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Dissipation and diffusion in one-dimensional solids
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Using a nonperturbative classical model for ionic motion through one-dimensional (1D) solids, we explore
how thermal lattice vibrations affect ionic transport properties. Based on analytic and numerical calculations, we
find that the mean dissipation experienced by the mobile ion is similar to that of the nonthermal case, with thermal
motion only contributing stochastic noise. A nonmonotonic dependence of drag on speed, predicted in earlier
work, persists in the presence of thermal motion. The inverse relation between drag and speed at high speeds
results in non-Fickian diffusion dominated by Lévy flights. This suppression of drag at high speeds, combined
with enhanced activation frequency, improves the particle mobility at high temperatures, where typical particles
move faster.
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I. INTRODUCTION

Understanding ionic motion through solids [1,2] has di-
rect practical applications, such as in solid electrolytes for
advanced batteries [3–5]. One major question pertaining to
these solid electrolytes is what makes a good ionic conductor?

We previously considered a simple model of ionic conduc-
tors [6]: an infinite one-dimensional (1D) chain of masses
interacting with a single mobile particle moving along the
chain (see Fig. 1). Using classical equations of motion, we
found that the particle experiences unconventional drag—it is
nonlinear and decreases at higher speeds. This unconventional
drag leads to multiple stable drift velocities when the system
is subjected to a bias.

In this study, we introduce thermal motion to the chain and
use a combination of analytical and numerical methods to ex-
plore the role that temperature plays in ionic motion. Thermal
effects can drastically change the character of ionic motion,
as shown by molecular dynamics (MD) simulations [7–9],
which use ab initio computations to predict the full dynamics
of ionic conductors (but for very short evolution times). At low
temperatures, the conducting ions “hop” between energy min-
ima in a sublattice, while at high temperatures, the sublattice
“melts” and leads to “superionic flow” [8]. Our complemen-
tary approach not only predicts long-time behavior of ionic
conductors, but also permits an explicit connection between
lattice-ion interaction properties and macroscopic transport
behavior.
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We show here that the mean dissipation of 1D ionic con-
ductors in the presence of thermal motion is the same, to
leading order, as in the nonthermal case [6], with a correc-
tion that we predict analytically and confirm numerically. We
also show that bias-supported drift velocities persist in the
presence of thermal fluctuations at sufficiently low system
temperatures. Finally, we demonstrate that unconventional
drag in these 1D conductors leads not to typical Brownian
motion but rather to a Lévy flight [10], giving rise to non-
Fickian diffusion. We expect the anomalous diffusion to arise
whenever there is a drag reduction at sufficiently high speeds,
a phenomenon that occurs in systems with a finite bandwidth
of internal degrees of freedom.

The results of our work are directly applicable to one-
dimensional [11] and quasi-one-dimensional [12–15] systems
hosting mobile ions. In addition, by focusing on a system
that is somewhat analytically tractable, we are able to eval-
uate the validity of a number of simplifying assumptions.
Thus, the intuition gained here will be vital when studying
higher-dimensional systems for which a full simplification-
free treatment might be prohibitively difficult.

In Sec. II, we discuss how the classical equations of motion
analyzed in Ref. [6] are modified in the presence of thermal
motion and outline the general contributions of fluctuation and
dissipation terms. In Sec. III, we analyze how a mobile parti-
cle dissipates energy through interactions with the chain. We
discuss some simplifying assumptions that allow us to analyt-
ically derive the statistical properties of energy loss each time
the particle passes a chain mass and compare that single-pass
model with numerical integration of the equations of motion.
We also explore how the interplay of thermal motion, dissipa-
tion, and bias influences drift velocities. Finally, considering
particles starting at rest, we calculate the thermalization and
diffusive properties of this system in Sec. IV.
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FIG. 1. Schematic of the system. A mobile particle of mass M
moves along a periodic 1D chain of N → ∞ identical masses m
separated by distance a at equilibrium. Each chain mass undergoes
harmonic motion with spring constant κ and displacement ri and
couples to its neighbor with spring constant k. The N oscillatory
modes of the chain act as a bath, absorbing and imparting energy to
the mobile particle due to the interaction U . The chain temperature
T dictates the homogeneous motion in ri.

II. ENERGY EXCHANGE

A. Model

To describe the motion of mobile particles through a
framework of masses with vibrational modes, we follow the
procedure used in Refs. [6,16,17]. We do not perform the
full derivation here, providing, instead, only the key steps to
arrive at the relevant equations. The Lagrangian describing the
system in Fig. 1 is

L = m

2

N∑
j=1

ṙ2
j + M

2

∑
i

Ṙ2
i

− κ

2

N∑
j=1

r2
j − k

2

N∑
j=1

(r j+1 − r j )
2 − U (r, R), (1)

where r and R are the vectors of the chain mass displacements
and the mobile particle positions, respectively.

The mode dispersion for the 1D chain, obtained from
Eq. (1), is given by �(q) =

√
�2

slow+(�2
fast−�2

slow) sin2(qa/2),
where �fast = √

4k/m + κ/m and �slow = √
κ/m are the

highest- and lowest-frequency modes, and a is the lattice
constant. For a chain with N masses, q = 2π j/N with
1 � j � N , so that normalizing the frequencies by the
slowest chain mode, we get

ω j =
√

1 + (
ω2

fast − 1
)

sin2

(
π j

N

)
, (2)

along with the corresponding eigenvectors ε j with entries
εg, j = e2π ig/N/

√
N , where g labels the chain mass. We use

h̄�slow, where h̄ is the reduced Planck constant, to express
all the energies in the system (e.g., � = U/h̄�slow), as well
as define a thermal frequency ωT = kBT/h̄�slow, where kB

is the Boltzmann constant. The dimensionless evolution time
of the system, τ , is also expressed through �slow via tslow =
2π/�slow, the period of the slowest chain mode.

Next, we express all the lengths in terms of the quantum os-
cillator length associated with the slowest lattice mode, lslow =√

h̄/m�slow (e.g., the lattice spacing α = a/lslow, σ = R/lslow,
ρ = r/lslow) and write M = μm, leading to the equations of

motion for the mobile particles

σ̈ j (τ ) = −(2π )2 1

μ

∑
k

d

dσ j
�[ρk (τ ), σ j (τ )], (3)

where the time derivative on the left is taken with respect to τ .
The factor (2π )2 is due to the definition of τ in terms of tslow.
Here, we assumed that the interaction between the particles
and the chain masses are pairwise and identical for each pair.

It is possible to write down a similar set of equations for
the chain masses. However, because the motion of the chain
is given by a superposition of chain harmonics, it is advanta-
geous to write down a formal solution

ρ(τ ) =
∑

j

ε j

√
n j + 1

2

√
2

ω j
e−2π iω jτ+iφ j

− 2π

∫ τ

dτ ′
↔

(τ − τ ′)∇ρ�[ρ(τ ′), σ(τ ′)], (4)


↔

(τ ) =
∑

j

ε jε
†
j

sin(2πω jτ )

ω j
, (5)

where the j summation runs over the vibrational modes. The
solution for ρ consists of two parts: the homogeneous com-
ponent, corresponding to the first term, and the particular
portion, given by the integral. Here, we choose the homo-
geneous trajectory ρH to describe the motion of the chain
masses due to thermal fluctuations, given as a sum of normal
modes ρH (τ ) = ∑

j ε jζ j (τ ). φ j is the phase of the normal
coordinate oscillation and n j , a non-negative integer, is the
excitation level of the jth mode following a Boltzmann dis-
tribution e−n jω j/ωT . The particular solution comes from the
interaction between the chain and the mobile particles with
the Green’s function matrix 

↔
connecting the force to the

displacement.
A key difference in our analysis compared with previous

work is the interplay between thermal motion of the chain and
the transport properties of the mobile masses. This stochastic
behavior necessitates statistical analysis of many individual
particle trajectories.

As it is composed of independent harmonics with random
phases and thermally distributed amplitudes, the homoge-
neous trajectory of the chain masses ρH (τ ) is a stationary
Gaussian process. Therefore, the statistical properties of ρH
can be described using the means of ρH,g and relevant covari-
ances between the individual chain displacements. Each mean
〈ρH,g(τ )〉 vanishes due to the vanishing means of the normal

coordinates. The covariance matrix is given by C
↔

(τ − τ ′) =
〈ρH (τ )ρ†

H (τ ′)〉 = ∑
jk〈ε jε

†
kζ j (τ )ζ ∗

k (τ ′)〉, where the averaging
is done over the mode phases φ j and the energy levels n j .
Because the normal modes are independent and their displace-
ments average to zero, only j = k contributes to the result,
leading to

C
↔

(τ ) =
∑

j

ε jε
†
j〈ζ j (τ )ζ ∗

j (0)〉

=
∑

j

ε jε
†
j

e−2π iω jτ

2ω j
coth

(
ω j

2ωT

)
. (6)
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FIG. 2. General example of fluctuation-dissipation. Motion of a single particle for repulsive (top row) and attractive (bottom row) Gaussian
chain-particle interaction across different temperatures (by column). All cases have chain spacing α = 40, Gaussian width λ = 4, Gaussian
amplitude �0 = ±20, and chain mass μ = 1. The particles are initialized with particle speed σ̇0 = 120 at a point halfway between chain mass
rest positions. The mobile particle trajectories σ (τ ) are shown as black lines and exhibit fluctuation-dissipation behavior, where they lose
energy to the chain and slow down, or gain energy from the chain and speed up. The displacement of 250 individual chain masses are shown
with a heatmap, with the color scale saturated to highlight the chain displacement amplitudes across different temperatures.

C
↔

has a similar form to 
↔

and is also a Toeplitz matrix so that
its elements Cj,k (τ ) = Cj−k (τ ).

As an instructive example, we computed the trajectory of
a single mobile particle of mass μ = 1 moving along a chain
with ωfast = 10 and α = 40 for several different temperatures
(see Fig. 2). We chose a Gaussian chain-particle interaction
�(x) = �0 exp(−x2/2λ2) with �0 = ±20 and λ = 4. Here
all the lengths are much greater than the quantum oscillator
length of the slowest chain mode to ensure that the system
can be seen as being firmly in the classical regime. After
initializing the mobile particle midway between two chain
masses with initial speed σ̇0 = 120, we numerically integrated
for 0 � τ � 200. The details of the computational procedure
can be found in the Appendix of Ref. [6]. In Fig. 2, the black
lines show the particle’s trajectory, while the heatmap displays
the displacement δρ j of each chain mass. We see that the
particle dissipates energy while also being subjected to the
thermal fluctuation of the chain, which is more pronounced at
higher temperatures.

For ωT = 0, shown in Figs. 2(a) and 2(b) for repulsive
and attractive chain-particle interaction, respectively, the dy-
namics are most similar to the nonthermal case. The particle
moves along the chain and gradually slows down, with greater
deceleration in the repulsive case. For repulsive interactions,
the particle slows down in the vicinity of each chain mass,
enhancing the energy transfer to the chain (for more detail, see
Refs. [6,17]). Eventually, the particle becomes trapped in an

energy minimum and stays there indefinitely. The framework
vibration at such a low temperature is not strong enough
to kick the particle out of its trap or to greatly impact the
particle’s trajectory during the dissipative phase of the motion.

The impact of thermal fluctuations becomes more apparent
in the case of ωT = 5—lattice vibrations can reactivate the
particle after it becomes stuck, allowing it to continue moving
along the chain [see Fig. 2(c)]. This reactivation takes even
less time at higher temperatures, as seen in Figs. 2(e) and
2(f). We also see that thermal motion can alter the rate of
dissipation in the high-speed part of the trajectories. Due to
the stochastic nature of the thermal motion, we now turn
our attention to the statistical properties of the particle-chain
energy exchange.

B. Energy exchange

To describe how particles lose energy as they move along
the chain, we start by writing down the work done on the chain
by the particles

�(τ ) =
∫ τ

dτ ′{−∇ρ�[ρ(τ ′), σ(τ ′)]}T ρ̇(τ ′), (7)

where the term inside the curly braces is the force on the chain
masses and ρ̇(τ ′) their speed. Splitting ρ̇ into its homogeneous

033044-3



MAHALINGAM, OLSEN, AND RODIN PHYSICAL REVIEW RESEARCH 5, 033044 (2023)

and interaction-induced components [see Eq. (4)], we have

�(τ ) = −
∫ τ

dτ ′∇ρ�[ρ(τ ′), σ(τ ′)]T ρ̇H (τ ′)

+
∫ τ

dτ ′∇ρ�[ρ(τ ′), σ(τ ′)]T d

dτ ′ 2π

×
∫ τ ′

dτ ′′
↔

(τ ′ − τ ′′)∇ρ�[ρ(τ ′′), σ(τ ′′)]

= −
∫ τ

dτ ′∇ρ�[ρ(τ ′), σ(τ ′)]T ρ̇H (τ ′)

+ 2π2
∑

j

∫ τ

dτ ′
∫ τ

dτ ′′∇ρ�[ρ(τ ′), σ(τ ′)]T ε j

× cos[2πω j (τ
′ − τ ′′)]ε†

j∇ρ�[ρ(τ ′′), σ(τ ′′)]. (8)

When taking the derivative with respect to τ ′ in the second
term, we used the fact that (0) = 0 so that the only con-
tribution comes from differentiating the integrand, which we

did by explicitly writing out (τ ′ − τ ′′) following Eq. (5). We
also exploited the symmetry of the τ ′ and τ ′′ integrals in the
second term after differentiation to set the upper integration
limits to τ for τ ′ and τ ′′ integrals, while also adding a factor
of 1/2. Rewriting the cos(x) = (eix + e−ix )/2 part of the last
term, we have

�(τ ) = −
∫ τ

dτ ′∇ρ�[ρ(τ ′), σ(τ ′)]T ρ̇H (τ ′)

+ 2π2
∑

j

∣∣∣∣
∫ τ

dτ ′∇ρ�[ρ(τ ′), σ(τ ′)]T ε je
2π iω jτ

′
∣∣∣∣
2

.

(9)

This form of �(τ ) clearly indicates the fact that the second
term is always non-negative, corresponding to energy transfer
from the particles to the chain. In contrast, the first term can
be positive or negative, allowing us to write � = �fluc + �loss

as a sum of “fluctuation” and “loss” components.
Averaging the fluctuation component over the thermal mo-

tion yields zero, which can be seen by writing the velocity
vector as a combination of normal modes [as in Eq. (4)]:

〈�fluc(τ )〉 =
〈∫ τ

dτ ′∇ρ�[ρ(τ ′), σ(τ ′)]T
∑

j

ε j

√
n j + 1

2

√
2

ω j
e−2π iω jτ

′+iφ j 2π iω j

〉

=
∫ τ

dτ ′ ∑
j

2π iω j

√
2

ω j
e−2π iω jτ

′
〈√

n j + 1

2
eiφ j ∇ρ�[ρ(τ ′), σ(τ ′)]T

〉
ε j = 0. (10)

Here, the contribution to ρ(τ ′) inside � from a single
harmonic goes as 1/

√
N , so the phase-dependence of the

force term can be neglected for every mode. Consequently,
averaging eiφ j over φ j gives zero.

We have shown that as the particles move, on average, they
lose energy due to their interaction with the chain. However,
because of the chain’s thermal motion, the actual value of
�(τ ) is probabilistic, so we also compute the variance to see
how it compares to the mean. Squaring Eq. (9) produces a
cross term, which vanishes for the same reason as Eq. (10),
leading to

Var[�(τ )] = 〈�2
fluc(τ )〉 + 〈�2

loss(τ )〉 − 〈�loss(τ )〉2. (11)

In the absence of thermal motion, the first term vanishes and
the last two terms become identical, leading to zero variance,
so � is deterministic.

III. DISSIPATION

A. Single-pass dissipation

Despite the physical intuition offered by the terms in
Eq. (9), it is not solvable without already knowing the trajec-
tories σ(τ ) and ρ(τ ). To gain insight into the properties of �

without resorting to full numerical integration, we will make
a few key assumptions.

In our previous work, we considered a scenario without
thermal motion (ρH = 0) [6]. Here, we take the opposite limit
and assume that the motion of the chain masses is dominated

by the thermal component. Consequently, we replace ρ by ρH
inside the interaction terms in the expressions of �(τ ). With
this assumption, we expect the magnitude of �fluc to be much
larger than �loss.

Focusing on the interaction between a single mobile parti-
cle and a single chain mass, we then write the interaction as
�(ρH − σ ). Integrating the first term of Eq. (9) by parts and
setting the interaction to zero at τ = ±∞, we get

� =
∫

dτ σ̇ (τ )�′[ρH (τ ) − σ (τ )]

+ 2π2

N

∑
j

∫
dτ

∫
dτ ′e2π iω j (τ ′−τ ′′ )

× �′[ρH (τ ) − σ (τ )]�′[ρH (τ ′) − σ (τ ′)], (12)

where the integration range has been set to (−∞,∞).
Our goal now is to determine the statistical properties of

� due to the probabilistic nature of the homogeneous mo-
tion. The challenge lies in the fact that the particle trajectory
σ (τ ) also depends on the homogeneous motion. Assuming
the particle’s speed remains constant during an interaction,
σ (τ ) → σ̇ τ , simplifies the expressions considerably. This as-
sumption is reasonable if we consider the portion of the
particle’s trajectory far from trapping, where its kinetic energy
is significantly larger than the potential variation created by its
interaction with the chain.
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Writing the interaction term as a Fourier transform �(x) =
(Nα)−1 ∑

q �qeiqx leads to a mean loss given by

〈�〉 = 1

Nα

∫
dτ σ̇

∑
q

iq�q〈eiqρH (τ )〉e−iqσ̇ τ

+ 2π2

N

∑
j

∫
dτ

∫
dτ ′ e2π iω j (τ−τ ′ )

∑
qq′

−qq′

N2α2
�q�q′

× 〈eiqρH (τ )eiq′ρH (τ ′ )〉e−iqσ̇ τ e−iq′σ̇ τ ′
. (13)

The multi-exponential expectation value can be writ-
ten generally as 〈exp[

∑
l iqlρH,gl (τl )]〉. We define q =

(q1, q2, q3, . . . ), where each ql corresponds to an individual
exponential inside the brackets (such as q1 = q in the first
term of Eq. (13), and q1 = q, q2 = q′ in the second), and
ρ̃H = (ρH,g1 (τ1), ρH,g2 (τ2), . . .) with gl corresponding to dif-
ferent chain masses. In other words, we have an expectation
value of exponentials involving homogeneous displacements
of different chain masses at various times. Using the covari-
ance matrix in Eq. (6) we obtain〈

exp

[∑
l

iqlρH,gl (τl )

]〉

= N
∫ ∏

l

dρH,gl (τl ) exp[iqT ρ̃H ] exp

[
−1

2
ρ̃T

HC−1ρ̃H

]

= exp

[
−1

2
qT Cq

]
, (14)

where the matrix elements C j,k = Cgj−gk (τ j − τk ) and N is the
normalization constant for the multivariate Gaussian distribu-
tion. In the case of a single pass, we are only interested in the
matrix elements with j = k.

Using Eq. (14), we see that the average in the first term of
Eq. (13) is τ -independent and Gaussian in q. The τ integral
in Eq. (13) produces a Dirac delta function, setting q → 0
and eliminating the fluctuating term as long as �0 is finite,
in agreement with Sec. II B.

Since the amplitude of the homogeneous motion of the
chain masses is much larger than the deflection caused by their
interaction with mobile particles, the variance of � will be
dominated by the fluctuating term. Using the constant-speed
approximation, we write

〈�〉 = 〈�loss〉 = 2π2

N

∑
j

∫
dτ ′′e2π iω jτ

′′F (τ ′′), (15)

Var[�] ≈ 〈�2
fluc〉 = σ̇ 2

∫
dτ ′′F (τ ′′), with (16)

F (τ ′′) =
∑
qq′

−qq′

N2α2
�q�q′

∫
dτe−iqσ̇ τ e−iq′σ̇ (τ−τ ′′ )

× 〈eiqρH (τ )eiq′ρH (τ−τ ′′ )〉, (17)

and we performed a change of variables τ − τ ′ = τ ′′. To cal-
culate the expectation value in F (τ ′′), we use Eq. (14),

〈eiqρH (τ )eiq′ρH (τ−τ ′′ )〉

= exp

[
−1

2

(
q q′)( C0(0) C0(τ ′′)

C0(τ ′′) C0(0)

)(
q
q′

)]
, (18)

yielding a quantity that is independent of τ and allowing us to
take the integral over τ in Eq. (17):

F (τ ′′) =
∑
qq′

−qq′

N2α2
�q�q′eiq′σ̇ τ ′′

2πδ[σ̇ (q + q′)]

× 〈eiqρH (τ )eiq′ρH (τ−τ ′′ )〉

= 1

σ̇

∑
q

q2

Nα
�2

qe−iqσ̇ τ ′′
e−q2[C0(0)−C0(τ ′′ )], (19)

where we assumed that �(x) is an even function so that �q =
�−q.

B. Mean loss

Suppressing thermal fluctuations eliminates the Gaussian
in Eq. (19), making it possible to take the τ integral, followed
by the momentum integration to obtain

〈�〉 → � = 1

2N

∑
j

(
4π2ω j

σ̇ 2
� 2πω j

σ̇

)2

, (20)

a result previously derived in Ref. [6]. Equation (20) indicates
that for large σ̇ , where �2πω j/σ̇ approaches a constant value
� ∝ σ̇−4. Intuitively, the reason behind the decay is that,
at higher speeds, the particle and the chain mass interact
for a shorter time, leading to a reduced energy transfer. For
σ̇ � 2πω j�, where � is the characteristic width of �(x), the
suppressed Fourier term leads to a reduced energy absorption
by the jth mode. If the speed is sufficiently small so that
σ̇ � 2πω j� for all the modes of the chain, the absorption
is reduced drastically, leading to essentially no dissipation.
Conceptually, very slow particles do not deflect the chain
mass so that the motion of the particle becomes essentially
conservative. We refer the reader to Ref. [6] for a more in-
depth discussion and numerical illustrations of Eq. (20). In
the absence of thermal fluctuations, wider potentials enhance
dissipation for high particle speeds and suppress it for low σ̇ .

Reintroducing the thermal motion leads to several changes
in the energy-loss dependence on the particle speed. In the
case of a Gaussian interaction �(r) = �0 exp(−r2/2λ2), used
in Fig. 2, Eqs. (15) and (16) are given by

〈�〉 = π2λ2�2
0

√
π

2σ̇N

∑
j

∫
dτ

e2π iω jτ

(λ2 + C̃(τ ))5/2

× exp

(
− σ̇ 2τ 2

4(λ2 + C̃(τ ))

)
[2(λ2 + C̃(τ )) − σ̇ 2τ 2],

(21)〈
�2

fluc

〉 = σ̇�2
0λ

2√π

4

∫
dτ

2(λ2 + C̃(τ )) − σ̇ 2τ 2

(λ2 + C̃(τ ))5/2

× exp

[
− σ̇ 2τ 2

4(λ2 + C̃(τ ))

]
, (22)

where C̃(τ ) = C0(0) − C0(τ ). We computed the mean numer-
ically and present the results in Fig. 3.

First, we observe that, at very high speeds, the temperature
of the chain becomes irrelevant and all the curves collapse
onto the � ∝ σ̇−4 asymptote. This collapse is reasonable
because at very high speeds, the chain mass does not shift
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FIG. 3. Mean energy loss over a large speed range. Normalized
mean single-pass loss σ̇ 〈�〉/�2

0 as a function of speed for various
temperatures (colored curves). At low speeds, 〈�〉 ∝ σ̇−1, yielding
nearly flat curves on the left side of the figure. The pink dashed line
shows the σ̇−4 asymptote at high speeds.

much due to its thermal motion during the interaction window
regardless of the temperature.

Next, we see that, at high speeds, the higher-temperature
chains exhibit more dissipation. Thermal motion effectively
changes the Fourier transform of the interaction in Eq. (19)

from �q → �̃q = �qe−q2 C̃(τ )
2 , which is narrower than �q in

Fourier space, and broader in real space. Because the magni-
tude of C0(τ ) increases with temperature (see Appendix A),
higher temperatures yield more broadening. Since broader
potentials enhance dissipation at high speeds, higher temper-
atures then lead to greater 〈�〉.

At low speeds, thermal vibrations produce drastically dif-
ferent results from Eq. (20). When σ̇ → 0, we can drop the
e−iqσ̇ τ ′′

term from Eq. (19) so that 〈�〉 ∝ σ̇−1, as seen in
Fig. 3. Although the dissipation diverges as σ̇−1 for all ωT ,
the prefactor is temperature-dependent and nonmonotonic in
ωT (see Appendix A for more detail).

In the nonthermal case, dissipation vanishes at low speeds
because the particle motion is essentially adiabatic. At each
time step, the quasistationary particle interacts with the chain,
modifying the chain modes. However, due to the adiabatic
theorem, the occupation of each mode remains unchanged.
Thus, when the particle passes the chain mass, the framework
returns to its original configuration (with its original energy),
leading to � = 0. With thermal motion, the process is no
longer adiabatic because at each time step, the displacement
between chain and mobile mass, and hence the interaction
potential, varies. Consequently, the occupation of the modes
can change and the motion is no longer conservative, leading
to a finite dissipation. As ωT increases, the system departs
farther from adiabatic behavior, increasing �.

At high temperatures, in agreement with Eq. (17), the
potential profile becomes effectively broadened, leading to
reduced dissipation at small speeds. This suppression starts
playing a role when the broadening becomes comparable to
the characteristic width of the interaction. Therefore, a compe-
tition between potential broadening and adiabaticity breaking
leads to a maximum in the dissipation for some intermediate
ωT , as seen in Fig. 3.

FIG. 4. Numerical and analytical distribution of � over a single
pass. Distribution of single-pass energy loss � for 100 000 particles
initialized at speed σ̇ = 50 for multiple temperatures. The probabil-
ity densities of the numerical calculations are shown with shaded
histograms, while the predicted probability densities from Eqs. (21)
and (22) are shown with solid lines. The parameters here are �0 = 2,
λ = 4, α = 40, and ωfast = 10. The number of bins is chosen to be
constant across temperatures.

C. Numerical results

To numerically validate the assumptions made deriving
Eqs. (15)–(17), we chose a system with parameters ωfast = 10,
λ = 4, �0 = 2, and α = 40 and initialized mobile particles
with speed σ̇0 = 50 midway between the rest positions of two
chain masses. We then evolved the system forward in time for
τ = 1.5 × α/σ̇ , which is sufficiently long for the particle to
pass a single chain mass and reach the next midpoint. The
energy loss � over a single pass was calculated by taking
the difference in kinetic energy, T = (μσ̇ 2)/(8π2), between
the final and initial midpoints. To average over homogeneous
motion, we performed the same single-pass simulation over
100 000 realizations of thermal motion at a given temperature
to obtain a distribution of � values.

Since the homogeneous motion of the chain masses ρH is
a stationary Gaussian process, we expect the distribution of
single-pass energy losses to be normally distributed around
〈�〉 with variance 〈�2

fluc〉. Figure 4 shows numerical and
predicted single-pass � probability density distributions for
various temperatures. The numerical and predicted curves
agree very well, confirming that the chain homogeneous
motion is indeed a Gaussian process and validating the as-
sumption ρ ≈ ρH made in Eqs. (15) and (16). As expected, the
variance of the loss distribution increases with temperature.
Compared with the variance, the value of the mean is small
and does not appear to vary strongly with temperature.

Having confirmed that the � distributions for individual
speeds are normally distributed, we can repeat the same pro-
cedure across a larger range of speeds and temperatures.
Figure 5 shows the mean loss 〈�(σ̇ )〉 and loss fluctuation√
〈�2

fluc(σ̇ )〉 of single-pass energy-loss distributions for var-
ious speeds and temperatures. The solid lines are analytic
results and the points are numerical data. We see that the loss
fluctuations agree very well with the analytical predictions,
although this agreement becomes worse at particle speeds
close to the capture speed. In this regime, the assumption
that the particle travels at a constant speed breaks down
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FIG. 5. Mean and fluctuation of single-pass energy-loss distribu-
tions. Variation of (a) mean loss 〈�〉 and (b) loss fluctuation

√〈�2
fluc〉

during a single pass over a range of speeds and temperatures. The
system parameters are �0 = 2, λ = 4, α = 40, and ωfast = 10. The
analytical results are given by the solid curves while the numerical
results are plotted as scatter points. The vertical dashed pink line is
the capture speed of the system.

due to interaction-induced velocity fluctuation (see Ref. [6]).
While the values of 〈�〉 obtained from numerical simulations
do not agree closely with the analytic predictions, the large
fluctuations suggest that it is unlikely for the mean values
to have converged over 100 000 data points. Additionally,
since interactions induce velocity fluctuations, we expect a
shift in the curve to the right (left) for repulsive (attractive)
interactions—this phenomenon is discussed extensively in
Ref. [6].

D. Dissipation along full trajectory

We now turn to the dissipation experienced by a particle
which passes multiple chain masses. In the nonthermal case,
� for a single pass differs significantly at slower speeds from
the loss-per-pass observed in longer trajectories because of
the cumulative effect of recoil [6]. In the previous section, we
confirmed that, on the scale of a single pass, the chain motion
is dominated by thermal vibrations and recoil is negligible
when computing the force. Thus, the recoil term should play a
much less significant role in modifying � during a multipass
trajectory at finite temperature. In other words, we expect the
energy loss along a multipass trajectory to be governed on the
scale of single passes and the dissipation statistics to remain
the same as in the single-pass case. Such a particle would
essentially experience a random walk in speed, with the �

distribution for the next pass only determined by the particle’s
current speed.

To confirm the minimal role of the recoil term, we com-
pared the energy-loss distributions along full trajectories for
different memory scales τ0 [so the limit of the integral in
Eq. (4) becomes τ − τ0]. Initializing a mobile particle midway
between chain mass rest positions at speed σ̇ = 120 within
a periodic box, we evolved the system forward in time until
the particle speed σ̇ � 0. We calculated the single-pass losses
along the full trajectory by considering the kinetic energy of
the particle at all midway points. This procedure was repeated
for ≈250 particles and the data binned by speed. To obtain a
statistically significant sample size while keeping the compu-
tational cost low, we chose the same system parameters as in
Fig. 2—in particular, the larger amplitude �0 = 20 ensures
a greater dissipation rate and allows for shorter simulation
times.

Figures 6(a)–6(c) show the energy losses along full trajec-
tories for memory scales τ0 = 1, 10, and 100, respectively.
The pink curve and band show the mean and standard devi-
ation of the binned numerical data, while the blue curve and
band show the analytical predictions given by Eq. (21) and the
square root of Eq. (22). At high speeds, both the mean loss
and loss fluctuation of the numerical data agree well with the
analytics. At intermediate speeds, velocity variations during
each pass lead to a shift of the mean loss and loss fluctuation.

Closer to the capture speed, plotted as a vertical dashed line
in Fig. 6, the numerical mean sharply decreases into negative
values. In this regime, we can only compute � for particles
that are able to pass the chain mass, leading to a selection
bias in the data. At low enough speeds, this exclusion zone
significantly truncates the � normal distribution at its upper
tail. In the case where the particle’s total energy is small
enough, μσ̇ 2/(8π2) − � < �0, the particle is unable to com-
plete the pass. The edge of the exclusion zone is then given
by �ex(σ̇ ) = μσ̇ 2/(8π2) − �0, plotted as the black dashed
curve in Fig. 6. Using Eqs. (21) and (22) as the mean and
fluctuation of a full normal distribution, we can then obtain the
mean and fluctuation of the distribution truncated at the exclu-
sion zone edge. The details of the calculation are discussed in
Appendix B. In short, we see excellent agreement between the
analytic and numerical curves, confirming that the energy-loss
distribution close to the capture speeds becomes truncated due
to trapping. The exclusion leads to the numerical mean re-
flecting not the dissipative properties of the system, but rather
the statistics of particle trapping—� now being a distribution
leads to a capture speed that is also a distribution rather than a
deterministic value.

Comparing the different memory scales in Figs. 6(a)–6(c),
we see that the memory term does not have a significant
impact on the particle behavior, so we need only consider a
memory scale that spans the time needed for a single pass.
While individual trajectories with different memory scales
are not identical, their statistics are the same and are well-
predicted by single-pass analytics.

As a final check that the particle behavior is governed
on the memory scale of a single pass, we constructed a
random-walk model in speed with a speed-dependent prob-
ability distribution. The details of the model are outlined in
Appendix C. The random walk offers us the ability to con-
sider particle trajectories with and without the exclusion zone.
In other words, when sampling � at the current step, we can
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FIG. 6. Energy losses � along full particle trajectories for different memories. Distribution of energy losses after a single pass � for
particles initialized at speed σ̇ = 120. The parameters for this system are the same as in Fig. 2, with ωfast = 10, �0 = 20, λ = 4, α = 40 and
temperature ωT = 10. From left to right, the three columns correspond to memory scales τ0 = 1, 10, and 100. The blue curve and band give the
analytical mean and fluctuation of the energy loss, respectively, based on Eqs. (21) and (22), while the pink curve and band plot the numerical
data from ≈250 full trajectory runs. The mean and variance of the numerical data is calculated by binning along the σ̇ axis. The vertical dashed
green line is the capture speed of the system. The dashed black curve plots the edge of the exclusion zone where a subset of particles are unable
to pass the chain mass.

choose to keep all values, or exclude values for which the
particle has insufficient energy to pass the chain mass. With-
out excluding any particles, the random-walk model closely
matches the analytic predictions in Fig. 6, while employing
the exclusion zone causes the random walk to closely match
the numerical calculations. Since the random-walk model
replicates the statistical properties of particle behavior, it can
be used to efficiently predict useful parameters such as stop-
ping power.

E. Bias-aided drift velocities

For a nonthermal system in the long-time limit, only certain
chain modes absorb energy from the mobile particle [6]. This
absorption is enhanced at particular speeds, leading to peaks
in the mean dissipation per pass �̄ at speeds σ̇ = α/n where
α is the lattice spacing and n is a positive integer. In the
presence of a bias β (so the potential experienced by the
mobile particle increases linearly by β for a translation of α),
the particle experiences an energy loss of �̄(σ̇ ) − β over a
pass—if this value is positive, the particle slows down and if
this value is negative, the particle speeds up. If �̄(σ̇ ) − β = 0,
however, the particle maintains its speed. These peaks in �̄

allow the mobile particle to experience stable drift velocities
in the vicinity of σ̇ = α/n, which we confirmed numerically.

We have shown that the introduction of thermal mo-
tion leads to a statistical description of dissipation, with the
expected energy-loss value modulated by temperature. For
speeds above the capture speed, the mean loss is very similar
to that of the nonthermal case, as seen in Fig. 5(a). Since
averaging over the homogeneous motion results in a mean en-
ergy loss close to the nonthermal chain, the mean dissipation
per pass �̄ for low temperatures remains similar in value to
the nonthermal scenario. This suggests that for low enough
temperatures, the drift velocities can survive in the thermal
regime.

To confirm this prediction, we performed numerical sim-
ulations for systems under a constant bias β = 0.01, with

memory τ0 = 10. We initialized 1000 particles in 40 batches
with speeds randomly sampled from an integer uniform dis-
tribution and evolved the system in a periodic box with 250
chain masses for τ = 1000. To add the bias, we introduced
a constant force β/α to the particle’s equations of motion.
We then extracted the particle velocity distributions at in-
tervals of τ = 250 and repeated the procedure for multiple
temperatures. Figure 7 shows the evolution of particle ve-
locity distributions over τ = 1000 at various temperatures.
Figures 7(a)–7(d) correspond to temperatures ωT = 0, 5, 25,
and 50, respectively. The top row shows the initial (essen-
tially identical) particle velocity distributions. The expected
drift velocities σ̇ = α/n, where n is an integer, are plotted as
orange vertical dashed lines. Only drift velocities above the
capture speed, plotted as pink dashed lines, are shown. For
the case of ωT = 0, we see a clear evolution from a uniform
velocity distribution to a distribution with strong peaks around
σ̇ = 40 and 20, corresponding to n = 1 and 2, respectively.
As the temperature increases, these peaks remain at roughly
the same velocities, but broaden until they can no longer be
clearly distinguished.

Thus, for sufficiently low temperatures, simple macro-
scopic transport measurements of 1D or quasi-1D materials
can reveal microscopic parameters (in this case, the lattice
spacing).

IV. THERMALIZATION AND DIFFUSION

A. Thermalization

In addition to modifying the dissipative properties of the
1D chain, thermal vibrations can also induce fluctuation in
the mobile particle’s trajectory. For instance, an initially mo-
tionless particle will interact with the chain masses and gain
energy. In a similar model, where a particle interacts with
an infinite chain but is also confined to a harmonic trap,
we demonstrated that the particle’s energy distribution is de-
pendent on the chain temperature ωT [17]. In particular, the
harmonically trapped particle’s energy follows a Boltzmann
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FIG. 7. Bias-supported drift velocities. Evolution of velocity distributions of 1000 particles after τ = 250 intervals for memory τ0 = 10.
The parameters for these simulations are �0 = 2, λ = 4, α = 40, ωfast = 10, and bias β = 0.01. The particles were initialized midway between
chain masses with speeds randomly sampled from an integer uniform distribution of 15 � σ̇ � 60. From left to right, the columns correspond
to temperatures ωT = 0, 5, 25, and 50. The orange dashed vertical lines show the predicted drift velocities α/n which lie above the capture
speed, shown as pink dashed vertical lines.

energy distribution P(E ) ∝ exp(−E/ωT ), where E is the total
energy of the particle scaled by a characteristic energy and
ωT is the scaled chain temperature. To verify that this result
also holds in the present case, we perform a set of numerical
simulations and extract the particle’s energy.

We computed 20 independent single-particle trajectories,
initially at rest, in a confined box spanning ≈100 chain masses
for a range of temperatures. The confined box allows us to
run simulations for an extended period of time without the
possibility of a particle moving past the end of the chain
we are keeping track of. We chose �0 = 20, α = 10, λ = 1,
ωfast = 10, and μ = 1 as the system parameters, which should
allow the system to thermalize within a reasonable simulation
time. In particular, the combination of a large interaction
amplitude �0 and small lattice spacing α leads to a higher
rate of energy transfer from the chain to the particles. We
initialized the particles at randomized positions within the box
and evolved the system for τ = 500.

To explore the effects of memory, we performed the simu-
lations for three different values of τ0 while using the same
homogeneous motion of the chain masses ρH . After cal-
culating the particle trajectories, we computed their kinetic
energies midway between chain mass equilibrium positions.
At these points, the interaction between the particles and
the chain is essentially zero so the particles’ total energy is
approximately equal to their kinetic energy. For each memory-
temperature pair, we used the sampled energies to build a
normalized histogram, from which we extracted a proba-
bility distribution P(E ). These distributions are plotted in
Figs. 8(a)–8(c) as functions of E/ωT for memories τ0 = 1, 10,
and 100, respectively.

Plotting ln[P(E )] vs E/ωT , the distribution should be a line
with slope −1. Indeed, we observe that the probability distri-
butions collapse onto the black lines in Fig. 8, corresponding

to the Boltzmann profile. Memory does not have a significant
effect on the kinetic-energy distributions, especially for tem-
peratures ωT � 1, the energy of the lowest chain mode. At
temperatures close to the band minimum, zero-point motion is
no longer negligible and we expect the effective temperature
to be larger than ωT . This effect is most clearly understood
at ωT = 0, where the chain masses move due to zero-point
motion, in contrast to classical zero-temperature case where
all motion ceases. This motion results in a nonzero effective
temperature.

The effects of the finite memory are most evident at
low temperatures. As we discussed in our earlier work [17],
memory truncation produces an artificial motion of the chain
masses, referred to as “countermotion” when the chain mass
moves in the direction opposite to where it was pushed by
a particle at an earlier time. This unphysical countermotion
is related to the recoil of the chain masses and can modify
the effective temperature of the particles. However, since the
recoil is dominated by thermal vibrations, this anomalous
scaling is only evident for the lowest system temperatures and
changes nontrivially with memory. This effect is most evident
in Fig. 8(b).

B. Diffusion

We now turn to the transport properties of particles initially
at rest. In the previous section, we found that truncating the
memory for such particles can alter the energy distribution,
so we restrict our analysis to long memory τ0 = 100. We
perform 20 independent single-particle simulations, in which
we initialize the particle at rest randomly located within the
boundaries of a confining box and evolve the system for
τ = 500 at several different chain temperatures. In Fig. 9,
we show the subsequent displacements for systems at low
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FIG. 8. Energy probability distribution for different temperatures and memory scales. Kinetic-energy probability distribution per particle E
vs the kinetic energy normalized by effective chain temperature ωT . The system parameters are ωfast = 10, μ = 1, �0 = 20, λ = 1, and α = 10.
The particle energies are calculated midway between chain masses where the chain-particle interaction is negligible. From left to right, the
three columns correspond to memory scales τ0 = 1, 10, and 100. The black lines have slope −1, corresponding to Boltzmann distributions.
For higher temperatures, the particles thermalize with the chain, even for short τ0.

and high temperatures (ωT = 5 and 100, respectively). For
ωT = 5, we see that the particles spend most of their time
trapped between chain masses and occasionally travel short
distances. In contrast, the particles at ωT = 100 are rarely
trapped, and their resulting trajectories look comparatively
smooth. As expected, the overall displacement for the higher-
temperature particles is larger.

The decreasing dissipation at high speeds, as seen in Figs. 3
and 5, means that typical particles at higher temperatures dis-
sipate less. For example, the average kinetic energy at ωT =
250 translates to σ̇ ≈ 140, while ωT = 100 gives σ̇ ≈ 90 and
ωT = 25 yields σ̇ ≈ 44. All these speeds are on the right of
the maximum in 〈�〉 with the faster-moving particles expe-
riencing less dissipation. Hence, at higher temperatures, not

FIG. 9. Displacement of 20 independent single-particle trajecto-
ries. Displacements over time of 20 particles for system parameters
ωfast = 10, μ = 1, �0 = 20, λ = 1, and α = 10. The memory scale
used is τ0 = 100. (a) At low temperature ωT = 5, particles spend
most of their time trapped between chain masses, and occasionally
travel short distances. (b) For high temperature ωT = 100, the par-
ticles spend very little time trapped, and their displacements appear
smooth (although the overall scale for displacement is larger).

only do particles become activated more frequently, but they
also travel farther because of increased speed accompanied by
reduced drag.

Since this system exhibits anomalous dissipation, we ex-
pect a collection of particles to exhibit non-Fickian diffusion.
Using the calculated displacements for ensembles of particles,
we analyze the statistics of the particle motion computed at
various temperatures. As expected, the mean displacement
fluctuates around zero, while the root-mean squared displace-
ment (RMSD) grows with time (see Fig. 10). At very short
timescales, τ � 0.1, when the force experienced by the par-
ticle is roughly constant due to the slowly changing potential
profile, the RMSD exhibits a slope of ≈2 on the log-log plot
(shown as the dotted black line).

FIG. 10. Root mean squared displacement for 20 independent
single-particle trajectories. The evolution of RMSD averaged over
20 particles initially at rest. The chain-particle interaction has Gaus-
sian amplitude �0 = 20 and Gaussian width λ = 1, while the chain
spacing is α = 10. The black dotted line at short times has a slope of
+2, while the dashed lines are given by D0τ , where D0 is a constant
that is fit to the first value of each curve. These dashed lines of
slope +1 correspond to ballistic transport. The constant force trend at
small values of τ corresponds to the particles experiencing a slowly
changing potential profile.
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For longer times, at higher temperatures, the RMSD grows
nearly linearly with time, indicating superdiffusive (nearly
ballistic) motion. On the log-log plot of Fig. 10, ballistic
motion would exhibit a slope of +1 (shown as dashed lines),
while Fickian diffusion would lead to a line with slope +1/2.
For the lowest temperatures, the particles are trapped in en-
ergy minima, resulting in an almost constant RMSD. For
intermediate temperatures, the occasional long flights of in-
dividual particles lead to jumps in the RMSD. For larger
ensembles, these individual jumps would dominate the RMSD
less, and we would expect to see a smoother curve. The slope
of the curve is likely to be temperature-dependent, approach-
ing ballistic at high temperatures.

As we can see in both the individual trajectories of Fig. 9
and the ensemble properties of Fig. 10, particle motion is
qualitatively different at low and high temperatures. This be-
havior is reminiscent of results described in Ref. [8], where
the authors reported different regimes of ionic motion. At low
temperatures, the mobile ions remain frozen at their energy
minima. Raising the temperature allows the ions to occasion-
ally hop to neighboring minima. Finally, at high temperatures,
the mobile ion sublattice effectively melts, resulting in a “su-
perionic flow.”

From our results, we observe that, at low temperatures,
the particle behavior is dominated by flights of short lengths,
while higher flight lengths become more frequent at higher
temperatures. In other words, another way to characterize
the transport properties of the system at all temperatures is
by analyzing the distribution of flight lengths. We define the
flight length � as the number of chain masses a particle passes
between each pair of turning points (i.e., when the velocity σ̇

changes sign). Fickian diffusion has only step lengths � = 1,
which would lead to a δ-function distribution P(�). Using the
same trajectories as above, we calculate the probability dis-
tribution of flight lengths, P(�), for various temperatures (see
Fig. 11). We see that the distributions, when plotted on log-log
axes, collapse onto straight lines with slopes dependent on the
temperature, indicating a temperature-dependent power-law
decay. The dashed lines in Fig. 11 are best-fit lines for each
temperature. The slope magnitude decreases with temperature
from −4.7 to −0.85—longer flights are more prevalent as
temperature increases. This power-law distribution is charac-
teristic of Lévy flights, which have been extensively studied
in other contexts [10].

V. SUMMARY

Using a simple model for mobile particles interacting with
a lattice in 1D, we explored how the interplay between thermal
lattice vibrations and particle-lattice interactions influences
transport properties. We showed that the statistical properties
of dissipation are governed on the scale of the mobile particle
passing a single lattice mass. This single-pass loss follows
a normal distribution with mean similar to the loss in the
nonthermal case, and a variance that grows with the chain
temperature. Many of the characteristics of this dissipative
motion can be calculated using a simple velocity random-
walk model. In the presence of a bias, the mobile particles
show signatures of drift velocities at low enough temperatures.
For an ensemble of particles initially at rest, we found that

FIG. 11. Probability distribution of flight lengths at various
temperatures. Using the 20τ0 = 100 single-particle trajectories cal-
culated above, the distribution of flight lengths � for all temperatures
(shown as data points of different colors) collapse onto lines of
varying slopes on log-log axes. The dashed lines plot the best-fit
lines for each temperature and show the decrease in slope magnitude
with temperature (from −4.7 at ωT = 2, to −0.85 at ωT = 250). At
ωT = 1, particles remain trapped for the simulation duration and do
not experience any flights.

they thermalized with the chain, and their resulting motion
at sufficiently high temperatures was superdiffusive, showing
characteristics of Lévy flights.

Returning to the question of what makes a good ionic
conductor, our calculations suggest that the temperature de-
pendence of particle transport is nontrivial. We found that
when the ionic motion is primarily dissipative, the mean en-
ergy loss is relatively temperature-independent, and thermal
vibrations primarily contribute stochastic noise. At high tem-
peratures, a combination of two factors—higher activation
probability and higher speed after activation—results in mo-
bile particles with Lévy flight character due to decreased drag
at high speeds. This behavior suggests that 1D ionic transport
is improved at higher temperatures, with a faster increase than
Arrhenius scaling arguments would predict.

Real systems have framework masses that can move in
more than one direction—this motion has consequences both
for the band structure of the lattice, and the interaction poten-
tials that are possible to simulate. In future work, we plan to
incorporate these additional degrees of freedom into the equa-
tions of motion, and to employ Coulomb-like interactions.
Looking ahead to eventual extensions into higher dimensions,
we also aim to improve the computational efficiency of our
calculations.
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APPENDIX A: EFFECT OF TEMPERATURE
ON POTENTIAL PROFILE

To understand the nonmonotonicity in low-velocity single-
pass dissipation as temperature increases, we plot the
prefactor for σ̇−1 from Eq. (19) in Fig. 12(b). Rewriting the
expression in real space shows that the prefactor is propor-
tional to the average of the square of the force applied by the
particle onto the chain mass. When calculating 〈�〉, the curves
in Fig. 12(b) are multiplied by e2π iω jτ

′′
and integrated over τ

FIG. 12. Effect of temperature on chain-particle interaction.
(a) Variation of chain-particle interaction broadening parameter aris-
ing from thermal vibrations. The broadening factor is normalized
with respect to C0(0) (shown in inset), which corresponds to the
chain mass self-correlation at τ = 0. The integral of the real-space
broadened chain particle in plotted in panel (b), normalized with
respect to �0 and showing how the chain-particle interaction varies
with time. The parameters used here are α = 40, �0 = 2, λ = 4, and
ωfast = 10.

FIG. 13. Energy-loss distributions from analytical predictions
and numerical full trajectory runs. Distribution of energy losses after
a single pass � predicted by Eqs. (21), (22), and (B1), shown as a
green curve and band. The numerical data are identical to Fig. 6(c),
namely, ≈250 full trajectory calculations with memory parameter
τ0 = 100, and are shown as a pink curve and band. The vertical
dashed green line is the capture speed of the system, and the dashed
black curve shows the edge of the exclusion zone beyond which
particles are unable to pass the chain mass. The numerical data
exhibit a peak due to velocity fluctuations while passing each chain
mass, but otherwise match well the truncated analytic predictions.

and the mode frequencies, giving the coupling amplitude to
individual chain modes. Whether the particle couples strongly
to any of the modes and hence dissipates more energy is
dependent on two factors: the magnitude of the force and
the fluctuation amplitude of the force. At low temperatures,
the force does not fluctuate a lot and hence does not couple
strongly to any of the modes. At very high temperatures,
the strong broadening of the potential reduces the magnitude
of the force, making the coupling weaker, also suppress-
ing the energy transfer to the chain. Finally, at intermediate
temperatures, the average force oscillates without being too
broadened, maximizing the dissipation.

APPENDIX B: EFFECT OF EXCLUSION ZONE
ON DISSIPATION STATISTICS

In the thermal regime, the dissipation statistics along a
multipass trajectory are the same as those of the single-pass
case, as shown in Fig. 6. At speeds close to the capture speed,
however, there is a sharp decrease in the numerical mean into
negative values that is not predicted by Eqs. (21) and (22).
Since a value of � can be obtained only when the particle
is able to pass a chain mass, the � normal distribution be-
comes truncated at its upper tail. This deviation then reflects
the statistics of particle trapping, rather than the dissipative
properties of the system. The truncation occurs at �ex(σ̇ ) =
μσ̇ 2/(8π2) − �0, which we will refer to as the edge of the
exclusion zone.

We can analytically predict the effects of particle trap-
ping by obtaining the mean and fluctuation of a Gaus-
sian with one-sided truncation. For a Gaussian distribution
(σ

√
2π )−1 exp( (x−μ)2

2σ 2 ) truncated at x = b, the modified mean
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FIG. 14. Energy losses � for full trajectories for a random-walk
model without and with exclusion zone. The energy losses after pass-
ing a chain mass extracted from a random-walk model determined
by the same system parameters as in Fig. 6. The pink curve and
band plot the mean and variance of the numerical data, binned along
speed, for ≈270 particles initialized at σ̇ = 120. The blue curve and
band in panel (a) plots the analytic prediction given by Eqs. (21) and
(22), while the green curve and band in panel (b) plots the truncated
analytic prediction given by Eq. (B1). The capture speed is plotted
as the vertical green dashed line, while the exclusion zone edge is
plotted as the black dashed curve.

and variance are given by

μ̃ = μ − σ
ψ (ξ )

�(ξ )
,

σ̃ 2 = σ 2

[
1 − ξ

ψ (ξ )

�(ξ )
−

(
ψ (ξ )

�(ξ )

)2
]
, (B1)

where ψ and � are the probability density function and cumu-
lative distribution function, respectively, and ξ = (b − μ)/σ
[21]. In our case, we substitute the mean and variance with
〈�〉 and 〈�2〉, and calculate the truncation value b using �ex.

The results are plotted in Fig. 13, with the green (pink)
curve and band plotting the mean and fluctuation of the ana-
lytical prediction (numerical trajectory). For high speeds, the
truncated results are identical to those of the full distribution
(blue curve and band in Fig. 6), since a negligible portion of
the distribution gets excluded. Close to the capture speed, the

truncation causes the mean to decrease and the variance to be
smaller.

The particle velocity σ̇ varies during each pass: in the
case of a repulsive potential, it slows down near each chain
mass (see Ref. [6] for more discussion). This variation leads
the mean loss and fluctuation of the numerical calculations
to be dominated by lower-velocity regions, and leads to the
peak shown in Fig. 13. Other than this peak, the numerical
and analytic curves match well, validating our hypothesis that
the shift of 〈�〉 towards negative values is caused by particle
trapping.

APPENDIX C: RANDOM WALK MODEL

We have shown that the behavior of mobile particles is
determined largely by the homogeneous motion of the chain
masses rather than the deflection caused by the motion of the
particle. In essence, a particle trajectory is given by a random
walk in speed, with the statistics of energy loss after passing
one chain mass given by Eqs. (21) and (22), which describe
a normal distribution. Specifically, for a particle initialized at
speed σ̇0, the new speed after passing a single chain mass is

σ̇ =
√

σ̇ 2
0 − 8π2�0

μ
N(〈�〉,

√
〈�2〉), (C1)

where we sample the energy loss from a normal distribution
N. Employing this simple random-walk model for particles
initialized at σ̇ = 120 [see Fig. 14(a)], we see that the mean
loss and fluctuations match well the analytic predictions of
Eqs. (21) and (22).

As discussed in Appendix B, however, these statistics do
not accurately describe particle motion near the capture ve-
locity because some of the particles will dissipate enough
energy and become trapped between chain masses. Following
the approach of Appendix B, we can take these captures into
account by employing an exclusion zone in the velocity: once
a particle’s speed reaches this exclusion zone, we terminate
its random-walk and exclude it from subsequent averaging.
In Fig. 14(b), we show the energy losses after passing a
chain mass � for particles initialized at speed σ̇0 = 120 while
employing this exclusion zone. In Fig. 14(a), the mean and
variance computed with this random-walk model closely fol-
low the analytic predictions of the single-pass model, while
in Fig. 14(b), the truncated random-walk dissipation closely
matches the truncated analytic predictions from Appendix B.

With the exception of the variation of the particle’s speed
during each pass, this simple model of a random walk in
velocity with a truncated loss distribution reproduces all of
the features of a full numerical trajectory. Computationally,
this simplified model is much less costly and can be useful
for efficiently predicting phenomena that are not dominated
by trapping.
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