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Petermann factors and phase rigidities near exceptional points
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The Petermann factor and the phase rigidity are convenient measures for various aspects of open quantum and
wave systems, such as the sensitivity of energy eigenvalues to perturbations or the magnitude of quantum excess
noise in lasers. We discuss the behavior of these two important quantities near non-Hermitian degeneracies,
so-called exceptional points. For small generic perturbations, we derive analytically explicit formulas, which
reveal a relation to the spectral response strength of the exceptional point. These formulas shed light on the
possibilities for enhanced sensing in passive systems. The predictions of the general theory are successfully
compared to analytical solutions of a toy model. Moreover, it is demonstrated that the connection between
the Petermann factor and the spectral response strength provides the basis for an efficient numerical scheme
to calculate the latter. Our theory is also important in the presence of the unavoidable imperfections in the
fabrication of exceptional points as it allows to determine of what is left of the sensitivity for such imperfect
exceptional points studied in experiments.
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I. INTRODUCTION

Non-Hermitian effective Hamiltonians [1,2] describing the
dynamics of open quantum and wave systems have attracted
considerable interest in recent years, in particular, in the
context of non-Hermitian photonics [3,4]. One obvious con-
sequence of the non-Hermiticity (or nonself-adjointness) of
the Hamiltonian Ĥ �= Ĥ† is that the energy eigenvalues can be
complex valued. The imaginary part has the clear physical in-
terpretation as a decay or growth rate. Another consequence is
that if, additionally, the Hamiltonian is non-normal [Ĥ, Ĥ†] �=
0, then one has to distinguish right eigenstates |Rl〉 from the
corresponding left eigenstates |Ll〉; the quantum number l
labels the states uniquely. The difference of right and left
eigenstates is an indicator of the strength of “non-Hermitian
effects,” or better said, “non-normal effects.” This can be made
more precise in terms of the Petermann factor of a given pair
of eigenstates,

Kl := 〈Rl |Rl〉〈Ll |Ll〉
|〈Ll |Rl〉|2 , (1)

with the conventional inner product 〈·|·〉 in Hilbert space.
There exists a lower bound Kl � 1, which follows from
the Cauchy-Schwarz inequality |〈Ll |Rl〉|2 � 〈Rl |Rl〉〈Ll |Ll〉.
The Petermann factor has been introduced to quantify the
linewidth broadening resulting from quantum excess noise in
lasers [5–10] and laser gyroscopes [11]. It is, therefore, also
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called the excess-noise factor or excess-spontaneous emission
factor. Moreover, the Petermann factor measures the enhanced
response of the corresponding eigenstate to perturbations [12],
which is important for non-Hermitian topological sensors
[13] and appears in the context of the non-Hermitian skin
effect, see, e.g., Ref. [14]. In the mathematical literature
on non-normal eigenvalue problems, the enhanced response
is equivalently discussed in terms of the condition number
(square root of the Petermann factor) in the Bauer-Fike the-
orem [15] or in terms of the pseudospectrum [16]. Even
though Kl is defined as a quantity characterizing the individual
eigenstate with quantum number l it also describes mutual
nonorthogonality of eigenstates in two-dimensional Hilbert
spaces where the Petermann factors can be written as K1 =
K2 = 1/(1 − |〈R1|R2〉|2) with normalized eigenstates [17].

Another but equivalent quantity to characterize the differ-
ence of right and left eigenstates is the phase rigidity,

rl := |〈Ll |Rl〉|√〈Rl |Rl〉〈Ll |Ll〉
, (2)

with 0 � rl = 1/
√

Kl � 1. There are other, slightly differ-
ent, definitions in the literature. Some agree with Eq. (2)
provided that the normalization of the individual eigenstates
are chosen appropriately [18,19,20]. Some other definitions
agree only for (complex-) symmetric Hamiltonians and proper
normalization [21–25]. The phase rigidity had been originally
invented to quantify the complexness of wave functions in
systems with partially broken time-reversal symmetry [21].
A related quantity has been used to observe signatures of
quantum chaos in open billiard systems [26].

Of particular interest in the field of open systems are excep-
tional points (EPs) in parameter space [27–31]. At such an EP
of order n a variety of interesting phenomena appear. (i) Ex-
actly n eigenstates and their corresponding eigenvalues of the
Hamiltonian coalesce. (ii) When the Hamiltonian is subjected
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to a small perturbation of strength ε > 0, then the resulting
eigenvalue changes are generically proportional to the nth root
of ε [27]. This feature can be exploited for sensing applica-
tions [32–38]. The response of the system at the EP in terms of
eigenvalue changes can be quantified by the spectral response
strength [39]. (iii) The overlap 〈Ll |Rl〉 of each involved eigen-
state of the Hamiltonian vanishes [40,41]. The latter implies
that the corresponding Petermann factors [Eq. (1)] diverge to
infinity [42,43] and the phase rigidities [Eq. (2)] vanish [23]
whenever an EP is approached. This has been exploited as
an indicator for the appearance of an EP [18,19,20,24,25].
The scaling of the Petermann factors near a second-order EP
have been studied numerically in Refs. [44–46]. For the phase
rigidities, such numerical studies have been performed for
EPs also of higher order [18,19,24,25]. For a generic per-
turbation with small perturbation strength ε, a power-law εν

with scaling exponent ν = (n − 1)/n for the phase rigidities is
expected [47]. The scaling exponent, and, in particular, devia-
tions from the expected value, have been used to characterize
the EP [18–20,24,25,44–46].

In this paper, we present a theory for the Petermann factors
and the phase rigidities near an EP of arbitrary order. This the-
ory allows to accurately predict their behavior in this extreme
situation. In particular, we determine the coefficient in the
power-law εν . We are able to relate this coefficient directly to
the spectral response strength of the EP. This relation provides
a basis for the calculation of the spectral response strength.

The outline of the paper is as follows. In Sec. II, some
necessary theoretical concepts are reviewed. The scaling prop-
erties of the Petermann factors and the phase rigidities near
EPs are derived in Sec. III. Bounds for these quantities are
introduced in Sec. IV. The results are briefly compared to
the literature in Sec. V. An example and an application are
presented in Secs. VI and VII. Section VIII provides a con-
clusion.

II. PRELIMINARIES

This section introduces the theoretical concepts necessary
for understanding this paper.

A. Jordan vectors

We consider an (n × n)-Hamiltonian ĤEP at an EP of
order n � 2 with right eigenstate |REP〉 and eigenvalue
EEP ∈ C. Clearly, a single state cannot span a basis in the
n-dimensional Hilbert space. A basis can be established
by the linearly independent (right) Jordan vectors
| j1〉, | j2〉, . . . , | jn〉. We introduce the n × n matrix,

N̂ := ĤEP − EEP1, (3)

which is nilpotent of index n; hence, N̂n = 0 but N̂n−1 �= 0.
The operator 1 is the identity. With the operator N̂ , the Jordan
chain (see, e.g., Ref. [48]) is defined as

N̂ | j1〉 = 0, (4)

N̂ | jk〉 = | jk−1〉, k = 2, . . . , n. (5)

It is important to realize that only | j1〉 = |REP〉 is a right
eigenstate of the Hamiltonian. Note that Eqs. (4) and (5) do

not uniquely determine the Jordan vectors. This can be fixed
(up to a complex phase) by requiring [39]

〈 j1| j1〉 = 1, (6)

〈 jn| jk〉 = 0 for k = 1, . . . , n − 1. (7)

B. Spectral response strength

In Ref. [39], the spectral response strength of a system at
an EP of order n has been determined to be

ξ = ‖N̂n−1‖2, (8)

with the (n × n)-matrix N̂ defined in Eq. (3) and the spectral
norm (see, e.g., Ref. [49]),

‖Â‖2 := max
‖ψ‖2=1

‖Âψ‖2. (9)

We obey the conventional notation ‖·‖2 both for the spectral
norm of a matrix [in the left-hand side of Eq. (9)] and for the
2-norm ‖ψ‖2 = √〈ψ |ψ〉 of a vector |ψ〉 [in the right-hand
side of Eq. (9)]. The spectral response strength describes the
response of the system at the EP to perturbations,

Ĥ = ĤEP + εĤ1, (10)

in terms of a factor in the bound of the eigenvalue change

|El − EEP|n � ε‖Ĥ1‖2ξ, (11)

where higher orders in the perturbation strength ε are ig-
nored. The scaling of |El − EEP| with the nth root of ε is a
manifestation of the enhanced sensitivity of the system at the
EP with respect to perturbations. Inequality (11) is valid for
generic perturbations, which means here N̂n−1Ĥ1|Rl〉 �= 0. In
very special situations, parameter variations can correspond
to nongeneric perturbations leading to a different scaling be-
havior. This phenomenon is called anisotropic EP, see, e.g.,
Ref. [19]. It can happen that symmetries lead to nongeneric
perturbations, see Refs. [50,51]. The presence of a nongeneric
perturbation would require to extend the theory presented in
Ref. [39] by incorporating the next-order contribution in the
Green’s function.

The spectral response strength can be also expressed by the
“length of the last Jordan vector” [39],

ξ = 1

‖ jn‖2
(12)

provided that the normalization and orthogonalization condi-
tions in Eqs. (6) and (7) are applied.

III. PETERMANN FACTORS AND PHASE
RIGIDITIES NEAR AN EP

In this section, we derive explicit expressions for the Peter-
mann factors [Eq. (1)] and the phase rigidities [Eq. (2)] valid
near a given EP of order n.

Let us first specify the definition of right and left eigen-
states (see, e.g., Ref. [52]) of the Hamiltonian,

Ĥ |Rl〉 = El |Rl〉 and 〈Ll |Ĥ = El〈Ll |. (13)

There are different possibilities to normalize two of the three
inner products 〈Rl |Rl〉, 〈Ll |Ll〉, and 〈Ll |Rl〉. Without loss
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FIG. 1. Illustration of Eq. (20) for n = 2 and normalized
real-valued vectors. With 〈Ll |Rl〉 = cos �̃, 〈LEP|Rl〉 = cos �, and
〈REP|LEP〉 = 0 holds �̃ < � < π/2 (left) and �̃ > � > π/2 (right).
Both cases are consistent with Eq. (20) corresponding to cos �̃ =
2 cos �.

of generality, we choose the normalization 〈Rl |Rl〉 = 1 =
〈Ll |Ll〉 for all l ′s. In this case, the Petermann factors are

Kl = 1

|〈Ll |Rl〉|2 , (14)

and the phase rigidities,

rl = |〈Ll |Rl〉|. (15)

The central quantity to compute is, therefore, |〈Ll |Rl〉|.
We start with the perturbed Hamiltonian (10) and add an-

other perturbation �εĤ1 with 0 < �ε 	 ε. For what follows,
it is crucial that the two perturbations can be combined to
(ε + �ε)Ĥ1. The change in the eigenvalues can be evaluated
in first-order non-Hermitian perturbation theory [13],

�El = �ε
〈Ll |Ĥ1|Rl〉

〈Ll |Rl〉 . (16)

In the limit �ε → 0, we can write

〈Ll |Rl〉 =
(

dEl (ε)

dε

)−1

〈Ll |Ĥ1|Rl〉. (17)

For a generic perturbation, the eigenvalue change is El −
EEP = ε1/nel with el ∈ C [27]. The l dependence of el orig-
inates from the primitive lth root of unity exp (i2π l/n) with
l = 1, . . . , n. We deduce that

dEl

dε
= ε

1
n −1el

n
. (18)

Moreover, in leading order, we can approximate 〈Ll |Ĥ1|Rl〉 by

〈LEP|Ĥ1|Rl〉 = 1

ε
(El − EEP)〈LEP|Rl〉, (19)

and, therefore, with Eqs. (17) and (18),

〈Ll |Rl〉 = n〈LEP|Rl〉. (20)

This equation is illustrated in Fig. 1.
To calculate the right-hand side of Eq. (20), we first expand

|Rl〉 in terms of the Jordan vectors,

|Rl〉 =
n∑

k=1

α
(l )
k | jk〉. (21)

In conjunction with N̂n−1| jn〉 = | j1〉 = |REP〉 and N̂n−1| jk〉 =
0 for k < n [see the Jordan chain in Eqs. (4) and (5)] we get

α(l )
n = 〈REP|N̂n−1|Rl〉. (22)

In Ref. [53], it has been shown that generically for small
perturbations,

(El − EEP)n = 〈Rl |N̂n−1εĤ1|Rl〉. (23)

In the leading order, we replace |Rl〉 by |REP〉 and back result-
ing with the help of Eq. (10) in

(El − EEP)n = 〈Rl |N̂n−1Ĥ |Rl〉 − 〈Rl |N̂n−1ĤEP|REP〉
= (El − EEP)〈REP|N̂n−1|Rl〉. (24)

In combination with Eq. (22), we then get

α(l )
n = (El − EEP)n−1. (25)

Next, we take advantage of the relation proven in the Ap-
pendix,

|〈LEP| jk〉| = ‖ jn‖2δkn, (26)

with Kronecker delta δkn. Together with Eqs. (20) and (21) we
obtain

|〈Ll |Rl〉| = n
∣∣α(l )

n

∣∣‖ jn‖2. (27)

With Eqs. (12), (15), and (25) we get our central result for the
phase rigidities,

rl = n|El − EEP|n−1

ξ
. (28)

Since the absolute value of the eigenvalue change in the lead-
ing order is independent of the quantum number l [53], we
conclude that the same is true for the phase rigidities. Hence,
in the following, we speak about the phase rigidity r = rl

in the vicinity of the EP. Of course, this also applies to the
Petermann factor(s) [Eq. (14)]:

Kl = ξ 2

n2|El − EEP|2n−2
= K. (29)

In contrast to inequality (11), Eqs. (28) and (29) are really
equations. Hence, the spectral response strength ξ , here, does
not just describe a bound but an exact relationship.

At first glance, it might be surprising that the Petermann
factor and the phase rigidity are related to the spectral re-
sponse strength and not to the eigenstate response strength
defined in Ref. [39]. After all, the Petermann factor and
the phase rigidity have been introduced as measures of the
eigenstates. But both quantities are also related to spectral
properties via the first-order non-Hermitian perturbation the-
ory as visible in Eq. (16).

IV. BOUNDS

We combine Eqs. (28) and (29) with inequality (11) leading
to the bounds,

r � n(ε‖Ĥ1‖2)
n−1

n

ξ
1
n

, (30)
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and

K � ξ
2
n

n2(ε‖Ĥ1‖2)
2n−2

n

. (31)

These inequalities provide easy-to-calculate bounds for the
phase rigidity and the Petermann factor provided that the spec-
tral response strength of the EP is known and the size of the
perturbation ‖Ĥ1‖2 can be calculated or, at least, estimated.

For passive (no gain) systems, Ref. [54] has derived an
upper bound for the spectral response strength,

ξ � (
√

2n|Im EEP|)n−1. (32)

Based on this inequality, we derive an upper bound for the
Petermann factor in Eq. (29),

K � 2n−1nn−3

( |Im EEP|
|El − EEP|

)2n−2

. (33)

An analog inequality for the phase rigidity can be easily de-
rived.

The inequality (33) has an important consequence. As-
sume that we want to utilize our system as a sensor but in
contrast to a conventional EP-based sensor where the energy
(or frequency) splitting is detected, we want to spoil the EP
before the detection such that we have isolated peaks with
linewidth of roughly γ = 2|Im EEP| in the spectrum. We want
to carry out the sensing with one of these isolated peaks taking
advantage of the enhanced sensitivity of the corresponding
eigenvalue expressed by K > 1. To resolve the individual
peaks experimentally by standard means, we need a splitting
2|El − EEP| (approximate maximum distance between two
eigenvalues along the real axis, valid for a not too small order
n), at least, of the size of the linewidth γ . Inserting this into
inequality (33) yields

K � 2n−1nn−3. (34)

For n = 2, the right-hand side equals unity, hence, the isolated
peaks cannot be used for enhanced sensing. However, for n =
2, the estimation of the splitting being 2|El − EEP| is not a
good one anyway since in the worst case, the induced energy
change may be only in the imaginary part. For n > 2, this is
impossible, so the estimation of the splitting makes sense in
that case. Here, the right-hand side of the inequality (34) is
� 4 and increases strongly with increasing n. Therefore, for
orders n � 3 the isolated peaks can be exploited for enhanced
sensing. Note that there is no limitation at all for systems with
gain.

V. COMPARISON TO LITERATURE

Having in mind that for a generic perturbation with suffi-
ciently small strength ε, the eigenvalue change scales as El −
EEP ∝ ε1/n, it is clear that our result in Eq. (28) is in full agree-
ment with the expected power-law ∝εν with ν = (n − 1)/n
for generic perturbations [47]. Noteworthy, our approach goes
well beyond that of Ref. [47] as we have explicitly determined
the coefficient in front of the power law. In addition, we have
related this coefficient to the spectral response strength of the
EP.

The numerical studies in the literature [18–20,24,25] have
utilized the vanishing of the phase rigidity as an indicator for
the appearance of an EP. Once an EP is found, the scaling
behavior of the phase rigidity has been employed to char-
acterize the EP. Often the power law with generic scaling
exponent ν = (n − 1)/n has been confirmed, but sometimes,
other exponents have been obtained. Such deviating expo-
nents indicate parameter variations that belong to nongeneric
perturbations of the Hamiltonian. For example, Ref. [18] has
reported ν = 1 for a second-order EP and ν = 3/4 for a
fourth-order EP. The former deviates from the generic be-
havior, and the latter agrees with it. The same for Ref. [20]
where ν = 1 for n = 2 and ν = 2/3 for n = 3 has been ob-
served. Reference [24] found ν = 3/4 for n = 4 consistent
with the generic behavior. For so-called anisotropic EPs with
nongeneric eigenvalue changes, usually nongeneric scaling of
the phase rigidity has been observed, e.g., with exponents ν =
(n − 1)/2 and n − 1 [19]. Similarly, Ref. [25] has reported the
scaling exponent ν = (n − 1)/2 for supersymmetric arrays.
Also here the perturbation is not generic leading to a square-
root eigenvalue change for the EP even for n > 2.

With K = 1/r2, the expected scaling behavior for the Pe-
termann factor is ε−2ν with ν = (n − 1)/n, which is in full
agreement with our result in Eq. (29). The numerical studies
of the Petermann factor for a one-dimensional barrier [44], a
disordered dimer chain [45], and a ring of coupled-dimer cav-
ities with embedded parity-time symmetric defects [46] show
an 1/ε scaling near a second-order EP, which is consistent
with our general result.

VI. EXAMPLE

We consider a simple model system where explicit results
can be obtained enabling us to see clearly the validity of
our general theory introduced in the previous section. The
Hamiltonian of the unperturbed system is

ĤEP =

⎛
⎜⎜⎜⎜⎝

E0 A 0 · · · 0
0 E0 A · · · 0
0 0 E0 · · · 0
...

...
...

. . .
...

0 0 0 · · · E0

⎞
⎟⎟⎟⎟⎠. (35)

This n × n Hamiltonian is a nonperiodic, fully asymmetric
limiting case of the Hatano-Nelson model [55]. It describes a
directed hopping between nearest neighbors in a tight-binding
chain. For a nonzero hopping parameter A ∈ C, the Hamil-
tonian is at an EP of order n with eigenvalue EEP = E0. The
spectral response strength has been calculated in Ref. [39] to
be

ξ = |A|n−1. (36)

We consider the perturbation in Eq. (10) with

Ĥ1 =

⎛
⎜⎜⎜⎜⎝

0 0 0 · · · 0
0 0 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

1 0 0 · · · 0

⎞
⎟⎟⎟⎟⎠. (37)
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FIG. 2. (a) Phase rigidity r and (b) Petermann factor K vs pertur-
bation strength ε (all quantities are dimensionless) for the perturbed
hopping model in Eqs. (35) and (37). The solid red curve shows the
exact result in Eq. (40) [with Eq. (38)], and the dashed blue curve
shows the theoretical result in Eq. (41) valid for small ε. In (b), the
curves lie on top of each other. The parameters are A = 1, E0 = 0,
and n = 3.

This perturbation is simple enough to be dealt with analyt-
ically, but still it is generic in the sense that it leads to an
ε1/n scaling of the energy eigenvalue change. In fact, a short
calculation shows

El − EEP = ε
1
n A

n−1
n . (38)

Together with Eq. (36), we obtain

|El − EEP| = (εξ )
1
n . (39)

This result is consistent with inequality (11) since the spectral
norm of the perturbation in Eq. (37) is ‖Ĥ1‖2 = 1.

A more tedious but also straightforward calculation of the
inner product 〈Ll |Rl〉 yields for the phase rigidity,

r = n
∣∣El −EEP

A

∣∣n−1

∑n
j=1

∣∣El −EEP
A

∣∣ j−1 . (40)

For small perturbation strength ε, the eigenvalue change in
Eq. (38) is small, therefore, in Eq. (40) only the j = 1 term
contributes, and, consequently, the denominator goes to unity.
Hence, with Eq. (36) follows:

r = n|El − EEP|n−1

ξ
, (41)

in accordance with the general theoretical result in Eq. (28).
Figure 2 shows a comparison of the exact result with the
theoretical result for the phase rigidity r and the Petermann
factor K = 1/r2. For small perturbation, the agreement is
nearly perfect.

Note that for this simple example the bounds in the inequal-
ities (30) and (31) agree with the theoretical result in Eqs. (28)
and (29).

VII. APPLICATION

The computation of the spectral response strength ξ of an
EP of arbitrary order n in Eq. (8) is easy and can be performed
most of the time by hand. However, the equation requires the
Hamiltonian to be an n × n matrix, which is a severe limita-
tion. The same is true for the alternative computation based on
the last Jordan vector in Eq. (12). For the more general case
of an EP of order n embedded in an Hilbert space of dimen-
sion m > n, no method of computation has been presented
yet.

It is natural to assume that the revealed connection of Kl

and rl with the spectral response strength ξ is a local property,
even though we cannot provide an analytical proof here. This
would offer a strategy for the computation of ξ in the higher-
dimensional case. Let us consider an m × m Hamiltonian with
an EP with order n < m and eigenvalue EEP. We perturb this
system slightly by a randomly selected perturbation, which
is with probability 1 a generic perturbation. The strength of
which is a parameter of the method and has to be chosen
to be large enough to move the system away from the EP.
Otherwise Kl would diverge, and rl vanishes, and, therefore,
Eqs. (28) and (29) could not be used. At the same time, the
perturbation strength should be small enough such that the
leading-order approximation which led to Eqs. (28) and (29)
is still valid. Note that already the numerical implementation,
even if double-precision floating-point arithmetic is used, can
drive the system significant away from a higher-order EP [53].
In such a case, no additional random perturbation is needed.
For simplicity, we assume that no other EP with eigenvalue
close to EEP exists. The method starts with computing all
eigenvalues El , right eigenstates |Rl〉, and left eigenstates |Ll〉
of the Hamiltonian by a standard numerical routine. Next,
the eigenstates and eigenvalues that are associated with the
desired EP are selected. To do so, we determine from the
set of eigenstates with |〈Ll |Rl〉| small, the quantum number
l for which the deviation |El − EEP| is minimal. This min-
imum energy deviation we denote as �E . Finally, we plug
�E and the corresponding phase rigidity r = |〈Ll |Rl〉| into
the equation for the numerically determined spectral response
strength,

ξnum = n�En−1

r
, (42)

which has been obtained from Eq. (28).
We demonstrate in the following, that this simple scheme

is quite efficient. To produce many numerical examples, we
adopt the random-matrix approach invented in Ref. [39]. We
introduce the (n × n)-matrix ĤEP having an EP with order
n and eigenvalue EEP via a similarity transformation ĤEP =
Q̂ĴQ̂−1 with Ĵ being an n × n matrix with an EP of order n
in Jordan normal form and Q̂ is an, in general, nonunitary
n × n matrix consisting of complex random numbers with
real and imaginary parts being drawn from a uniform distri-
bution on the interval [− 1

2 , 1
2 ]. We calculate the associated

spectral response strength ξ simply from Eq. (8) and save
the value for later comparison. Subsequently, we create the
(m − n) × (m − n)-matrix Ĥa with its elements to be com-
plex random numbers with real and imaginary parts being
drawn from a uniform distribution on [− 1

2 , 1
2 ]. In the end, we
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FIG. 3. Illustration of the construction of a random 20 × 20
Hamiltonian possessing a (slightly perturbed) EP of order 5 with
eigenvalue EEP = −i0.05. (a) and (b) show a realization of the
Hamiltonian in Eq. (43) without and with the random unitary ma-
trix Û , respectively. The absolute values of the matrix elements are
plotted in a grayscale representation: The maximum value is black,
and the minimum value of zero is shown in white. (c) depicts the
complex eigenvalues (dimensionless) of the Hamiltonian in Eq. (43).
The inset: Magnification around the slightly perturbed EP.

combine these two matrices to obtain the m × m Hamiltonian,

Ĥ = Û

(
ĤEP 0

0 Ĥa

)
Û †. (43)

The random unitary matrix Û is generated with the help of
a QR decomposition of a random complex m × m matrix
[56] constructed in the same way as Ĥa above. The resulting
Hamiltonian Ĥ has an EP with the same eigenvalue EEP,
the same spectral response strength ξ , and the same order
n than the original Hamiltonian ĤEP. We find that the small
numerical errors in the above procedure (double-precision
floating-point arithmetic in MATLAB is used) drive Ĥ slightly
away from the EP. Hence, no additional random perturbation
is needed here. The Hamiltonian Ĥ is the input of the pro-
posed scheme to compute the spectral response strength ξnum

of the EP.
Using MATLAB, the proposed procedure is illustrated in

Fig. 3. In Fig. 3(a), the Hamiltonian in Eq. (43) is shown
before the random unitary matrix Û is applied. In the color
map, the submatrix ĤEP appears darker than the submatrix Ĥa

because the former originates from the matrix Ĵ where the ma-
trix elements are 0 or 1, whereas, the latter has random matrix
elements in [− 1

2 , 1
2 ]. Figure 3(b) depicts the Hamiltonian Ĥ

in Eq. (43) after the unitary transformation. The Hamiltonian
looks random, but it still possesses the EP inherited from ĤEP

with the same spectral response strength (up to numerical
uncertainties).

Figure 3(c) shows the eigenvalues of Ĥ . The magnification
in the inset reveals that the EP is slightly perturbed due to
numerical uncertainties, which lifts the degeneracy and results
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FIG. 4. Probability density function of the dimensionless relative
error δξ := |ξnum − ξ |/ξ computed from 107 realizations of random
20 × 20 Hamiltonians very close to a third-order EP with eigenvalue
EEP = −i0.05. A few outliers outside the depicted interval but with
δξ < 11 × 10−4, are not shown. Note the logarithmic scale on the
vertical axis.

into a ring of five eigenvalues. This small splitting is essential
for the proposed numerical scheme. As a side remark, it is
briefly mentioned that the appearance of the splitting of EP
eigenvalues due to numerical uncertainties or fabrication im-
perfection is reminiscent to the vortex-splitting phenomenon
[57] due to the instability of higher-order optical vortices.

Figure 4 shows such a comparison for as many as 107

realizations of 20 × 20 Hamiltonians Ĥ each very close to
an EP of third order. The relative error |ξnum − ξ |/ξ is below
one-tenth of a percent. The raw data (not shown) unveil that
the largest deviations occur whenever the eigenvalue splitting
due to the finite machine precision is relatively pronounced.
Here, the leading-order contribution may not always be suf-
ficient for calculating the phase rigidity accurately enough.
This happens, in particular, for larger order n where small per-
turbations lead to large splittings. We observe relative errors
around and below 1% for n < 5 (not shown). Our numerics
demonstrate that the connection between phase rigidity and
spectral response strength can be exploited to compute the
latter even for the case where the dimension of the Hilbert
space is larger than the order of the EP.

The introduced scheme for the computation of the spectral
response strength ξ could possibly be also applied to systems
where no (effective) Hamiltonian is available but instead a
wave equation, e.g., for optical microcavities [58] where the
Petermann factors can be directly calculated from the spatial
mode structure [10]. Based on the knowledge gained from
the presented theory, we can interpret the fitting procedure in
Ref. [59] to determine numerically the internal backscattering
coefficient in a perturbed microdisk system (the absolute value
is ξ in this context) near a second-order EP as a special case
of our scheme; the same for the recently published fitting
procedure in Ref. [60]. Once again, it is emphasized that
our approach is much more general as it applies to a wide
range of systems and EPs of arbitrary order. A good test
system for applying the above scheme would be the situation
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in Refs. [61,62] where both a wave equation and an effective
Hamiltonian are available simultaneously.

VIII. CONCLUSION

We have derived explicit formulas for the Petermann fac-
tors and phase rigidities near EPs of arbitrary order. Our
results not only confirm the known scaling behavior for
generic perturbations, but also provide the prefactor. Our
theory has revealed an unexpected relation to the spectral
response strength of the EP. Bounds for the Petermann factors
and phase rigidities have been introduced that can be used for
an easy estimation of the order of magnitude and in the case
of passive systems, allow for an assessment of the possibilities
for enhanced sensing. We have discussed our results in the
context of numerical studies in the literature. The predictions
of our general theory have been compared to the solutions of
an analytically solvable model and very good agreement has
been observed.

We have demonstrated that the established connection
of Petermann factors and phase rigidities with the spectral
response strength can be exploited for the numerical compu-
tation of the latter even in the case of a higher-dimensional
Hilbert space. The method is efficient and reliable for EPs
with order up to five for double-precision floating-point
arithmetic. EPs with even higher order are so sensitive to
numerical imperfections that the highest-order contribution of
the Green’s function is not always sufficient.

Realizing EPs experimentally is not an easy task, in par-
ticular, for EPs of higher order because of their extreme
sensitivity to fabrication imperfections. In practice, the exper-
imental setup is never located exactly on the EP but at best
in its vicinity. Our theory of the Petermann factors and phase

rigidities is able to predict of what is left of the sensitivity for
such imperfect EPs. This is a valuable information for sensing
applications. This applies, in particular, to experiments, which
are deliberately detuned from the EP to mitigate the harmful
effects of quantum excess noise [38].

Moreover, our results can be beneficial for the study of
extreme dynamics near higher-order EPs [63].
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APPENDIX: COMPUTATION OF 〈LEP| jk〉
This Appendix contains a short proof of Eq. (26). For the

case k < n, we can write according to Eq. (5),

〈LEP| jk〉 = 〈LEP|N̂ | jk+1〉 = (〈LEP|N̂ )| jk+1〉 . (A1)

With the definition of the operator N̂ in Eq. (3), it is clear that

〈LEP|N̂ = 〈LEP|ĤEP − 〈LEP|EEP = 0. (A2)

Hence,

〈LEP| jk〉 = 0 for k < n. (A3)
In words, |LEP〉 is orthogonal to all Jordan vectors | jk〉 for
k < n. The last Jordan vector | jn〉 is also orthogonal to all
other Jordan vectors | jk〉 because of the chosen orthogo-
nalization conditions in Eq. (7). We conclude that the unit
vector |LEP〉 is parallel (up to a complex phase) to | jn〉 and,
hence, |〈LEP| jn〉| = ‖ jn‖2. Together with Eq. (A3), this proves
Eq. (26).
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