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Topological classification of non-Hermitian Hamiltonians with frequency dependence

Maximilian Kotz 1,* and Carsten Timm 1,2,†

1Institute of Theoretical Physics, Technische Universität Dresden, 01062 Dresden, Germany
2Würzburg-Dresden Cluster of Excellence ct.qmat, Technische Universität Dresden, 01062 Dresden, Germany

(Received 14 April 2023; accepted 1 July 2023; published 24 July 2023)

We develop a topological classification of non-Hermitian effective Hamiltonians that depend on momentum
and frequency. Such effective Hamiltonians are in one-to-one correspondence to single-particle Green’s func-
tions of systems that satisfy translational invariance in space and time but may be interacting or open. We
employ K theory, which for the special case of noninteracting systems leads to the well-known 10-fold-way
topological classification of insulators and fully gapped superconductors. Relevant theorems for K groups are
reformulated and proven in the more transparent language of Hamiltonians instead of vector bundles. We obtain
54 symmetry classes for frequency-dependent non-Hermitian Hamiltonians satisfying antiunitary symmetries.
Employing dimensional reduction, the group structure for all these classes is calculated. This classification
leads to a group structure with one component from the momentum dependence, which corresponds to the
non-Hermitian generalization of topological insulators and superconductors, and two additional parts resulting
from the frequency dependence. These parts describe winding of the effective Hamiltonian in the frequency
direction and in combined momentum-frequency space.
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I. INTRODUCTION

In recent years, topology has been established as an
important organizing principle in condensed-matter physics,
besides symmetry. A major breakthrough was the topological
classification of insulators and fully gapped superconductors
in 10 symmetry classes (the “10-fold way”) [1–7].
This classification focused on effectively noninteracting
Hamiltonians with translational invariance. For such models,
one can construct the Bloch Hamiltonian H (k), which is a
map from the d-dimensional unit cell in reciprocal space into
the set of Hermitian matrices. A vast body of literature on the
topological classification of such Bloch Hamiltonians exists;
for reviews see, for example, Refs. [7–9].

The central question is whether two Bloch Hamiltonians
with an energy gap, in d spatial dimensions and satisfying
certain symmetry constraints, can be continuously deformed
into each other. The Hamiltonians for which this is possible
form equivalence classes, which are, by construction,
topological invariants. The equivalence classes form a group.
This group turns out to depend on the spatial dimension d
and on the symmetries. Unitary symmetries lead to a block-
diagonal structure of the Hamiltonian. Each of the remaining
blocks can have further antiunitary symmetries, namely,
time-reversal symmetry or particle-hole symmetry. Taking
into account whether these are absent or present, whether they
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square to the identity or minus the identity, and how they can
be combined, one ends up with the aforementioned 10 sym-
metry classes [1,2]. For these classes, one can calculate the
homotopy group depending on the spatial dimension d [3–7].
The resulting periodic table provides an organizing principle
for gapped topological systems and naturally accommodates
several known cases, for example, the integer quantum
Hall effect [10,11], while dramatically broadening the
scope.

Nontrivial values of topological invariants were found
to be related to the existence of states localized at the
(d − 1)-dimensional surface of the system and to associated
anomalous response to external fields [12,13]. The quantized
Hall conductivity is again a prime example.

The topological classification has been extended in vari-
ous ways, e.g., to systems without an energy gap, where a
classification of Fermi surfaces and nodal lines and points is
constructed [9,14–17]. Another obvious question pertains to
the extension to interacting systems. It turns out that the latter
extension of the concept of topologically nontrivial systems
is ambiguous, i.e., different notions of what makes a system
nontrivial lead to different classifications. For example, one
can define topologically nontrivial states by their anomalous
response to external fields [18]. Other generalizations are
based on surface states [9,19], entanglement [20], and the
excitation gap in the bulk [19,21].

One idea for the topological classification of interacting
systems is to define an effective single-particle Hamiltonian
Heff(k, ω) that coincides with the Bloch Hamiltonian in the
case of noninteracting systems. To that end, one can introduce
the (retarded) single-particle Green’s function [22,23]

GR
nn′ (k, ω) = −i

∫
d3r

∫ ∞

0
dt e−ik·r+iωt

× 〈{�n(r, t ), �†
n′ (0, 0)}〉, (1)
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where �n(r, t ) is a fermionic quantum-field operator at
position r and time t and the subscript n contains all local
degrees of freedom, such as spin, orbital, and basis site. {•, •}
is the anticommutator. The Green’s function is a matrix on the
space of the local degrees of freedom. This matrix can always
be written in terms of an effective single-particle Hamiltonian
as [24–31]

GR(k, ω) = [
ω − HR

eff (k, ω)
]−1

(2)

(an identity matrix is suppressed). The advantage is that the
Green’s function remains well defined in the presence of
interactions or driving, leading to an effective Hamiltonian
HR

eff that can be classified. In contrast to the Hamiltonian
of a noninteracting system, this effective Hamiltonian is
generally non-Hermitian. Additionally, it generally depends
on frequency, not only on momentum. Previously, the
frequency dependence has been ignored by considering
HR

eff at ω = 0 only. For closed interacting systems, all
eigenvalues of the retarded effective Hamiltonian HR

eff (k, ω)
have nonpositive imaginary parts. This means that the only
possible scenario is that of a real line gap (to be defined
below).

Non-Hermitian Hamiltonians also appear in the context
of open and driven quantum systems [31–47]. Driven sys-
tems permit non-Hermitian Hamiltonians with eigenvalues
with positive or negative imaginary parts, even in the ab-
sence of explicit interactions. Positive (negative) imaginary
parts correspond to amplification (damping) of eigenstates. A
famous example is the Hatano-Nelson model [31,32,35,44],
which describes asymmetric hopping along a chain. This
property of the spectrum also applies to the effective Hamilto-
nian constructed from the retarded Green’s function [39,42]
and it persists in the presence of interactions [44]. To
the best of our knowledge, the frequency dependence of
the effective Hamiltonian has not been studied in this
context.

In this paper, we study the consequences of the frequency
dependence of HR

eff (k, ω). The frequency dependence does
not simply increase the dimension from d to d + 1 since
frequency and momentum behave differently under the rel-
evant global symmetries. This has two consequences: First,
there are a larger number of possible symmetry classes, and,
second, nontrivial topology is possible due to the frequency
dependence alone, the momentum dependence alone, and the
combined dependence. This leads to a much richer topological
classification.

The remainder of this paper is organized as follows. In
Sec. II, we define and calculate the K groups of effective
Hamiltonians. The calculation is based on existing ideas
but uses the more transparent language of matrix-valued
functions instead of vector bundles. We then consider the
consequences of the frequency dependence for the symmetry
classes, review the flattening procedure for non-Hermitian
Hamiltonians, as well as the dimensional reduction. We
then present the resulting classification and discuss a few
examples. For illustration, we analyze a toy model that ex-
hibits nontrivial topology due to the frequency dependence in
Sec. III. In Sec. IV, we summarize the results and draw some
conclusions.

II. TOPOLOGICAL GROUP STRUCTURE

The goals of this section are to obtain the possible
symmetry classes of frequency-dependent non-Hermitian
Hamiltonians and to characterize the topological properties
of such Hamiltonians belonging to these symmetry classes.
The method involves several different mathematical concepts,
which are discussed in the following.

A. General properties of K groups

In this section, the K groups of Hermitian Hamiltonians
are defined and some of their properties are presented. The
general case of non-Hermitian Hamiltonians can be reduced
to this case, as we will see below. The definition of the groups
follows the definitions leading to the well-known topological
insulators and superconductors. The term “Hamiltonian” is
inspired by the free case but in this context can refer to any
matrix-valued function, e.g., a correlation function, Green’s
function, or effective Hamiltonian as in Eq. (2). The math-
ematical part of this section is mainly inspired by Ref. [48]
but instead of dealing with K groups of vector bundles like in
Kitaev’s original approach [5], we directly define the group
for Hamiltonians to make the calculation more transparent.

Definition 1 (Category H(X,�)). H(X,�) is a category.
Its objects (called “Hamiltonians”) are smooth maps from the
manifold X to Hermitian matrices with an energy gap (no
eigenvalue equal to 0 on X ) and symmetries given by the set
�. Morphisms are smooth maps between the Hamiltonians.

The category H(X,�) is additive induced by the direct
sum ⊕ of two Hamiltonians:

H1(k, ω) ⊕ H2(k, ω) =
(

H1(k, ω) 0
0 H2(k, ω)

)
. (3)

Definition 2 (Isomorphic Hamiltonians). Two objects of
H(X,�) are called isomorphic (denoted by “ ≈”) if they are
homotopy equivalent and the corresponding homotopy func-
tion H (k, ω, t ) for all t has an energy gap and respects the
symmetries in �.

Two Hamiltonians are generally not isomorphic if they
are pointwise unitarily equivalent. In the following, just the
symbol H is used, keeping in mind the dependence on X
and �.

Lemma 1 (Flattened Hamiltonian). Every object of H is
isomorphic to a Hamiltonian with eigenvalues ±1 [5].

Proof. Every Hamiltonian H (k, ω) can be represented as

H (k, ω) = U (k, ω)

⎛
⎜⎝

E1(k, ω) 0 . . .

0 E2(k, ω) . . .
...

...
. . .

⎞
⎟⎠U †(k, ω).

(4)

Use as homotopy function a Hermitian matrix in the same
representation but with eigenvalues interpolating from their
original values Ei(k, ω) to sgnEi(k, ω) = ±1. It is straight-
forward to show that this homotopy function satisfies the
conditions of Definition 2 [5]. �

In this way, the dependence on k and ω is absorbed into the
eigenvectors, while the eigenvalues have trivial behavior. The
intuitive justification for this procedure is that the eigenvalues
are real and thus cannot accumulate a nontrivial phase when
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(k, ω) is moved along a closed path. In the following, we deal
with flattened Hamiltonians. These Hamiltonians square to the
identity matrix.

Definition 3 (Trivial elements). The constant diagonal
Hamiltonians with eigenvalues ±1 are called trivial and
denoted by 0.

Note that the number of positive and negative eigenvalues
is not of interest for this definition. However, some symmetry
classes restrict the trivial elements to have an equal number of
positive and negative eigenvalues.

Lemma 2. Every constant Hamiltonian H (k, ω) = H over
a connected space is isomorphic to a trivial element.

Proof. The flattened Hamiltonian is written in a diagonal
form

H = U

⎛
⎜⎝±1 0 . . .

0 ±1 . . .
...

...
. . .

⎞
⎟⎠U †. (5)

We note that the diagonal matrix has to be everywhere the
same because the space is connected. There is a matrix Y with
the property eiY = U . Now the homotopy function can be set
to

H (t ) = U (t )

⎛
⎜⎝±1 0 . . .

0 ±1 . . .
...

...
. . .

⎞
⎟⎠U (t )†, (6)

with eitY = U (t ) and t ∈ [0, 1]. The function has the same
symmetries as H , is smooth, and is trivial for t = 0. �

Note that the proof fails in the case of disconnected spaces
because the number of positive and negative eigenvalues can
differ in each connected component. Furthermore, it fails for
(k, ω)-dependent Hamiltonians because there is no guarantee
for the existence of a smooth function Y (k, ω). This can be
seen by thinking about the logarithm of complex numbers.

Lemma 3. For every Hamiltonian H (k, ω) ∈ H: H ⊕
−H ≈ 0 [5].

Proof. We have

H (k, ω) ⊕ −H (k, ω) =
(

H (k, ω) 0
0 −H (k, ω)

)

≈
(

0 iI
−iI 0

)
, (7)

with identity matrices I , where the isomorphism holds be-
cause every interpolation between these matrices satisfies the
symmetry condition. Furthermore, the energy gap does not
close because both matrices square to the identity and anti-
commute. By Lemma 2 we then have

H (k, ω) ⊕ −H (k, ω) ≈ 0. (8)

�
Definition 4 (The set �(H)). Let H be an object of H. The

isomorphism class of H with respect to the isomorphism from
Definition 2 is denoted by Ḣ . The set of all such classes is
called �(H).

�(H) is an Abelian group induced by the additive structure
of H. The neutral element is given by the class containing the
trivial Hamiltonian. The inverse of Ḣ is −Ḣ .

Definition 5 (The set K (H)). K (H) = �(H)/∼ with the
equivalence relation ∼ defined as follows: For two isomor-
phism classes Ḣ and Ḣ ′,

Ḣ ∼ Ḣ ′ (9)

iff there exist trivial Hamiltonians T1, T2 so that

H ⊕ T1 ≈ H ′ ⊕ T2, (10)

where H and H ′ are arbitrary elements of Ḣ and Ḣ ′, respec-
tively. Elements of K (H) are denoted by [H].

This definition means that flat bands can be added to
the Hamiltonian without changing the topological properties
of interest. The definition also simplifies further derivations.
K (H) is an Abelian group since �(H) is. In the following, we
denote the group by K (X ) to show the explicit dependence on
the underlying space, which is the main focus of this section.

We aim to calculate K (X ) for the various symmetry classes
and suitable spaces X . The space X is the product of mo-
mentum space, which is the d-dimensional torus T d , and the
frequency space, which is isomorphic to the real numbers R.
We replace the torus T d by the sphere Sd , thereby excluding
the description of weak topological insulators and supercon-
ductors [5,6,49]. The spheres Sd can also be motivated by
starting from the momentum space Rd for continuum models
and compactifying the infinite to a single point [6,50]. The
frequency axis can also be compactified to a circle S1 pro-
vided that for ω → ±∞ the effect of interactions becomes
small so that the effective Hamiltonian approaches the free
one,1 perhaps except for a frequency-independent Hartree
term. The frequency axis is naturally compactified for a time-
periodic Hamiltonian within Floquet theory [51–53]. On the
other hand, momentum and frequency are physically distinct
quantities and there is no justification for compactifying the
momentum-frequency space to Sd+1. The relevant spaces are
thus X = Sd × S1. For quantum dots (d = 0), the first set is
not S0 but contains only a single point and can be neglected.
Note that quantum dots can still have a nontrivial frequency
dependence. An example for this is shown in Sec. III.

Theorem 1. Let X be a compact space and A a compact
connected retractable subspace of X. The following sequence
is split exact [48,54]:

0 → K (X/A)
β̃−→ K (X )

α̃−→ K (A) → 0, (11)

where X/A is the quotient space (one-point compactification)
of X and A and the functors α̃ and β̃ are induced by the natural
inclusion α and restriction β,

A
α−→ X

β−→ X/A. (12)

Proof. There are five statements to be proven:
(i) β̃ is injective,
(ii) α̃ is surjective,
(iii) Im(β̃ ) ⊆ Ker(α̃),
(iv) Ker(α̃) ⊆ Im(β̃ ),
(v) splitting of the groups, i.e., K (X ) = K (X/A) ⊕ K (A).

1If this assumption is not satisfied one can disregard the frequency
dependence, which leads to the theory in Ref. [27].
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(i) Injectivity is equivalent to β̃([H]) = 0 ⇒ [H] = 0. Be-
cause of Definition 5 there is in K (X ) a homotopy function
between the Hamiltonian and the trivial element, perhaps after
adding flat bands. One can choose a homotopy function that
is constant in a neighborhood of A because both β̃([H]) and
the trivial element 0 are constant on A. This implies that this
homotopy function has a preimage in K (X/A). This homotopy
function interpolates in K (X/A) between H and the trivial
element.

(ii) Because A is a retract of X there is a smooth function
γ from X to A that induces a map from K (A) to K (X ).
Furthermore, γ ◦ α = idA so that γ̃ ◦ α̃ = idK (A). This implies
the surjectivity of α̃.

(iii) We consider the composition

α̃ ◦ β̃([H]) = [H ◦ β ◦ α]. (13)

Since β ◦ α is a constant function the map H ◦ β ◦ α is also
constant. A constant Hamiltonian is isomorphic to a trivial
Hamiltonian based on Lemma 2.

(iv) We choose a Hamiltonian H ′ ∈ K (X ) in the kernel
of α̃:

α̃([H ′]) = 0. (14)

One can use the preimage of the homotopy function in K (A)
to see that H ′|A ≈ 0. Because of the smoothness of the Hamil-
tonians there is a neighborhood V of A on which H ′|V ≈ 0.
This implies that there is a homotopy function that interpolates
between the Hamiltonian and the trivial element in this region.
This homotopy-equivalent function H̃ is isomorphic to the
original H ′ but is constant on V . This new Hamiltonian has
a preimage in K (X/A).

(v) γ̃ ◦ α̃ = idK (A) is also the condition for the splitting
lemma [55], which implies the splitting of the groups if the
sequence is exact. �

We now choose X = Sd × S1 and A = Sd × ω0 ∪ k0 × S1,
where k0 ∈ Sd and ω0 ∈ S1 are arbitrary but fixed elements.
This implies X/A = Sd+1 [48,54]. With Theorem 1, one ob-
tains

K (Sd × S1) = K (Sd+1) ⊕ K (Sd × ω0 ∪ k0 × S1), (15)

where we can interpret Sd as compactified momentum space
and S1 as compactified frequency space [56].

Theorem 2. Let X and Y be compact connected spaces and
x0 ∈ X and y0 ∈ Y . Then the following relation holds [54,56]:

K (X × y0 ∪ x0 × Y ) = K (X ) ⊕ K (Y ). (16)

Proof. It is obvious that every element of K (X × y0 ∪ x0 ×
Y ) induces an element in K (X ) ⊕ K (Y ). For the opposite
direction, the problem could be that a representative Hamil-
tonian of K (X ) at x0 and a representative Hamiltonian of
K (Y ) at y0 are generally different. The Hamiltonians can be
deformed to be constant in a neighborhood of x0 and y0. In
this region, the exponential function can be used to interpolate
between the original Hamiltonian and the trivial Hamiltonian
at the point x0 or y0 (see Lemma 2). Now both Hamiltonians
are equal, up to adding flat bands, and induce an element in
K (X × y0 ∪ x0 × Y ). �

Note that Theorem 2 does not hold for d = 0 since S0 is
not connected. From Eq. (15) and Theorem 2, we obtain

K (Sd × S1) = K (Sd ) ⊕ K (S1) ⊕ K (Sd+1) (17)

for d � 1. Our classification leads to a term K (Sd ), which
is well known from the case without frequency dependence
[5,6,50]. The second term is new and results from the one-
dimensional frequency space. The final term is also new and
can lead to additional invariants from the (d + 1)-dimensional
space of momentum and frequency. These two terms result
from interactions.

Note that most arguments use the fact that constant Hamil-
tonians are trivial, so locally every Hamiltonian looks trivial.
There are two intuitive reasons why a Hamiltonian need not
be trivial globally: (1) If X is not connected, the different
number of eigenvalues ±1 between the connected components
is a topological number. [For Hamiltonians with particle-hole
symmetry, there is always an equal number of positive and
negative eigenvalues. However, in this case there is another
characteristic number for unconnected spaces (see Ref. [57]).]
(2) In dimensions d > 0, there is the problem that the inverse
of the exponential function and thus Y in the proof of Lemma
2 are not uniquely defined on the whole space of unitary ma-
trices. Hence, although locally the Hamiltonian looks trivial,
the whole map can be nontrivial. This is measured by winding
and Chern numbers [50,57].

B. Symmetry classes

As noted in Sec. I, two global antiunitary symmetries lead
to the 10-fold-way classification of frequency-independent
Hermitian Hamiltonians [3–7]. These symmetries and result-
ing classes are now generalized to frequency-dependent and
non-Hermitian Hamiltonians.

We follow the ideas of Ref. [58], where non-Hermitian
Hamiltonians were treated but the frequency dependence was
ignored. We also keep the notations for the symmetry classes
used there. It is necessary to determine the possible sign
change of the frequency argument ω of H (k, ω) under the
symmetry transformation. Because of Eq. (2) it is sufficient to
analyze the frequency argument of the Green’s function. For
noninteracting fermions, one finds that ω changes sign under
the particle-hole and chiral/sublattice transformations but not
under time reversal [59]. The derivation is presented in some
more detail in Appendix A. The natural extension to interact-
ing systems is to demand that the same relations persist. It is
then easy to show using Eq. (2) that the effective Hamiltonian
satisfies the same symmetry relations as the Green’s function.

The main difference between Hermitian and non-
Hermitian Hamiltonians in the context of antiunitary symme-
tries is that for non-Hermitian matrices H we have H �= H†

and HT �= H∗. This leads to a splitting of the symmetry
conditions. Table I shows the possible global symmetries for
frequency-dependent non-Hermitian Hamiltonians.

In the absence of a frequency dependence, there is a unifi-
cation of the TRS and PHS† symmetries [27,58]. The reason is
that if H (k) satisfies TRS, then iH (k) satisfies PHS† and vice
versa. Hence, the classes containing TRS and PHS† are triv-
ially related. In particular, the multiplication by i just rotates
the spectrum in the complex plane and leaves the eigenvectors
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TABLE I. Symmetry conditions for non-Hermitian Hamiltonians with frequency dependence.

Pseudo-Hermiticity pH UpH H (k, ω)† U †
pH = H (k, ω)

Time-reversal symmetry TRS UTRS H (k, ω)∗ U †
TRS = H (−k, ω)

TRS† UTRS† H (k, ω)T U †
TRS† = H (−k, ω)

Particle-hole symmetry PHS† UPHS† H (k, ω)∗ U †
PHS† = −H (−k,−ω)

PHS UPHS H (k, ω)T U †
PHS = −H (−k, −ω)

Chiral symmetry CS UCS H (k, ω)† U †
CS = −H (k, −ω)

Sublattice symmetry SLS USLS H (k, ω)U †
SLS = −H (k,−ω)

unchanged. Analogously, pH and CS are unified. This leads to
38 fundamentally different symmetry classes [27,58,60]. For
frequency-dependent Hamiltonians, these unifications are not
possible.

Symmetry classes can be distinguished by the number N of
antiunitary generators taken from {TRS, TRS†, PHS†, PHS}.
These four symmetries generalize the two antiunitary symme-
tries of the Hermitian case and can each square to ±1 [58].
The number N can assume the following values:

(i) N = 0: 6 classes; no symmetry, one of pH, SLS, and
CS, or all three. Two out of three are not possible because
two of the symmetries generate the third. In the case of all
three symmetries, SLS and CS may commute or anticommute,
leading to a splitting into two classes.

(ii) N = 1: 8 classes; one of the four symmetries TRS,
TRS†, PHS†, and PHS is present and can square to ±1. The
symmetries pH, SLS, and CS cannot be present.

(iii) N = 2: 6 × 22 = 24 classes; there are six ways to
choose two of the four symmetries TRS, TRS†, PHS†, and
PHS, and each one can square to ±1. The symmetries pH,
SLS, and CS are determined by the antiunitary symmetries.

(iv) N = 3: 24 = 16 classes; if three of the symmetries
TRS, TRS†, PHS†, and PHS are present they generate the
fourth one. Hence, the number of generators from this set is
N = 3 but all of them are present. The square of each of the
four can be ±1 independently. The symmetries pH, SLS, and
CS are all present.

(v) N = 4: no additional classes since three of the anti-
unitary symmetries TRS, TRS†, PHS†, and PHS already
generate all four.

In total, there is a 6 + 8 + 24 + 16 = 54-fold classifica-
tion. We denote the classes by their common symbols [3–7],
adding a dagger “†” if TRS† or PHS† are meant, and write the
additional symmetry explicitly with the signs of the commuta-
tion relations in the subscript. If the class has two symmetries
then the first sign in the subscript refers to TRS(†) and the sec-
ond one to PHS(†). Table II explicitly shows our conventions
for the symmetry classes.

C. Flattening to Hermitian Hamiltonians

We use the standard definitions for different types of en-
ergy gaps [58]: For a point gap, the eigenvalues Ei(k, ω) of
H (k, ω) satisfy Ei(k, ω) �= 0 for all i, k, and ω. For a real
line gap, ReEi(k, ω) �= 0 for all i, k, and ω. For an imaginary
line gap, ImEi(k, ω) �= 0 for all i, k, and ω. Our strategy is to
deform Hamiltonians with these different types of gaps into
unitary, Hermitian, or anti-Hermitian ones, as shown in Fig. 1.
The cases with point and line gaps are discussed separately.

Theorem 3 (Unitary flattening for point gaps). Any
Hamiltonian H (k, ω) with a point gap is isomorphic to a
unitary matrix U (k, ω) with the same symmetries.

The proof of this theorem is a straightforward general-
ization of the proof from Refs. [58,60]. A different proof
is presented in Ref. [38]. The intuitive idea is that one can
smoothly shift the eigenvalues in the complex plane so that
they end up with unit modulus (see Fig. 1).

One can now define a Hermitian Hamiltonian H̃ that can
be classified [58,60]

H̃ (k, ω) ≡
(

0 U (k, ω)
U †(k, ω) 0

)
. (18)

Clearly, H̃2(k, ω) = 1.
If the original point-gapped Hamiltonian H satisfies sym-

metries from Table I, the Hamiltonian H̃ satisfies the
following symmetries [58]:

ŨpH H̃ (k, ω) Ũ †
pH = H̃ (k, ω), (19)

with ŨpH ≡
(

0 UpH

UpH 0

)
, (20)

ŨTRS H̃ (k, ω)∗ Ũ †
TRS = H̃ (−k, ω), (21)

with ŨTRS ≡
(

UTRS 0
0 UTRS

)
, (22)

ŨTRS† H̃ (k, ω)∗ Ũ †
TRS† = H̃ (−k, ω), (23)

with ŨTRS† ≡
(

0 UTRS†

UTRS† 0

)
, (24)

ŨPHS† H̃ (k, ω)∗ Ũ †
PHS† = −H̃ (−k,−ω), (25)

with ŨPHS† ≡
(

UPHS† 0
0 UPHS†

)
, (26)

ŨPHS H̃ (k, ω)∗ Ũ †
PHS = −H̃ (−k,−ω), (27)

with ŨPHS ≡
(

0 UPHS

UPHS 0

)
, (28)

033043-5



MAXIMILIAN KOTZ AND CARSTEN TIMM PHYSICAL REVIEW RESEARCH 5, 033043 (2023)

TABLE II. Symmetry classification of frequency-dependent non-
Hermitian Hamiltonians. Here, 0 denotes that a symmetry is absent
and ±1 means that it is present and squares to plus or minus the iden-
tity. The classes AIII + SLS+ and AIII + SLS− are distinguished
by whether CS and SLS commute or anticommute, which is not
reflected by the table entries.

Class TRS TRS† PHS PHS† pH CS SLS

A 0 0 0 0 0 0 0
A + pH 0 0 0 0 1 0 0
A + SLS 0 0 0 0 0 0 1
AIII 0 0 0 0 0 1 0
AIII + SLS+ 0 0 0 0 1 1 1
AIII + SLS− 0 0 0 0 1 1 1

AI +1 0 0 0 0 0 0
D 0 0 +1 0 0 0 0
AII −1 0 0 0 0 0 0
C 0 0 −1 0 0 0 0
AI† 0 +1 0 0 0 0 0
D† 0 0 0 +1 0 0 0
AII† 0 −1 0 0 0 0 0
C† 0 0 0 −1 0 0 0

BDI +1 0 +1 0 0 1 0
DIII −1 0 +1 0 0 1 0
CII −1 0 −1 0 0 1 0
CI +1 0 −1 0 0 1 0
BDI† 0 +1 0 +1 0 1 0
DIII† 0 −1 0 +1 0 1 0
CII† 0 −1 0 −1 0 1 0
CI† 0 +1 0 −1 0 1 0
AI + pH+ +1 +1 0 0 1 0 0
AI + pH− +1 −1 0 0 1 0 0
AI + SLS+ +1 0 0 +1 0 0 1
AI + SLS− +1 0 0 −1 0 0 1
D + pH+ 0 0 +1 +1 1 0 0
D + pH− 0 0 +1 −1 1 0 0
D + SLS+ 0 +1 +1 0 0 0 1
D + SLS− 0 −1 +1 0 0 0 1
AII + pH+ −1 −1 0 0 1 0 0
AII + pH− −1 +1 0 0 1 0 0
AII + SLS+ −1 0 0 −1 0 0 1
AII + SLS− −1 0 0 +1 0 0 1
C + pH+ 0 0 −1 −1 1 0 0
C + pH− 0 0 −1 +1 1 0 0
C + SLS+ 0 −1 −1 0 0 0 1
C + SLS− 0 +1 −1 0 0 0 1

BDI + pH++ +1 +1 +1 +1 1 1 1
BDI + pH+− +1 +1 +1 −1 1 1 1
BDI + pH−+ +1 −1 +1 +1 1 1 1
BDI + pH−− +1 −1 +1 −1 1 1 1
DIII + pH++ −1 −1 +1 +1 1 1 1
DIII + pH+− −1 −1 +1 −1 1 1 1
DIII + pH−+ −1 +1 +1 +1 1 1 1
DIII + pH−− −1 +1 +1 −1 1 1 1
CII + pH++ −1 −1 −1 −1 1 1 1
CII + pH+− −1 −1 −1 +1 1 1 1
CII + pH−+ −1 +1 −1 −1 1 1 1
CII + pH−− −1 +1 −1 +1 1 1 1
CI + pH++ +1 +1 −1 −1 1 1 1
CI + pH+− +1 +1 −1 +1 1 1 1
CI + pH−+ +1 −1 −1 −1 1 1 1
CI + pH−− +1 −1 −1 +1 1 1 1

FIG. 1. Different types of gaps and flattening procedures for
non-Hermitian Hamiltonians. (a) Flattening of a Hamiltonian with
a point gap to a unitary one. (b) Flattening of a Hamiltonian with a
real line gap to a Hermitian one with eigenvalues ±1. (c) Flattening
of a Hamiltonian with a imaginary line gap to an anti-Hermitian one
with eigenvalues ±i.

ŨCS H̃ (k, ω) Ũ †
CS = −H̃ (k,−ω), (29)

with ŨCS ≡
(

0 UCS

UCS 0

)
, (30)

ŨSLS H̃ (k, ω) Ũ †
SLS = −H̃ (k,−ω), (31)

with ŨSLS ≡
(

USLS 0
0 USLS

)
, (32)

033043-6



TOPOLOGICAL CLASSIFICATION OF NON-HERMITIAN … PHYSICAL REVIEW RESEARCH 5, 033043 (2023)

and in all cases

Ũ	 H̃ (k, ω) Ũ †
	 = −H̃ (k, ω), (33)

with Ũ	 ≡
(

1 0
0 −1

)
. (34)

In Eqs. (19), (23), (27), and (29), we have used that H̃ (k, ω)
is Hermitian. Equation (33) guarantees that the mapping
between U (k, ω) and H̃ (k, ω) in Eq. (18) is bijective [58].

Theorem 4 (Unitary flattening for line gaps). Any Hamil-
tonian H (k, ω) with a real line gap is isomorphic to a
Hermitian Hamiltonian H̃ (k, ω) with the same symmetries.
Also, any Hamiltonian H (k, ω) with an imaginary line gap
is isomorphic to an anti-Hermitian Hamiltonian Ȟ (k, ω) with
the same symmetries.

The proof of this theorem is again a straightforward gen-
eralization of the proof from Ref. [58]. The first step is to
diagonalize the Hamiltonian and flatten the eigenvalues to ±1
or ±i, respectively (see Fig. 1). Since the matrices needed
for the diagonalization are generally not unitary, it has to be
shown that it is possible to deform the diagonalizing matrices
into unitary ones. For this task, polar decomposition is used
again. The nontrivial part of the proof is that this procedure
is applicable only locally. However, it is shown in Ref. [58]
how to match different momentum regions to get a global
deformation. The proof is not affected by the fact that the
frequency ω transforms differently than the momentum k.

The flattened Hamiltonians have the same symmetries as
the original ones. In the case of a real gap, one directly ends
up with a Hermitian Hamiltonian H̃ (k, ω) with the same
symmetries as H (k, ω). In the case of an imaginary gap,
one multiplies the anti-Hermitian Hamiltonian Ȟ (k, ω) by i
to obtain a Hermitian Hamiltonian H̃ (k, ω) = iȞ (k, ω) with
symmetries that are trivially related to the symmetries of
Ȟ (k, ω) and thus of H (k, ω). We note in passing that one
can analogously treat gaps shifted away from zero in the real
(imaginary) direction if the symmetry class is compatible with
adding a real (imaginary) constant times the identity operator
to the effective Hamiltonian [38].

We see that the classification of non-Hermitian Hamiltoni-
ans can be reduced to a classification of flattened Hermitian
Hamiltonians for all three types of gaps. This is the reason
why it was sufficient to consider Hamitian Hamiltonians in
Sec. II A.

D. Dimensional reduction

In this section, we calculate the group structure of Hamil-
tonians H (k, ω) that respect the global symmetries discussed
in Sec. II C. We formally collect these symmetries in the
set �.

As discussed in Sec. II A, the base space of k is the d-
dimensional sphere Sd , where d is the spatial dimension. The
frequency space is compactified to S1. Such Hamiltonians, or
rather their equivalence classes, form the group K (Sd × S1,

�). Using Theorems 1 and 2, one obtains Eq. (17).
Our first goal is to relate the classes K (SD,�) with

D = 1, d, d + 1 to the classes K (S0, �̃) describing zero-
dimensional space and generally different symmetries �̃. In
this context, it is not important whether one dimension (i.e.,

frequency) behaves differently from the others under transfor-
mations. Hence, if we speak of momentum, this includes the
case that one of the components is actually a frequency.

The main idea is dimensional reduction [5,6,18,57,61].
Dimensional reduction permits a physical interpretation on
the basis of Dirac Hamiltonians. On the other hand, there is
a more formal way of defining bijections between Hamilto-
nians in different dimensions. These approaches are strongly
connected [61]. We here follow the more formal way because
in the case with a frequency dependence the interpretation in
terms of Dirac Hamiltonian could be confusing.

In order to determine the group K (SD+1,�), we
parametrize the (D + 1)-dimensional momentum K ∈ SD+1

by a polar angle θ ∈ [0, π ] and a D-dimensional vector k,
which contains all other components. If the inverse of the mo-
mentum is taken, K → −K, there are two fixed points, K = 0
and K = K∞. Here, K∞ is the compactified momentum onto
which all boundary points of the unit cell T D+1 of reciprocal
space are mapped. The points θ = 0, π correspond to the
poles of the (D + 1)-dimensional sphere SD+1. Other than in
Refs. [57,62], we do not choose these poles to correspond
to K = 0 and K = K∞ but rather choose them to lie in the
equatorial hyperplane, i.e., they have θ = π/2. Momentum
inversion also inverts θ → π − θ .

We define the action [57,62]

S[H (k, θ )] =
∫

dθ dd k Tr(∂θH∂θ H ). (35)

The corresponding Euler-Lagrange equation with the con-
straint H2 = 1 for the flattened Hamiltonian is

∂2
θ H + m2H = 0. (36)

The action S[H] is a positive-semidefinite “height” func-
tional of H . Going downhill from any flattened Hamiltonian
results in a continuous trajectory connecting it to some flat-
tened Hamiltonian H that minimizes S[H] and thus satisfies
the Euler-Lagrange equation (36). The trajectory describes a
continuous deformation so that the original and final Hamil-
tonians are isomorphic in the sense of Definition 2.

Equation (36) is solved by

H (k, θ ) = H1(k) sin mθ + H0 cos mθ, (37)

where the constraint H2 = 1 requires

H2
0 = H1(k)2 = 1, (38)

{H0, H1(k)} = 0. (39)

The condition that θ = 0, π correspond to single K points
implies that H0 is a constant matrix and that m is an inte-
ger. In the case of m = 0, there is no K dependence so that
the Hamiltonian is trivial. Trivial Hamiltonians are mapped
to trivial ones during dimensional reduction. Solutions with
m < 0 can be mapped to solutions with m > 0 by inverting the
sign of H1(k). Values m > 1 correspond to multiple windings
in the θ direction. In these cases, one can add a flat band
to the Hamiltonian and continuously deform the resulting
Hamiltonian in such a way that the winding in the original part
is reduced by unity, while the added part obtains this winding.
The continuous deformation does not change the topological
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properties. By repeating this procedure, one can reduce the
Hamiltonian to the case m = 1.

Consequently, every Hamiltonian from K (SD+1,�) with
nontrivial θ dependence can be written as

H (k, θ ) = H1(k) sin θ + H0 cos θ, (40)

up to isomorphism in the sense of Definition 2. The Hamil-
tonian H1(k) is a representative of an element [H1(k)] of
K (SD, �̃). The symmetries of H1(k) are collected in �̃.
They are generally different from the symmetries � of H (k)
for two reasons. First, Eqs. (38) and (39) impose addi-
tional constraints on H1(k). Second, the coordinate θ , which
parametrizes either a momentum component or frequency,
may change sign under some of the symmetries satisfied by
H (k). This leads to H1(k) satisfying a different symmetry.
Moreover, this new symmetry of H1(k) may be a conventional
unitary one, which permits block diagonalization of H1(k).
One then has to check which symmetries are satisfied for each
block. We will give an example for this case below.

This construction defines a map from K (SD+1,�) to
K (SD, �̃). Applying this map to the homotopy function
connecting two elements from K (SD+1,�), we obtain a ho-
motopy function connecting their images in K (SD, �̃). This
implies that the map respects the group structure.

It is straightforward to construct the inverse map

K (SD, �̃)
A−−−→←−−−
B

K (SD+1,�). (41)

This map induces an isomorphism [62]. To prove this, note
first that the map A is well defined by Eq. (40). Second, if
[H], [H ′] ∈ K (SD, �̃) are homotopic to each other, then the
image of their homotopy function is a homotopy function in
K (SD+1,�). Hence, A respects the group structure. Third, one
finds that B ◦ A = idSD since the image of A satisfies the Euler-
Lagrange equation. Finally, A ◦ B = idSD+1 by construction.

To obtain K (S0, �̃), this procedure is repeated D times.
The benefit is that K (S0, �̃) can easily be related to known
groups. The base space S0 consists of two disconnected points,
at each of which the Hamiltonian is just a constant matrix with
symmetry constraints.

E. Clifford algebras and classifying spaces

After dimensional reduction, the Hamiltonian and the sym-
metry operations act locally at the two points of S0. One can
block diagonalize the Hamiltonian according to the conven-
tional unitary symmetries. It is then sufficient to consider
the Hamiltonian in a representative block. This Hamiltonian
may have a number of symmetry constraints in the form
of anticommuting operators that also anticommute with the
Hamiltonian. We choose a basis in such a way that the
Hamiltonian at one of the two points of S0 is the diagonal
Hamiltonian diag(+1, . . . ,−1, . . . ). We are interested in all
realizations of the Hamiltonian at the other point which are
compatible with the symmetries. This is a problem of ex-
tending the Clifford algebra of the anticommuting symmetry
operators by that Hamiltonian. All possible extensions of a
Clifford algebra form its classifying space. Hence, the set
of all possible Hamiltonians stands in one-to-one correspon-
dence to the classifying space. Finally, we ask how many

topologically distinct classes of such Hamiltonians exist, in
the sense of there being no smooth deformation connecting
them. This question is answered by the group π0 of discon-
nected components of the classifying space. These groups
are known [57,63] and our procedure generalizes the one of
Ref. [58] to the 54 symmetry classes.

The complex Clifford algebra Cln [or Cln(C)] has n gener-
ators ei which satisfy

{ei, e j} = 2δi j . (42)

These generators constitute a basis {en1
1 ⊗ en2

2 ⊗ · · · ⊗
enn

n }ni=0,1 of a vector space over C. The maps

Cln = {e1, . . . , en} → Cln+1 = {e0, e1, . . . , en}, (43)

where e0 anticommutes with all ei, define the so-called clas-
sifying spaces Cn. Formally, the classifying space is the set of
all possible representations of e0 for given representations of
e1, ..., en [63].

The real Clifford algebra Clp,q [or Clp,q(R)] has p + q
generators with the properties

{ei, e j} = 0 for i �= j, (44)

e2
i = −1 for i = 1, . . . , p, (45)

e2
i = +1 for i = p + 1, . . . , p + q. (46)

These generators again constitute a basis of a vector space but
in this case over R. The maps

Cl0,q = {e1, . . .} → Cl0,q+1 = {e0, e1, . . .}, (47)

with e2
0 = +1 (48)

and e0 anticommuting with all ei, define the classifying spaces
Rq. One can then show [5,48] that the maps

Clp,q = {e1, . . .} → Clp+1,q = {e0, e1, . . .}, (49)

with e2
0 = −1 (50)

give Rp+2−q and the maps

Clp,q = {e1, . . .} → Clp,q+1 = {e0, e1, . . .}, (51)

with e2
0 = +1 (52)

give Rq−p (in both cases with e0 anticommuting with all ei).
The classifying spaces have the Bott periodicity Cp ≈ Cp+2

and Rp ≈ Rp+8. The relevance of the classifying spaces is
that their π0 groups are known [5,6,57,63].

In Appendix B, we demonstrate that for frequency-
independent Hermitian Hamiltonians the above procedure
leads to the known results.

F. K groups for frequency-dependent
non-Hermitian Hamiltonians

In this section, we show the results for the classification
of frequency-dependent non-Hermitian Hamiltonians. These
Hamiltonians belong to one of the 54 symmetry classes listed
in Table II. According to Eq. (17), the K groups for such
Hamiltonians H (k, ω) in d spatial or momentum dimensions
consist of three parts,

K (Sd × S1) = K (Sd ) ⊕ K (S1) ⊕ K (Sd+1), (53)
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where K (Sd ) describes the topology in momentum space
[5,6,27,50], K (S1) refers to frequency space, and K (Sd+1) to
combined momentum-frequency space. For the three cases
of a point gap, a real line gap, and an imaginary line gap,
the classification problem for H (k, ω) differently maps to the
classification of Hermitian Hamiltonians with related sym-
metries, as described in Sec. II C. Applying dimensional
reduction, as described in Sec. II D, the three K groups in
Eq. (53) can be constructed.

The K groups for d = 1, 2, 3 and all symmetry classes
are shown in Table III for a point gap, in Table IV for a
real line gap, and in Table V for an imaginary line gap. The
columns for the frequency dependence are independent of
the spatial symmetry d but are repeated for clarity. (In the
case of quantum dots, where real space and thus momentum
space consist of a single point, this is the only contribution.)
According to Eq. (53), the full K group is the direct sum of the
three contribution from momentum, frequency, and their com-
bination. Three examples that illustrate the procedure leading
to Tables III–V are presented below. Results for larger d can
be found in the same way.

The tables generalize the results in Ref. [58], where only
the momentum dependence and the corresponding 38 sym-
metry classes were considered. The well-known results for
the 10-fold way [3–7] are contained in Table IV for a real
line gap.2 Note that the entries in Table IV for the momen-
tum dependence are the same for symmetry classes that only
differ by a dagger. As noted in Sec. I, the case of a real line
gap applies to the effective Hamiltonian extracted from the
retarded Green’s function of an interacting closed system. For
open systems, all three cases are possible.

Already for the momentum dependence [58], direct sums
Z2 ⊕ Z2 and Z ⊕ Z appear. Now, more complicated groups
occur due to the combination of three contributions, i.e., be-
cause of including the frequency dependence. However, all
groups are isomorphic to direct sums of potentially multiple
copies of the groups Z and Z2. For example, for the class AI
with d = 1 and a point gap we find Z ⊕ Z2 ⊕ Z2. Moreover,
a unique feature appears for the class AIII + SLS+ in odd
dimensions d and a line gap of either type: We find the K
group Z ⊕ Z ⊕ Z ⊕ Z for the combined contribution alone.
The derivation is sketched in Sec. II F 3. The origin of the
quadruple Z can be traced back to the frequency dependence
of CS and SLS because of which dimensional reduction leads
to a zero-dimensional Hamiltonian with two independent con-
ventional unitary symmetries.

1. Class A in three dimensions with a point gap

As the first example, we consider the case of class A for
d = 3 spatial dimensions, assuming a point gap. Class A has
no symmetries. Flattening the Hamiltonian H (k, ω) following
Sec. II C, we obtain a Hermitian Hamiltonian

H̃ (k, ω) ≡
(

0 U (k, ω)
U †(k, ω) 0

)
(54)

2We do not employ the notation “2Z” which is sometimes used to
indicate that a naturally defined topological invariant is even. 2Z is
isomorphic to Z.

with the additional symmetry 	 described by

Ũ	 H̃ (k, ω) Ũ †
	 = −H̃ (k, ω), (55)

where 	2 = 1.
We start with the contribution K (S1) from the frequency

dependence. We write the Hamiltonian in the form of Eq. (40),
ignoring the momentum dependence

H (θ ) = H1 sin θ + H0 cos θ, (56)

where θ of course parametrizes the frequency. The two ma-
trices H1 and H0 anticommute and square to the identity by
construction. Furthermore, H1 and H0 anticommute with 	.

Hence, the dimensionally reduced Hamiltonian H1 is sub-
ject to two constraints, namely. it has to anticommute with
	 and with H0. In analogy to the standard Altland-Zirnbauer
classes (see Appendix B), we choose the anticommuting gen-
erators

e1 = 	, (57)

e2 = H0, (58)

forming the Clifford algebra Cl2. The generator

e0 = H1 (59)

extends the algebra,

Cl2 = {e1, e2} → Cl2+1 = {e0, e1, e2}, (60)

this defines the classifying space C2 ≈ C0. The resulting K
group is Z.

The second contribution K (S3) stems from the momentum
dependence. We have to reduce the dimension from d = 3 to
d = 0 in three steps. The result is an algebra generated by the
symmetry operator 	, the zero-dimensional Hamiltonian H1,
and three generators H0, H ′

0, and H ′′
0 , which appeared due to

the dimensional reduction. All of these generators anticom-
mute and square to the identity. We choose e1 = 	, e2 = H0,
e3 = H ′

0, and e4 = H ′′
0 and add the generator e0 = H1, which

leads to the extension Cl4 → Cl5. The classifying space is
C4 ≈ C0, implying that this part also contributes a Z group.

The last contribution K (S4) stems from the combined
momentum and frequency dependence. Upon dimensional re-
duction, there arise three generators H0, H ′

0, and H ′′
0 from the

momentum directions and one generator H ′′′
0 from the fre-

quency direction. The corresponding extension is Cl5 → Cl6.
The classifying space is C5 ≈ C1, leading to a trivial K group.

In conclusion, the entries for class A and dimension d = 3
in Table III are Z for the momentum part, Z for the frequency
part, and 0 for the combined part. Using Eq. (17), we obtain
the full group Z ⊕ Z.

2. Class AIII in one dimension with a point gap

As a second example, we consider class AIII for d = 1,
assuming a point gap. We will see that an additional doubling
of the group occurs. Class AIII has chiral symmetry CS. Flat-
tening H (k, ω), we obtain a Hermitian Hamiltonian H̃ (k, ω)
with chiral symmetry

ŨCS H̃ (k, ω) Ũ †
CS = −H̃ (k,−ω), (61)
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TABLE III. K groups for frequency-dependent non-Hermitian Hamiltonians in d = 1, 2, 3 spatial dimensions for the case of a point gap.
For each value of d , the three columns show the K groups describing the momentum dependence (green, left column), the frequency dependence
(blue, middle column), and the combined momentum and frequency dependence (red, right column).

d = 1 d = 2 d = 3

Class K (Sd ) K (S1) K (Sd+1) K (Sd ) K (S1) K (Sd+1) K (Sd ) K (S1) K (Sd+1)

A Z Z 0 0 Z Z Z Z 0
A + pH 0 0 Z Z 0 0 0 0 Z
A + SLS 0 0 Z Z ⊕ Z 0 0 0 0 Z
AIII 0 Z ⊕ Z 0 Z Z ⊕ Z Z ⊕ Z 0 Z ⊕ Z 0
AIII + SLS+ Z 0 Z ⊕ Z 0 0 0 Z 0 Z ⊕ Z
AIII + SLS− 0 Z 0 Z ⊕ Z Z Z 0 Z 0

AI Z Z2 Z2 0 Z2 Z 0 Z2 0
D Z2 Z2 Z2 Z2 Z2 Z Z Z2 0
AII Z 0 0 0 0 Z Z2 0 0
C 0 0 0 0 0 Z Z 0 0
AI† 0 Z 0 0 Z 0 Z Z 0
D† Z Z 0 0 Z 0 0 Z 0
AII† Z2 Z 0 Z2 Z Z2 Z Z Z2
C† Z Z 0 0 Z Z2 Z2 Z Z2

BDI Z2 Z2 ⊕ Z2 Z2 ⊕ Z2 Z Z2 ⊕ Z2 Z ⊕ Z 0 Z2 ⊕ Z2 0
DIII 0 Z 0 Z2 Z Z Z2 Z 0
CII 0 0 0 Z 0 Z ⊕ Z 0 0 0
CI 0 Z 0 0 Z Z 0 Z 0
BDI† 0 Z 0 0 Z Z 0 Z 0
DIII† Z2 Z2 ⊕ Z2 Z2 ⊕ Z2 Z Z2 ⊕ Z2 Z ⊕ Z 0 Z2 ⊕ Z2 0
CII† 0 Z 0 Z2 Z Z Z2 Z 0
CI† 0 0 0 Z 0 Z ⊕ Z 0 0 0
AI + pH+ 0 Z ⊕ Z 0 0 Z ⊕ Z 0 0 Z ⊕ Z 0
AI + pH− Z2 Z 0 Z Z Z 0 Z 0
AI + SLS+ Z ⊕ Z Z2 ⊕ Z2 Z2 ⊕ Z2 0 Z2 ⊕ Z2 Z ⊕ Z 0 Z2 ⊕ Z2 0
AI + SLS− Z Z 0 0 Z Z Z Z 0
D + pH+ Z2 Z2 Z Z Z2 0 0 Z2 0
D + pH− 0 0 Z2 Z2 0 Z2 Z2 0 Z
D + SLS+ Z Z ⊕ Z 0 0 Z ⊕ Z Z ⊕ Z Z Z ⊕ Z 0
D + SLS− Z2 ⊕ Z2 Z2 ⊕ Z2 Z2 ⊕ Z2 Z2 ⊕ Z2 Z2 ⊕ Z2 Z ⊕ Z Z ⊕ Z Z2 ⊕ Z2 0
AII + pH+ 0 Z 0 Z2 Z Z Z2 Z 0
AII + pH− 0 0 0 Z 0 Z ⊕ Z 0 0 0
AII + SLS+ Z ⊕ Z 0 0 0 0 Z ⊕ Z Z2 ⊕ Z2 0 0
AII + SLS− Z Z 0 0 Z Z Z Z 0
C + pH+ 0 0 Z Z 0 0 0 0 Z2

C + pH− 0 0 0 0 0 0 0 0 Z
C + SLS+ Z Z ⊕ Z 0 0 Z ⊕ Z Z ⊕ Z Z Z ⊕ Z 0
C + SLS− 0 0 0 0 0 Z ⊕ Z Z ⊕ Z 0 0

BDI + pH++ Z Z2 ⊕ Z2 Z ⊕ Z 0 Z2 ⊕ Z2 0 0 Z2 ⊕ Z2 0
BDI + pH+− 0 Z2 ⊕ Z2 Z ⊕ Z Z Z2 ⊕ Z2 0 0 Z2 ⊕ Z2 0
BDI + pH−+ Z2 ⊕ Z2 Z2 Z2 Z ⊕ Z Z2 Z 0 Z2 0
BDI + pH−− Z2 0 Z Z2 0 0 Z 0 Z
DIII + pH++ Z2 0 Z Z2 0 0 Z 0 Z
DIII + pH+− 0 0 Z Z2 ⊕ Z2 0 0 Z2 ⊕ Z2 0 Z
DIII + pH−+ 0 Z 0 Z Z 0 0 Z 0
DIII + pH−− Z 0 Z ⊕ Z 0 0 0 Z2 0 Z2 ⊕ Z2

CII + pH++ Z 0 Z ⊕ Z 0 0 0 Z2 0 Z2 ⊕ Z2

CII + pH+− 0 0 Z ⊕ Z Z 0 0 0 0 Z2 ⊕ Z2

CII + pH−+ 0 0 0 Z ⊕ Z 0 Z 0 0 0
CII + pH−− 0 0 Z 0 0 0 Z 0 Z
CI + pH++ 0 0 Z 0 0 0 Z 0 Z
CI + pH+− 0 0 Z 0 0 0 0 0 Z
CI + pH−+ 0 Z 0 Z Z Z2 0 Z Z2

CI + pH−− Z Z2 ⊕ Z2 Z ⊕ Z 0 Z2 ⊕ Z2 0 0 Z2 ⊕ Z2 0
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TABLE IV. K groups for frequency-dependent non-Hermitian Hamiltonians in d = 1, 2, 3 spatial dimensions for the case of a real line
gap. For each value of d , the three columns show the K groups describing the momentum dependence (green, left column), the frequency
dependence (blue, middle column), and the combined momentum and frequency dependence (red, right column).

d = 1 d = 2 d = 3

Class K (Sd ) K (S1) K (Sd+1) K (Sd ) K (S1) K (Sd+1) K (Sd ) K (S1) K (Sd+1)

A 0 0 Z Z 0 0 0 0 Z
A + pH 0 0 Z ⊕ Z Z ⊕ Z 0 0 0 0 Z ⊕ Z
A + SLS Z 0 Z ⊕ Z 0 0 0 Z 0 Z ⊕ Z
AIII Z 0 Z ⊕ Z 0 0 0 Z 0 Z ⊕ Z
AIII + SLS+ Z ⊕ Z 0 Z ⊕ Z ⊕ Z ⊕ Z 0 0 0 Z ⊕ Z 0 Z ⊕ Z ⊕ Z ⊕ Z
AIII + SLS− 0 0 Z Z 0 0 0 0 Z

AI 0 Z2 Z 0 Z2 0 0 Z2 0
D Z2 Z2 Z Z Z2 0 0 Z2 0
AII 0 0 Z Z2 0 0 Z2 0 Z2

C 0 0 Z Z 0 0 0 0 Z2

AI† 0 Z2 Z 0 Z2 0 0 Z2 0
D† Z2 Z2 Z Z Z2 0 0 Z2 0
AII† 0 0 Z Z2 0 0 Z2 0 Z2

C† 0 0 Z Z 0 0 0 0 Z2

BDI Z Z2 ⊕ Z2 Z ⊕ Z 0 Z2 ⊕ Z2 0 0 Z2 ⊕ Z2 0
DIII Z2 0 Z Z2 0 0 Z 0 Z
CII Z 0 Z ⊕ Z 0 0 0 Z2 0 Z2 ⊕ Z2

CI 0 0 Z 0 0 0 Z 0 Z
BDI† Z Z2 ⊕ Z2 Z ⊕ Z 0 Z2 ⊕ Z2 0 0 Z2 ⊕ Z2 0
DIII† Z2 0 Z Z2 0 0 Z 0 Z
CII† Z 0 Z ⊕ Z 0 0 0 Z2 0 Z2 ⊕ Z2

CI† 0 0 Z 0 0 0 Z 0 Z
AI + pH+ 0 Z2 ⊕ Z2 Z ⊕ Z 0 Z2 ⊕ Z2 0 0 Z2 ⊕ Z2 0
AI + pH− 0 0 Z Z 0 0 0 0 Z
AI + SLS+ Z Z2 ⊕ Z2 Z ⊕ Z 0 Z2 ⊕ Z2 0 0 Z2 ⊕ Z2 0
AI + SLS− 0 0 Z 0 0 0 Z 0 Z
D + pH+ Z2 ⊕ Z2 Z2 ⊕ Z2 Z ⊕ Z Z ⊕ Z Z2 ⊕ Z2 0 0 Z2 ⊕ Z2 0
D + pH− 0 0 Z Z 0 0 0 0 Z
D + SLS+ Z Z2 ⊕ Z2 Z ⊕ Z 0 Z2 ⊕ Z2 0 0 Z2 ⊕ Z2 0
D + SLS− Z2 0 Z Z2 0 0 Z 0 Z
AII + pH+ 0 0 Z ⊕ Z Z2 ⊕ Z2 0 0 Z2 ⊕ Z2 0 Z2 ⊕ Z2

AII + pH− 0 0 Z Z 0 0 0 0 Z
AII + SLS+ Z 0 Z ⊕ Z 0 0 0 Z2 0 Z2 ⊕ Z2

AII + SLS− Z2 0 Z Z2 0 0 Z 0 Z
C + pH+ 0 0 Z ⊕ Z Z ⊕ Z 0 0 0 0 Z2 ⊕ Z2

C + pH− 0 0 Z Z 0 0 0 0 Z
C + SLS+ Z 0 Z ⊕ Z 0 0 0 Z2 0 Z2 ⊕ Z2

C + SLS− 0 0 Z 0 0 0 Z 0 Z

BDI + pH++ Z ⊕ Z Z2 ⊕ Z2 Z ⊕ Z 0 Z2 ⊕ Z2 0 0 Z2 ⊕ Z2 0
BDI + pH+− 0 Z2 Z 0 Z2 0 0 Z2 0
BDI + pH−+ Z2 Z2 Z Z Z2 0 0 Z2 0
BDI + pH−− Z Z 0 0 Z Z Z Z 0
DIII + pH++ Z2 ⊕ Z2 0 Z ⊕ Z Z2 ⊕ Z2 0 0 Z ⊕ Z 0 Z ⊕ Z
DIII + pH+− 0 Z2 Z Z2 Z2 0 Z2 Z2 0
DIII + pH−+ Z Z2 Z 0 Z2 0 0 Z2 0
DIII + pH−− Z Z 0 0 Z Z Z Z 0
CII + pH++ Z ⊕ Z 0 Z ⊕ Z 0 0 0 Z2 ⊕ Z2 0 Z2 ⊕ Z2

CII + pH+− 0 0 Z2 Z2 0 Z2 Z2 0 Z
CII + pH−+ 0 0 0 Z 0 Z 0 0 0
CII + pH−− Z Z 0 0 Z Z Z Z 0
CI + pH++ 0 0 Z ⊕ Z 0 0 0 Z ⊕ Z 0 Z ⊕ Z
CI + pH+− 0 0 Z2 0 0 Z2 0 0 Z
CI + pH−+ 0 0 Z2 Z 0 Z2 0 0 Z
CI + pH−− Z Z 0 0 Z Z Z Z 0

033043-11



MAXIMILIAN KOTZ AND CARSTEN TIMM PHYSICAL REVIEW RESEARCH 5, 033043 (2023)

TABLE V. K groups for frequency-dependent non-Hermitian Hamiltonians in d = 1, 2, 3 spatial dimensions for the case of an imaginary
line gap. For each value of d , the three columns show the K groups describing the momentum dependence (green, left column), the frequency
dependence (blue, middle column), and the combined momentum and frequency dependence (red, right column).

d = 1 d = 2 d = 3

Class K (Sd ) K (S1) K (Sd+1) K (Sd ) K (S1) K (Sd+1) K (Sd ) K (S1) K (Sd+1)

A 0 0 Z Z 0 0 0 0 Z
A + pH Z Z 0 0 Z Z Z Z 0
A + SLS Z 0 Z ⊕ Z 0 0 0 Z 0 Z ⊕ Z
AIII 0 0 Z ⊕ Z Z ⊕ Z 0 0 0 0 Z ⊕ Z
AIII + SLS+ Z ⊕ Z 0 Z ⊕ Z ⊕ Z ⊕ Z 0 0 0 Z ⊕ Z 0 Z ⊕ Z ⊕ Z ⊕ Z
AIII + SLS− 0 0 Z Z 0 0 0 0 Z

AI Z2 0 Z2 Z 0 Z2 0 0 Z
D Z2 Z2 Z Z Z2 0 0 Z2 0
AII 0 0 0 Z 0 0 0 0 Z
C 0 0 Z Z 0 0 0 0 Z2

AI† 0 Z2 Z 0 Z2 0 0 Z2 0
D† 0 0 0 0 0 0 0 0 Z
AII† 0 0 Z Z2 0 0 Z2 0 Z2

C† 0 0 Z2 Z2 0 Z2 Z2 0 Z

BDI Z2 ⊕ Z2 Z 0 Z ⊕ Z Z 0 0 Z 0
DIII 0 Z2 Z2 Z Z2 Z 0 Z2 0
CII 0 Z 0 Z ⊕ Z Z Z2 0 Z Z2

CI 0 0 0 Z 0 Z 0 0 0
BDI† 0 Z 0 0 Z 0 0 Z 0
DIII† 0 0 0 Z 0 Z 0 0 0
CII† 0 Z 0 Z2 ⊕ Z2 Z Z2 Z2 ⊕ Z2 Z Z2

CI† 0 Z2 Z2 Z Z2 Z 0 Z2 0
AI + pH+ Z Z2 Z2 0 Z2 Z 0 Z2 0
AI + pH− Z2 Z 0 Z2 Z Z2 Z Z Z2

AI + SLS+ Z 0 Z 0 0 0 0 0 Z
AI + SLS− Z2 0 Z2 ⊕ Z2 Z2 0 Z2 ⊕ Z2 Z 0 Z ⊕ Z
D + pH+ Z Z 0 0 Z 0 0 Z 0
D + pH− Z2 Z2 Z2 Z2 Z2 Z Z Z2 0
D + SLS+ Z 0 Z2 ⊕ Z2 0 0 Z2 ⊕ Z2 0 0 Z ⊕ Z
D + SLS− Z2 0 Z Z2 0 0 Z 0 Z
AII + pH+ Z 0 0 0 0 Z Z2 0 0
AII + pH− 0 Z 0 0 Z 0 Z Z 0
AII + SLS+ Z 0 Z 0 0 0 Z2 0 Z
AII + SLS− 0 0 0 0 0 0 Z 0 Z ⊕ Z
C + pH+ Z Z 0 0 Z Z2 Z2 Z Z2

C + pH− 0 0 0 0 0 Z Z 0 0
C + SLS+ Z 0 0 0 0 0 Z2 0 Z ⊕ Z
C + SLS− 0 0 Z 0 0 0 Z 0 Z

BDI + pH++ Z ⊕ Z Z2 Z 0 Z2 0 0 Z2 0
BDI + pH+− Z2 Z 0 Z Z Z 0 Z 0
BDI + pH−+ Z2 Z 0 Z Z Z 0 Z 0
BDI + pH−− Z2 ⊕ Z2 0 Z2 Z2 ⊕ Z2 0 Z2 Z ⊕ Z 0 Z
DIII + pH++ Z 0 0 0 0 0 Z 0 Z
DIII + pH+− 0 0 0 Z2 0 Z ⊕ Z Z2 0 0
DIII + pH−+ 0 Z ⊕ Z 0 0 Z ⊕ Z 0 0 Z ⊕ Z 0
DIII + pH−− Z Z2 Z 0 Z2 0 Z Z2 0
CII + pH++ Z ⊕ Z 0 Z 0 0 0 Z2 ⊕ Z2 0 Z2

CII + pH+− 0 Z 0 Z Z Z 0 Z 0
CII + pH−+ 0 Z 0 Z Z Z 0 Z 0
CII + pH−− 0 0 0 0 0 0 Z ⊕ Z 0 Z
CI + pH++ Z 0 Z2 0 0 Z2 Z 0 Z
CI + pH+− 0 Z2 ⊕ Z2 Z2 ⊕ Z2 0 Z2 ⊕ Z2 Z ⊕ Z 0 Z2 ⊕ Z2 0
CI + pH−+ 0 Z ⊕ Z 0 Z2 Z ⊕ Z Z2 ⊕ Z2 Z2 Z ⊕ Z Z2 ⊕ Z2

CI + pH−− Z 0 Z 0 0 0 Z 0 Z2
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and the additional symmetry

Ũ	 H̃ (k, ω) Ũ †
	 = −H̃ (k, ω). (62)

CS and 	 square to the identity and anticommute.
The contribution from the frequency dependence requires

one reduction according to Eq. (56). The new aspect is that
under CS, ω changes sign so that θ maps to π − θ and cos θ

changes sign. Hence, H0 does not change sign under CS,
i.e., H0 and ŨCS commute. H1 retains CS and 	 and thus
anticommutes with ŨCS and Ũ	 , as well as with H0. Since H0

and ŨCS commute they cannot both be generators of a Clifford
algebra. However, H1 commutes with their product H0ŨCS,
which describes a conventional unitary symmetry. The unitary
transformation that diagonalizes H0ŨCS block diagonalizes
H1, resulting in two sectors corresponding to the two eigenval-
ues ±1 of H0ŨCS. 	 and H0 also commute with H0ŨCS and are
simultaneously block diagonalized. Therefore, the two blocks
of H1 are zero-dimensional Hamiltonians that anticommute
with corresponding blocks of 	 and H0. We choose e1 = 	

and e2 = H0 and add e0 = H1 (or more correctly their diag-
onal blocks). The corresponding extension is Cl2 → Cl3 with
the classifying space C2 ≈ C0 and group Z. Since we have two
sectors, the K group for the frequency dependence is doubled
to Z ⊕ Z.

The contribution from the momentum dependence also re-
quires one reduction, which produces matrices H0 and H1 like
in Sec. II F 1. But now θ is a momentum component and thus
does not change under CS. Hence, H1 inherits the symmetries
	 and CS. We take e1 = 	, e2 = CS, and e3 = H0 and add
e0 = H1. The corresponding extension is Cl3 → Cl4 with the
classifying space C3 ≈ C1 and trivial K group.

The contribution from the combined momentum and fre-
quency dependence requires two reductions according to
Eq. (56). Let us first take θ to represent the frequency. By
the same argument as above, H1 splits into two sectors and
anticommutes with two matrices 	 and H0. For each sector,
reduction in the momentum direction generates a new matrix
H ′

0. The symmetry of H1 is not changed. We choose e1 = 	,
e2 = H0, and e3 = H ′

0 and add e0 = H1. The corresponding
extension is Cl3 → Cl4 with the classifying space C3 ≈ C1 and
trivial K group. The doubling of a trivial group because of the
two sectors does not change it.

3. Class AIII + SLS+ in one dimension with a real line gap

The third example, the class AIII + SLS+ for d = 1 with
a real line gap, involves a class that is only relevant for
non-Hermitian Hamiltonians. Since we are considering a real
line gap, the flattened Hamiltonian H̃ (k, ω) is Hermitian. The
Hamiltonian satisfies CS and SLS, i.e., H̃ (k, ω) anticommutes
with two unitary matrices UCS and USLS (see Table I), which
themselves commute.

The frequency contribution requires one reduction accord-
ing to Eq. (56). Under CS and SLS, ω and cos θ change sign.
Thus, H0 does not change sign under either transformation and
H0 commutes with UCS and USLS, which themselves also com-
mute. H1 anticommutes with all three and commutes with the
product of any two. Two products, say H0UCS and H0USLS, are
independent. We can diagonalize them simultaneously and the
corresponding transformation block diagonalizes H1, leading

FIG. 2. Schematic of illustrative model consisting of three spin-
full orbitals with spin-dependent hopping and coupled to baths.

to four blocks according to the four possible combinations of
eigenvalues ±1. H0 commutes with H0UCS and H0USLS and is
simultaneously block diagonalized. We choose e1 = H0 and
add e0 = H1 (or more correctly their diagonal blocks). The
extension is Cl1 → Cl2 with classifying space C1 and trivial K
group.

The momentum contribution also requires one reduction.
θ does not change under CS or SLS. H1 thus inherits the
anticommutation with UCS and USLS. CS and SLS commute
and thus cannot both be generators of a Clifford algebra. Their
product leads to a conventional unitary symmetry CS × SLS,
which can be used to block diagonalize H1 and H0 into two
blocks. We choose (the diagonal blocks of) e1 = H0 and e0 =
H1. The extension is Cl1 → Cl2 with classifying space C1 and
trivial K group.

The combined contribution can be obtained by first re-
ducing the frequency dependence. As noted above, this leads
to four sectors with Hamiltonians H1 that anticommute with
H0. For each sector, reduction in the momentum direction
generates a new H ′

0 without changing the symmetry of H1.
We choose (the diagonal blocks of) e1 = H0, e2 = H ′

0, and
e0 = H1. The extension is Cl2 → Cl3 with classifying space
C2 ≈ C0 and group Z. It is quadrupled because of the four
sectors, leading to Z ⊕ Z ⊕ Z ⊕ Z.

III. EXAMPLE FOR WINDING
IN THE FREQUENCY DIRECTION

In this section, we consider a simple model for an open
quantum system that shows nontrivial winding in the fre-
quency direction. The model is zero dimensional in space
(d = 0). As illustrated in Fig. 2, it consists of three orbitals for
spin- 1

2 fermions with energies −ε, 0, and +ε. Only fermions
in the spin eigenstate |↑〉 satisfying σz|↑〉 = |↑〉 can hop be-
tween the left and center orbitals, whereas only fermions in
the spin eigenstate |→〉 satisfying σx|→〉 = |→〉 can hop be-
tween the right and center orbitals. σi are Pauli matrices. The
left and right orbitals are coupled to baths that lead to energy
loss, whereas the center orbital is coupled to a bath that causes
gain. Loss and gain can be implemented by positive damping
rates � > 0 and negative damping rates �0 < 0, respectively
[31,36,43]. We are interested in the topological state of the
center orbital depending on the model parameters.
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We can think of a system of quantum dots in which the
electrons are coupled to many external, e.g., phononic, de-
grees of freedom. A simple model involves a continuum of
harmonic modes with a constant spectral density. Such an
open quantum system is naturally described by a quantum
master equation for its reduced density matrix. A simpler
effective description in terms of a non-Hermitian Hamiltonian
can be obtained by neglecting quantum jumps or a mean-field-
type approximation and has proved very useful [31,43]. In
practice, a mapping to a system of coupled optical resonators
might be the most realistic implementation [31,35,36,40].
In this setup, gain can be realized by an optically pumped
medium. We note that gain is not essential for our results in
that we could remove the gain term at the expense of treating
a point gap away from the point E = 0 in the following.

The model is described by the Hamiltonian

H = H0 + VL + VR + R, (63)

where

H0 = ε
∑

σ

c†
Lσ cLσ − ε

∑
σ

c†
Rσ cRσ (64)

describes the onsite energies,

VL = v c†
L↑d↑ + H.c., (65)

VR = v
c†

R↑ + c†
R↓√

2

d↑ + d↓√
2

+ H.c. (66)

describe the hopping, and the anti-Hermitian part

R = i�
∑

σ

c†
Lσ cLσ + i�0

∑
σ

d†
σ dσ + i�

∑
σ

c†
Rσ cRσ (67)

describes loss for the left and right orbitals (� > 0) and gain
for the center orbital (�0 < 0). Here, c†

lσ creates a fermion in
orbital l = L, R with spin σ and d†

σ creates a fermion in the
center orbital with spin σ .

Since the Hamiltonian is bilinear we can obtain the re-
tarded Green’s function GR

lσ,l ′σ ′ (ω) in closed form. Here, l =
L, 0, R, with l = 0 corresponding to the center orbital. The
equation of motion for the local Green’s function for the
center orbital reads as [64]

(ω + i�0) GR
0σ,0σ ′ (ω) − v δσ↑ GR

L↑,0σ ′ (ω)

− v

2

∑
σ ′′

GR
Rσ ′′,0σ ′ (ω) = δσσ ′ . (68)

We also need the equation of motion for the nonlocal Green’s
functions GR

lσ,0σ ′ (ω), which reads as

(ω − εl + i�) GR
lσ,0σ ′ (ω) − v δlLδσ↑ GR

0↑,0σ ′ (ω)

− v

2
δlR

∑
σ ′′

GR
0σ ′′,0σ ′ (ω) = 0, (69)

where εL = ε and εR = −ε. Solving Eq. (69) for the nonlocal
Green’s functions and inserting the result into Eq. (68), we
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FIG. 3. Parametric plot of the eigenvalues E1(ω) (blue curve)
and E2(ω) (red curve) of the effective Hamiltonian HR

eff (ω) in the
complex plane. The frequency ω runs from −∞, where E1 = E2 =
−i�0 (black dot), to +∞, with the same values of E1 and E2. Both
curves are traversed counterclockwise, as indicated by the arrow. The
parameters are ε = 1, v = 1, �0 = −0.2, and � = 0.1.

obtain

(ω + i�0) GR
0σ,0σ ′ (ω) − δσ↑

v2

ω − ε + i�
GR

0↑,0σ ′ (ω)

− v2/4

ω + ε + i�

∑
σ ′′

GR
0σ ′′,0σ ′ (ω) = δσσ ′ . (70)

Writing the Green’s function as a 2 × 2 matrix acting on spin
space, this equation becomes

(ω + i�0) GR
00(ω) − |↑〉〈↑| v2

ω − ε + i�
GR

00(ω)

− |→〉〈→| v2

ω + ε + i�
GR

00(ω) = I, (71)

where I is the identity matrix. The solution, with suppressed
identity matrices, reads as

GR
00(ω) = [

ω − HR
eff (ω)

]−1
, (72)

with the effective Hamiltonian

HR
eff (ω) = |↑〉〈↑| v2

ω − ε + i�
+ |→〉〈→| v2

ω + ε + i�
− i�0,

(73)

where � > 0 (loss) and �0 < 0 (gain).
One easily checks that the effective Hamiltonian in Eq. (73)

satisfies the symmetries TRS† with the matrix UTRS† = I ,
PHS† with the matrix3

UPHS† = exp

(
−iπ

σ1 + σ3

2
√

2

)
, (74)

3This matrix describes a rotation by π about the [101] direction in
spin space, which interchanges the x and z components.
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and CS with the same matrix UCS = UPHS† . The antiunitary
symmetry transformations for TRS† and PHS† both square to
+I . Table II shows that the model thus belongs to class BDI†.

The complex eigenvalues of HR
eff (ω) are plotted in Fig. 3.

Both eigenvalues orbit the zero point in the positive direction
once, as ω increases from −∞ to +∞. Hence, the model has
a point gap. According to Table III, the K group describing the
frequency winding for class BDI† is Z. The invariant is easily
identified as a winding number

w = 1

2π i

∫
dω

∂

∂ω
ln det HR

eff (ω). (75)

The integrand can be obtained analytically. Evaluating the
integral numerically, we obtain w = 2. In fact, the winding
number can equivalently be written as [38]

w = 1

2π

∑
n

∫
dω

∂

∂ω
arg En(ω). (76)

With this, one finds w = 2 directly by inspecting Fig. 3.
The crucial ingredient for the nontrivial topology of this

model is the incompatibility of the hopping operators VL and
VR. Together with the different onsite energies of the left
and right orbitals, VL and VR generate two incompatible self-
energy corrections that peak at different frequencies ω [see
Eq. (73)]. This causes the eigenvalues to describe closed loops
in the complex energy plane.

IV. SUMMARY AND CONCLUSIONS

Non-Hermitian Hamiltonians that depend on frequency
as well as on momentum arise, for example, as effective
Hamiltonians that are in one-to-one correspondence to single-
particle Green’s functions. They are thus well defined also
for interacting systems. In this paper, we have focused on the
additional topological features that result from the frequency
dependence. Our results rely on the assumption that the fre-
quency axis can be compactified to a circle S1, which requires
the effective Hamiltonian and thus the self-energy to have the
same limit for ω → ±∞. This holds, for example, if the effect
of interactions becomes weak at high energies.

We have first presented a rigorous definition and calcu-
lation of the group structure formed by stable equivalence
classes of matrix-valued functions form Sd+1 with additional
symmetry and gap constraints. Important theorems have been
reformulated in the transparent language of Hamiltonians in-
stead of vector bundles. An essential point is that adding flat
bands allows decomposing nontrivial parts of a Hamiltonians
into irreducible parts forming a group. The overall K group
consists of three parts, one from the pure momentum depen-
dence, one from the frequency dependence, and one from
the combination of the two. The frequency dependence thus
adds two contributions: a contribution that describes possi-
ble winding of the effective Hamiltonian in the frequency
direction and a contribution that describes winding in the
(d + 1)-dimensional momentum-frequency space. All groups
are found to be isomorphic to direct sums of potentially multi-
ple copies of the groups Z and Z2. An example with nontrivial
winding in the frequency direction is given by Ramos et al.
[41] in the context of an effective Hermitian Hamiltonian
resulting from the quantum Langevin equation.

Frequency and non-Hermiticity turn out to lead to 54
symmetry classes, which are listed in Table II. This 54-fold
way has to be contrasted to the 10-fold way [1,2] for Her-
mitian Hamiltonians with only momentum dependence and
the 38-fold way [58] for non-Hermitian Hamiltonians with
momentum dependence. The lack on Hermiticity also means
that the spectrum is complex, which requires a reconsideration
of the meaning of a spectral gap. We have considered the
cases of a point gap, a real line gap, and an imaginary line
gap [58]. We have applied a flattening procedure, which maps
the problem to one concerning Hermitian Hamiltonians for
each of the three gap types, and dimensional reduction to
obtain the group structure for each symmetry class, gap type,
and spatial dimensions d = 1, 2, 3. The dimension-reduction
procedure differs from the one used earlier [57,62] to allow us
to deal with symmetry transformations that invert frequency.
The results are presented in Tables III–V, which contain the
10-fold-way classification [3–7] as well as the classification in
terms of 38 symmetry classes of only momentum-dependent
non-Hermitian Hamiltonians [58].

This work opens several directions for future research. Our
results establish the possible existence and nature of topolog-
ical invariants for many cases but do not say how these can
be calculated. Expressions for these invariants are called for.
Clearly, one would also like to find models and experimental
realizations belonging to entries in the tables. Cases where the
frequency dependence and the non-Hermiticity are essential
are particularly interesting. Moreover, what are the observable
consequences of the nontrivial K groups? From our experience
with topological insulators and fully gapped superconduc-
tors, one would of course primarily look for surface states.
Such states at surfaces in real space have a clear meaning
but our Hamiltonians also have a frequency argument, which
suggests to consider end states in time. We speculate that sud-
den switching (quenches) between different symmetry classes
could lead to nontrivial transient effects. At a more general
level, there is a wide field of study of possible topological
phase transitions.

Furthermore, it is clear that the effective Hamiltonian
obtained from the single-particle Green’s function does not
contain everything that there is to know about an interacting
system. One can think of applying analogous ideas to classify
higher-order correlation and response functions.
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APPENDIX A: SYMMETRY TRANSFORMATIONS
OF THE FREQUENCY

In this Appendix, we consider the possible sign change of
the frequency argument ω of the Green’s function GR(k, ω).
We consider noninteracting systems and assume, as always,
translational invariance on a lattice. The Hamiltonian on Fock
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space is then bilinear and can be written as

H0 =
∑

k

∑
nn′

a†
knHnn′ (k)akn′ , (A1)

where akn and a†
kn are annihilation and creation operators

for particles with fixed momentum k and further quantum
numbers collected in n. The retarded and advanced Green’s
functions are matrices with components

GR
nn′ (k, ω) = −i

∫ ∞

0
dt eiωt 〈GS|{akn(t ), a†

kn′ (0)}|GS〉, (A2)

GA
nn′ (k, ω) = i

∫ 0

−∞
dt eiωt 〈GS|{akn(t ), a†

kn′ (0)}|GS〉, (A3)

where |GS〉 is the ground state and we employ the Heisenberg
picture. This is the general form. For the noninteracting case,
the Green’s functions become

GR(k, ω) = [ω − H (k) + i0+]−1, (A4)

GA(k, ω) = [ω − H (k) − i0+]−1. (A5)

Identity matrices are suppressed.

1. Unitary symmetries

Let U be a unitary operator on Fock space that describes
an ordinary unitary point-group symmetry. This means that U
acts on annihilation operators as

UaknU−1 =
∑

n′
U †

nn′aRk,n′ =
∑

n′
U ∗

n′naRk,n′ , (A6)

where U is a unitary matrix and R ∈ O(3) describes the action
of the symmetry transformation on the momentum vector k.
It is useful to also write the transformation rules for creation
operators and for the inverse transformations:

Ua†
knU−1 =

∑
n′

U T
nn′a†

Rk,n′ =
∑

n′
Un′naRk,n′ , (A7)

U−1aknU =
∑

n′
Unn′aR−1k,n′ , (A8)

U−1a†
knU =

∑
n′

U ∗
nn′a†

R−1k,n′ . (A9)

To be a symmetry, U must satisfy UHU−1 = H so that

UH (R−1k)U † = H (k). (A10)

The Green’s function then satisfies

UGR(R−1k, ω)U † = GR(k, ω). (A11)

For the noninteracting case, this follows trivially but it holds
in general. In the general proof, we have to assume that the
ground state |GS〉 is an eigenstate of U so that U |GS〉 only
differs from |GS〉 by an irrelevant phase factor. This means
that the result breaks down if the symmetry U is spontaneously
broken.

2. Particle-hole symmetry

On Fock space, the particle-hole transformation or charge
conjugation C is unitary [3,6]. However, it differs from an

ordinary symmetry by its action on annihilation and creation
operators:

CaknC−1 =
∑

n′
U T

C,nn′a†
−k,n′ =

∑
n′

UC,n′na†
−k,n′ , (A12)

Ca†
knC−1 =

∑
n′

U †
C,nn′a−k,n′ =

∑
n′

U ∗
C,n′na−k,n′ , (A13)

C−1aknC =
∑

n′
UC,nn′a†

−k,n′ , (A14)

C−1a†
knC =

∑
n′

U ∗
C,nn′a−k,n′ . (A15)

This is only possible for fermions. The reason is that for
fermions, but not for bosons, creation and annihilation op-
erators have the same algebraic properties and therefore the
particle-hole transformation is possible.

To be a symmetry, C must satisfy CHC−1 = H. Note that
there is no minus sign; this is a standard unitary symmetry on
Fock space. Then. for the noninteracting case we find that two
conditions must be satisfied [3,6,65]:∑

k

TrH (k) = 0, (A16)

UCH (−k)T U †
C = −H (k). (A17)

For Hermitian Hamiltonians, we can replace H (−k)T by
H (−k)∗ as convenient.

On the other hand, for the Green’s function, the trans-
pose and the complex conjugate are different since it is
non-Hermitian in general. We here show that the symmetry
relation for the full Green’s function contains the complex
conjugate:

[UCGR(−k,−ω)∗U †
C ]nn′

= i
∫ ∞

0
dt eiωt

∑
mm′

UC,nm 〈{a−k,m(t ),

× a†
−k,m′ (0)}〉∗ (U †

C )m′n′

= i
∫ ∞

0
dt eiωt

∑
mm′

UC,nm 〈{a−k,m′ (0), a†
−k,m(t )}〉U ∗

C,n′m′

= i
∫ ∞

0
dt eiωt

∑
mm′

〈{U ∗
C,n′m′a−k,m′ (0),UC,nma†

−k,m(t )}〉

= i
∫ ∞

0
dt eiωt 〈{C−1a†

kn′ (0)C, C−1akn(t )C}〉

= i
∫ ∞

0
dt eiωt 〈C−1{akn(t ), a†

kn′ (0)} C〉, (A18)

where 〈·〉 is the ground-state expectation value. We assume
that the ground state |GS〉 does not break particle-hole sym-
metry. Then |GS〉 is an eigenstate of C and we obtain

· · · = i
∫ ∞

0
dt eiωt 〈{akn(t ), a†

kn′ (0)}〉 = −GR
nn′ (k, ω). (A19)

The Green’s function thus satisfies

UCGR(−k,−ω)∗U †
C = −GR(k, ω). (A20)
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3. Time-reversal symmetry

Time reversal T is an antiunitary transformation on Fock
space, i.e., T iT −1 = −i, which acts on annihilation and cre-
ation operators as

T aknT −1 =
∑

n′
U †

T,nn′a−k,n′ =
∑

n′
U ∗

T,n′na−k,n′ , (A21)

T a†
knT −1 =

∑
n′

U T
T,nn′a†

−k,n′ =
∑

n′
UT,n′na†

−k,n′ , (A22)

T −1aknT =
∑

n′
U ∗

T,nn′a−k,n′ , (A23)

T −1a†
knT =

∑
n′

UT,nn′a†
−k,n′ . (A24)

To be a symmetry, T must satisfy T HT −1 = H. This is a
nonstandard symmetry since T is antiunitary. Then for the
noninteracting case we find [3,6,65]

UT H (−k)∗U †
T = H (k). (A25)

For Hermitian Hamiltonians, we can replace H (−k)∗ by
H (−k)T as convenient.

For the Green’s function, the complex conjugate is not the
same as the transpose, as noted above. It turns out that the
symmetry relation contains the transpose:

[UT GR(−k, ω)T U †
T ]nn′

= −i
∫ ∞

0
dt eiωt

∑
mm′

UT,nm 〈{a−k,m′ (t ),

× a†
−k,m(0)}〉 (U †

T )m′n′

= −i
∫ ∞

0
dt eiωt 〈T −1{akn′ (−t ), a†

kn(0)} T 〉

= −i
∫ 0

−∞
dt e−iωt 〈T −1{akn′ (t ), a†

kn(0)} T 〉. (A26)

We assume that the ground state does not break time-reversal
symmetry. However, since T is antilinear we cannot conclude
that |GS〉 is an eigenstate of T . Rather, we start from the
identity 〈T ψ |T φ〉 = 〈ψ |φ〉∗ = 〈φ|ψ〉 and conclude that

〈φ|T −1AT |ψ〉 = 〈φ| T −1AT ψ〉 = 〈AT ψ | T φ〉
= 〈T ψ |A†|T φ〉 = 〈T φ|A|T ψ〉∗ (A27)

for any linear operator A on Fock space. Hence, we have

〈GS|T −1AT |GS〉 = 〈T GS|A|T GS〉∗. (A28)

The assumption that the ground state does not break time-
reversal symmetry means that expectation values with respect
to |GS〉 and |T GS〉 are the same. We thus obtain

[UT GR(−k, ω)T U †
T ]nn′

= −i
∫ 0

−∞
dt e−iωt 〈{akn′ (t ), a†

kn(0)}〉∗

=
(

i
∫ 0

−∞
dt eiωt 〈{akn′ (t ), a†

kn(0)}〉
)∗

= GA
n′n(k, ω)∗ = GR

nn′ (k, ω). (A29)

TABLE VI. Symmetry operations for frequency-independent
Hermitian Hamiltonians. K denotes complex conjugation.

TRS T H (k) T −1 = H (−k) T = UTRSK
PHS C H (k)C−1 = −H (−k) C = UPHSK
SLS S H (k) S−1 = −H (k) S = TC = UTRSU ∗

PHS

The Green’s function thus satisfies

UT GR(−k, ω)T U †
T = GR(k, ω), (A30)

which agrees with Ref. [66].

4. Chiral symmetry

Chiral or sublattice symmetry is implemented by S = CT ,
which is antiunitary, SiS−1 = −i. All results follow from the
previous two sections. Chiral symmetry acts on annihilation
and creation operators as

SaknS−1 =
∑

n′
U T

S,nn′a†
kn′ =

∑
n′

US,n′na†
kn′ , (A31)

Sa†
knS−1 =

∑
n′

U †
S,nn′akn′ =

∑
n′

U ∗
S,n′nakn′ , (A32)

S−1aknS =
∑

n′
U ∗

S,nn′a†
kn′ , (A33)

S−1a†
knS =

∑
n′

US,nn′akn′ . (A34)

Here, US = UCU ∗
T . To be a symmetry, S must satisfy

SHS−1 = H . Then for the noninteracting case we find
[3,6,65] ∑

k

TrH (k) = 0, (A35)

USH (k)U †
S = −H (k). (A36)

The Green’s function satisfies

USGR(k,−ω)†U †
S = −GR(k, ω). (A37)

This can also be written as

USGA(k,−ω)U †
S = −GR(k, ω). (A38)

APPENDIX B: ZERO-DIMENSIONAL
ALTLAND-ZIRNBAUER CLASSES

In this Appendix, we recall the construction of classifying
spaces for frequency-independent Hermitian Hamiltonians
within one of the Altland-Zirnbauer (AZ) classes [5,63,67].
Such Hamiltonians satisfy a subset of the symmetries from
Table VI (also compare Table I). For Hermitian Hamiltonians,
we of course have H = H† and HT = H∗. The definition of
the classes and the required symmetry operations can be found
for example in Refs. [6,7].

The goal is to construct the classifying space for Hamil-
tonians H with certain of these symmetries as described by
one of the AZ classes, in D = 0 dimensions. The generators
of these symmetries realize a complex or real Clifford algebra
{e1, . . .}. The classifying space is obtained from the extension
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TABLE VII. Classifying spaces for the complex AZ classes in
D = 0 dimensions [63].

Class Generators Extension Classifying space

A e0 = H Cl0 → Cl1 C0

AIII e0 = H , e1 = S Cl1 → Cl2 C1

of this Clifford algebra by another generator e0, which is
judiciously chosen as the Hamiltonian H or as H multiplied
by the imaginary unit. The complex case is straightforward
and the results are shown in Table VII.

In the real case, there are three possibilities: If only TRS
is present we have e1 = T and e2 = T J satisfying e2

1 = e2
2 =

εT = ±1 and extend the algebra by e0 = JH with e2
0 = −1.

Here, J is a real matrix representation of the imaginary unit.
If only PHS is present we have e1 = C and e2 = CJ satisfying
e2

1 = e2
2 = εC = ±1 and extend the algebra by e0 = H with

e2
0 = +1. If both symmetries are present we have e1 = C,

TABLE VIII. Classifying spaces for the real AZ classes in D = 0
dimensions [63].

Class (εT , εC ) Extension Classifying space

AI (1,0) Cl0,2 → Cl1,2 R0

BDI (1,1) Cl1,2 → Cl1,3 R1

D (0,1) Cl0,2 → Cl0,3 R2

DIII (−1, 1) Cl0,3 → Cl0,4 R3

AII (−1, 0) Cl2,0 → Cl3,0 R4

CII (−1, −1) Cl3,0 → Cl3,1 R−3 ≈ R5

C (0, −1) Cl2,0 → Cl2,1 R−2 ≈ R6

CI (1, −1) Cl2,1 → Cl2,2 R−1 ≈ R7

e2 = CJ , and e3 = TCJ satisfying e2
1 = e2

2 = εC = ±1 and
e2

3 = −εT εC and extend the algebra by e0 = H with e2
0 = +1.

This choice of generators leads to the results presented in
Table VIII. In the last three rows, Bott periodicity Rp ≈ Rp+8

is used.
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