength Vint can also deviate in the pres-
ence of stray electric fields [67,68]. We use the pairinteraction
library [69] to compute the shifts of Vint associated with the
optimal Rydberg state at the corresponding electric fields in
88Sr [see Fig. 5(b)], and consistently find infidelities (1 −
F ) ∼ 10−6. Hence, this error source can be neglected in our
study.

In our paper, we considered δ�, δ� to be shot-to-shot—
the deviations vary between pulses, but are constant on the
timescale of the pulse. We note the current state of the art
laser stability in 88Sr experiments—Madjarov et al. observed
intensity deviations δ� with an RMS deviation σRMS = 0.8%
[6], and the corresponding infidelities can indeed be mitigated
with the robust pulses as devised in this work. Although
the short time duration of the pulses we devised makes
the shot-to-shot character a reasonable assumption, certain
time-dependent deviations might also be present in a NISQ
experiment—as a result of components of laser frequency and
intensity noise with higher Fourier frequencies. An explicit
QOC optimization for such deviations can be carried out with
a filter function approach [70,71]. A detailed analysis of time-
dependent deviations will help further the understanding of
error sources on the Rydberg platform.

Finally, although this paper considered addressing two
atoms with laser pulses, we note that a tweezer array con-
sists of multiple atoms, and infidelities might arise due to
laser crosstalk. In particular, there exists a trade-off between
crosstalk and laser inhomogeneity at the tweezer sites being

addressed [72], which would further need to be identified for
our pulses.

APPENDIX C: QOC: STATE VECTORS AND METRICS

In this Appendix, we clarify the variational implementation
of the gate dynamics problem with ALTRO [38]. The com-
plete augmented state vector is given by

x = (�, ∂��, ∂��, �, �, φ, Ptot, T |r〉)ᵀ,

(C1)

where aᵀ refers to the transpose of a vector a. A reduced
vector x̂ was presented in the main text. x includes all the
terms that the controls c can influence over the pulse duration,
and x̂ consists of the terms in x penalized in the cost function
of Eq. (4).

We choose a multi-state transfer approach [39]—the states
are evolved individually under the same pulse, which ALTRO
then optimizes. The population of a state β, Pβ = 〈β| � |β〉
and we define the total population as

Ptot = P00 + P01 + P10 + P11 = 2P01 + P11 + 1, (C2)
where P00 = 1, and P01 = P10 (see Sec. II C). We set the
constraint Ptot = 4 at the final time step N to ensure that the
computational states are returned to themselves at the end of
the protocol.

The time-integrated probability of being in the Rydberg
state |r〉, with an input computational state β [15],

T β

|r〉 =
∫ Tgate

0
(�β )∗ n �βdt, (C3)

where n = |r〉 〈r| ⊗ I + I ⊗ |r〉 〈r| and �β the time-
dependent wave function associated with β (see Sec. II C).
The average integrated Rydberg lifetime, then,

T |r〉 = 1

3

(
2T 01

|r〉 + T 11
|r〉

)
, (C4)

where the |00〉 state is not included, as it does not contribute
to infidelity in our protocol.
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