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Attosecond photoelectron spectroscopy of helium doubly excited states
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We describe a numerical method that simulates the interaction of the helium atom with sequences of
femtosecond and attosecond light pulses. The method, which is based on the close-coupling expansion of
the electronic configuration space in a B-spline bipolar spherical harmonic basis, can accurately reproduce
the excitation and single ionization of the atom, within the electrostatic approximation. The time-dependent
Schrödinger equation is integrated with a sequence of second-order split-exponential unitary propagators. The
asymptotic channel-, energy-, and angularly resolved photoelectron distributions are computed by projecting the
wave packet at the end of the simulation on the multichannel scattering states of the atom, which are separately
computed within the same close-coupling basis. This method is applied to simulate the pump-probe ionization
of helium in the vicinity of the 2s/2p excitation threshold of the He+ ion. This work confirms the qualitative
conclusions of one of our earliest publications [Argenti and Lindroth, Phys. Rev. Lett. 105, 053002 (2010)], in
which we demonstrated the control of the 2s/2p ionization branching ratio. Here we take those calculations to
convergence and show how correlation brings the periodic modulation of the branching ratios in almost phase
opposition. The residual total ionization probability to the 2s + 2p channels is dominated by the beating between
the sp+

2,3 and the sp+
2,4 doubly excited states, which is consistent with the modulation of the complementary signal

in the 1s channel, measured in 2010 by Chang and coworkers [Gilbertson et al., Phys. Rev. Lett. 105, 263003
(2010)].
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I. INTRODUCTION

A critical aspect of electronic motion in matter is its
correlated character [1,2]. By avoiding each other, elec-
trons reduce their mutual repulsion. Such correlation energy
is comparable to the energy variation in many chemi-
cal processes at equilibrium. Photoelectron spectroscopies
have been particularly useful to investigate correlated elec-
tronic states and their dynamics in atoms and molecules.
Third-generation synchrotrons, for example, generate highly
monochromatic extreme ultraviolet (XUV) and x-ray radi-
ation that enables the measurement of ionization spectra
in a stationary regime and with high energy resolution
[3–10]. These measurements, however, provide only lim-
ited information on how the photoemission process unfolds
in time.

The development of sources of subfemtosecond XUV light
pulses [11,12] has opened the way to study photoemission
from atoms, molecules, and solids in a time-resolved way
[13–17]. Today the generation of attosecond light pulses [18]
is realized in several laboratories worldwide, and it allows
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experimentalists to implement pump-probe excitation
schemes that can access electron dynamics in atoms
and molecules at its natural timescale [19,20]. These
schemes are used in association with either photofragment
coincidence-detection techniques, such as COLTRIMS
[21,22], VMI [23], and magnetic bottles [24,25], or with
high-resolution spectrometers for the ionizing light that is
transmitted through the sample [26]. For example, attosecond
pump-probe schemes can detect the minuscule relative
delay with which electrons are emitted from different shells
[27,28] or in different directions [22,29,30]. These delays are
associated with the fast transit of the photoelectron out of the
atom and with the dynamical response of the other electrons
in the residual parent ion [31,32]. Furthermore, time-resolved
experiments are essential to devise quantum-control protocols
of electronic excitations [33], which also take place on
a subfemtosecond time scale. The ultrashort pulses and
strong probe fields used in attosecond measurements activate
high-order nonstationary ionization regimes. The theoretical
interpretation of such experiments, therefore, often requires
one to solve the time-dependent Schrödinger equation (TDSE)
numerically [34–37]. Due to the highly correlated character
of multiply excited electronic states, the theoretical models
used to represent polyelectronic systems often need to go
beyond the single-active-electron approximation.

The helium atom is an ideal benchmark to study the ef-
fect of electronic correlation [26,37–39]. In this work we
describe some of the capabilities of a set of programs for
the time-resolved description of the ionization of helium
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through the interaction with a sequence of light pulses. The
program defines a numerical close-coupling space for the
single-ionization sector of the Hilbert space of the atom in
a arbitrary symmetry. It builds bound as well as multichannel
scattering states of the atom within the electrostatic approxi-
mation. It computes the evolution of an arbitrary initial state
under the influence of external pulses by solving the TDSE
numerically, and it extracts the asymptotic observables by
carrying out a spectral analysis of the resulting wave packet.
Attosecond pump-probe photoelectron spectroscopies do not
directly access the time evolution of a localized wave function.
Instead, they detect the photofragments after their mutual
interaction and their interaction with the radiation field is over.
Projecting the wave packet obtained from a TDSE simulation
on scattering states that fulfill incoming boundary conditions
[37,40,41], therefore, is an efficient way to determine the
asymptotic photofragment distribution, resolved by channel,
energy, and photoemission angle. This approach is particu-
larly suited when autoionizing states are involved [42], since
it does not require one to wait for their complete decay to the
continuum.

The TDSE solver, which is implemented in a parallel ver-
sion based on the PETSc MPI-interface library [43–45], has
been used to benchmark the soft-photon approximation to
describe atomic ionization with trains of attosecond pulses in
association with moderately strong IR pulses [46], the role
of intermediate autoionizing states in RABITT spectroscopy
[47,48], the attosecond transient absorption spectrocopy of
doubly excited states [49,50], to guide the reconstruction and
control of coherent metastable doubly excited wave packets in
helium [26], and to control the coherence of the residual He+

parent ions [39]. The method employed here to extract the
asymptotic photoelectron distribution from time-dependent
correlated wave packets has been successfully transferred to
the analysis of helium wave functions expressed in bases
other than B splines [41], and it has been extended to more
complex polyelectronic atoms as well [51]. In our past work
[37], we demonstrated that coherent excitation of doubly ex-
cited states in helium could be used to control the branching
ratio between the 2s and 2p shake-up channels, P2s/P2p. In
this work we carry out the demanding calculations needed
to bring the simulations to full convergence. These simula-
tions not only confirm the qualitative conclusions in [37],
but also show how the excursion of the branching ration is
even more pronounced when correlation is fully taken into
account. Furthermore, the results for the ionization of helium
with excitation of the He+ parent ion to the n = 2 states
exhibit modulations that compare favorably with the measure-
ments of the almost complementary 1s ionization probability
near the dominant sp+

2,2, by the group of Chang [52]. This
finding suggests that Chang and coworkers may have de-
tected the coherent excitation of multiple doubly excited
states in helium years before the optical measurements by
Ott et al. [26].

This paper is organized as follows. Section II describes the
theoretical methods used to define the close-coupling basis,
the simulation, and the wave-packet analysis. Section III
illustrates the capability of the method by examining in
detail the fully resolved photoelectron distribution of the
ionization of helium by a single XUV attosecond pump

pulse in association with a moderately strong IR probe pulse.
Section IV summarizes the conclusions of this work.

II. THEORY

The states of the helium atom are expanded in a basis
that comprises a set of close-coupling (CC) channel functions
(see [41,53] and references therein), as well as a set of con-
fined two-electron configurations (localized channel, or LC).
The close-coupling approach, and its natural time-dependent
extension to describe the interaction of two-electron atomic
systems with pulsed radiation, is a well-established technique
that has been applied both to single [54–59] and to double ion-
ization of helium [57,58,60–68], as well as to the ionization of
hydrogen by electron collision [69] As discussed below, the
present implementation of the time-dependent close coupling
differs from previous implementations in at least two main
respects. First, since the only process of interest is single
ionization, the state of one of the electrons is restricted to a
different numerical basis than the photoelectron. This local-
ized basis is adequate to represent the highly correlated doubly
excited states of the atom. In a symmetric representation of
the two electrons, which is required for programs that deal
with both single and double ionization, this optimization is
not readily available, and hence the computational cost is
significant even when single-ionization processes are consid-
ered. Furthermore, in the present approach, the solution of the
time-dependent Schrödinger equation is integrated with the
solution of the Lippmann-Schwinger equation, which allows
us to easily predict asymptotic observables as soon as the
external pulses are over.

The CC set accounts for the long-range part of both single-
ionization states and of highly excited Rydberg satellites,
whereas the LC completes the description of a state’s cor-
related character within a short distance from the nucleus,
typically of the order of ten Bohr radii. Such representation
is appropriate for dynamical regimes in which only single-
ionization processes take place at an appreciable rate. In each
close-coupling channel, a bound hydrogenic state a of the He+

parent ion, with angular momentum La and principal quantum
number Na, is coupled to a single-electron function, with well-
defined orbital angular momentum � and arbitrary reduced
radial component fi(r), to give rise to a state with well-defined
total multiplicity 2S + 1, spin projection �, parity �, angular
momentum L, and angular momentum projection M, collec-
tively referred to by the symmetry label � = (�, S, �, L, M ),

φ�
αi(x1, x2) = �S� (ζ1, ζ2)[1 + (−)SP12]

× YLM
La�α

(
1,
2)RNaLa (r1)
f�α i(r2)

r2
. (1)

The channel label α identifies the state a of the parent ion
and the orbital angular momentum �α of the photoelectron. In
a channel state, the orientation of the parent ion is generally
undefined, due to its coupling with the photoelectron. In (1),
xi ≡ (�ri, ζi ) identifies the spatial and spin coordinates of the
ith electron, 
i its spherical coordinates, 
i = (θi, ϕi ), P12 is
the permutation of the two electron coordinates, and Rn�(r) is
the radial part of the bound hydrogenic state with principal
quantum number n, orbital quantum number �, normalized
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as
∫ ∞

0 dr r2R2
n�(r) = 1 [70]. The functions YLM

La�α
(
1,
2) are

bipolar spherical harmonics [71],

YLM
�1�2

(
1,
2) =
∑
m1m2

CLM
�1m1,�2m2

Y�1m1 (
1)Y�2m2 (
2), (2)

where Y�m(
) are ordinary spherical harmonics and CLM
�1m1,�2m2

are Clebsch-Gordan coefficients [71]. The two-electron spin
function �S� (ζ1, ζ2) is defined as

�S� (ζ1, ζ2) =
∑
σ1σ2

CS�
1/2σ1,1/2σ2

2χσ1 (ζ1) 2χσ2 (ζ2), (3)

or, more prosaically, �11 = αα, �1−1 = ββ, �10 = (αβ +
βα)/

√
2, �00 = (αβ − βα)/

√
2, with α(ζ ) = 2χ1/2(ζ ) =

δζ ,1/2, and β(ζ ) = 2χ−1/2(ζ ) = δζ ,−1/2. It is well known that
a truncated set of close-coupling channel functions (1) does
not give rise to a complete basis for two-electron states, even
when only bound or single-ionization states well below the
double-ionization threshold are considered. This is because
parent-ion bound states cannot reproduce the sharp spatial
modulation of a polyelectronic wave function in proximity
of the coalescence of two electrons. The latter behavior,
however, can be recovered by including in the basis a comple-
mentary set of symmetry-adapted two-electron configurations
2S+1(n1�1, n2�2)LM� ,

ϕ�
j (x1, x2) = Nj �S� (ζ1, ζ2) [1 + (−)SP12]

× YLM
�1�2

(
1,
2)
ϕn1�1 (r1) ϕn2�2 (r2)

r1r2
, (4)

where the reduced radial orbitals ϕn�(r) are confined within a
radius that both electrons can reach with appreciable proba-
bility, and Nj is a normalization constant. To summarize, any
bound or single-ionization two-electron wave function with
total symmetry �, �� (x1, x2) can be well approximated by
the following close-coupling expansion (we omit the vari-
ables, for brevity)

�� =
∑
αi

φ�
αi c�

αi +
∑

j

ϕ�
j b�

j , (5)

where c�
αi and b�

j are in general complex coefficients.
To predict the configuration and energies of helium

stationary states, as well as their free and light-driven
evolution, we must specify the model for the field-free
Hamiltonian H0, as well as the time-dependent interaction
Hamiltonian HI (t ). In this work we will assume the
electrostatic approximation for H0,

H0 = p2
1

2
+ p2

2

2
− 2

r1
− 2

r1
+ 1

r12
, (6)

since relativistic effects play only a minor role for the
short-time evolution of an atom as light as helium. Indeed,
the spin-orbit splitting in helium manifests itself only on a
timescale of several picoseconds, whereas the pump-probe
ionization processes we are interested in take place on a
timescale that is at least two orders of magnitude shorter.
Within the electrostatic approximation, all the quantum
numbers in � (parity, total spin, total angular momentum, and
their projections) are conserved.

a. B-spline basis. The reduced one-electron radial func-
tions in Eq. (1) and (4) are represented here as linear
combinations of B splines [72]. B splines form a flexible set of
compact-support functions (i.e., functions that do not vanish
only in a closed and bounded subset of the real axis) that
has proven ideally suited to represent bound, Rydberg, and
continuum orbitals in atomic and molecular physics [73]. B
splines are a basis for piecewise polynomials of degree n,
which are infinitely differentiable everywhere except for an
assigned discrete set of nodes {ti}, in correspondence of which
the nth derivative of the B splines can be discontinuous. It is
common practice to label B splines by their order k = n + 1 =
1, 2, . . ., rather than their polynomial degree n. The set of
kth-order B splines {Bk

i (x)} can be defined recursively as [72]

B1
i (x) = θ (x − ti ) θ (ti+1 − x), (7)

Bk
i (x) = (x − ti ) Bk−1

i (x)

ti+k−1 − ti
+ (ti+k − x) Bk−1

i+1 (x)

ti+k − ti+1
, (8)

where θ (x) = 0 if x < 0 and θ (x) = 1 if x � 0. Some in-
tervals [ti, ti+1] can have zero length, giving rise to nodes
with multiplicity ν higher than one, ti = ti+1 = · · · = ti+ν−1,
in which case the B splines can exhibit a discontinuity at x = ti
in the derivative of order as high as (k − ν). In particular,
for B splines to assume finite values at the boundaries of the
representation interval, the first and last nodes must be k times
degenerate. Any B spline of order k differs from zero only in
an interval delimited by k + 1 consecutive nodes, when the
nodes are counted with their multiplicity. Due to this prop-
erty, local linear operators in a B-spline basis have a banded
representation, which helps make the algorithms that solve
linear systems in this basis numerically stable. Here B-spline-
order k = 10 is used, which gives a good balance between
representation accuracy and numerical stability. Furthermore,
the present computational scheme employs two different B-
spline bases: a small one for the localized orbitals and a large
one for the diffuse and continuum orbitals. The localized
B-spline basis is defined in terms of a radial grid where the
separation between consecutive nodes increases linearly at
moderate distances, until it reaches a radius comparable to
the size of the most energetic ion that can be excited during
photoionization (typically of the order of several tens of Bohr
radii), and which is suited to describe both the parent-ion
states and the localized channel. In the small B-spline basis,
consecutive nodes are approximately 6 a.u. apart at a distance
of ∼40 a.u. from the nucleus. The large B-spline basis is
defined by a radial grid that comprises all the points in the
smaller grid, plus all those needed to give rise to a uniform
asymptotic separation between consecutive nodes (typically
of the order of 0.5 a.u.) and to reach distances of the order of
several hundreds or even thousands of Bohr radii. With two
different B-spline bases, it is possible to drastically reduce
the number of configurations needed to reproduce the effects
of correlation at short range. For example, in the localized
region, the large B-spline basis comprises three times as many
functions as the localized B-spline basis. Since the set of nodes
for the localized B-spline set is chosen as a subset of the
nodes that define the continuum B-spline basis, the localized
B-spline space is an exact subspace of the continuum B-spline
space [53].
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The reduced radial part ϕn�(r) of an orbitals with angular
momentum � must comply with the regularity condition at
the origin limr→0 ϕn�(r)/r� = 0. In the present work, this
condition is explicitly satisfied for � � 4 by eliminating the
first � + 1 B splines from the basis,

ϕn�(r) =
∑

i>�+1

Bi(r) ci;n�. (9)

b. Basis conditioning. The close-coupling states and the
localized states as defined in (1) and (4) give rise to redun-
dant configurations. For example, in the construction of the
2sεp

1Po CC channel, the 2s parent-ion state can be cou-
pled to a 2p spin-orbital state for the outer electron, to give
rise to a 2s2p 1Po doubly excited configuration. The same
configuration, however, is generated also in the construction
of the 2pεs

1Po CC channel, as well as in the localized
channels, which comprises all ns mp configurations. To avoid
these redundancies, the orbital space for the outer electron in
the close-coupling channels, as well as the CI space of the
localized channel, must be restricted. In the following, we
summarize the conventions and procedures followed here.

The parent-ion orbitals are computed by diagonalizing the
hydrogenic He+ Hamiltonian in the localized B-spline basis.
In the construction of the CC channels (1), a parent ion with
principal quantum number Na and orbital angular momen-
tum La is coupled only to those orbitals from the continuum
B-spline space that are orthogonal to all the parent-ion or-
bitals with n < Na, as well as to the parent ions with n =
Na and � < La. In this way, the close-coupling channels are
rigorously orthogonal. For example, the 1s2p configuration
obtained by coupling a 1s ion to a 2p He+ hydrogenic or-
bital is represented in the 1sεp channel, but not in the 2pεs

channel.
The localized-channel configurations, which are meant to

reproduce short-range correlation, are built from the self-
consistent-field (SCF) orbitals that diagonalize an effective
one-particle Hamiltonian given by the Hartree-Fock operator
of the 1s2 ground state of helium plus an additional single-
charge Coulomb attraction potential that operates on the space
orthogonal to the 1s orbital. It should be noted that, in the
present work, the spectral analysis of the Hamiltonian and
the time propagation are conducted in a close-coupling space
that comprises the full configuration-interaction (full-CI) ba-
sis built from the localized SCF orbitals. The full-CI basis
is invariant under any unitary transformation of the localized
orbital space, and hence the use of a separate set of orbitals for
the ions and the LC space becomes immaterial. Still, treating
hydrogenic and SCF orbitals separately offers the latitude to
truncate the orbital basis in a physically meaningful way, if
needed. To avoid redundancies between the CC and the LC
channels, the projector P̂ on the CC channels,

P =
∑

α

Pα, where Pα =
∑

i

|φαi〉 〈φαi|, (10)

is diagonalized on the LC basis. The states whose eigen-
value differs from 1 less than a prescribed small threshold
ε are eliminated from the LC space, since they are already
accurately represented by the CC basis by definition. The
resulting conditioned LC space (CLC) and the CC space are
numerically linearly independent. When the LC is the full-CI

localized space, the LC is the direct sum of a CC-space subset,
spanned by those configurations with at least one parent-ion
orbital represented in the CC series, and of a space orthogonal
to all CC functions. The CLC and CC space, therefore, are not
merely independent, they are orthogonal.

c. Box eigenstates. Let us indicate with |ϕ�〉 =
(ϕ�

1 , ϕ�
2 , . . .) the row vector of the localized configurations,

with |φ�
α 〉 = (φα,1, φα,2, . . . , φα,N�

α
) the row vector of states

with symmetry � and in the partial wave channel α, and
with |φ̄�

α 〉 = (φ̄α, 1, φ̄α,2, . . . , φ̄α,N�
α −1) the vector of channel

states obtained by eliminating from the radial basis the
last B spline, i.e., the only B spline that does not vanish
at the box boundary. To compute the bound states with
symmetry �, we diagonalize the Hamiltonian in the basis
|φ�

b 〉 = |ϕ�〉 ⊕ ⊕
α |φ̄�

α 〉, which vanishes at the box boundary
(and hence, the matrix representation of the Hamiltonian is
Hermitian),

H0

∣∣ψ�
b

〉 = ∣∣ψ�
b

〉
E�

b ,
∣∣ψ�

b

〉 = ∣∣φ�
b

〉
c�

b . (11)

As discussed under point (e) below, the discrete spectral
representation {(|ψ�

b 〉, E�
b )}� of the field-free Hamiltonian

is used both to define the bound states of the atom and to
evaluate the time propagator of the system driven by external
fields.

d. Scattering states. Many equivalent methods exist to
solve the multichannel secular problem for helium and more
complex atoms represented in a B-spline basis, within the
close-coupling ansatz [41,51,74–76]. In the present work,
the single-ionization scattering states of helium below the
double ionization threshold are computed using the B-spline
K-matrix method [77,78]. The K-matrix method is an L2

realization of a configuration-interaction calculation in the
continuum that has been successfully applied to a number
of problems in atomic and molecular physics [42,53,79–86].
This method will be briefly summarized below in the case of
helium, for scattering states with total symmetry �, which we
will not explicitly indicate, for brevity.

First, the total Hamiltonian H0 is diagonalized in the sub-
space of each close-coupling channel |φ̄α〉 confined to the
quantization box, giving rise to so-called partial-wave channel
(PWC) states |φαεi〉,〈

φαεi

∣∣H0

∣∣φαε j

〉 = δi j εi
〈
φαεi

∣∣φαεi

〉
. (12)

The eigenvalues εi below the channel threshold Ea (i.e., the
parent-ion energy) approximate the first few terms of a dis-
crete Rydberg series that converges to the threshold. They
correspond to an electron with fixed orbital angular momen-
tum bound by the He+ ion frozen in a given state a. The
eigenvalues above threshold, εi > Ea are a discrete selec-
tion of energies from the continuum spectrum, E > Ea. They
correspond to those stationary states in which an asymp-
totically free electron scatters elastically off the parent ion,
without changing angular momentum, and whose incoming
and outgoing component happen to interfere destructively at
the box boundary. The positive-energy PWC functions exhibit
a channel phase shift δαi with respect to the regular Coulomb
function with the same orbital angular momentum and asymp-
totic energy. These discretized-continuum states are rescaled
so that their analytic extension at arbitrarily large radii fulfills
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the normalization condition 〈φαE |φαE ′ 〉 = δ(E − E ′). In this
way, we can define an elastic-scattering Hamiltonian H0 as

H0 =
∑

γ

∑∫
dε|φγε〉ε〈φγε |, (13)

where the index γ runs over both open and closed PWC’s, as
well as on the CLC (which comprises only discrete states).
Under the assumption that the elastic channels are asymptot-
ically decoupled, the elastic-scattering Hamiltonian H0 acts
on single-ionization wave packets at large distance from the
nucleus in exactly the same way as the full Hamiltonian H .
Conversely, the perturbation V = H − H0 acts at short range,
and hence it is possible to seek the multichannel scattering
eigenstates of H as solutions of the Lippmann-Schwinger
equation (LSE), e.g., in its principal-part formulation [87],

ψP
αE = φαE + GP

0 (E )V ψP
αE , GP

0 (E ) ≡ P
E − H0

, (14)

where the index α runs over the channels which are open at
the energy E . By inserting the spectral resolution (13) of H0,
the LSE becomes

ψP
αE = φαE +

∑
γ

∑∫
dε φγ ε

P
E − ε

Kγ ε,αE , (15)

where Kγ ε,αE = 〈φγε |V |ψP
αE 〉 are elements of the off-shell

reaction matrix, which is known to be a smooth function
of the left continuous index ε [87]. Equation (15) may be
solved for the unknown coefficients K by requiring ψP

αE to be
an eigenfunction of the complete projected Hamiltonian with
eigenvalue E ,

〈φβE ′ | E − H
∣∣ψP

αE

〉 = 0 ∀β, E ′. (16)

This secular problem can be written as a systems of integral
equations for K,

KβE ′,αE −
∑
γ 
=β

∑∫
VβE ′,γ ε

P

ε − E
Kγ ε,αE = VβE ′,αE . (17)

By interpolating the continuum-continuum matrix elements
VβE ′,γ ε from their values Vβεi,γ ε j between discretized PWC
continua (12), and the Kγ ε,αE coefficients from their dis-
cretized counterpart Kγ εi,αE , Eq. (17) is converted to an
algebraic set of linear equations and solved with standard
linear-algebra routines. The scattering states with defined
spherical symmetry and incoming boundary conditions ψ−

αE
are obtained as

ψ−
αE =

∑
β

ψP
βE

[
1

1 − iπK(E )

]
βα

e−i(σ�α +δα−�απ/2), (18)

where Kα,β (E ) ≡ KαE ,βE is the on-shell reactance matrix
(Sec. 7.2.3 in [87]), σ�α

= arg �(� + 1 − i/k) is the Coulomb
phase shift, and δα is the channel phase shift. Finally, the
scattering states that correspond to Coulomb plane waves
associated with a parent ion in a well-defined state, are
given by

ψ−
a;E
̂σ

=
∑
��m

CLM
LaMa,�mCS�

Sa�a,
1
2 σ

Y ∗
�m(
̂) ψ

�(−)
α�E (19)

and possess the following normalization:

〈ψ−
a;E
̂σ

|ψ−
b;E ′
̂′σ ′ 〉 = δabδσσ ′δ(E − E ′)

× δ(cos θ − cos θ ′)δ(φ − φ′). (20)

e. Time-dependent propagator. The time-dependent
Schrödinger equation for the wave function �(t ) reads

i∂t�(t ) = H(t )�(t ), (21)

where the total time-dependent Hamiltonian H(t ) comprises
a time-independent field-free component H and a time-
dependent interaction HI (t ),

H(t ) = H + HI (t ). (22)

In this work we will assume HI (t ) to be the interaction term of
the minimal-coupling Hamiltonian in dipole approximation,
in either velocity gauge, HI (t ) = α �A(t ) · �P, or length gauge,
HI (t ) = �E (t ) · �R, where α = e2/h̄c ≈ 1/137.036 is the fine-
structure constant [88], �A(t ) and �E (t ) are the transverse vector
potential and electric field of the external radiation impinging
on the atom, �P = �p1 + �p2 is the total electronic canonical
momentum, and �R = �r1 + �r2 is (minus) the electric dipole
moment. The TDSE is integrated from an initial time t0 to
a final time t = tn in a sequence of n time steps as

�(t ) =
∏

i=1,n

UCAP(ti − ti−1)U (ti, ti−1)�(t0), (23)

where U (t + dt, t ) is a second-order symmetrically split ex-
ponential unitary propagator,

U (t + dt, t ) = e−i H dt/2e−i HI (t+dt/2) dt e−i H dt/2, (24)

and UCAP(dt ) is an exponential complex-absorption evolution
operator,

UCAP(dt ) = e−i dtHCAP . (25)

Computing the action of the time-step evolution opera-
tor (24) in the spectral basis of the confined field-free atom
is quite elementary. The first and last step of the prop-
agation amount to multiplying each expansion coefficient
ci of the wave function by the corresponding phase factor
exp(−i dt Ei/2). This part of the propagation is virtually in-
stantaneous compared with the action of the driven component
of the split propagator, and it takes care of the broadest spec-
tral span of the Hamiltonian, since it accounts exactly for
the whole kinetic energy, and field-free Coulomb interaction.
The intermediate step of the propagation is accomplished by
means of a Krylov expansion of the exponential e−i HI (t+dt/2) dt

[37], which normally converges for a Krylov size of the order
of 20 at most, for time steps of the order of 0.01 a.u.

The velocity gauge is numerically more convenient than
the length gauge, when short-range correlation is not an
issue, since the results converge more rapidly with re-
spect to the maximum orbital angular momentum [89].
In the case of helium, the velocity gauge offers addi-
tional advantages since parent ions with the same principal
quantum number are degenerate, and hence their dipolar cou-
pling vanishes, 〈n�‖p1‖n�′〉 = i〈n�‖[H0, r1]‖n�′〉 = i(En� −
En�′ )〈n�‖r1‖n�′〉 = 0. In the present calculation, the numer-
ical value of the energy of the He+ N = 1 and N = 2 parent
ions are exact to 12 decimal digits. For all practical purposes,
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therefore, the 2s and 2p states are indeed degenerate. This
circumstance eliminates the radiative coupling between close-
coupling channels due to the anomalous Stark polarization of
the parent ion, thus improving numerical accuracy. The trans-
verse component of the external electric field in the length
gauge is computed from the vector potential as

�E (t ) = −α∂t �A(t ), (26)

which ensures that the time integral of the electric field van-
ishes [90].

The absorption potentials are defined as

HCAP(r) =
∑

α

cαPα (r − Rα )nα θ (r − Rα ). (27)

In principle, the absorption coefficients cα , exponent nα , and
radius Rα have the flexibility of being optimized indepen-
dently, to minimize unphysical reflections at the box boundary
in each channel. In practice, however, a common set of pa-
rameters can lead to satisfactorily converged results. In this
work, the complex-absorption potential range extends over
a radial region as large as 100 Bohr radii, nα = 2. In this
way, reflections by the potential itself or by the box boundary
of the fast photoelectrons in the 1s channel are negligible.
The evaluation of the extinction factor (25) is significantly
less demanding than the driven unitary propagation, since
the absorption potential is zero in all but the last slice of
the radial interval. This means that most of the eigenvalues
of the absorption potential are zero. Let

HCAP|ψcap,i〉 = |ψcap,i〉λi, (28)

with λi 
= 0 if and only if i > N − Ncap, where N is the total
number of box states and N − Ncap � N is the number of lin-
early independent functions in the box space that are mapped
to zero by CAP (i.e., the number of B splines whose support
does not overlap with the complex absorbing potential). Then
(25) can be rewritten as

UCAP(dt ) = 1̂ +
∑

i>N−Ncap

∣∣ψcap
i

〉
(e−i dtλi − 1)

〈
ψ

cap
i

∣∣. (29)

The evaluation of the action of the extinction operator, there-
fore, requires a number of matrix-vector operations that is
much smaller than that even a single Krylov iteration for the
evaluation of the driven propagation step.

A. Asymptotic observables

The present approach offers a natural way to express the
wave function �(t ) in terms of a physical spectral basis.
Determining the population of any bound state of the system
as well as the probability with which the photoelectron is
emitted with any given energy and direction, leaving behind
the parent ion in any given state, therefore, is an easy and
computationally inexpensive task. As soon as the external
pulses are over, the evolution of any complex probability
amplitude on an energy eigenstate i, Ai(t ) = 〈i|ψ (t )〉 changes
by just a phase factor, Ai(t + �t ) = e−iEi�t Ai(t ). This means
that there is no need of protracting the propagation any
longer after the end of the pulse. Furthermore, since the
multichannel scattering states |ψ�−

αE 〉 are known, it is pos-
sible to compute the asymptotic photoelectron distribution

while the electronic wave packet is still in the interaction
region and, indeed, still transiently trapped in metastable
states. The channel-resolved photoelectron amplitude in
interaction-representation

A�
αE = eiEt 〈ψ�(−)

αE |�(t )〉, E (t ′) = 0 ∀ t ′ > t, (30)

is a time-invariant quantity [41]. The photoelectron distribu-
tion, resolved by symmetry, channel and energy, therefore, is
readily obtained as

dP�
α (E )

dE
= ∣∣〈ψ�(−)

αE

∣∣�(t )
〉∣∣2

. (31)

To determine the distribution resolved by state of the ion,
energy, and photoemission angle, we need to project the
wave packet on scattering states whose outgoing compo-
nent coincides with the parent ion of interest a times
the outgoing component of a Coulomb plane wave will
well-defined asymptotic energy E , momentum direction

̂, and spin projection σ , |�−

a;E
̂σ
〉, whose expression is

given in (18)

dPa(E )

dEd

=

∑
σMa

|〈ψ−
a;E
̂σ

|�(t )〉|2. (32)

Finally, from the partial photoelectron cross sections, it is
possible to compute the partial integral photoionization yield
in each channel, Pa, as

Pa =
∑
�α

′ ∫ ∞

Ea

dE
∣∣〈ψ�(−)

αE

∣∣�(t )
〉∣∣2

, (33)

where the prime in the last sum indicates that the summation
is restricted to the total symmetries � where the ion state a
is represented, and to the channels α in which the asymptotic
state of the ion is a.

III. RESULTS

To illustrate the capabilities of the present approach, we
examine the photoionization of helium from the ground state
to the energy region close to the N = 2 excitation threshold
of the He+ parent ion, using a single XUV attosecond pulse
in association with a moderately intense few-cycle IR probe
pulse,

He(1s2) + γXUV ± nγIR → He+
1s,2s,2p + e−. (34)

In this equation, we indicated schematically the interaction
with the IR laser field in terms of the interchange of a definite
number of IR photons. It is understood, however, that some
of the simulated processes (e.g., ac-Stark shift, tunneling,
above-the-threshold ionization, etc.) cannot generally be re-
duced to a truncated perturbative picture. In this work, we
assume that the laser pulses are always linearly polarized
along the same direction, so that only natural symmetries
can be populated. The pump is an XUV Gaussian pulse with
central frequency h̄ωXUV = 60.69 eV (2.2308 a.u.), a duration
of 385 as (full width at half maximum of the envelope of the
intensity, fwhmXUV), and a peak intensity IXUV = 1 TW/cm2.
The probe is a few-cycle IR cos2 pulse, with central frequency
h̄ωIR = 1.55 eV (0.057 a.u.), an entire duration of 10.66
fs (fwhmIR ≈ 3.77 fs), and peak intensity IIR = 1 TW/cm2.
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FIG. 1. Example of XUV-pump-IR-probe electric field used in
this work (τ = 400 a.u.).

Figure 1 illustrates the sequence of electric field pulses for
a time delay τ = 400 a.u. (9.68 fs).

We have conducted the calculations using both a small and
a larger basis set. The small basis, which comprises a minimal
number of localized orbitals, reproduces the conditions used
for the calculations in [37]. Most of the electron-electron
correlation beyond the essential close-coupling channels,
therefore, is missing. The larger basis comprises the full-CI
pseudochannel space, which provides most of the correlation
in the energy region examined in this study.

The first set includes, for each total angular momentum
L up to L = 9, the minimal-close coupling basis required
to represent the N = 2 ionization channels and the doubly
excited states converging to the N = 2 threshold: 1sEL, 2sEL,
2pEL+1, and, for L > 0, 2pEL−1. Beyond the close-coupling
part, the basis also includes the Hartree-Fock ground state
1s2

SCF, which ensures that the starting point has at least HF
quality, as well as the configurations 1sSCF2pSCF+ , 1sSCF3dSCF+ ,
1sSCF4 fSCF+ , 1sSCF5gSCF+ , 1sSCF6hSCF+ , 4 f 2

SCF+ . Apart for the
ground-state 1s2

SCF configuration, the other configurations do
not appreciably improve the quality of the result. These ad-
ditional configurations, instead, have the only purpose of
reproducing the basis used in [37], when they were used to
ensure that the correlation pseudochannel was not empty, a
constraint imposed by the implementation of the program.
The localized parent-ion and SCF orbitals are built from
the B-spline basis of order k = 10 defined by a set of 29
nonuniformly spaced distinct radial nodes, which span from
the origin to R � 41 Bohr radii. The partial-wave radial func-
tions are expanded on a k = 10 B spline basis defined by
a second set of 2407 nodes, with uniform asymptotic spac-
ing of 0.5 a.u. and which reaches a maximum distance of
� 1200 Bohr radii. In the representation of the single-particle
wave functions with orbital angular momentum �, the first
min(� + 1, 5) B splines are eliminated to enforce the regu-
larity of the orbitals at the origin (for � > 4 this detail is not
crucial). The overall size of the 1Lπ spaces, with L = 0, 1, 2,
..., 9, are 7238, 9647, 9646, 9641, 9639, 9637, 9639, 9637,
9639, 9637. Due to the small contribution of the configura-
tions from the partial-wave channels, the energy of the ground
state is marginally better than the Hartree-Fock limit: Eg =
−2.8867 742 a.u. (compare with the 1s2 SCF energy −2.861
680 a.u.).

The larger basis comprises, beyond the minimal set of
close-coupling channels of the smaller basis, the full-CI set of
configuration n�n′�′ constructed from all the localized orbitals

FIG. 2. Schematic energy diagram for the first few helium dou-
bly excited states below the N = 2 threshold, with natural parity.
The scales on the left indicate, from right to left: the total energy
of the system in atomic units; the energy of the photon required to
excite the state from the ground, in electron volts; and the energy
of the photoelectron in the 1s and N = 2 channels, respectively, in
electron volts. The rectangles in the upper part of the energy scheme
represent the channels that 1s, 2s, and 2p that are open above the
N = 2 threshold.

with orbital angular momentum � � 5. This space provides
a very good description of the short-range correlation of all
the states (bound, doubly excited, and in the continuum) up
to a total energy Etot � −0.25 a.u. Beyond this value, N = 3
channels must be explicitly included in the close-coupling
expansion to account properly for the DES converging to the
N = 3 threshold (EN=3 = −0.222 222 a.u.). Notice, however,
that at lower energies the optical potential reproduced by the
full-CI short-range basis is perfectly capable of supplying the
contribution of the missing close-coupling channels even in
the absence of the N = 3 channels, and indeed of any higher
single ionization as well as double-ionization channels. The
size of the short-range full-CI pseudochannels is 1906, 3033,
3954, 3048, 2721, 1750, 1151, 552, 276, and 36, for the
natural symmetries with L = 0, 1, . . . , 9, respectively. The
overall size of the 1Lπ spaces, with L = 0, 1, 2, . . ., 9, are
9064, 12 577, 13 498, 12 592, 12 288, 11 363, 10 787,
10 188, 9912, and 9672, for a total size of 111 941. The
energy of the ground state is Eg = −2.9036 028 a.u., to be
compared with the accurate nonrelativistic limit for �max = 5,
which is −2.9036 057 a.u. [91]. Figure 2 offers a schematic
overview of the autoionizing-state levels, computed with the
larger basis, in the energy region close to the N = 2 threshold.
Below such a threshold, only the 1s channel is open. This
means that states in the continuum will eventually lead to
a 1s parent ion plus a free electron. The excited 2s and 2p
parent-ion states can temporarily bind the second electron
giving rise to doubly excited states (DESs). Due to electronic
repulsion, these states are coupled to the continuum in the 1s
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FIG. 3. Normalized 1Po component of the two-electron wave packet, generated by the interaction of the ground state of the helium atom
with the XUV pulse, for selected fixed positions in space of one of the two electrons (indicated by a red solid sphere) as a function of the
position of the other electron. The white sphere at the origin indicates the position of the nucleus. The electron wave packet is colored coded
in proportion to the magnitude of its real component, to highlight the change in sign across the node, and its modulation through space.

channel, to which they eventually decay [92]. The DES in
this energy region can be classified in terms of approximate
quantum numbers. Several classification schemes have been
proposed for the DESs: the original Fano’s classification [93],
the N (K, T )A

n scheme by Herrick and Sinanoglu, the hyper-
spherical scheme [94], the Stark quantum numbers [N1N2m]A

n
[95], and the molecular quantum numbers (nλnμ)A [96,97].
In the present work we will be mostly concerned with the
first few 1Se and 1Po states below the N = 2 threshold, for
which the original configuration-based Fano’s classification is
sufficient. When more precise assignments are required, we
will use the Stark classification scheme. The central rectangle
in Fig. 2, below the N = 2 threshold, illustrates the energy and
angular distribution of the photoelectrons emitted as a result
of the decay of the DESs that form the localized metastable
wave packet obtained by exposing the ground state of the
atom to the XUV-pump IR-probe sequence specified above.
The spectrum is obtained by letting the forefront free-electron
component of the wave packet generated to be absorbed by the
box boundaries. The picture shows which DESs are populated
most in the process, whose symmetry is visible in the nodal
structure of the photoelectron distribution: isotropic for S
states, with one node at θ = 90◦ for P states, with two nodes at
the positive and negative magic angle for the D states, and so
on. The symmetry, classification, position, and width of the
first nine resonances is indicated on the right. Three DESs
clearly dominate the spectrum in the current conditions: the
1Po sp+

2 and sp+
3 ([010]+2 and [010]+3 in Stark notation) states,

and the 1Se 2p2 state ([100]+2 in Stark notation). Table I lists
the first few DESs converging to the N = 2 threshold which
are most relevant to the present investigation, and compares
the position and width with reference values from the litera-
ture. If electronic correlation affects the properties of many
bound states of atoms and molecules [1], it completely dom-
inates those of doubly excited states [100]. Figure 3 shows
the conditional electron probability density P(�r2|�r1) of the 1Po

component of the wave function excited by the attosecond
XUV pulse, for several positions of one of the two electrons
at a fixed distance of slightly more than 4 au from the nu-
cleus. The distribution has been cut at a threshold value of
the conditional density. The wave packet has a distinct sp+
character: the parent ion is in the Stark state polarized towards
the outer electron. The parent-ion wave function entangled
to the outer electron at fixed positions in space reproduces
a polarized hydrogenic Stark state [101]. On top of such an

exquisitely static-polarization effect, interelectronic repulsion
is evident in the way the parent ion is distorted away from the
outer electron. Such long-range correlation has an adiabatic
character that explains the energetics of the metastable states,
rather than its Auger decay.

Figure 4 shows the conditional density when one of the
two electrons is at a shorter distance, within the threshold set
for the density. In this case the electron density is depleted in
proximity of the reference electron (Coulomb hole) [1]. This
dynamical correlation allows the two electrons to exchange a
large amount of energy, leading to the eventual collapse of one
of them to the 1s ground state of He+ and to the ejection of
the other with an asymptotic energy as large as 40 eV.

Figure 5 shows the aspect of the electron density in the
quantization box, up to a radial distance of 1200 a.u., at four
different times after the excitation event. At t = 12.1 fs, the
wave packet has reached a radius of about 800 a.u., and it
is possible to recognize some characteristic features. At the
largest distance, photoelectrons from the one-photon direct-
ionization process form a first prominent wavefront, moving
outward with group velocity

√
2(ωXUV − I.P.). At short radii,

there is a nonnegligible probability for both electrons to re-

FIG. 4. Metastable wave packet (compare with Fig. 3) with the
position of one of the electrons (red sphere) penetrating the re-
gion of the Stark parent-ion state. The depletion of electron density
(Coulomb hole) around the fixed electron is at the origin of the Auger
decay of the doubly excited states, which acquire a finite lifetime as
a result.
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TABLE I. Classification and parameters (energy and width) of
the first 20 doubly excited states in helium, with natural parity and
L � 3, converging to the N = 2 threshold. The values in the top
row of each group are computed in the present work. The values
underneath are taken from the literature. The notation [−n] is an
abbreviation for × 10−n.

2S+1Lπ
N (K,T )A

n [N1N2m]A
n conf E (a.u.) � (a.u.)

1Se
2(1, 0)+2 [010]+2 2s2 −0.777 863 4.54 [−3]

−0.777 868 4.54 [−3] [98,99]
1De

2(1, 0)+2 [010]+2 2p2 −0.701 885 2.37 [−3]
−0.701 946 2.36 [−3] [99]

1Po
2(1, 0)−3 [010]−3 sp+

2 −0.693 061 1.37 [−3]
−0.693 135 1.37 [−3] [95,99]

1Se
2(−1, 0)+2 [100]+2 2p2 −0.621 744 2.18 [−4]

−0.621 927 2.15 [−4] [98]
−0.621 926 2.16 [−4] [99]

1Po
2(0, 1)+2 [001]+2 sp−

3 −0.597 074 3.84 [−6]
−0.597 073 3.84 [−6] [95]

1Se
2(1, 0)+3 [010]+3 −0.589 891 1.36 [−3]

−0.589 895 1.36 [−3] [98]
−0.589 89 1.36 [−3] [99]

1De
2(1, 0)+3 [010]+3 −0.569 205 5.58 [−4]

−0.569 22 5.56 [−4] [99]
1Po

2(1, 0)−4 [010]−4 sp+
3 −0.564 072 3.01 [−4]

−0.564 085 3.01 [−4] [95]
1Fo

2(1, 0)−3 [010]−3 −0.558 265 1.30 [−5]
−0.558 28 1.28 [−5] [99]

1De
2(0, 1)−3 [001]−3 −0.556 420 2.00 [−5]

−0.556 43 2.00 [−5] [99]
1Se

2(−2, 1)+3 [100]+3 −0.548 065 7.58 [−5]
−0.548 086 7.48 [−5] [98]

1Po
2(0, 1)+3 [001]+3 −0.546 489 2.01 [−6]

−0.546 493 2.02 [−6] [95]
1Se

2(1, 0)+4 [010]+4 −0.544 879 4.92 [−4]
−0.544 882 4.92 [−4] [98]

1De
2(1, 0)+4 [010]+4 −0.536 719 2.33 [−4]

1Po
2(1, 0)−5 [010]−5 −0.534 356 1.28 [−4]

−0.534 363 1.28 [−4] [95]
1Fo

2(1, 0)−4 [010]−4 −0.532 246 7.24 [−6]
1De

2(0, 1)−4 [001]−3 −0.531 506 1.11 [−5]
1Se

2(−2, 1)+4 [100]+4 −0.527 704 4.72 [−5]
−0.527 717 4.62 [−5] [98]

1Po
2(0, 1)+4 [001]+4 −0.527 291 9.79 [−7]

−0.527 298 9.82 [−7] [95]
1Se

2(1, 0)+5 [010]+5 −0.526 682 2.18 [−4]
−0.526 687 2.18 [−4] [98]

side (R � 50 a.u., not represented in the picture, where it is
recognizable as a white circular spot). This is where elec-
tronic correlation exerts most of its influence. In particular,
it is in this central region that metastable states are located,
and decay. The region between the short-range region and
the outermost direct-ionization wavefront is dominated by a
series of outgoing wavefronts. These wavefronts are due to the
interference between the autoionization amplitude originating
from the concurrent Auger decay of multiple 1Po transiently
bound states. As the intensity of the spectral lines in Fig. 2
indicate, the two dominant components, at least at short time,
come from the sp+

n states (n = 2, 3). Each of them gives rise

FIG. 5. Propagation in the box of the electron density generated
by the XUV pulse (color is on a log scale). The first wavefront
corresponds to the direct-ionization component of the wave packet.
The trailing maxima are predominantly due to the beating between
the photoelectron amplitude from the decay of the sp+

2 and sp+
3

DESs. The wave packet disappears once it enters the CAP region
(red line).

to a 1Po Siegert state whose asymptotic spatial part (r2 � 1)
has the approximate form

ϕSi
n (�r1, �r2) ∝ S φ1s(�r1)

YL0(r̂2)

r2
exp

(
�nr2

2kn
+ iknr2

)
, (35)

where S = 2−1/2(1 + P12) is the symmetrizer and �n is
the resonance width. Indeed, given En = Ēn − i�n/2 = (k2

n −
ikIm

n )/2 is the complex energy of the resonance with
respect to the ionization threshold, and the assumption that
the resonance is narrow compared to the energy of the photo-
electron it releases, �n � Ēn, it follows that kn �

√
2Ēn and

kIm
n � �n/(2kn). The principle behind the spatial interference

between the Auger amplitude from the two concurrently de-
cayed resonances is illustrated in Fig. 6. Since the two DESs
emit the photoelectron with a different radial momentum, the
reduced radial part of the Auger electron wave function u(r, t ),
in the intermediate region, has the approximate form

u(r, t ) ∝
∑

n=2,3

cn exp

[
�n

2kn
(r − knt ) + i(knr − Ēnt )

]
, (36)

where c2 and c3 are fixed coefficients. The oscillating part of
the radial Auger density, therefore, is proportional to

|u(r, t )|2 ∝ |c2c3|eK̄r−�̄t cos{�k[r − vg(t − τAI)]}, (37)

where K̄ = (�2/k2 + �3/k3)/2, �̄ = (�2 + �3)/2, �k =
k3 − k2, and vg = (Ē3 − Ē2)/�k is the radial group veloc-
ity. The quantity τColl = arg(c3/c2)/(Ē3 − Ē2), which we may
call collisional delay (see below for more details), is the time
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FIG. 6. The interference between the Auger decay amplitudes
from the sp+

2 and sp+
3 autoionizing states gives rise to a beating in

the photoelectron density as a function of the distance from the parent
ion. The picture shows schematically the real part of the resonances’
tails, and how they alternatively interfere constructively (c) and de-
structively (d) with a radial periodicity of 2π/(ksp+

3
− ksp+

2
), where

k = √
2ε is the peak value of the Auger electron’s momentum.

it takes, from the initial excitation of the two resonances at
t = 0, to emit the photoelectron in phase, thus leading to the
formation of a photoemission wavefront. The four panels in
Fig. 5 illustrate this dynamics, as well as the dissipative effect
of the complex absorption potential in the outer 100 a.u.-thick
layer of the quantization box.

Due to the dispersive character of electron propagation,
the profile of the radial photoelectron distribution eventually
converges to the asymptotic energy distribution,

dP

dE
= 1

2E
lim

t→∞
dP(r; t )

d ln(r)
. (38)

At a microscopic distance from the atom, it is nevertheless
possible, at least in principle, to detect the peaked electron
emission, as a function of time. A similar experiment has in
fact been realized with rubidium Rydberg wave packets in an
external dc field [102]. In this context, it is interesting to point
out how the direct-photoemission wavefront is separated from
the trailing Auger amplitude by a deep minimum, which is
visible in Fig. 5 as a narrow white crevice for t = 12.1 fs and
t = 16.9 fs. This deep minimum is due to the destructive in-
terference between the direct photoemission and the resonant

decay. At long times, this minimum is preserved, and it maps
to the zero of the Fano profile of the sp+

2 doubly excited state.
Figure 7 correlates the density of the Auger electron at

large distance (top row), up to 800 Bohr radii, with the density
at short range (bottom row), within just 15 Bohr radii from
the nucleus, computed considering only the 1Po component of
the wave packet, at five consecutive times after the excitation
XUV pulse. Setting to zero the population of the ground state,
which does not contribute to the ionization dynamics once the
external field is over, greatly clarifies the short-range electron
dynamics, since the ground state would completely obscure
the excited wave packet, due to its disproportionately larger
population. Close to the parent ion, apart for the ground state,
the density is dominated (1) by the population of the 1s He+

parent ion entangled with the fast outgoing photoelectrons;
(2) to a smaller extent, by the population of the 2s and 2p
parent ions entangled with the slow outgoing photoelectrons
in the N = 2 channels; and (3) by the density of the two-
electron metastable wave packet formed by the doubly excited
states. The coherent population of the sp+

2 and sp+
3 states, in

particular, gives rise at short range to a quasiperiodic con-
certed motion of the two electrons. Indeed, this motion was
accurately reconstructed from attosecond transient absorption
measurements in [26], where it was found to be in excellent
agreement with the ab initio optical observables obtained from
simulations used the same suite of programs described in this
work. As explained in [37], furthermore, the contraction of the
metastable wave packet coincides with the emission of a pho-
toelectron wavefront. This correspondence is schematically
illustrated in Fig. 7. The Auger electron density periodically
exhibits a broad wavefront that peaks near the origin, as seen
in the long-range plot (see top row for t = 7.06 fs, t = 8.37 fs,
and t = 9.53 fs). At the same time, the metastable wave packet
is the most contracted, at short range (bottom row). This cor-
respondence in the ejection of the photoelectrons associated
to the Auger decay of the metastable wave packet points
to the classical character of the electron-electron collision
process that underpins the large exchange of energy required
for one electron to collapse to the 1s He+ state while the
other is ejected to the continuum. A similar phenomenon was
observed with pairs of colliding Rydberg wave packets [103]

FIG. 7. The periodicity of the photoelectron wavefront reproduce the periodicity of the concerted breathing motion of the two electrons in
the metastable wave packet, which has a predominant sp+

n character [37]. A new wave front is emitted whenever the metastable wave packet
reaches maximum contraction, as in these conditions the two electrons are in closest proximity to each other and hence the rate of energy
exchange between them is highest.
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in doubly excited barium atom and in doubly excited states in
magnesium [104]. In the latter case, one of the two electrons
has n = 3, while the other is excited to a superposition of
Rydberg states with very high principal quantum numbers.
It was found that the atom decays only when the Rydberg
wave packet returns in proximity of the nucleus, where it can
exchange energy with the n = 3 parent ion.

The trajectory of the first peak at t = 7.06 fs is highlighted
in the frames by a purple circle, which moves out with con-
stant speed vg. Based on the energy difference between the
sp+

2 and the sp+
3 states, �E � 3.51 eV, we expect a beating

with a period T � 1.18 fs, which is in line with the average
between the first and last peak, of 1.23 fs (the periodicity is
not exact, due to the small interference from higher terms
in the resonance series). What we call here collisional de-
lay τColl is also the time at which the two electrons in the
metastable wave packet get to first be at their closest, after
the initial excitation, thus maximizing the chance of a col-
lision that results in the Auger emission (hence the name).
By attempting a minimum-square fit of the three maximum
contraction times t = 7.06 fs, t = 8.37 fs, and t = 9.53 fs
with the formula tn = τCol + nT , the best estimate for the
collision time is τCol = 0.06 fs ± 0.49 fs. This result is ob-
viously compatible with τCol = 0 fs, i.e., with the Auger
decay rate peaking at t = 0 and at all subsequent multiples
of T . Indeed, from the initial 1s2 state, which is the most
compact bound state of helium, the XUV pulse gives rise
to a scattering wave packet with spatial component approxi-
mately proportional to (z1 + z2)1s(r1)1s(r2), itself still more
contracted than either the sp+

2 or the sp+
3 states. It is perfectly

reasonable, therefore, that for this system the first time of
closest encounter is also the time at which the wave packet is
generated.

In general, the XUV pump pulse can excite more than
two resonances. In fact, it can excite at once the whole au-
toionizing N = 2 Rydberg series. Since the lifetime increases
along the series (�n ∼ 1/n3), and the probability with which
the resonances are excited is itself proportional to �, the
shortest-lived resonances dominate the decay dynamics at
first, to be subsequently supplanted by the other resonances.
The emission of Auger wavefronts, therefore, becomes irreg-
ular, negatively chirped, and fainter, as the metastable wave
packet decays.

A. Time evolution in the small basis

The ionization yields published in [37] were obtained with
simulations in a quantization box with a radius of 400 a.u. In
such a small box, already for time delays of few femtoseconds
(XUV first), the photoelectron starts to be absorbed at the box
boundary well before the end of the IR probe pulse. Figure 8
shows the absorption rate at the boundary in the N = 1 (1sε�)
and N = 2 (2�ε�′) channels, as a function of time, in the case
of an XUV-pump IR-probe delay of approximately 18.6 fs. It
is clear that, in these conditions, a significant fraction of the
electrons in the N = 2 channel have already been absorbed
by the CAPs at the end of the pulse. This means that the
partial ionization yield cannot be computed by integrating the
photoelectron spectrum at the end of the simulation, as the
overall wave function is already compromised at that time.

FIG. 8. Absorption rate of the photoelectrons in the 1s channel
(mid panel) and N = 2 (2s + 2p) channels (bottom panel), as a
function of time, for the simulation with a small basis in a box with
400 au radius. Top panel: amplitude of the total vector potential.
Middle panel: most of the signal comes from a peak that reaches
the absorber 5 fs after the XUV pulse. This peak corresponds to the
direct-ionization signal. A signal five orders of magnitude smaller
reaches the detector after barely 3 fs. This is the signal due to the
absorption of two photons. Finally, at large time, a signal two orders
of magnitude smaller accounts for the slow trailing decay of the
doubly excited states, which in the present conditions account for
about 10% of the excitation probability.

In the 1s channel, we clearly see the signal of the direct
ionization, followed by the beating between the several res-
onances that are populated by the pulse. If the resonances are
not populated, then the tails disappear entirely. In the N = 2
channels, which are populated at arbitrarily low photoelec-
tron energies, we notice a very small signal at short times.
This is the signal corresponding to the absorption of two
photons.

One possible way to compute the yield in the 2s and 2p
channel from these data is to integrate the absorption rate up
to very large time until convergence is reached. Unfortunately,
this approach is largely compromised by the interference of
the doubly excited states with principal quantum number n �
12 that survive the IR pulse. These states form a coherent wave
packet that reaches the CAPs region, where it is absorbed,
thus causing an overestimate of the shake-up yield. This in-
terference cannot be disentangled from the signal from the
electrons above the threshold, as high-lying Rydberg satellites
and low-energy shake-up electrons reach the boundary in the
same time range. Furthermore, notice the several small peaks
featured in the N = 2 absorption rate, in correspondence of
the maximum of the vector potential. These peaks, which
are not physical, are due to the instantaneous polarization, in
velocity gauge, of the 1s orbital, which acquires a small 2p
component. As a consequence, the outgoing electrons in the
1s channel (which, at the time of the probe pulse in the figure,
originates from the decay of the DESs) temporarily acquires
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FIG. 9. Symmetry-resolved partial differential photoelectron dis-
tributions in the 2s and 2p channels as a function of the time
delay and of the photoelectron energy. The population for L > 4 is
negligible.

a small 2p-channel character at the peak of the IR field, thus
resulting in a fictitious contribution to the N = 2 channel.

In [37] these difficulties were circumvented as follows. A
time close to the end of the IR pulse, t = 1200 a.u., before the
photoelectron generated in the N = 2 channel by the IR could
reach the absorption boundaries, was selected. The population
of the 2s and 2p channels was evaluated by adding to the pop-
ulation that had already been absorbed the residual population
computed by projecting the wave packet still in the box on a
complete set of |ψ�(−)

2�ε�′
〉 scattering states,

P2� =
∫ t

0
dt ′ dP2�(t ′)

dt ′ +
∑
��′

∫ ∞

0
dε

∣∣〈ψ�(−)
2�ε�′

∣∣�(t )
∣∣2

. (39)

In this section we compare the results obtained with this
original method with those obtained in an equivalent basis but
in a quantization box three times as large, Rmax = 1200 a.u.,
where, by the end of the external pulses, none of the photo-
electrons in the N = 2 channels has yet reached the boundary.
In the larger box, therefore, the population can be consistently
computed by integrating the photoelectron spectrum,

P2� =
∑
��′

∫ ∞

0
dε

∣∣〈ψ�(−)
2�ε�′

∣∣�(tf )
〉∣∣2

. (40)

The old yields in the absence of IR pulse were P2s =
5.400[−7] and P2p = 1.457[−6], to be compared with the
newly computed yields, in the absence of the IR pulse, of
P2s = 4.788[−7] and P2p = 1.457[−6], which demonstrate
that the original procedure was already quite accurate.

Figure 9 shows the energy- and symmetry-resolved photo-
electron distribution for the 2s and 2p channels, as a function
of the time delay, in the delay interval between 15 and 20 fs,
from which the phase of the oscillation of the partial yield
was originally reconstructed. In the absence of the IR probe,
of course, only the 1Po symmetry is populated. In the presence
of the IR, additional transitions become possible. In particular,
the IR promotes the ATI ionization of the 1Po DESs above
the N = 2 threshold. The interference between the featureless
direct-ionization amplitude in the 2� 1Po channels and the
indirect multiphoton ATI amplitude to the same symmetry
gives rise to the well-known hyperbolic holographic fringes
that are well visible in the 1Po symmetry. Most of the other
symmetries receive contributions exclusively from the ATI
DESs ionization amplitudes. Therefore, they show the char-

FIG. 10. Partial yield of the 2s and 2p He+ parent ions as a func-
tion of the pump-probe time delay. The bullets, with interpolating
curves to guide the eye, are the data computed in [37], in a box
with a radius of only 400 a.u., by mixing different methods to count
the partial ionization probability. The extended curves, on the other
hand, are the newly calculated data, in a box with radius of 1200
a.u., and with a more robust numerical method to disentangle the
asymptotic partial ionization probability. Apart a background shift,
the two data are in essential agreement, and in particular so is the
phase shift between the beating in the 2s and the 2p channels.

acteristic beatings due to the dynamics of the DES metastable
wave packet, but they do not exhibit the interference fringes.
The 1Fo symmetry in the 2p channel is a notable exception. In
this case we do see clear hyperbolic fringes. The reason is that
a secondary effect of the IR is to dress the 2p parent ion. The
effect of such dressing is to bring slightly out of phase the pz

component, compared to the px and py components. As a re-
sult, part of the original [2pεd ]1Po channel, which does exhibit
interference fringes, is converted to the [2pεd ]1Fo channel. The
peculiar interference fringes in the latter, therefore, are not a
numerical artifact.

Figure 10 compares the integral 2s and 2p yields computed
in the 400 a.u. box for [37] with yields computed in the larger
1200 a.u. box, still in the minimal CC basis. Overall, the old
2p yield was slightly underestimated, but one of the main
conclusion of the original paper, namely, that the two yields
oscillate with a distinct phase offset still stand. It is already
visible to the naked eye that the two phase offsets are in good
agreement with each other. In the following, we will examine
a new set of results conducted with a much larger short-range
configuration-interaction basis. When electron-electron corre-
lation is fully taken into account, the phase offset between the
2s and 2p yields is in fact much larger than these original
calculations suggested, thus making the contrast highlighted
in [37] even more striking.

B. Time evolution in the large basis

In this section we analyze the prediction of the present
method for the same pump-probe process described in the pre-
vious section, for a large box, Rmax = 1200 a.u., but where the
pseudochannel is the full-CI space generated by all the short-
range B-spline orbitals with angular momentum up to �max =
5. In contrast to the calculation with a minimal close-coupling
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FIG. 11. Partial photoelectron distribution in 1Po symmetry after
the absorption of one XUV photon computed in both length (contin-
uous lines) and velocity gauge (segmented lines). The vertical gray
line indicate the N = 2 threshold.

basis, this larger basis is expected to yield quantitative gauge
agreement. Figure 11 shows the differential photoelectron
spectrum in the 1sεp, 2sεp, and 2pεs/d

1Po channels, due to the
XUV pump pulse alone, computed in both length and velocity
gauge. This figure illustrates several aspects of the ionization
event with the present pump spectrum in the larger basis. First,
the total ionization yield is dominated by the contribution
from the 1s channel below the N = 2 threshold, which sur-
passes the shake-up contribution by three orders of magnitude.
Even at total energies above the N = 2 threshold, the direct-
ionization yield is ten times larger than the overall shake-up
yield. Conversely, below the N = 2 channel, the population
of electrons transiently bound in DESs immediately after the
pulse, while a fraction of the direct-ionization yield, is still
substantially larger than the shake-up yield. Second, the large
box allows us to accurately describe a large number (more
than 20) resonances for each autoionization series. Third, as
anticipated, the two gauges are in excellent agreement in all
the channels and for all the energies, which suggests that the
description of the 1Po sector of the configuration space in the
energy interval of interest is converged.

Figure 12 shows the asymptotic spectrum of the time-
dependent wave packet, in 1s channel, resolved in energy
and photoemission angle, at three characteristic stages of the
XUV-pump IR-probe numerical simulation: (1) in the field-
free interval between pump and probe, (2) immediately after
the IR-probe, and (3) shortly after the 1s direct-ionization
component of the wave function has been absorbed by the box
boundaries. The figure also illustrates the remarkable energy

FIG. 12. Resonant photoelectron spectrum in the proximity of
the DES below the N = 2 threshold, at various times during the
propagation (earlier to the left, later to the right) and at various levels
of detail (lower on top, higher on bottom). Left column: before the
IR, central column, immediately after the IR, τ = 400 a.u., when
only the 1Po states are visible. Central column: immediately after the
IR pulse, when the spectrum already coincides with the asymptotic
observable. Right column: at t = 1400 a.u., a time sufficiently large
for both the direct-ionization electrons created by the initial XUV
pulse and the sideband free electrons created by the action of the
VIS probe pulse on the metastable part of the wave packet to reach
the box boundary and be absorbed. As a consequence, the plot mostly
represent the energy spectrum of the nondecayed localised part of the
doubly excited wave packet.

resolution that can be achieved by computing the photoelec-
tron spectrum from the projection of the wave packet on the
scattering states of the many-body field-free Hamiltonian. The
spectrum before the probe pulse is just a replica of the plot in
Fig. 11, since the 1sεp channel has a trivial cos2 θ angular dis-
tribution, with a single node at θ = 90◦. The interaction with
the probe pulse gives rise to new features in the spectrum, such
as new resonant profiles with zero or two angular nodes arise,
the most prominent of which is the isotropic line at −3.3 eV
below the N = 2 threshold, corresponding to the well-known
2p2 1Se resonance. Other prominent pump-probe features are
the multiphoton sidebands of the 1Po DESs, which interfere
with the nonresonant one-photon ionization amplitude giving
rise to group of fringes such as the one at −7 eV below the
N = 2 threshold.
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FIG. 13. Time invariance of the projection on scattering states.
Partial fully differential photoelectron distribution in the 2s channels,
as a function of the photoelectron energy and ejection angle, for a
sample pump-probe time delay τ = 9.68 fs (400 a.u.), obtained pro-
jecting the time-dependent wave packet at two different propagation
times, tproj = 15.72 fs (650 a.u.) and tproj = 33.86 fs (1400 a.u.).

Using a moderately intense IR probe pulse in association
with an XUV pulse that brings the system to the region of
the doubly excited states is an efficient way of populating
doubly excited states with symmetries other than 1Po. This
is because, in contrast to excitations from the ground state,
the dominating configuration requires to be changed by just
one electron for radiative transitions between doubly excited
states. Indeed, doubly excited states of 1Se and 1De symmetry
are clearly visible in the spectra in Fig. 12. Furthermore, the
dipole propensity rules that say that in one-photon transitions
from symmetrically excited states (including the ground state)
the + states (cf. Fig 2) are predominantly populated [105,106]
do not apply to transitions between doubly excited states.
XUV-pump IR-probe spectroscopy, therefore, is a valid way
of detecting DES with arbitrary symmetry, alternative e.g., to
the measurement of nondipole effects in one-photon ioniza-
tion [107,108].

As explained in Sec. II, the photoelectron distribution is
computed by projecting the wave packet on a set of field-free
multichannel scattering states. Since these states are eigen-
states of the Hamiltonian, their population does not change
with time, which means that the projection can be taken at
any time between the end of the external pulses and the time
at which the electrons in the channel and energy range of
interest reach the absorption boundary of the quantization
box. The time invariance of the photoelectron spectrum with
respect to the time of projection is a major feature of the
present approach, since it does not require to wait for all
the relevant component of the wave function to reach large
distances from the reaction center. Figure 13 illustrates the
time invariance of the final scattering-state population for
the pump-probe simulation with XUV-pump IR-probe delay
τ = 9.68 fs, carried out in velocity gauge. The figure shows
the photoelectron distribution in the 2s channel, differential in
both energy and photoemission angle, computed by projecting
the time-dependent wave packet on the scattering state at two
different times: (1) immediately after the end of the IR pulse,
tproj = 15.72 fs, and (2) at a much later time, tproj = 33.86
fs from the center of the XUV pulse. The two distributions

FIG. 14. Partial fully differential photoelectron distribution in
the 2s and 2p channels, as a function of the photoelectron energy
and ejection angle, for a sample pump-probe time delay τ = 16.93 fs
(700 a.u.), computed in both velocity and length gauge.

are virtually identical, which demonstrates the effectiveness
of this approach.

In time-dependent calculations involving multiphoton and
possibly nonperturbative transitions, gauge agreement re-
quires not only convergence with respect to the configuration
space in any given symmetry, but also convergence of the
time-dependent wave packet expansion with respect to the
total angular momentum, as well as of the time integration
itself. Under the influence of an intense long-wavelength ex-
ternal field, the velocity of a free electron undergoes large
oscillations. In length gauge, where canonical momentum
�pi and velocity coincide, therefore, the angular momentum
�� = �r × �p also makes large excursions [89]. In velocity gauge,
instead, the canonical momentum for a free electron is a good
quantum number. As a consequence, the expansion with re-
spect to Lmax usually has a more rapid convergence in velocity
than in length gauge.

The lack of radiative coupling between free-electron states
in velocity gauge is reflected also in the coupling between
helium parent-ion states. The 2s and 2p He+ hydrogenic states
have a finite dipole matrix element 〈2s|r1|2p〉 and, within
the electrostatic approximation, they are degenerate. In an
external static field, these two properties give rise to a strong
polarization of the ion (anomalous Stark shift). For the same
reason, in length gauge, an intense external field causes the
state of the ion to periodically oscillate between the 2s and
2p states. When integrating the TDSE numerically in the
length gauge, therefore, this oscillation is an additional source
of error that can give rise to unphysical radiative coupling
between 2sε� and 2pε� channels. This circumstance is to be
contrasted with the calculation in velocity gauge, where all
degenerate states are rigorously radiatively decoupled,

〈�i| �P|� j〉 = i(Ei − Ej )〈�i| �R|� j〉. (41)
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FIG. 15. Symmetry-resolved partial differential photoelectron distributions in the 2s and 2p channels as a function of the time delay and
of the photoelectron energy in velocity gauge (top figure) and in length gauge (bottom figure).

In the present calculation, a maximum total angular mo-
mentum Lmax = 9 is sufficient to reach convergence with
respect to this parameter, in both the length and velocity
calculation.

Figure 14 compares the partial photoelectron distribution,
fully differential in energy and emission angle, computed in
the two gauges, in the case of the pump-probe time delay
τ = 16.93 fs. The distributions are virtually identical in the
two gauges, which is all the more impressive since the data
are represented on a logarithmic scale. Figure 15 shows
the 2s and 2p photoelectron distributions, resolved by total
symmetry and as a function of the pump-probe delay, com-
puted in velocity and in length gauge. The calculations are
clearly converged with respect to the total angular momentum.
Indeed, the largest angular momentum with an appreciable
population is L = 4 (1Ge). Furthermore, the 1Ge channels are
overall an order of magnitude less populated than the 1Fo

symmetry, and the 1Ge partial spectra in length and velocity
gauge are in excellent agreement. The agreement between
the two gauges is excellent for each symmetry and channel.
The only exception is the 2sε f channel, which, in the length
gauge, exhibits hyperbolic interference fringes that are a clear
signature of contamination from the strongly populated 2s and
2p 1Po channels. Whereas interference fringes are expected
for the 2pεd

1Fo channel, due to its mixing with the 2pεd
1Po channel induced by the dynamical polarization of the 2p
parent ion, there is not any such transition mechanism that
leads to the 2sε f states. The fringes predicted in length gauge
for the 2sε f , therefore, must be regarded as an indication of
the superior numerical stability of the velocity gauge, for this
system and for the propagator implemented here. The overall
agreement between the two gauges is nonetheless excellent.

The use of a Ramsey-like spectroscopy with ultrashort
XUV pulses to study coherent excitation of highly excited,
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FIG. 16. Partial differential photoelectron distributions in the 2s and 2p channels as a function of the time delay and of the photoelectron
energy in velocity gauge. The windowed Fourier transform of the transient partial photoelectron spectrum with respect to the pump-probe delay
reveals several slanted and vertical traces. The slanted traces, which are responsible for the characteristic hyperbolic fringes in the spectrum,
are due to the beating between the direct shake-up one-photon amplitude, and the indirect multiphoton ATI photoionization amplitude of the
DESs. The vertical traces, instead, correspond to the beating between the ATI amplitudes from different intermediate DESs. Some of the most
visible traces have been indicated in the picture.

and in particular of autoionizing, states was proposed already
in 1998 by Cavalieri and Eramo [109] and demonstrated
experimentally on krypton autoionizing states shortly there-
after [110]. The interference fringes reported in Fig. 16 are
the multichannel equivalent of the phenomenon originally
reported in 2010 by L’Huillier and coworkers [111]. These
interferences have an holographic character, i.e., they result
from the interplay between a preexisting reference amplitude
and a second signal which originate from the interaction of
an electronic wave packet that evolves in time and an ultra-
short probe pulse. From the interference with the reference,
and by knowing some fundamental phases associated to the
radiative transition from the different components of the wave
packet to the final continuum, it is in principle possible to
reconstruct the wave packet and follow its evolution in time
[112]. The reconstruction following this approach, however,
requires that the ionization process needed to ionize the dom-
inant component of the wave packet is simple so that it
can be described in terms of few analytical parameters. In
the case of the doubly excited states of helium, however,
the most populated state requires at least three IR photons
to be brought above the N = 2 threshold, through a reso-
nant process, which introduces significant uncertainties in the
reconstruction.

Figure 17 shows the variation of the partial ionization yield
in the 2s and 2p channels, computed using Eq. (33). The
2� partial yields for a large negative time delay (only the
XUV pump pulse has a role) are P2s(−∞) = 1.15[−8] and
P2p(−∞) = 3.49[−8], irrespective of whether the calculation
is performed in length or in velocity gauge. In this calculation,
the 2s and 2p yields exhibit large oscillations at the frequency
Esp+

3
− Esp+

2
of the beating between the two dominant compo-

nents of the metastable wave packet. These oscillations have
comparable amplitudes for the two ions, and they are almost
in antiphase. When considered together, the two modulations
almost compensate, and, as a consequence, the N = 2 exci-
tation probability becomes dominated by the beating between
the sp+

3 and the sp+
4 state, the following term in the sp+ series.

When compared to the small-basis case shown in Fig. 9, where
the phase offsets between the 2s and 2p yields is just ∼π/3,
these results demonstrate how dynamic electronic correlation
and the polarizability of the parent ion have a dramatic impact
on the ionization branching ratio. In particular, both electrons
in the sp+

2 and sp+
3 DESs must be strongly affected by the

dressing field. Furthermore, these results also suggest that
the parent ion emerging from the ionization event is strongly
polarized.

Gilbertson et al. [52] have realized a pump-probe experi-
ment very similar to the one considered here, in which they
monitored the signal of the fast electrons in the 1s channel,
in the energy region close to the sp+

2 state. Whereas this
observable is not equivalent to the N = 2 yield, it is almost
complementary to it. The signal in Gilbertson’s experiment
drops sharply in the transition from negative to positive time
delays, to recover exponentially for larger time delays, with a
characteristic time that coincides with the lifetime of the sp+

2
resonance [see Fig. 2(b) in [52]]. The exponential recovery of
the ionization signal was presented as the most prominent re-
sult of that work. A smooth exponential recovery of the signal
was confirmed shortly thereafter in a theoretical paper based
on a simplified few-level model [113]. The 1s experimental
resonant yield shown in Fig. 2(b) of [52], P1s(τexp), which in
the original paper is normalized to one, has been plotted in
the top panel of Fig. 17 as A[1 − P1s(τexp − 6 fs)], alongside
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FIG. 17. Top panel: Transient yields P̄a(τ ) = Pa(τ ) − Pa(−∞)
of the He+ parent ions, as a function of the pump-probe time delay.
P̄2s (lowest curve, blue online), P̄2p (middle curve, red online), and
P̄2� = P̄2s + P̄2p (top curve, black online). The 2s and 2p yields oscil-
late almost in antiphase. The yellow bullets represent the decrease
in the 1sε� photoelectron signal close to the sp+

2 resonance in an
experiment from 2010 [52]. The experimental data have been shifted
in time, τexp �→ τ ′

exp = τexp + 6 fs, and the relative signal has been
scaled to match the simulation. Bottom panel: comparison between
the ionization yields computed in velocity (solid thin lines) and in
length gauge (dashed thick lines), in a 5 fs interval where the pump
and probe do not overlap.

our theoretical prediction for the N = 2 yield, where A is a
scaling constant. It is clear that, on top of the exponential
profile, the experimental data exhibit also prominent broad
fluctuations with frequency similar to that of the sp+

4 − sp+
3

beating. Even in this rough comparison, the experimental fluc-
tuations seem to mirror those observed in the complementary
N = 2 ionization-yield observable computed in the present
work. It is possible, therefore, that the modulation in the
experimental data in [52] are the first experimental evidence
of coherence in an autoionizing wave packet, rather than mere
noise of instrumental origin, which would then predate by

four years the reconstruction of the coherently excited sp+
2/3

metastable wave packet with optical methods [26]. Additional
investigations are needed to confirm this point. Our findings
demonstrate the need of using accurate ab initio representation
of the system, whenever intense probe pulses are used. Indeed,
simple analytical models [113,114] or even minimal ab initio
close-coupling representations can miss important aspects of
the ionization dynamics.

IV. CONCLUSIONS

We have shown how a time-dependent close-coupling
code, in association with the projection on scattering states,
is an ideal tool to reproduce the asymptotic photoionization
distribution in the interaction of polyelectronic atoms with
sequences of ultrashort laser pulses. The results reported here
using a extensive correlation space show excellent agreement
between length and velocity gauge in all the partial differential
observables of interest. In particular, the original prediction of
an off-phase oscillation of the 2s and 2p branching ratios in
the shake-up XUV-pump IR-probe ionization of helium is not
only confirmed, but shown to be even larger, once correlation
is fully taken into account.
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