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Improved quantum error correction with randomized compiling
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Current hardware for quantum computing suffers from high levels of noise, and so to achieve practical
fault-tolerant quantum computing will require powerful and efficient methods to correct for errors in quan-
tum circuits. Here, we explore the role and effectiveness of using noise tailoring techniques to improve the
performance of error correcting codes. Noise tailoring methods such as randomized compiling (RC) convert
complex coherent noise processes to effective stochastic noise. While it is known that this can be leveraged
to design efficient diagnostic tools, we explore its impact on the performance of error correcting codes. Of
particular interest is the important class of coherent errors, arising from control errors, where RC has the
maximum effect—converting these into purely stochastic errors. For these errors, we show here that RC delivers
an improvement in performance of the concatenated Steane code by several orders of magnitude. We also show
that below a threshold rotation angle, the gains in logical fidelity can be arbitrarily magnified by increasing the
size of the codes. These results suggest that using randomized compiling can lead to a significant reduction in
the resource overhead required to achieve fault tolerance.
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I. INTRODUCTION

Noise is pervasive in present-day quantum computation.
The theory of fault tolerance was developed to guarantee
reliable computations in the presence of noise. However, fault
tolerant constructions demand a large overhead in terms of
additional resources required to encode a logical computa-
tion in a way that is resilient to errors. Achieving the target
logical error rates as required by various applications with
the limited amount of resources in terms of the number of
physical qubits is a challenging task. Along with designing
better error correcting codes, decoders and high quality hard-
ware components of a quantum computer, there are other
ways of reducing logical error rates. Active noise tailoring by
randomized compiling (RC) [1] is a potential candidate for
two key reasons. First, RC significantly simplifies the form of
the noise on the encoded quantum information. Second, RC
can be used to transform an unknown error model into one that
is adapted to the error correction capabilities of a particular
code.

Randomized compiling tools were leveraged to accurately
predict the performance of quantum error correction schemes
in Ref. [2]. Although simplifying the form of the noise makes
the performance more predictable, it was observed that RC
can sometimes degrade the performance of an error correcting
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code. We can understand this effect by using the χ represen-
tation [3] of a physical noise process. In this representation,
the action of noise on a quantum state ρ is given by E (ρ) =∑

i, j χi, jPiρPj where Pi denote Pauli matrices in the n-qubit
Pauli group Pn without phases, i.e., Pi ∈ Pn/{±1,±i}. Noise
tailoring methods such as RC can transform the elements of
the χ matrix, for example by removing off-diagonal elements
χi, j ∀ i �= j. This mathematical transformation is commonly
referred to as twirling [4–6]. If one were to remove the contri-
bution of χi, j corresponding to Pauli errors that are correctable
by the decoder, this could have a negative impact of the code’s
performance. In general, noise tailoring methods are oblivious
to the details of what error terms are relevant for quantum
error correction.

The impact of twirling the noise on the performance of
error correction schemes has been explored in the literature
under various settings. The performance of surface codes un-
der coherent and incoherent error models have been compared
in Ref. [7], and using numerical studies it was noted that
while the threshold is similar in both cases, the subthresh-
old performance of the twirled channel is significantly better
than the original coherent error model. In another setting,
analytical calculations of the logical error rate of repetition
codes under rotation errors reveal that coherent errors can
accumulate faster, leading to worse logical error rates than
their corresponding Pauli approximations [8]. The necessity
of active coherence-suppression methods for codes with large
distances was also noted, but their impact on the code’s per-
formance was not explored. For the Toric code under coherent
error models, a laborious analysis has shown that the effective
logical channel approaches an incoherent channel provided
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the noise decreases with increasing code size [9]. However, in
the scenario where the error rate remains constant independent
of the code size, there are several challenges to arriving at a
similar conclusion. A recent study computed thresholds for
the surface code under coherent rotations by mapping the
problem first to a (complex) Ising model, and then to a cor-
responding scattering network [10]. The error measure they
used for maximum likelihood decoding measures how close
the logical channel is to a Pauli channel (regardless of the
decoder used). They discovered that for rotation angles below
a threshold, the logical channel approaches a Pauli channel
at a rate that scales exponentially with the code distance. In
Ref. [11], the poor predictability of the logical error rate and
the code’s pseudo threshold under coherent errors provided by
their twirled counterparts was identified, reinforcing the need
for active noise tailoring. The impact of twirling the noise
for complex error models, such as combinations of stochastic
errors and rotations around an arbitrary non-Pauli axis, is
unknown. The scaling of the potential gains from twirling with
increased code-concatenation levels remains unexplored.

In this paper, we analyze the impact of RC on the perfor-
mance of quantum error correction. In particular, we show that
RC improves the performance of a concatenated Steane code
under a coherent noise model (specifically, a tensor product of
arbitrary identical unitary errors). This positive result demon-
strates that RC tools can play a key role in achieving fault
tolerance. We present a detailed study of the performance
gains with respect to changes in the axis of rotation and the
number of levels of concatenation. We identify a special axis
of rotation for a given concatenation level where maximum
gains from RC are achieved. We note that this axis can be
different from the axes of rotation for which the best pseu-
dothreshold for the code is achieved. It has been observed, in
previous studies, that randomized compiling can also degrade
logical performance [12]. Our study shows that a wide class of
physically motivated error models do not exhibit such behav-
ior. However, we identify some complex noise models where
such degradation can occur and provide numerical results for
the same.

The paper is structured as follows. In Sec. II, we introduce
the necessary background material including noise pro-
cesses, randomized compiling and quantum error correction.
Section III discusses the methods used to study the impact of
randomized compiling on the logical performance. In Sec. IV,
we present analytical studies for gains offered by randomized
compiling using realistic error models. Finally, in Sec. V we
provide concluding remarks and describe some interesting
open problems.

II. BACKGROUND

In this section, we review the mathematical description of
noise processes in quantum circuits as well as the formalism
of stabilizer quantum error correction.

A. Noise in quantum circuits

The interaction of a quantum system with its environ-
ment manifests as errors on the stored quantum information.
While the system and its environment together undergo

unitary time evolution, the system’s reduced dynamics is often
a nonunitary map. Markovian noise processes are described
by completely positive trace preserving (CPTP) maps E :
ρ �→ E (ρ). One of the common ways to represent a CPTP
map is using the χ matrix: χ (E ), a 4 × 4 matrix, where
E (ρ) = ∑

i, j χi, jPiρPj , where Pi and Pj are Pauli matrices.
A special subclass of noise processes that are widely ana-

lyzed in developing fault-tolerant protocols is Pauli channels.
They correspond to the probabilistic action of Pauli matrices
on the input state, i.e., E (ρ) = ∑

i, j χi,iPiρPi, where χi,i can
be interpreted as the probability of the Pauli error Pi.

While it is easy to study quantum error correction on Pauli
error models, unfortunately realistic noise is often poorly
approximated by Pauli error models. This causes a severe dis-
parity between error models that can be accurately analyzed
in theory and those that occur in experiments. Noise tailoring,
achieved through Randomized compiling [1], is a promising
tool that helps resolve this disparity. With RC, the average
logical performance of a QEC scheme over several compila-
tions with random Pauli gates can be well approximated by
the performance of the QEC scheme under an effective Pauli
error model. The effective Pauli error model is nothing but the
Pauli twirl of the underlying CPTP noise process E , denoted
by T (E ) defined as

T (E )(ρ) =
∑
P∈Pn

PE (PρP)P. (1)

We will use the notation ET to denote the Pauli Twirl of the
CPTP map E : T (E ).

B. Quantum error correction

An [[n, k]] stabilizer code C is a 2k dimensional space
defined as: C = {|ψ〉 : Si|ψ〉 = |ψ〉 , 1 � i � n − k}, where
Si are stabilizer generators. See Ref. [13] for an introduction
to stabilizer codes and fault tolerance. Concatenated codes are
a family of codes where we encode the physical qubits at level
� using the code at level � − 1. This is a way of constructing
larger codes from smaller ones and these codes are typically
used to guarantee error suppression in fault tolerance proofs
[14,15].

Measuring stabilizer generators yields a signature of the
error that occurred called a syndrome. Inferring the error
from the syndrome is called decoding. There are several ways
to define a decoder, the simplest of which is the minimum
weight decoder. It selects a Pauli error of minimum Hamming
weight consistent with the observed syndrome. While some
errors on the encoded states can be undone by quantum error
correction, there are uncorrectable errors that cause unwanted
logical operations on the encoded states under a quantum error
correction routine. These uncorrectable errors determine the
logical error rate. A valuable tool to define the logical error
rate is the effective channel, which encapsulates the effect
of a physical noise process and a quantum error correction
protocol on the encoded quantum information.

Besides the error-correcting code and the underlying phys-
ical noise process, the effective channel is a function of the
measured error syndrome s. We will use the notation E s

1 to
denote the effective channel where the subscript “1” refers to
one encoding level. The relevance of the subscript becomes
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crucial for concatenated codes [13], where E s
� refers to the ef-

fective channel for a level-� concatenated code. A particularly
useful quantity is the average of logical channels E s

� over all
syndrome outcomes, denoted by E�:

E� =
∑

s

E s
� Pr(s), (2)

where Pr(s) is the probability of observing the outcome
s [7,16,17]. The average logical channel E� indicates how
quantum error correction suppresses the effect of physical
errors, on average. We will use logical infidelity r(E�) [11,16]
as a measure of the logical error rate.

The average logical infidelity for a code under a noise
process E is calculated using the following equation [2]:

r(E1) = 1 −
∑

E ,E ′∈EC

s(E )=s(E ′ ) , E=E
′

φ(E ) φ�(E ′) χE ,E ′ , (3)

where χi, j represents the (i, j)th entry of the χ matrix of E ,
EC is the set of correctable errors, E is the logical component
in the decomposition of E with respect to the Stabilizer group
and φ(E ) is specified by Rs(E )E = φ(E ) S for any Pauli error
E and some stabilizer S. We use this expression at various
points to calculate the logical infidelity. To calculate the en-
tries of the χ matrix of the effective logical channel we use
the following general expression: [2]

χ (E1)l,m =
∑

E ,E ′∈EC

s(E )=s(E ′ ) , E=E
′

φ(E , l ) φ�(E ′, m) χEPl ,PmE ′ . (4)

where Rs(E ) |E Pl | = φ(E , l ) S |Pl |, for l ∈ {0, 1, 2, 3}, any
Pauli error E and some stabilizer S. Here |P| stands for the
bare Pauli without any associated global phase.

We calculate the χ matrix for logical channels at higher
levels, i.e, for � > 1 by recursing the expression in Eq. (4) and
using the entries of χ (E�−1) in the right-hand side to evaluate
χ (E�).

III. METHODS

The goal of this paper is twofold. First, we want to iden-
tify important scenarios for physical errors wherein RC can
be leveraged to improve the performance of quantum error
correcting codes. Second, identify settings under which such
performance gains cannot be guaranteed. For the first goal,
we study the performance of concatenated Steane code under
realistic error models. We start off by simple rotations about
Z axis and progressively move to arbitrary rotations followed
by a combination of coherent and stochastic error models.
For the second goal, we generate numerical results for a large
ensemble of noise processes belonging to more complex noise
models which involve random rotations on different qubits
and arbitrary CPTP maps. All the performance metrics in this
paper are derived in the memory model and assume perfect
syndrome extraction. Simulations with gate dependent errors
can be pursued in the future.

For both the goals, it is crucial to understand how RC can
be applied alongside quantum error correction in practice. We
follow the methods of Ref. [2]. The main idea can be sum-
marized as follows. Recall that noise tailoring by randomized

compiling is achieved by inserting random Pauli gates in a
circuit such that its net effect does not change the logical
output of the circuit. Consequently, the average output dis-
tribution of the circuit over all possible Pauli random gates
can be understood by studying the response of the original
circuit against Pauli noise on the individual components. In
the same spirit, we insert random Pauli gates around all the
individual components of a quantum error correction circuit.
There is no need to account for sources of noise in the extra
Pauli random gates because they can be absorbed into the
original elements of the quantum error correcting circuit. In
practice, only a handful compilations are sufficient to achieve
the twirling effect [18]. We assume an ideal application of
RC in this paper for simplicity. We leave the details of this
procedure to Appendix D.

We now have two variations of the average fidelity. First,
the standard notion—average fidelity over all syndrome out-
comes, r(E1), defined in Eq. (3). Second, the average fidelity
over syndrome outcomes as well as logically equivalent com-
pilations of the quantum error correction circuit, which we
will denote rrc. Note that the number of random compilations
for a circuit with n elements grows as O(4n). In the ideal case,
where we have considered all of these compilations in rrc(E1),

it reduces to r(ET
1 ).

While Eq. (3) addresses the logical channel of a block
code, we can easily extend these definitions for a concatenated
code assuming a hard decoder [11,17]. In this case, the logical
channel at level � can be recursively defined in as a function
whose input physical channels are the logical channels at level

(� − 1). We will use the notation r(E�) and r(ET
� ) to denote

the logical channels of a level-� concatenated code without
RC and with RC, respectively. Their ratio, denoted by δ�,
where

δ� = r(E�)

r(ET
�)

(5)

is an indicator of the performance gain due to RC, which
we will estimate for various error models. Note that δ� > 1
indicates a performance gain whereas δ� < 1 denotes a per-
formance loss.

IV. RESULTS AND DISCUSSION

This section is devoted to case studies of performance gains
from RC for the concatenated Steane code, under various in-
teresting classes of error models, and inferences we can draw
from these studies. Markovian errors can be broadly classified
into unital and nonunital maps. Since nonunital components
of a noise map do not impact the error rate significantly
[8,19], we restrict our attention to unital maps in this paper.
In particular, we choose coherent rotations which form an
important class of unital maps. In practice, these typically
arise from imperfect pulses used to implement quantum gates
in the hardware. Interestingly, these are also the class of errors
on which randomized compiling has the maximum effect of
turning them into purely incoherent noise.
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A. Rotation about Z axis

While we ideally want to study the impact of RC on the
performance of a quantum error correcting code under general
coherent errors, let us first start with a simple yet interesting
model—rotations about the Z axis. Although the RC process
tailors the underlying physical noise, irrespective of the choice
of the code, through this example we show that in fact the
gains produced from RC can be arbitrarily increased by choos-
ing codes of increasing distances.

Recall that the rotation about Z axis is specified by ρ →
RZ (ω)ρRZ (−ω), where

RZ (ω) = cos(ω/2) I + i sin(ω/2) Z. (6)

Applying the rotation independently across all n = 7 the phys-
ical qubits of the Steane code, is specified by the map

E (ρ̄ ) = R⊗n
Z (ω) ρ̄ R⊗n

Z (−ω). (7)

The performance of the Steane code under the above error
model, can be inferred from Eq. (3), where the correctable
errors EC can be defined with respect to the minimum weight
decoder. Explicitly enumerating all correctable errors, we find
that there are 22 correctable errors of weight at most one, and
42 two-qubit ones. Since we are confined to rotations about
the Z axes, we can limit ourselves to the correctable errors of
Z type. Reserving the details of our derivation to Appendix A,
we find

r(E1) ≈ 63 (ω/2)4 − 476 (ω/2)6 + O(ω8). (8)

In comparison, the logical infidelity for quantum error correc-
tion with randomized compiling is

r(ET
1) ≈ 21 (ω/2)4 − 112 (ω/2)6 + O(ω8). (9)

Finally, the performance gain from RC quantified using the
metric δ1 defined in Eq. (5) can now be estimated as

δ1 = r(E1)

r(ET
1)

≈ 3 − 5

3
(ω)2 + O(ω4). (10)

We now show that the above modest performance gains can be
made arbitrarily large by concatenating the Steane code with
itself. It is possible to extend the analysis above via recursion
to approximate the effective logical channel for a level � con-
catenated Steane code for � > 1. The details of this procedure
can be found in Appendix B. The approximate logical channel
allows us to estimate the performance of level � concatenated
Steane code and study the impact of randomized compiling on
it. To understand the impact of RC with the number of levels,
we can do a leading order analysis of the recursive relations
used to construct the average logical channel, described in
Appendix B. We find that for small rotation angle ω, the
average infidelity of the logical channel scales as

r(E�) ≈ 632�−1(ω/2)2�+1
,

r(ET
�) ≈ 212�−1(ω/2)2�+1

. (11)

Subsequently, the scaling of gain δ� with the levels of concate-
nation is given by

δ� ≈ 32�−1 − (5 × 2l−1 × 32l −3)ω2 + O(ω4). (12)

FIG. 1. The above figure shows that the gain at level � and the
gain δ� scales doubly exponentially with �. The rotation angle used
here is ω = π/20.

Figure 1 corroborates this scaling law for the exact value
of the logical error rates of the concatenated Steane code,
in other words, showing that ln(ln(δ�))) is approximately a
linear function of �. Note that the above analysis is accurate
for small rotation angles. Varying the rotation angles leads
us to another important discovery. Figure 2 shows the gains
from randomized compiling for a range of rotation angles for
levels 1 � � � 5. The gains from RC grow significantly with
increase in number of levels of the code. The figure suggests
the presence of a threshold rotation angle ω� below which
arbitrary gains from RC can be achieved by increasing the
size of the code (levels of concatenation). On the contrary, for
rotations ω > ω�, the trend reverses.

We now turn to more general noise models, where we will
find that the presence of a threshold in the case of rotations
about the Z axis, extends to the general case.

B. Rotation about an arbitrary axis

While the above analysis considered coherent error models
described by rotations about the Z axis, it is straightforward to

FIG. 2. Gains in logical performance δ� of a level � concatenated
Steane code for rotations by angle ω about the Z axis. The common
crossover point lies at ω� ≈ 0.51, which corresponds to a rotation
angle of about 15◦, below which gains from RC can be amplified by
increasing the number of levels of concatenation.
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FIG. 3. The average gain in performance from RC, using the
Haar average over all axes of rotation, for the level � concatenated
Steane code. The average gains are larger for small magnitudes of
rotation. We observe that the gains increase significantly with the
number of levels for ω � ω� ≈ 0.65, which corresponds to a rotation
angle of about 19◦.

apply these ideas to rotations about any of the Pauli axes. We
now investigate average gains due to RC for a rotation about
an arbitrary axis.

We consider a general error model where the physical
qubits of a code undergo rotations about an arbitrary axes
of the Bloch sphere, described by the unitary matrix U , i.e.,
E (ρ̄ ) = U ⊗nρ̄(U †)⊗n. The following parametrization for U
[20] is useful for our analysis:(

cos(ω/2) + i sin(ω/2) cos(θ ) ie−iφ sin(ω/2) sin(θ )
ie−iφ sin(ω/2) sin(θ ) cos(ω/2) − i sin(ω/2)

)
.

where 0 � θ � π and 0 � φ � 2π define the axis (in polar
angles) about which each qubit is rotated, and ω gives the
magnitude of the rotation. For example, θ = φ = 0 can be
identified with rotations about the Z axis. The performance
gain from RC can be defined following Eq. (10), as a func-
tion of the parameters δ(θ, φ, ω). The average gain for an
unknown axis is computed as

δ�(ω) = 1

2π

∫ 2π

0
dφ

∫ π

0
sin(θ ) dθ δ�(θ, φ, ω), (13)

for � = 1. Likewise, for concatenated codes, δ� denotes the
average gain in performance for level �. This is similar to the
conclusion drawn for the case of rotations about the Z axis.
First of all we see that for all coherent errors RC improves the
performance of the Steane code. Furthermore, performance
gains are largest for coherent errors that correspond to rota-
tions about the X, Y , or Z axes.

Using the general techniques developed in the Appendix to
approximate the effective logical channel of a level-� con-
catenated code, we can estimate the gains δ� in average
performance due to RC over the various rotation axes. Similar
to the case of Z rotations, Fig. 3 suggests the presence of a
threshold ω� wherein for rotation angles ω � ω� the gains can
be arbitrarily increased by choosing codes of larger distance,
whereas the trend reverses for ω > ω�. Note that threshold
angle ω� for rotations about an unknown axis is higher the

FIG. 4. The threshold angle ω� for which δ2 < δ1 for rotations
about an axis parameterized by θ, φ. Each point on the sphere has co-
ordinates {sin(θ ) cos(φ), sin(θ ) sin(φ), cos(θ )} and the color denotes
the threshold value of angle ω for which the above condition holds.
It shows that the cardinal axes do not have the highest threshold.

threshold for rotations about the Z axes, i.e., ω� > ω�. This
can be explained as follows. In the case of a generic non-Pauli
axis, the twirled noise model, i.e., is in the presence of RC,
is composed of a probabilistic mixture of X, Y , and Z type
errors. Whereas, in the case of a fixed Pauli axis, we only have
errors of one type (either X, Y , or Z). For a fixed error budget,
specified by fidelity, the case of a non-Pauli axis results in
the error strength spread over a larger number of correctable
errors than the case of a fixed Pauli axis which would include
relatively higher weight Pauli errors of one type. Hence, the
Steane code has better error correction capability. Figure 4
provides evidence to our argument by showing that the thresh-
old angle for performance gains from RC under rotations
about various axes, is higher for non-Pauli axes compares
to the Pauli ones. As a consequence, we also note that for
rotation angles ω� < ω < ω�, the largest gains from RC are
achieved for rotations axes that lie between the X, Y , and Z
axes as opposed to the individual Pauli axes.

C. Composition of coherent and stochastic map

So far, we have shown that RC always improves the per-
formance of quantum error correcting codes under coherent
errors. Although theoretically we understand that RC only im-
pacts the coherent components, experimental characterization
work in the past [18,21] has revealed that noise profiles in
quantum devices typically comprise decoherent and coherent
components. In what follows, we show that the gains are per-
sistent even in cases where the noise comprises both coherent
and decoherent effects. In our numerical studies, we adopt a
model motivated by Ref. [22], which shows that any noncatas-
trophic quantum channel i.e., a channel with unitarity and
fidelity at-least one-half, can be expressed as a composition
of a unitary process and a decoherent process. Choosing the
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FIG. 5. The impact of the depolarizing component on the gains
from RC. We fix the average infidelity per qubit to be r ≈ 0.003
and increase the value of the depolarizing strength from p = 10−4

to p = 10−3. The value of ω corresponding to each value of p is
chosen such that the total physical infidelity of the qubit remains
constant. We observe that the gains from RC diminish with increase
in depolarizing strength. This is because RC does not impact the
stochastic component of the noise model.

unbiased [22] depolarizing channel as the decoherent compo-
nent, the overall noise can be expressed as

E � (Edep ◦ Ecoh )⊗n, (14)

where

Ecoh(ρ) = UρU †,

Edep(ρ) = (1 − p)ρ + p

2
I, (15)

and U can be parameterized using Eq. (13). In what follows,
we will study the impact of RC under the approximation given
by Eq. (14). Note that both the coherent as well as the incoher-
ent parts of the error model contribute to the strength of noise,
for instance, the average gate fidelity. While RC only affects
the coherent part of the error process, we expect that for a
fixed noise strength, the performance gain due to RC under
the error model described above will diminish with increasing
p. This expectation is supported by the numerical simulations
presented in Fig. 5, where we present numerical estimates of
δ�(ω, p) for several depolarizing strengths p. Here, δ�(ω, p) is
defined analogous to Eq. (13) as

δ�(ω, p) = 1

2π

∫ 2π

0

∫ π

0
δ�(θ, φ, ω, p) sin(θ ) dθ dφ. (16)

Note that in all of the error models considered so far, we
have only observed gains in performance due to RC. However,
amongst the most general CPTP maps including the unital as
well as nonunital types, we have identified cases under which
RC can lead to a loss in the performance. Some examples of
these maps are mentioned in Appendix C.

V. CONCLUSION

The application of randomized compiling in fault tolerance
is attractive for two reasons. First, amongst the exponentially
growing number of parameters controlling a physical noise
process, RC effectively eliminates the impact of most of them

on a QEC scheme. Second, since RC removes multiple noise
sources, we expect the code to perform better. This paper
provides concrete evidence to show that RC improves the
performance of quantum error correction under a wide class
of coherent errors. We have identified noise regimes where
gains are drastic for the case of concatenated Steane codes.
In particular, it grows doubly exponentially with the number
of levels, under small rotations about a Pauli axis. Our results
can be extended to guarantee performance gains under generic
unital noise processes, leveraging tools from Refs. [22,23]
that approximate a unital noise process as a composition of a
coherent and an incoherent error model. These observations
strengthen the need for active noise tailoring methods as a
crucial component of a fault tolerant scheme.

Performance gains offered by RC also depend on the
strength of errors affecting the physical qubits. We stumbled
upon an interesting observation that indicates gains decrease
when the amount of coherent rotation error passes beyond
a threshold value. To the best of our knowledge a threshold
of this nature has not been reported in earlier works. The
threshold helps estimate the maximum possible noise that can
be alleviated on a hardware device by leveraging RC tools.
We also carried out extensive studies to analyze the variation
of this threshold with the features of the underlying coherent
error model.

Beyond the paradigm of identical unital maps across all
physical qubits, we argue that unilateral conclusions about
performance gains due to RC cannot be made, i.e., it depends
strongly on the microscopic details of the underlying physical
noise process. Our arguments are strengthened by numerical
studies of complex physical noise processes that revealed
some cases where the code’s performance can also degrade
in the presence of RC. In Ref. [17], it was shown that twirled
noise processes may improve or degrade thresholds depending
on the code and noise properties. In this paper, we arrive at a
similar conclusion by exploring different error models for the
minimum weight decoder.

Obtaining efficiently computable estimates for perfor-
mance gains due to RC in different experimental setups would
be crucial to optimizing fault tolerance resources in near-term
applications. In the absence of exact values, it would be use-
ful to provide bounds for the impact of RC on the code’s
performance. Although RC’s impact on performance depends
strongly on the underlying noise process, it is still interesting
to see that it can provide significant gains for a wide variety
of realistic error models and relevant error regimes.

To ensure a performance gain from a noise tailoring tech-
nique, such as RC, ideally, we want to cancel the impact of
those terms in the underlying noise process, which correspond
to uncorrectable errors—since these add to the logical infi-
delity. It would be worthwhile to explore ways of controlling
physical noise sources to ensure that RC always offers a
gain in performance. It would also be interesting to explore
different Twirling gate sets that can tailor the noise process
to suppress terms that contribute negatively to the logical
channel’s fidelity. Although we identified a handful of cases
where a performance loss is observed, it will be noteworthy
to develop cheap experimental protocols to ascertain whether
performing error correction with RC will be significantly ben-
eficial for a given device.
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TABLE I. The above table describes the contribution to logical fidelity from different types of elements of the physical channel. While
Table I describes the contribution to the logical infidelity from the diagonal (Pauli) terms, Table I specifies that from the off-diagonal terms in
the physical channel. In each of the tables, the total contribution to logical infidelity is divided into four categories: (i) labeled γ1, γ2, γ3, and
γ4 for the off-diagonal terms and (ii) κ1, κ2, κ3 and κ4 for the diagonal terms.

(a)

E E ′ Condition on E and E ′ χE ,E ′

I⊗7 S S ∈ S \ {I} cos10(ω/2) sin4(ω/2) = γ1

Zi ZiS S ∈ S \ {I}, 1 � i � 7 cos8(ω/2) sin4(ω/2) (3 sin2(ω/2) − 4 cos2(ω/2)) = γ2

S S′ S, S′ ∈ S \ {I}, S �= S′ cos6(ω/2) sin8(ω/2) = γ3

ZiS ZiS′ S, S′ ∈ S \ {I}, S �= S′, 1 � i � 7 6 cos8(ω/2) sin6(ω/2) − 12 cos6(ω/2) sin8(ω/2)
+3 cos4(ω/2) sin10(ω/2) = γ4

(b)

E E ′ Condition on E and E ′ χE ,E ′

I⊗7 I⊗7 cos14(ω/2) = κ1

S S S ∈ S \ {I} cos6(ω/2) sin8(ω/2) = κ2

Zi Zi 1 � i � 7 cos12(ω/2) sin2(ω/2) = κ3

ZiS ZiS S ∈ S \ {I}, 1 � i � 7 4 cos8(ω/2) sin6(ω/2) + 3 cos4(ω/2) sin10(ω/2) = κ4
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APPENDIX A: LOGICAL FIDELITY CALCULATION FOR ROTATION ABOUT Z AXIS

In this Appendix, we will derive the logical performance of Steane code under a unitary noise process described by a small
over-rotation about the Z axis, i.e., E (ρ) = RZ (ω)ρRZ (−ω), where

RZ (ω) = cos(ω/2) I + i sin(ω/2) Z. (A1)

Recall that the Steane code is a [[n, k]] quantum code with n = 7 and k = 1, whose encoded states are fixed by the Stabilizer
group S generated by n − k generators:

S = 〈ZZZZIII, ZZIIZZI, ZIZIZIZ, XXXXIII, XXIIXXI, XIXIXIX 〉. (A2)

The effect of the unitary noise in Eq. (6) on each of the n qubits in the encoded state can be written as

E⊗n(ρ̄) = R⊗n
Z (ω) ρ̄ R⊗n

Z (−ω)

=
∑

w ∈Z2n
2

(−1)
∑2n

j=n+1 w j (cos(ω/2))2n−|w|(i sin(ω/2))|w|(⊗n
j=1Zw j

)
ρ̄
(⊗2n

j=n+1Zw j
)
, (A3)

where |w| is the Hamming weight of the binary sequence w ∈ Z2n
2 .

To understand the effect of RC on performance, we need to estimate the total contribution to logical fidelity from terms
in the noise process whose effect is rendered useless by RC. Since the noise model in Eq. (A3) only applies Z type errors,
it suffices to consider the effect of correctable errors E and E ′ that are purely Z type, besides the identity. In other words,
E , E ′ ∈ 〈Z1, Z2, . . . , Zn〉. Table I shows the contribution to the logical fidelity that is eliminated by RC. Each of the four rows in
the table is associated with a χ matrix element of a particular form, labeled by γi for 1 � i � 4.

Table I provides all the ingredients necessary to compute the logical infidelity of the Steane code under the RC setting:

r(ET
1) = 1 − (κ1 + 7κ2 + 7κ3 + 7κ4), (A4)

= 1

512
(256 − 231 cos(ω) − 49 cos(3ω) + 21 cos(5ω) + 3 cos(7ω)). (A5)

Note that the coefficient appearing alongside each φi in Eq. (A4) corresponds to its multiplicity, i.e., the number of combinations
of errors E , E ′ that result in the same value of φi. In the absence of RC, the logical infidelity can be calculated using both
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Tables I(a) and I(b):

r(E1) = 1 − (κ1 + 7κ2 + 7κ3 + 7κ4 + 14γ1 + 14γ2 + 42γ3 + 14γ4),

= 1

64
(32 − 21 cos(ω) − 14 cos(3ω) + 3 cos(7ω)). (A6)

The above expressions describe the logical infidelities for level-1 concatenated Steane code in the RC and non-RC settings.
The gain δ1 can be calculated as the ratio of the above quantities. Appendix B discusses the recursion to compute the average
logical channel for level-� concatenated Steane code followed by the computation of the different metrics at level �.

APPENDIX B: LOGICAL CHANNEL FOR THE CONCATENATED STEANE CODE

In this Appendix, we will describe the computation of the average logical channel for the level-� concatenated Steane code
under rotations about the Z axis described in Sec. IV. Ideally, we would like to take an exact average over conditional channels
corresponding to all possible syndromes of the level-� concatenated Steane code. However, the number of syndromes and hence
the number of conditional channels grow exponentially with the number of physical qubits and the analysis becomes intractable
beyond a few levels. Instead, in this section, we compute an approximation wherein we recurse over the individual entries of the
level-1 logical channel to arrive at the level-� logical channel. We will achieve this in two broad steps:

(1) Computation of level-1 logical channel.
(2) Establish a recursion to compute level-(� + 1) from level-� logical channel.
For a given noise process E , we refer to its χ matrix as χ (E ) and the corresponding logical χ matrix as χ (E1). The following

equation prescribes a way to calculate the entries of χ (E ) from χ (E ) [16]:

χ (E1)l,m =
∑

E ,E ′∈EC

s(E )=s(E ′ ) , E=E
′

φ(E , l ) φ�(E ′, m) χEPl ,PmE ′ , (B1)

where EC refers to the set of correctable errors, Pi denotes the logical version of Pauli Pi, and Rs(E ) |E Pl | = φ(E , l ) S |Pl |, for
l ∈ {0, 1, 2, 3}, any Pauli error E and some stabilizer S. Here |P| stands for the bare Pauli without any associated global phase.
Note that, since the error model is a rotation about the Z axis, we have EC = 〈{S jZi : 1 � i � n , S j ∈ SZ}〉. Here Zi refers to a
single qubit Z error on qubit i and SZ = 〈ZZZZIII, ZZIIZZI, ZIZIZIZ〉.

It is easy to see that the average logical channel for the level-� concatenated Steane code χ (E�) takes the form [24]

χ (E�) =

⎛
⎜⎜⎝

[χ (E�)]0,0 0 0 [χ (E�)]0,3

0 0 0 0
0 0 0 0

([χ (E�)]0,3)∗ 0 0 1 − [χ (E�)]0,0

⎞
⎟⎟⎠, (B2)

where ([χ (E�)]0,3)∗ denotes the complex conjugate of [χ (E�)]0,3.
First, we compute the entries for the level-1 matrix χ (E1). Using Table I, we have

[χ (E1)]0,0 = κ1 + 7
3∑

i=1

φi + 28 χ3 + 14
4∑

j=1

χ j

= 1

64
(21 cos(ω) + 14 cos(3ω) − 3 cos(7ω) + 32). (B3)

Table II provides all the ingredients necessary to compute [χ (E1)]0,3. Taking into account the multiplicities of terms of each
kind, we have

[χ (E1)]0,3 = ζ1 + 42 ζ4 + 7
8∑

i=2

ζi, (B4)

= −1

8
i sin3(ω)(9 cos(2ω) + 3 cos(4ω) + 2). (B5)

In the second step, we establish a recursion to compute the individual entries of χ (E�) from the entries of χ�−1(E ) under
hard-decoding algorithm. After massaging the expressions in Eqs. (B3) and (B5), we observe that

[χ (E�+1)]0,0 = f0,0([χ (E�)]0,0), and (B6)

[χ (E�+1)]0,3 = f0,3([χ (E�)]0,3), (B7)
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TABLE II. The above table describes the contribution to χ0,3(E ) from different types of elements of the physical channel. Note that none
of these contributions come from the diagonal part of χ (E ).

E ZE ′ Condition on E and E ′ χE ,ZE ′

I⊗7 Z i sin7(ω/2) cos7(ω/2) = ζ1

I⊗7 ZS S ∈ SZ \ {I} i sin3(ω/2) cos11(ω/2) = ζ2

S Z S ∈ SZ \ {I} i sin11(ω/2) cos3(ω/2) = ζ3

S ZS′ S, S′ ∈ SZ \ {I}, S �= S′ i sin7(ω/2) cos7(ω/2) = ζ4

Zi ZZi 1 � i � 7 −i sin7(ω/2) cos7(ω/2) = ζ5

Zi ZZiS S ∈ SZ \ {I}, 1 � i � 7 4i sin5(ω/2) cos9(ω/2) − 3i sin3(ω/2) cos11(ω/2) = ζ6

ZiS ZZi S ∈ SZ \ {I}, 1 � i � 7 4i sin9(ω/2) cos5(ω/2) − 3i sin11(ω/2) cos3(ω/2) = ζ7

ZiS ZZiS′ S, S′ ∈ SZ \ {I}, S �= S′, 1 � i � 7 12i sin5(ω/2) cos9(ω/2) − 25i sin7(ω/2) cos7(ω/2) = ζ8

+12i sin9(ω/2) cos5(ω/2)

where

f0,0(z) = z2(63 − 434z + 1260z2 − 1848z3 + 1344z4 − 384z5) and

f0,3(z) = −2z3(7 + 84z2 + 192z4). (B8)

Combining the above two steps, we compute all the entries of [χ (E�+1)].
For small rotation angle ω, we observe from Eqs. (B3) and (B8) that upto leading order

[χ (E�)]0,0 ≈ 1 − 632�−1 (ω/2)2�+1
and

[χ (E�)]0,3 ≈ −i14
3�−1

2 (ω/2)3�

. (B9)

Note that with increase in number of levels �, for small angle ω, [χ (E�)]0,0 → 1 and [χ (E�)]0,3 → 0. This is expected because
for small angles, the channel is close to the identity channel and the error correction procedures is able to correct all the errors.
Also, note that the off diagonal entry approaches 0 faster than the diagonal entry approaches 1. This is a consequence of the
process of error correction decohering the physical channel [12].

Now, we compute the logical χ matrix corresponding to the noise process under RC, i.e., χ (ET
�). The matrix in this case

takes the form

χ (ET
�) =

⎛
⎜⎜⎝

[χ (ET
�)]0,0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 1 − [χ (ET

�)]0,0

⎞
⎟⎟⎠. (B10)

Similar to the non-RC case, we first compute the entries for the level-1 matrix χ (ET
1). Using the ingredients from Table I, we

have

[χ (ET
1)]0,0 = 1

512
(256 + 231 cos(ω) + 49 cos(3ω) − 21 cos(5ω) − 3 cos(7ω)).

The recursive relation to calculate the above quantity for higher levels is given by

[χ (ET
�+1)]0,0 = g0,0([χ (ET

�)]0,0),

where

g0,0(z) = z2(21 − 98z + 210z2 − 252z3 + 168z4 − 48z5).

For small rotation angle ω, upto leading order

[χ (ET
�)]0,0 ≈ 1 − 212�−1 (ω/2)2�+1

.

The above expression indicates that [χ (ET
�)]0,0 → 1 with increase in number of concatenation levels � provided the angle of

rotation is below the threshold.
Having arrived at an expression for the average logical channel for a level-� concatenated code, we can now define the logical

error rate using the infidelity and diamond distance metrics. The logical infidelity takes the simple closed form

r� = 1 − [χ (E�)]0,0.
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FIG. 6. The above figures highlight the strong dependence of the impact of RC on the details of the physical noise process, for concatenated
Steane codes. The ensemble of noise processes considered here comprises of 16000 samples of unitary rotations about a fixed random axis.
Red and green points are used to identify physical noise processes that lead to a performance gain and a performance loss, respectively, in the
presence of RC. The magnitude of performance gains and losses are measured by the ratio of logical error rates in the non-RC and RC settings,
i.e., δ1 for level-1 concatenated Steane code in Fig. 6(a), and δ2 for level-2 in Fig. 6(b).

APPENDIX C: NUMERICAL RESULTS FOR COMPLEX NOISE MODELS

In this Appendix, we will present numerical studies of the performance of concatenated Steane codes under two distinct
models of general Markovian noise. The results are presented as scatter plots formatted as follows. Each point is associated to
the performance of a physical noise process. While the X coordinate is used to denote the physical error rate, its Y coordinate
denotes the ratio between the performance in the non-RC setting and the RC setting, measured by δ� in Eq. (5). Note that RC can
either improve or degrade the code’s performance. We have used a dashed line at δ� = 1 to identify the breakeven region where
RC has no impact on the performance. Points that lie below the dashed line, coloured in red, identify physical channels where
a degradation in performance is observed. On the other hand, points in green that lie above the dashed line identify physical
channels where RC provides a performance gain. The points in grey, that lie close to the dashed line should be ignored since
they correspond to cases where the relative difference between the logical error rates for the non-RC and RC cases is negligible:
less than 10%.

The first complex error model is a unitary model where each qubit experiences a different random rotation about an arbitrary
non-Pauli axis n̂, specified by U of the form

U = e−i π
2 δn̂·�σ , (C1)

where δ is the angle of rotation. Hence, the n-qubit unitary errors in our model are of the form ⊗n
i=1Ui, where Ui in prescribed by

Eq. (C1). We control the noise strength by setting the rotation angles δi drawn from the normal distribution: N (μδ, μδ ), where
10−3 � μδ � 10−1. Figure 6 shows the performance gain metric under this error model. It demonstrates that there exist some
instances where RC provides a performance gain of 10x, as well as others where RC causes a performance degradation of 10x.
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FIG. 7. The above figures highlight the strong dependence of the impact of RC on the details of the physical noise process, for concatenated
Steane codes. The ensemble of noise processes considered here comprises of 18 000 random CPTP maps. Red and green points are used to
identify physical noise processes that lead to a performance gain and a performance loss, respectively, in the presence of RC. The magnitude
of performance gains and losses are measured by the ratio of logical error rates in the non-RC and RC settings, i.e., δ1 for level-1 concatenated
Steane code in Fig. 7(a), and δ2 for level-2 in Fig. 7(b).

The second error model is described by the i.i.d action of a random single qubit CPTP map, on each of the physical qubits
of the code. The random CPTP map on a single qubit is derived from unitary dynamics U on a Hilbert space of three qubits [16].
The unitary matrix U is generated form a random Hermitian matrix H using U = e−iHt , where 0 � t � 1 provides a handle on
the strength of noise described by the resulting CPTP map. We vary the noise strength by controlling t in the range [0.001, 0.1].
Figure 7 shows RC’s impact on the performance of concatenated Steane codes under physical CPTP maps. The absence of a
clear trend showing a performance gain or degradation is evident for level-2 in Fig. 7(b). Even across physical CPTP maps with
similar fidelity, while for one instance, RC induces a performance gain of up to three orders of magnitude, for another, it inflicts
a loss in performance of similar magnitude.

The case of level-1 performance under physical CPTP maps in Fig. 7(a) is rather different from the level-2 case in 7(b). Over
the large ensemble of 18000 physical CPTP maps, we observe that RC always leads to performance gains for the level-1 Steane
code. These performance gains can be explained as follows. First of all, a CPTP map can be well approximated by its leading
Kraus operator K , which is derived from the largest eigenvector of its Choi matrix [22]. Furthermore, in an i.i.d physical error
model, K can be expressed as a tensor product. In terms of K , the leading contributions to infidelity come from chi-matrix entries
χi, j expressed as

χi, j = tr(KPi )tr(K†Pj ), (C2)

where Pi is a single qubit of one type (X, Y or Z), and Pj = PiS for some stabilizer S, is a three-qubit error of the same type as
Pi. In the low noise regime, the off-diagonal entries of K are small, especially for incoherent CPTP maps, where K is close to a
Positive sem-definite matrix [22]. Using the fact that the trace inner product between K and the Pauli matrix Z is a real number
d given by d = K1,1 − K2,2, we can conclude that χi, j in Eq. (C2) for Z type errors Pi and Pj of weights 1 and 3 respectively, is
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FIG. 8. Figure 8(a) shows the noisy gates in the kth clock cycle of a fault tolerant quantum algorithm presented in the standard form
prescribed in Ref. [1]. Twirling gates are inserted in Fig. 8(b) to tailor the noise processes to Pauli errors. These gates are compiled into
existing gates by replacing easy gates by their dressed versions, in Fig. 8(c). The compiled circuit contains modified QEC routines with the
twirling operators compiled into them.

always positive. In other words, the χi, j ∼ d4 for some d � 1. Removing such terms should degrade the performance of the code.
On the contrary, removal of χi, j for uncorrectable errors Pi, Pj leads to performance gains. The largest of these chi-matrix entries
can be identified with two Z type Pauli errors Pi, Pj , each having weight two. This property can be associated with the fact that
the Steane code is degenerate: there exists a logical operator whose weight is smaller than that of a stabilizer. Repeating a similar
analysis as before, we find that the corresponding χi, j for these uncorrectable errors, also scale as d4 for some d � 1. Their
removal leads to performance gains. Note that there are more uncorrectable errors than correctable ones and the corresponding
χ -matrix elements have comparable magnitudes. Hence, we find that RC is more likely to induce performance gains. Note that
higher concatenation levels of the Steane code do not correspond to degenerate codes. Hence, we cannot guarantee a performance
gain or degradation in those cases, as shown in Fig. 7(b).

APPENDIX D: APPLYING RC IN A FAULT TOLERANCE SCHEME

Randomized compiling [1] is a technique that tailors a general Markovian noise process into an effective Pauli noise process.
In this Appendix section, we will briefly review how we can apply randomized compiling in a fault-tolerant setting. This
procedure was first described in Ref. [2].

In fault tolerant circuits, each logical gate G is sandwiched between quantum error correction (QEC) routines. Similar to
Ref. [1], we divide logical gates into two sets: S1 and S2, calling them easy and hard gates respectively. A requirement for S1

and S2 is

G T G
†

QEC = QEC(T )C (D1)

for all easy logical gates C ∈ S1, n-qubit Pauli gates T and hard gates G. Here QEC(T ) refers to the compilation of the
Pauli gate T in the QEC routine. The above requirement can be proven to be true using results from standard randomized
compiling [2].

Figure 8(a) shows a canonical presentation of a quantum circuit, where the kth clock cycle is composed of an easy gate Ck

and a hard gate Gk , sandwiched between QEC routines. Noise processes affecting easy and hard gates are denoted by E1,k and
E2,k , respectively. These complex processes can be tailored to Pauli errors by inserting Pauli gates T1,k, T †

1,k, T2,k, T †
2,k as shown in

Fig. 8(b). However, to guarantee that they be applied in a noiseless fashion, we compile them into the existing gates in the fault
tolerant circuit. This is achieved as follows. First T †

1,k and T2,k are compiled into QEC following E1,k , resulting in QEC(T †
1,kT2,k ).

Secondly, T †
2,k is propagated across Gk , and compiled with QECCk+1Tk+1, resulting in a dressed gate CD

k+1 defined by

CD
k+1 = Gk Tk G

†
k QEC Ck+1 Tk+1. (D2)

Using Eq. (D1), it is easy to see that CD
k+1 is equivalent to quantum error correction followed by an easy gate.
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Figure 8(c) shows the result of compiling all of the twirling gates into the easy gates and quantum error correction routines.
Note that the compiled circuit is logically equivalent to the original circuit in the absence of noise. However, in the presence of
noise, the average output of the circuit is dictated by the performance of QEC(T ) averaged over the different choices of Pauli
gates T . This is what we refer to as QEC in the RC setting. In practice, this average performance can be achieved by repeating
every iteration (shot) of the algorithm with a different Pauli operation compiled into the constituent QEC routines. In this paper,
we have used the performance of the QEC routine under the twirled noise process as a proxy to the performance of QEC in the
RC setting, for the analytical and numerical studies.
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