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Quantum state driving along arbitrary trajectories
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Starting with the quantum brachistochrone problem of the infinitesimal form, we solve the minimal time and
corresponding time-dependent Hamiltonian to drive a pure quantum state with limited resources along arbitrary
preassigned trajectories. It is also shown that out of all possible trajectories with limited resources, which are
physically accessible and which are not. The solution is then generalized to the mixed quantum state cases and
applied to trajectories parametrized by single or multiple parameters with a discrete or continuous spectrum.
We then compare the solution to that of the counterdiabatic driving and show how the Berry phase is directly
involved in both driving processes.
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I. INTRODUCTION

An important problem in quantum control theory is how to
act on a quantum system so as to drive the state to a desired
goal. The idea of quantum speed limit, first rigorously derived
in Ref. [1], and latter extensively developed by Refs. [2–17],
denotes the minimal time τQSL it takes for an undriven pure
quantum state |ψi〉 to evolve to |ψ f 〉. It turns out that for the
discrete spectrum case in a closed quantum system, τQSL is
given by the larger value [6] of the Mandelstam-Tamm (MT)
bound [1] and the Margolus-Levitin (ML) bound [4],

τQSL = max

⎧⎪⎪⎨
⎪⎪⎩

h̄ arccos |〈ψi|ψ f 〉|
�E︸ ︷︷ ︸

MT bound

,
h̄ arccos |〈ψi|ψ f 〉|

E︸ ︷︷ ︸
ML bound

⎫⎪⎪⎬
⎪⎪⎭, (1)

where �E = (〈H〉2 − 〈H2〉)1/2 and E = 〈H〉 − Eground. Gen-
eralizations to the mixed quantum state [6], thermal state
[16], and open quantum systems [9,12,14,18] have also been
performed.

However, if one is allowed to manipulate the Hamilto-
nian H (t ) during the evolution |ψi〉 → |ψ f 〉 to minimize the
evolution time, then, it becomes a time-optimization prob-
lem known as quantum brachistochrone, in analogy to the
famous brachistochrone problem posed by Bernoulli in 1696.
The quantum brachistochrone problem was first examined by
Carlini et al. [19]. In their paper, they solved for the optimal
Hamiltonian to drive a given initial state |ψi〉 to a given final-
state |ψ f 〉 in a time-optimal way, through the method of the
Lagrangian multiplier and variational principle. It is found
that with limited resources, meaning specifically that the the
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variance of the Hamiltonian �H2 is bounded by some value
ω2 and no other constraints, the optimal Hamiltonian, which
is time independent, is given by (we set h̄ = 1)

H = iω(|ψ ′
f 〉〈ψi| − |ψi〉〈ψ ′

f |), (2)

where |ψ ′
f 〉 is the Gram-Schmidt orthonormalized state with

respect to |ψi〉 such that 〈ψ ′
f |ψi〉 = 0; see Fig. 1(a) for a more

intuitive understanding. The optimal time then is given by

T = 1

ω
arccos |〈ψi|ψ f 〉|. (3)

These concepts are limited to optimizing the time taken
between fixed initial and final conditions.

II. ARBITRARY QUANTUM TRAJECTORIES

Here, we give the problem to be solved in this paper. Sup-
pose that instead of studying evolutions between two fixed end
points, one with limited resources is interested in driving time
optimally a quantum state along preassigned continuous tra-
jectories |ψ (t )〉, then, what Hamiltonian H (t ) will one need?
Since we already know the optimal Hamiltonian that drives
|ψi〉 to |ψ f 〉, we can cut the trajectories into infinite number
of infinitesimal pieces with |ψ (t )〉 being the initial state and
|ψ (t + δt )〉 being the final state, so as to apply the piecewise
constant optimal Hamiltonian given by Eq. (2) [Fig. 1(b)],

H (t ) = iω(t )[|ψ ′(t + δt )〉〈ψ (t )| − |ψ (t )〉〈ψ ′(t + δt )|]. (4)

By using Taylor series,

|ψ (t + δt )〉 = |ψ (t )〉 + δt |∂tψ (t )〉 + O(δt2)

∂t |ψ (t + δt )〉 = |∂tψ (t )〉 + δt |∂ttψ (t )〉 + O(δt2), (5)

and constructing |ψ ′(t )〉 by the Gram-Schmidt process from
|ψ (t − δt )〉 and |ψ (t )〉,

|ψ ′(t )〉 = |ψ (t )〉 − 〈ψ (t − δt )|ψ (t )〉|ψ (t − δt )〉
sin �(t − δt )

,

sin �(t ) =
√

1 − |〈ψ (t )|ψ (t + δt )〉|2, (6)
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FIG. 1. (a) State |ψ ′
f 〉 is constructed by the Gram-Schmidt pro-

cess from |ψi〉 and |ψ f 〉 such that 〈ψi|ψ ′
f 〉 = 0. As visualized by

the Bloch sphere for two-level system, this means for |ψi〉 to time
optimally evolve to |ψ f 〉, it is sufficient to let it evolve along the great
circle formed by |ψi〉 → |ψ f 〉 → |ψ ′

f 〉. The idea also applies to the
n-level quantum system. (b) For any continuous quantum trajectories
|ψ (t )〉, we can always cut it to an infinite number of infinitesimal
pieces, then apply the time-optimal evolution strategy shown in panel
(a) for each piece.

where sin �(t ) serves as a normalization factor, one may
rewrite |ψ ′(t + δt )〉 in terms of |ψ (t )〉, |∂tψ (t )〉, and |∂ttψ (t )〉.
Dropping the higher-order terms δt2, and rewriting outstand-
ing δt according to Eq. (3), one obtains

H (t ) = i[|∂tψ (t )〉〈ψ (t )| − |ψ (t )〉〈∂tψ (t )|]. (7)

By requiring H (t ) to satisfy the Schrödinger
equation i|∂tψ (t )〉 = H (t )|ψ (t )〉, we need to have
〈∂tψ (t )|ψ (t )〉 = 0. This can be achieved via fixing the
U (1) gauge by defining

|ψ̃ (t )〉 = eiφ(t )|ψ (t )〉, (8)

such that 〈∂t ψ̃ (t )|ψ̃ (t )〉 = 0, which gives

φ(t ) =
∫

−i〈∂tψ (t )|ψ (t )〉dt ∈ R. (9)

This is essentially canceling the open-path Berry phase as
t can also be regarded as a parameter for the purpose of
calculating the Berry phase. One, then, obtains the optimal
Hamiltonian,

H (t ) = i(|∂t ψ̃ (t )〉〈ψ̃ (t )| − |ψ̃ (t )〉〈∂t ψ̃ (t )|) + φ̇(t )1, (10)

which is one of our main results. Note that this is equivalent
to solving the Schrödinger equation in a reverse way. The φ̇(t )
term is used to cancel the eiφ(t ) phase term such that H (t ) will
actually drive |ψ (t )〉 not |ψ̃ (t )〉. Other selections of real func-
tions can also be added to H (t ) as long as the eiφ(t ) phase term
is canceled. One can thereby drive any continuously changing
pure quantum state |ψ (t )〉, at least, in principle, by applying
a control Hamiltonian Hc(t ) given by Hc(t ) = H (t ) − Hs(t ),
where Hs(t ) is the Hamiltonian of the original system. Such
a control Hamiltonian can be implemented via various tech-
niques, e.g., linear combinations of unitary operators [20],
truncated Taylor series [21], qubitization [22], unitary decom-
position of operators [23], etc.

It is easy to check that

〈H (t )〉t = 〈ψ (t )|H (t )|ψ (t )〉 = φ̇(t ),

[�H (t )]2 = 〈∂tψ (t )|∂tψ (t )〉 − φ̇2(t ) ≡ ω2(t ), (11)

which means if our resources are limited in a way that

sup
t

[�H (t )]2 = ω2
max, (12)

with no other constraints, then only the paths satisfying

‖|∂tψ (t )〉‖ �
√

ω2
max + φ̇2(t ) (13)

are physically accessible. It is then obvious to see that the
minimal time is achieved when the equality holds for all time.
Since |ψ (t )〉 and |ψ̃ (t )〉 are essentially the same quantum state
up to a global U (1) phase, we will consider |ψ̃ (t )〉 only in
the following, indicating φ̇(t ) = 0. Readers can always trans-
form back and forth between |ψ (t )〉 and |ψ̃ (t )〉 according to
|ψ̃ (t )〉 = eiφ(t )|ψ (t )〉 and Eq. (9).

For a general n-level system expanded in its eigenbasis
|ψ̃ (t )〉 = ∑n

i ai(t )|ψn〉, where ai(t ) is some function such that∑
i |ai(t )|2 = 1, the requirement ‖|∂t ψ̃ (t )〉‖ = ωmax is equiv-

alent to
√∑n

i |ȧi(t )|2 = ωmax where the dot over ȧ denotes the
time derivative. It is very interesting to see how it enjoys the
similar form as that of a classical free particle, parametrized
by {xi(t )} in the position space and with speed vmax, traveling

in n-dimensional space
√∑n

i ẋ2
i (t ) = vmax, except that, in

general, ai(t ) ∈ C whereas xi(t ) ∈ R.
Now to make the problem a little bit more realistic,

let us suppose we want to drive the quantum state along
a preassigned s-parametrized trajectory |ψ[x(s)]〉, which
can be transformed to its U (1) gauge equivalent state
|ψ̃[x(s)]〉 = eiφ[x(s)]|ψ[x(s)]〉 such that dφ/dx = 0, where
φ[x(s)] = ∫ −i〈∂xψ[x(s)]|ψ[x(s)]〉(dx/ds) ds. For now, we
do not know the explicit time dependency of the general
parameter x. Here, the general parameter x can denote posi-
tion, momentum, the angular frequency of an oscillator, or
any other parameters we want to manipulate. We would like
to solve for time t in terms of a function of x(s) such that
t = f [x(s)] to obtain |ψ̃[ f −1(t )]〉 so that we can apply all the
previous results we just derived. This can be performed by

t (xs0→s1 ) =
∫ t1

t0

√
ω2(t )√
ω2(t )

dt =
∫ s1

s0

∥∥∣∣∂xψ̃[x(s′)] dx
ds′

〉∥∥
ω[x(s′)]

ds′,

(14)

where we have used Eq. (11) and the change in variables.
The above equation of t (xs0→s1 ) denotes the time needed to
time optimally drive the quantum state along the path x(s0) →
x(s1) given bounded energy variance ω2(t ).

The above idea, applicable to the discrete-spectrum and
single-parameter cases, can also be easily generalized to the
continuous-spectrum (e.g., position or momentum) and multi-
parameter case. One, then, may utilize the generalized formula
to the continuous-spectrum case to calculate corresponding
quantum speed limit, which cannot be performed by the orig-
inal MT or ML formula [Eq. (1)]. See Fig. 2 and Table I for
details.
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FIG. 2. Schematic of initial and final wave packets under
different spatial separations in the position space. The formula
arccos |〈ψi|ψ f 〉| to characterize the distance between two quantum
states clearly is not suitable to the case of continuous spectrum.
One obtains arccos | ∫ ψ∗

f (z)ψi(z)dz| ≈ arccos | ∫ ψ ′
f
∗(z)ψ ′

i (z)dz| ≈
π/2, but obviously the two wave packets in the lower figure are much
more separated, indicating the breakdown of MT/ML formulas.

III. THE CONNECTION
TO COUNTERDIABATIC DRIVING

Readers familiar with counterdiabatic driving, which has
many applications in quantum metrology [24–28], may have
noted some interesting similarities between the optimal
Hamiltonian we just derived and the counterdiabatic Hamil-
tonian appears in the literature [29–32],

HCD(t ) = −Hs(t ) + i
∑

n

|∂tψn(t )〉〈ψn(t )|, (15)

where Hs(t ) is the original Hamiltonian of the system and
|ψn(t )〉 is the instantaneous eigenstate of Hs(t ). To see the
connection more clearly and help readers less familiar with
counterdiabatic driving to understand, let us go back the
the adiabatic theorem. The adiabatic theorem states that if a
quantum state |ψn(0)〉 is at the instantaneous eigenstate of a
slowly changing Hamiltonian, then, it will continue to be the
same instantaneous eigenstate at a later time t up to a phase
eiθn (t )eiγn (t ), where θn(t ) = − ∫ t

0 En(t ′)dt ′ is the dynamic phase
and γn(t ) = ∫ t

0 i〈ψn(t ′)|ψ̇n(t ′)〉dt ′ is the Berry phase.
Although the physical meaning of the dynamic phase is

very clear, as En(t ) is nothing but the instantaneous eigenen-
ergy, the physical meaning of the Berry phase, especially the
i〈ψn(t )|ψ̇n(t )〉 term, is not so clear. To give further insight,
we note that if |ψ (t )〉 satisfies the Schrödinger equation, the
form of i〈ψ (t )|ψ̇ (t )〉 is equivalent to 〈H (t )〉t if one restores i∂t

TABLE I. The time t needed to drive the quantum state
along the trajectory parametrized by the generalized parameter
�x(s) = [x1(s), x2(s), . . . , xi(s)]T for the discrete/continuous spec-
trum and single/multiple-parameter cases. Note that �x can always
be parametrized by another parameter s so the multiple-parameter
case can be reduced to the single one. The �z in the equations on the
right denotes the variable one needs to integrate over the infinite-
dimensional Hilbert space, e.g., the position or momentum. The
symbol ̃(�x, �z) denotes the wave function in L2(Rn) such that
|ψ̃ (�x, �z)〉 = ∫

̃(�x, �z)|�z〉dnz.

Discrete Continuous (n dimensional)

t = ∫ ‖|∂x ψ̃[x(s)]〉 dx
ds ‖

ω[x(s)] ds, t = ∫ √∫ | ∂̃(x,�z)
∂x

dx
ds |2dnz

ω[x(s)] ds

t = ∫ ‖|∂�x ψ̃[�x(s)] d�x
ds 〉‖

ω[�x(s)] ds, t = ∫ √∫ | ∂̃(�x(s),�z)
∂�x

d�x
ds |2dnz

ω[�x(s)] ds

to H (t ),

i〈ψ (t )|ψ̇ (t )〉 = 〈ψ (t )|iψ̇ (t )〉 = 〈ψ (t )|H (t )|ψ (t )〉 = 〈H (t )〉t ,

(16)

indicating i〈ψ (t )|ψ̇ (t )〉 has a clear physical meaning. We
would like to apply the same trick to i〈ψn(t )|ψ̇n(t )〉, but
unfortunately, the instantaneous eigenstate does generally not
satisfy the Schrödinger equation: i∂t |ψn(t )〉 �= H (t )|ψn(t )〉.
To get around this, let us suppose for the moment, there
exists such Hamiltonian, denoted as H ′(t ), which happens to
satisfy the Schrödinger equation for each of its instantaneous
eigenstates,

i∂t |ψn(t )〉 = H ′(t )|ψn(t )〉, n = 0, 1, 2, . . . , (17)

then, according to the same argument, i〈ψn(t )|ψ̇n(t )〉 is equiv-
alent to the expectation value of H ′(t ),

i〈ψn(t )|ψ̇n(t )〉 = 〈ψn(t )|H ′(t )|ψn(t )〉 = 〈H ′(t )〉t . (18)

The Berry phase can thereby be interpreted as the time integral
of the expectation value of H ′(t ), i.e., γn(t ) = ∫ t

0 〈H ′(t ′)〉dt ′.
Hence, the total phase can be rewritten as

exp(iθn(t )) exp(iγn(t )) = exp

(∫ t

0
−i〈Hs(t

′) − H ′(t ′)〉dt ′
)

.

(19)

Fortunately, the explicit expression of H ′(t ) is not difficult to
find

H ′(t ) = i
∑

n

|∂tψn(t )〉〈ψn(t )|. (20)

Note that, even though only the term i|∂tψm(t )〉〈ψm(t )| is
really driving the quantum evolution of |ψm(t )〉, all other
dim H ′ − 1 terms should still be included in order to keep the
general Hermiticity of H ′(t ).

The benefit of the above interpretation is that if one wants
to get rid of the phase eiθn (t )eiγn (t ), one only needs to apply a
control Hamiltonian, also called the counterdiabatic Hamilto-
nian HCD(t ) in this case by letting HCD(t ) just be the negative
of Hs(t ) − H ′(t ),

HCD(t ) = −[Hs(t ) − H ′(t )]. (21)

The total Hamiltonian that actually guides the evolution of the
system with HCD(t ) applied, is then,

Htotal(t ) = Hs(t ) + HCD(t ) = H ′(t ). (22)

That is to say, the “nice” Hamiltonian H ′(t ) we just proposed
is not just hypothetical, but a real one, which actually governs
the system, if HCD(t ) is applied.

Compare the above H ′(t ) with the arbitrary-trajectory-
driving Hamiltonian we derived earlier

H ′′(t ) = i[|∂t ψ̃ (t )〉〈ψ̃ (t )| − |ψ̃ (t )〉〈∂t ψ̃ (t )|] + φ̇(t )1,

where we have used double primes to clearly distinguish it
from H ′(t ). What are their connections? The idea is that, if
H ′′(t ) can guide any trajectories, it must also be able to guide
counterdiabatic driving evolution, i.e., H ′′(t ) should be able to
play the role of H ′(t ). On the contrary, any trajectories |ψ (t )〉
a quantum state undergoes can be viewed as being at the in-
stantaneous eigenstate |m(t )〉 of some unknown Hamiltonian
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H(t ). Hence, one will always be able to apply the counterdia-
batic driving Hamiltonian HCD(t ) such that H ′(t ) = H(t ) +
HCD(t ) = i[

∑
n |∂tn(t )〉〈n(t )|], which does not need the

φ̇(t ) term because it is already implicitly included. In this
case, one needs to “make up” the other dim H − 1 terms
orthonormal to |m(t )〉. Those terms do not really help the
driving of the desired state |m(t )〉 but are merely used as a
means to keep the general Hermiticity of H ′(t ), therefore, this
approach is less convenient when dim H becomes large (and
impossible if dim H → ∞). To summarize, both H ′(t ) and
H ′′(t ) contain the key driving term i|∂tψ (t )〉〈ψ (t )|, and some
other “useless” terms merely to keep the Hermiticity.

IV. THE GENERALIZATION TO MIXED QUANTUM STATE

Below, we briefly describe how one can generalize the
above results to the mixed quantum state cases. Let the preas-
signed density matrix trajectories ρ(t ) = ∑

n pn|n(t )〉〈n(t )| at
time t be diagonalized in its instantaneous eigenvector |n(t )〉
basis with

∑
n pn = 1. We can obtain |ñ(t )〉 = eiφn (t )|n(t )〉 by

Eq. (9) for each of the eigenvectors in {|n(t )〉} from which we
can define ρ̃(t ) = ∑

n pn|ñ(t )〉〈ñ(t )|. The Hamiltonian H̃ (t )
driving ρ̃(t ) is then given by

H̃ (t ) = i

2

∑
n

[| ˙̃n(t )〉〈ñ(t )| − |ñ(t )〉〈 ˙̃n(t )|]. (23)

This can be verified by taking the time derivative
of 1 = ∑

n |ñ(t )〉〈ñ(t )| to obtain
∑

n | ˙̃n(t )〉〈ñ(t )| =
−∑

n |ñ(t )〉〈 ˙̃n(t )|, transforming the Hamiltonian into H (t ) =
i
∑

n | ˙̃n(t )〉〈ñ(t )|, which interestingly is exactly of the form
Eq. (20). This suggests a canonical way of applying Eq. (20)
to drive pure quantum states along designed trajectories since
every pure quantum state can be written in the density-matrix
form. The energy variance is given by

[�H (t )]2 =
∑
n,m

pm|〈m̃(t )| ˙̃n(t )〉|2. (24)

By a similar argument, if the density state ρ̃[x(s)] is
parametrized by a general single parameter x for which we
need to solve explicitly the dependency on t , then, for the
discrete spectrum case, it is given by

t (xs0→s1 ) =
∫ s1

s0

√∑
n,m pm

∣∣〈m̃[x(s)]
∣∣∂xñ(x) ∂x

∂s

〉∣∣2

ω[x(s)]
ds. (25)

The expression for multiparameter and continuous-spectrum
case can be similarly derived.

V. EXAMPLE

A. Landau-Zener model

To show explicitly how the results we obtained can be
made use of, consider the Landau-Zener model with Hamil-
tonian HLZ(�),

HLZ[�(t )] =
(

�(t ) ε

ε −�(t )

)
. (26)

At the current stage, the only thing we know is that �

will begin changing monotonically at time t = −T and stop

changing at some final time t = T where T is not yet de-
termined, but under the constraint �(−T ) = −�(T ) = −�0

such that the Hamiltonian has symmetric end points. We want
our quantum state, starting at the instantaneous ground-state
|ψ−[�(−T )]〉 of HLZ[�(−T )], to evolve along the instanta-
neous ground state of HLZ(�) as it changes. We may apply
any control Hamiltonian to accelerate the process, but the total
Hamiltonian is subject to the constraint �H(t )2 � ω2

max due to
limited resources.

For simplicity, let us consider t � 0 only as t � 0 can be
similarly obtained. To calculate the minimal time it takes for
|ψ−(0)〉 → |ψ−(�0)〉, we only need to apply Eq. (14) and let
ω(�) = ωmax for all �,

t (�) =
∫ �

0

‖|∂�′ψ−(�′)〉‖
ωmax

|d�′| = arctan(�/ε)

2ωmax
, (27)

where we have used the fact that |ψ (�)〉 = |ψ̃ (�)〉. Under
the limit �0 → ∞, we have lim�0→∞ 2t (�0) = π/2

ωmax
, which

is exactly the quantum speed limit obtained by Eq. (1); see
also Refs. [13,33,34]. The expression of t (�) gives �(t ) =
ε tan (2tωmax) from which we can obtain the expression of
|ψ−[�(t )]〉 immediately. Apply Eq. (10) to obtain the optimal
total Hamiltonian H for t � 0 (and via the similar way for
t � 0),

H (t ) =
(

0 iωmax

−iωmax 0

)
, t ∈ [−t (�0), t (�0)]. (28)

Note that the Hamiltonian is different from the results in
literature [13,33,34] where only up to two operators σx and
σz are allowed for manipulation.

B. Moving squeezing Gaussian wave packet

The ground-state wave function centered at z = −x of
the 1-d quantum simple harmonic oscillator is a Gaussian
function,

ψ0[(x, ω); z] =
(

mω

π h̄

)1/4

exp

(
− mω

2h̄
(z + x)2

)
, (29)

where x and ω are the tunable parameters and z denotes
the position. Suppose we want the Gaussian wave packet to
travel along the +z-direction, whereas, increasing the angular
frequency ω of the oscillator such that the parameters x and ω

are satisfied by the following parametric equation:

x(s) = μs

ω(s) = ω0/s2, (30)

with dimensionless parameter s decreasing from 1 to s f where
s f ∈ (0, 1), and μ is a factor with unit m such that μs also has
unit m. By applying a control Hamiltonian and under limited
resources, i.e.,

∫ |ψ̇0{[x(t ), ω(t )]; z}|2dz = ε2h̄2 = const ., we
want the s-parametrized wave packet ψ0{[x(1), ω(1)]; z}
evolves to its final state ψ0{[x(s f ), ω(s f )]; z} time optimally.
To solve the problem, we apply Eq. (14) (remember to put h̄
back), and use the fact that ψ0(s) = ψ̃0(s),

t (s f ) =
∫ s f

1

√∫ ∞
−∞ |∂sψ0{[x(s), ω(s)]; z}|2h̄2dz

ε h̄
|ds|

⇒ s f (t ) = e−ηεt , t ∈ [0, t (s f )] (31)
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FIG. 3. The wave function ψ0[z(t )] at different time t . We set
m = ω0 = μ = h̄ = 1.

where η =
√

2h̄/(μ2mω + h̄). Insert s f (t ) back to
ψ0{[x(s), ω(s)]; z} to obtain the wave function (Fig. 3),

ψ0(z, t ) =
(

mω0

π h̄e−2ηεt

)1/4

exp

(
− mω0

2h̄e−2ηεt
(z + μe−ηεt )2

)
.

(32)

One can thereby apply Eq. (10) and make use of |ψ0(t )〉 =∫
ψ0(z, t )|z〉dz to construct the optimal total Hamiltonian

driving the process,

H (t ) = ih̄[|∂t ψ̃0(t )〉〈ψ̃0(t )| − |ψ̃0(t )〉〈∂t ψ̃0(t )|]
= ih̄

∫
[ ˙̃ψ0(z, t )ψ̃ (z′, t ) − ψ̃ (z, t ) ˙̃ψ (z′, t )]|z〉〈z′|dz dz′

= i
∫

ηmω0(z′ − z)

(
mω0

π h̄e−2ηtε

)1/2

[μ + (z + z′)eηtε]

× exp

(
−mω0[2μ2 + (z2 + z′2)e2ηtε + 2μ(z + z′)eηtε]

2h̄
− ηtε

)
|z〉〈z′|dz dz′, (33)

where we have used the fact that |ψ0(t )〉 = |ψ̃0(t )〉. This is
evident since

〈ψ̇0(t )|ψ0(t )〉 =
∫

∂

∂z
(αe−β(z+γ )2

)αe−β(z′+γ )2〈z|z′〉dz dz′

=
∫

−2α2β(z + γ )e−2β(z+γ )2
dz = 0 (34)

where α, β, and γ are coefficients that can be read off from
Eq. (32).

VI. DISCUSSIONS

It is worth noting that since 〈z|H (t )|z′〉 �= 0 for z �= z′, the
Hamiltonian we just solved for is nonlocal in space. One may
wonder if it is possible to find a localized Hamiltonian that
does the job, and it turns out that it is possible only in limited
cases. To better understand, consider the Bohmian mechanics,
where by writing an arbitrary wave function in the polar form
ψ = R exp(iS/h̄) and substituting it into the Schrödinger
equation ih̄ ∂ψ

∂t = (− h̄2

2m ∇2 + V )ψ , one can obtain the continu-
ity equation ∂R

∂t = − 1
2m (R∇2S + 2∇R · ∇S) and the quantum

Hamilton-Jacobi equation ∂S
∂t = −( |∇S|2

2m + V − h̄2

2m
∇2R

R ) [35].
Since the potential V only appears in the latter, it can be easily
solved

V = −∂S

∂t
− |∇S|2

2m
+ h̄2

2m

∇2R

R
. (35)

Note that the potential V obtained in this way will always be
localized (i.e., 〈z|V |z′〉 = 0 for z �= z′) since we have assumed
it to be so in the Schrödinger equation ih̄ ∂ψ

∂t = (− h̄2

2m ∇2 +
V )ψ . However, such a solution of the potential V is valid only
if we also plug R and S into the continuity equation, which

as a constraint restricts the class of possible solutions of the
Hamiltonian given its assumed form. For the subclass of the
wave functions where R and S satisfy the continuity equation,
this suggests that we can always find a local potential V that
generates the dynamics described by the wave-function ψ ; for
the subclass of the wave functions where R and S does not
satisfy the continuity equation, however, this implies that there
does not exist a local potential generating the dynamics of the
wave-function ψ .

To give a concrete example, consider the following 1-d
wave packet,

ψ (z, t ) =
(

mω

π h̄

) 1
4

exp
(
−mω

2h̄
(z − μt )2

)

× exp

(
i

(√
mh̄ωz − 1

2
h̄ωt

)/
h̄

)
. (36)

By writing ψ (z, t ) in the polar form to obtain R and S, and
using the equation Eq. (35), one can solve for V ,

V = − 1
2 h̄ω + 1

2 mω2(z − μt )2. (37)

Now, plug R and S also into the continuity equation, which
gives rise to the constraint μ = √

h̄ω/m. This means that
for this particular wave-function ψ (z, t ), a localized driving
potential is possible if and only if ψ (z, t ) travels at the speed
μ = √

h̄ω/m as any other choices of μ will break the conti-
nuity equation.

The above findings suggest that there exists a large class of
wave functions that cannot be described by the Schrödinger
equation with a localized potential, even for a single-particle
system [36]. Nevertheless, they can always be described with
a nonlocal Hamiltonian via Eq. (10). This kind of nonlocal
Hamiltonian does not have to be fundamental—it could also
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represent an effective potential produced by course graining
or other degrees of freedom. It is intriguing whether those
time-dependent wave functions whose existence requires a
nonlocal Hamiltonian are prevalent in reality since it seems
that they are far more in number than those which can be
described by a local Hamiltonian. A more careful study of
the properties of those peculiar wave functions and their non-
local Hamiltonians may reveal what might have been long
overlooked in the study of quantum mechanics and enable the
exploitation of their possible advantages.

VII. CONCLUSION

Our result implies that any unitarily evolved density ma-
trices, even for those that previously can only be well
described by a master equation can now be described by
a time-dependent Hamiltonian [Eqs. (10) and (23)]. For in-
stance, the formalism can be used to describe the continuous
quantum measurement process and, hence, the continuous

wave-function collapse process [37]. It can be also used to
calculated the effective Hamiltonian of a gate implementation
via quantum tomography, from which one can compare how
much the actual Hamiltonian is off from the designed Hamil-
tonian so as to correct, fine-tune, and optimize the actual
Hamiltonian used for quantum gates [38–40]. Moreover, when
the formalism is generalized for nonunitary evolutions, it
leads to a brand new and unified framework to describe the
open quantum system dynamics in all regimes [41], which
states that any continuous open quantum system dynamics
can be regarded as the combined effects of a time-dependent
Hamiltonian and probabilistic combinations of unitary opera-
tors.
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