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Prediction of a roton-type feature in warm dense hydrogen
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In a recent Letter [T. Dornheim et al., Phys. Rev. Lett. 121, 255001 (2018)], it was predicted on the basis of
ab initio quantum Monte Carlo simulations that, in a uniform electron gas, the peak ω0 of the dynamic structure
factor S(q, ω) exhibits an unusual nonmonotonic wave number dependence, where dω0/dq < 0, at intermediate
q, under strong coupling conditions. This effect was subsequently explained by the pair alignment of electrons [T.
Dornheim et al., Commun. Phys. 5, 304 (2022)]. Here we predict that this nonmonotonic dispersion resembling
the roton-type behavior known from superfluids should be observable in a dense, partially ionized hydrogen
plasma. Based on a combination of path integral Monte Carlo simulations and linear response results for the
density response function, we present the approximate range of densities, temperatures and wave numbers and
make predictions for possible experimental observations.

DOI: 10.1103/PhysRevResearch.5.033039

I. INTRODUCTION

Over the last decades, there has been a surge of interest
in the properties of matter at extreme temperatures (T ∼
103 − 107 K) and pressures (P ∼ 1 − 104 Mbar). Such con-
ditions play an important role in astrophysics [1,2] and occur
naturally, for example, in giant planet interiors [3,4], brown
dwarfs [5,6], and the outer layer of neutron stars [7]. In
addition, such extreme states are important for a number of
practical applications, with inertial confinement fusion [8–10]
being a case in point. Other technological applications include
the discovery of novel materials [11,12] and hot-electron
chemistry [13].

A particularly important parameter regime is given by so-
called warm dense matter (WDM) [14,15], which is typically
defined by two characteristic parameters that are of the order
of one simultaneously [16]: (i) the density parameter rs =
d/aB is given by the Wigner-Seitz radius in units of the Bohr
radius, and (ii) the degeneracy temperature � = kBT/EF,
where EF is the usual Fermi energy of the electrons [17]. The
condition rs ∼ � ∼ 1 implies that WDM exhibits an intrigu-
ing interplay of physical effects such as quantum degeneracy
and diffraction, moderate to strong Coulomb coupling, and
thermal excitations. The rigorous understanding of WDM thus
poses a formidable challenge for theory and experiment alike.

In the laboratory, WDM can be realized using a plethora
of different techniques; see Ref. [18] for a review article. At
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the same time, the diagnostics of experiments with WDM is
notoriously difficult due to the extreme conditions. Indeed, of-
ten even basic parameters such as the temperature T , number
density n, or the effective ionization degree α or mean charge
per atom cannot be directly measured and have to be inferred
indirectly from other observations. In this regard, x-ray Thom-
son scattering (XRTS) represents a key method [19–23]. The
measured scattering intensity is given by the convolution of
the combined source and instrument function R(ω) with the
dynamic structure factor (DSF) S(q, ω) [19,23],

I (q, ω) = S(q, ω) � R(ω), (1)

with q denoting the momentum transfer vector that is being
determined by the scattering angle θs, whereas ω is the cor-
responding energy loss. In practice, R(ω) is often accurately
obtained by additional source monitoring at modern x-ray
free-electron laser (XFEL) facilities such as the European
XFEL [24] in Germany or the LCLS [25] in the USA, or from
the characterization of backlighter sources [26] as they are
employed for example at the National Ignition Facility [27].

The DSF S(q, ω) is a key property in quantum many-body
theory [28] and, in principle, contains the full thermodynamic
information about the given system. Unfortunately, the nu-
merical deconvolution that is required to solve Eq. (1) for
the DSF is highly unstable. To interpret an XRTS experi-
ment one, therefore, has to construct a model Smodel(q, ω)
which, after being convolved with R(ω), can be compared
with the experimental observation. On the one hand, this
procedure, in principle, allows one to extract system param-
eters by determining the set of free parameters (e.g., T , n,
etc.,) that result in the best fit to the experiment [19,21]. On
the other hand, the interpretation of the experiment then de-
pends on the particular model; typical assumptions include the
decomposition into bound and free electrons within the Chi-
hara decomposition [29,30] or adiabatic approximations for
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FIG. 1. Sketch of the negative dispersion [peak of S(q, ω)] and
notation for characteristic q and ω values. At rs = 10 and θ = 1.0,
Ref. [34] predicts q1 ≈ 1.1 qF , qmin ≈ 1.8 qF , ωmax ≈ 1.25 ωp, and
ωmin ≈ 0.90 ωp, with ωp = [nee2/(ε0me)]1/2 denoting the electron
plasma frequency. The difference ωmax − ωmin amounts to 0.52 eV
for the uniform electron gas model.

the exchange–correlation kernel in more sophisticated linear-
response time-dependent density functional theory (DFT)
calculations [28,31,32].

This unsatisfactory situation reflects the notorious diffi-
culty to find a thorough theoretical description of real WDM
systems as it has been explained above [14,15]. This challenge
has been met recently for the somewhat simplified case of a
uniform electron gas (UEG) [17,33]. More specifically, Dorn-
heim et al. [34–36] have presented the first highly accurate
results for the DSF of the UEG based on a combination of
extensive ab initio path integral Monte Carlo (PIMC) sim-
ulations [37] and the stochastic sampling of the dynamic
local field correction. Interestingly, they have found a non-
monotonic dependence of the position of the maximum in
the DSF, ω0(q), for intermediate wave numbers q = |q|—an
unusual behavior that resembles the well-known roton fea-
ture in the dispersion of quantum liquids such as ultracold
helium [38–43] as well as the plasmon dispersion of strongly
coupled classical plasmas [44].

This effect is schematically illustrated in Fig. 1 where
we show ω0(q) (solid black line) for rs = 10 at the elec-
tronic Fermi temperature, � = 1 (the relation to the physical
temperature in hydrogen will be discussed below, see, e.g.,
Fig. 8). Starting with the collective plasmon excitation around
the plasma frequency ωp for q → 0, the frequency ω0(q)
increases with increasing q and attains a local maximum at
q1, followed by a minimum at qmin. The quadratic increase of
ω0(q), for q � qmin then follows from the well-known single
particle dispersion ω ∼ q2/2, e.g., [45,46]. From a physical
perspective, the nonmonotonic behavior of ω0(q) occurs when
the wavelength of the oscillation is comparable to the mean
interparticle distance, λ = 2π/q ∼ d . Indeed, the observed
reduction in the energy of a density fluctuation has been
explained in Ref. [47] by the alignment of pairs of electrons,
leading to a decrease in the interaction energy when λ ∼ d .
For completeness, we note that an alternative explanation has
been given in Refs. [48,49], where the minimum in ω(q) has
been interpreted as an excitonic mode.

An additional interesting question is given by the phase
diagram of the roton-type feature of the electron gas, which
is shown in Fig. 2. We observe the nonmonotonic behavior

 0

 0.5

 1

 1.5

 2

 2.5

 1  10

θ

rs

 ESA
PIMC: no

PIMC: yes

104K106K 105K

103K

FIG. 2. Phase diagram for the predicted negative dispersion of
the peak, ω0(q), of the dynamic structure factor, S(q, ω), of the
uniform electron gas in the WDM regime. Green (red) symbols:
observed (not observed) negative dispersion in PIMC simula-
tions. ESA: predictions based on effective static approximation for
the uniform electron gas of Ref. [50]. The negative dispersion,
dω0(q)/dq < 0, is predicted to exist to the right of the dashed black
line, see also Fig. 1.

that was discussed above at sufficiently strong coupling (large
rs), i.e., to the right of the dashed gray line, which has been
computed within the effective static approximation introduced
in Refs. [50,51]. This prediction is consistent with the red
circles and green crosses that show PIMC results based on
the full dynamic local field correction. Being an exchange-
correlation effect, the nonmonotonic feature in ω0(q) thus
only occurs at sufficiently low density, i.e., strong coupling,
where correlation effects are important.

While these results for the UEG are interesting, the ques-
tion whether this roton-type feature will also manifest in real
WDM systems and whether it could be detected in XRTS
measurements has remained open until now. Therefore, in
this work, we extend the previous theoretical considerations
to two-component systems. This requires, first, to include
electron-ion collisions, which is done via the Mermin dielec-
tric function [52]. In addition, we take into account that bound
states will form at strong coupling and thus the system will
only be partially ionized [53–55]. This will lead to a reduction
of the number of free electrons that can participate in plasma
oscillations. To investigate the existence of the roton feature
in two-component plasmas, we focus on the case of hydrogen
using restricted PIMC data by Militzer and Ceperley [56] for
the degree of ionization.

Interestingly, our analysis shows that the roton feature does
not only persist in hydrogen but is even substantially stabilized
by the presence of the ions. This means it is predicted to occur
at significantly higher densities as compared to the UEG. In
addition, we investigate the optimal range of temperatures and
densities, and discuss the required wave numbers and scat-
tering angles for XRTS measurements. Our findings indicate
that the effect should be resolvable in upcoming experiments
with hydrogen jets [57] at modern XFEL facilities, such as the
European XFEL [24].
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FIG. 3. Top: Dynamic structure factor of the warm dense electron gas and wave number dispersion of its peak position for the case of weak
(left) and moderate (right) coupling at the electronic Fermi temperature, � = 1. The roton feature is visible in (d) for the PIMC data and for
the static approximation for the LFC (static). The RPA does not exhibit a nonmonotonic dispersion.

The paper is organized as follows: In Sec. II, we introduce
the required theoretical background, starting with linear-
response theory and its connection to the DSF in Sec. II A,
and a concise discussion of previous PIMC-based results for
the roton-feature of the UEG in Sec. II B. After this, in Sec. III
we analyze the plasmon dispersion for dense hydrogen and
confirm the existence of a roton-type feature. There we pre-
dict the density-temperature range where the latter should be
observable. We conclude with a discussion of the results in
Sec. IV.

II. THEORETICAL BACKGROUND AND PREVIOUS
RESULTS FOR THE UEG

A. Density response and dynamic structure factor

The dynamic structure factor is related to the imagi-
nary part of the density response function, χ (q, ω), via the
fluctuation-dissipation theorem,

S(q, ω) = − �χ (q, ω)

πn(1 − e−βω )
. (2)

For the special case of the uniform electron gas (jellium, J),
the density response function is given by [58]

χ J(q, ω) = χ0(q, ω)

1 − vq[1 − G(q, ω)]χ0(q, ω)
, (3)

where vq is the Fourier transform of the Coulomb poten-
tial, and χ0 is the density response of the ideal UEG. All
electron-electron interaction effects beyond mean field are
contained in the dynamic local field correction G(q, ω). For
G → 0, we recover the mean field (RPA) result. It is often
sufficient to consider the static limit of the local field cor-
rection, G(q) = G(q, 0). This static approximation has been
shown to be highly accurate for high to moderate densities,
rs � 4, and has been explored in more detail in Refs. [50,51].
Accurate results for G(q, ω) were recently obtained from ab
initio PIMC simulations in Ref. [34], for details see Sec. II B.

Compared to the UEG model, realistic plasmas require
to take into account several additional effects, in addition to
purely electronic correlations. As was discussed in the intro-
duction, the first is the scattering of electrons with ions [59].
This can be accounted for via the Mermin dielectric function,
cf. Sec. II C. Second, in two-component plasmas, electrons
and ions can form bound states, thereby reducing the number
of free electrons which are participating in collective plasma
oscillations and eventually contribute to the roton feature. This
will be analyzed in Sec. III.

B. PIMC results for the UEG

We briefly summarize the emergence of the roton feature
in the UEG as shown in Fig. 3. Panels (a) and (b) show
the DSF for the intermediate wave number q = 1.88qF com-
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puted within RPA (dotted red), in the static approximation
(dashed black), and using the full dynamic local field correc-
tion G(q, ω) (solid green). For rs = 2, the green and black
curves are in perfect agreement with each other, and exhibit an
exchange correlation induced red shift compared to the mean-
field description. For rs = 10, the situation is considerably
more interesting. First, using either G(q) or the full G(q, ω)
leads to a substantially more pronounced red shift with respect
to the RPA curve due to the higher impact of correlations.
Second, we observe significant deviations between the full
results and the static approximation.

The corresponding wave number dependence of the po-
sition of the maximum in the DSF is shown in panels (c)
and (d). Evidently, the exchange correlation induced red shift
for rs = 2 is most pronounced around intermediate q, but no
roton-type minimum occurs. In contrast, both the static ap-
proximation and the full PIMC solutions exhibit a roton-type
feature for intermediate q for rs = 10. In addition, we note
that the minimum in ω0(q) is more pronounced when the full
G(q, ω) is used, as the static approximation tends to merge the
actual roton peak and the additional shoulder at the position of
the RPA peak into a single broad feature, cf. panel (b).

From a physical perspective, the roton-type feature in the
UEG at low densities has recently been explained in Ref. [47]
by the alignment of pairs of electrons. The fluctuation-
dissipation theorem [Eq. (2)] indicates that S(q, ω) is fully
described by the response of the system to an external
harmonic perturbation. If the wave length of the latter is com-
parable to the average interparticle distance d , the perturbation
will induce a spatial pattern of the electrons that reduces the
average interaction energy in the system. This reduction in the
energy of a density fluctuation of wave number q ∼ 2π/d is
the root cause of the minimum in ω0(q). Additional aspects
of this pair alignment have been investigated in the recent
Refs. [60–64].

C. Taking e-i collisions into account via the Mermin dielectric
function

We now go beyond the assumption of a rigid ionic back-
ground (jellium) and take into account scattering of electrons
with individual ions. This leads to qualitative deviations of the
dielectric function from the mean field limit. The simplest ap-
proach is given by the relaxation time approximation that was
introduced by Mermin [52] who took into account electron-
ion correlation effects via a constant collision frequency ν.
This concept was extended to a frequency-dependent collision
frequency ν(ω) [65,66] and combined with the description of
electronic correlations using local field corrections [67]. The
“extended Mermin response function” is expressed in terms
of the jellium density response, Eq. (3), according to

χ xM (q, ω) =
(
1 − iω

ν(ω)

)
χ J[q, ω + iν(ω)]χ J(q, 0)

χ J[q, ω + iν(ω)] − [iω/ν(ω)]χ J(q, 0)
. (4)

Such an ansatz is commonly used to extrapolate density
functional theory (DFT) results for the dielectric function,
which is obtained in the long-wavelength limit via the
Kubo-Greenwood formula. Thus, predictions for the dynamic
structure factor at finite wave vectors based on static DFT
simulations become possible [68,69].

FIG. 4. Dependence of the static collision frequency on the free
electron density at different temperatures.

Alternatively, the electron-ion collision frequency can be
determined perturbatively from kinetic theory [70,71]. For
the case of the uniform electron gas in equilibrium, different
approximations are discussed in Ref. [72]. In our calculations,
we will use the following expression (labelled “RPA” in [72]),
which is obtained from the full Lenard-Balescu result by ne-
glecting the plasmon feature of the dielectric function in the
collision integral:

iν(ω) = ω∗
p

6π2n∗
eω

∫ ∞

0
dq q6V 2

s (q)Sii(q)[ε(q, ω) − ε(q, 0)].

(5)
Here Vs(q) = vq/ε(q, 0) is the statically screened potential.
All dielectric functions are calculated in RPA. Note that un-
bound electrons, with a density henceforth denoted by n∗

e , are
expected to provide the dominant contribution to screening
and scattering. Sii(q) is the ion-ion static structure factor for
which we will use Sii(q) ≈ 1. Possible deviations from this
approximation in a partially ionized hydrogen plasma will
be discussed in Sec. II D. In Fig. 4, we present the density
dependence of the static limit, ω → 0, of the collision fre-
quency at various temperatures. This quantity well reflects
the main trends of the effect of electron-ion collisions (the
frequency dependence turns out to be of minor importance
on the plasmon dispersion). Figure 4 shows that collision
effects decrease with the temperature as a result of decreased
coupling effects. At the same time, the density dependence
is nonmonotonic with a maximum in the range between
1021, . . . ,1023 cm−3. The decrease toward lower densities is
due to a decrease of classical Coulomb correlation effects. On
the other hand, at large densities collision effects are limited
due to Pauli blocking.

The influence of the Mermin dielectric function on the
position of the peak of the DSF and its width are presented
in Figs. 6 and 12. It is interesting to note that both electron-
electron correlations [contained in G(q, ω)] and electron-ion
collisions (contained in the Mermin DF) lead to an additional
broadening and red shift of the peak of the DSF, compared
to the RPA case which only includes Landau damping. Both
correlation effects enhance one another. A striking observa-
tion is that correlations not only broaden and shift the peak
of the DSF, but they also stabilize and enhance the negative
dispersion of its peak position. In a two-component plasma,
this effect is predicted to appear at even lower r∗

s values, i.e.,
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FIG. 5. Static ion-ion structure factor and pair distribution func-
tion (inset) for rs = 5 and four different temperatures obtained from
first principles path-integral Monte Carlo simulations of a hydrogen
plasma. The peak of gii at the lowest temperature is due to hydrogen
molecules. The Brueckner parameter r∗

s that refers to the free electron
density is different for each curve and can be obtained using the
degree of ionization, cf. Fig. 7.

higher free electron densities than for the jellium model. Since
the free electron density is reduced in a real two-component
plasma due to bound state formation (atoms, molecules), the
results of Fig. 6 cannot directly be applied to a hydrogen
plasma. This problem is solved in Sec. III.

D. Effect of ion structure factor on e-i collision frequency

In the calculation of the collision frequency (4), entering
the extended Mermin response function, we have neglected
the influence of the ion structure factor so far, setting Sii(q) =
1. To test the accuracy and validity range of this approxima-
tion we have performed direct fermionic path integral Monte
Carlo simulations for several typical parameter combinations.
We have extended the fermionic propagator approach devel-
oped for the electron gas in Ref. [73] to partially ionized
hydrogen [74] where, for the pair density matrix, we used the

solution of the two-particle Bloch equation or the improved
Kelbg potential [75,76]. In Fig. 5, we show the results for
four temperatures and the density parameter rs = 5. For the
lowest temperature where a significant molecular fraction is
observed, Sii(q) exhibits the largest deviations from unity.
Recomputing the collision frequency according to Eq. (5),
we find a modification of less than 5%, which does not lead
to noticeable modifications of the dispersion ω0(q) shown
in Fig. 6. The situation would change at low temperatures,
where the plasma is dominated by molecules which, however,
is not the region of interest for the study of electronic plasma
oscillations in general, and the roton feature in particular. This
justifies the choice of Sii(q) = 1 made above.

III. PREDICTIONS FOR A DENSE HYDROGEN PLASMA

In this section, we explore the parameter range in which
the non-monotonic q-dependence of the peak of the DSF
occurs in a partially ionized warm dense hydrogen plasma.
To this end, we need to define the relevant parameters in a
many-component plasma taking into account the reduction of
the free electron number in case of bound state formation:

(i) The degree of ionization, α = n∗
e/ntot

e , with α ∈ [0, 1],
with the free electron density, n∗

e , and the total density, ntot
e =

n∗
e + nbound

e .
(ii) The free electron Brueckner parameter r∗

s = a∗/aB,
where a∗ = [3/(4πn∗

e )]1/3 is the Wigner-Seitz radius corre-
sponding to the free electrons; the relation to the standard
Brueckner parameter is r∗

s = α−1/3 · rs � rs.
(iii) The dimensionless wave number, q̄∗ = q/q∗

F =
α−1/3 · q̄, where q∗

F = (3π2n∗
e )1/3 = α1/3 · qF � qF is the

Fermi wave number of the free electrons.
(iv) The dimensionless temperature of the free electrons,

�∗ = kBT/E∗
F = α−2/3 · � � �, with the Fermi energy of the

free electrons, E∗
F = h̄2q∗2

F
2m = α2/3 · EF � EF .

(v) The plasma frequency of the free electrons, ω∗
p =

[(n∗
e e2)/(ε0me)]1/2. In atomic units we have ω∗

p = √
3/(r∗

s )3 =
α1/2 · ωp � ωp.

FIG. 6. Dispersion of the peak of the dynamic structure factor of a two-component electron-proton plasma using the Mermin dielectric
function for different densities and temperatures. Shown are results for jellium without (RPA) and with (LFC) correlations, the two other
curves are for a two-component hydrogen plasma without (Born-Mermin) and with (Born-Mermin+LFC) electron-ion collisions. The density
parameter r∗

s refers to the unbound electrons.
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FIG. 7. Selected isotherms of the degree of ionization of hy-
drogen from B. Militzer et al. [56]. For comparison, the 30 000 K
isotherm from D. Kremp et al. [55] was added. At the largest density,
ntot

e ≈ 1024cm−3 corresponding to rs ≈ 1.2, the plasma is expected
to be nearly fully ionized [77]. In addition, full ionization is also
expected at temperatures above 150 000 K.

We now translate the range of dimensionless parameters
of the negative plasmon dispersion of the UEG model to the
corresponding density and temperature range for warm dense
hydrogen. As discussed above, the plasmon dispersion is due
to the oscillation of the free electrons with density n∗

e . This
means a first rough estimate for the density and temperature
range where the nonmonotonic dispersion is predicted in hy-
drogen can be obtained from Fig. 2 by replacing, on the axes,
rs → r∗

s and � → �∗.
First, from r∗

s and �∗ the free electron density, n∗
e , and

the temperature, T , are calculated. However, the temperature
dependence of �∗ is in general only valid for free electrons.
Therefore, this has to be converted to total electron density.
To this end, we use isotherms of the degree of ionization
α(ntot, T ), see Fig. 7. From these data sets, the free electron
number density n∗

e (n, T ) = α(n, T ) · n can be calculated for
all data points. Thus, a specific free electron density at a given
temperature value is mapped to the total electron density in a
unique way, as demonstrated in Fig. 8. Because there are data
points at temperatures without any available hydrogen data, a
linear interpolation is used to calculate the isotherms for each
of the data points in Fig. 2. The final result of the conversion
is given in Fig. 9.

A. Experimental wave number range

We now analyze the photon energy and scattering angles
that are suitable to detect the roton feature in Thomson scat-
tering experiments with dense hydrogen, for the illustration
and notation see Fig. 1. Let us first consider the wave number
range for jellium. The example of r∗

s = 10 and �∗ = 1.0 is
shown in Fig. 3, for which the wave numbers bracketing the
negative dispersion dω0/dq < 0 are given by [34] q1 = 1.1q∗

F
and qmin = 1.88q∗

F . For hydrogen the wave numbers shift
considerably, as is shown in Fig. 10 where data for values of
r∗

s = 5 and r∗
s = 7 are presented. These data are obtained from

the Mermin dielectric function with the static LFC included,
as explained in Fig. 6.

FIG. 8. Illustration of the density shift along isotherms, from a
uniform electron gas (black curve: fully ionized plasma with density
n∗

e , Mermin results) to a partially ionized hydrogen plasma (red)
with total electron density ntot

e = n∗
e + nbound

e . The vertical axis is
scaled to the Fermi temperature of the free electron component,
�∗ = kBT/E∗

F .

An approximation for the absolute value of the momentum
transfer h̄q dependent on the scattering angle θs in Thomson
scattering is [23]

q ≈ 2kisin(θs/2), (6)

where ki = 2πEi
hc is the incident laser wave number for an

initial photon energy Ei. Using typical photon energies of
h̄ω = (6 . . . 9) keV that are used in XRTS experiments with
free electron lasers, scattering signals for the two wave num-
bers should be detectable simultaneously using two detectors

FIG. 9. “Phase diagram” of the negative plasmon dispersion for
jellium and hydrogen. Negative dispersion is predicted to exist to
the left of the curves. Black curve: Mermin results for jellium (full
ionization). Colored curves: results for partially ionized hydrogen
plasma with the degree of ionization taken either from D. Kremp
et al. [55] (red), or from B. Militzer et al. [56] (blue). The green curve
is the arithmetic mean of the red and blue curves. The yellow stripe
corresponds to the parameters accessible with hydrogen jets around
the density of solid hydrogen (vertical line) ±20% [78]. Symbols in
the left part refer to data points listed in Table I: “+” refers to r∗

s = 5
and “∗” to r∗

s = 7. Numbers next to the symbol correspond to �ω (in
eV) and �θs (for a photon energy of 6 keV, cf. Fig. 11).
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FIG. 10. Mermin+LFC results for the peak position of the dy-
namic structure factor vs wave number. Shown are results for two
densities and five temperatures each.

placed under different angles θs. Then, using Eq. (6) we can
compute the angles for different temperatures. The results are
shown in Fig. 11.

B. Prospects for observing the roton feature in hydrogen
experiments

After analyzing in Fig. 10 and Table I the expected relevant
wave number range [q1, qmin] and frequency change �ω for
the roton feature, we now discuss the prospects for an experi-
mental observation.

In order to do so, a finite resolution of the frequency mea-
surement needs to be taken into account. This is analyzed in
Fig. 12 where a Gaussian instrument function with a realistic
width of σ = 3.65 eV is used. The figure shows that, for
typical densities and temperatures, this broadening has only
a very small effect on the dynamic structure factor and does
not change the dispersion ω0(q) significantly. This conclusion
does not change if the width is further increased by a factor of
two to three.

We analyze the data presented in Table I to find the optimal
parameters to detect the roton feature experimentally. For
jellium, the minimum in the dispersion, i.e., �ω/ωpl is more
pronounced for increased temperatures and for larger values
of r∗

s (smaller free electron densities), see Fig. 10. For the
parameter range studied in Fig. 10, �ω/ωpl is maximal at
100 000 K, for both values of r∗

s , cf. Table I and is larger for
r∗

s = 7.
For the case of partially ionized hydrogen, we now convert

the frequency difference into absolute units (eV), �ω∗ →
�ω, as done in Table I. As before, at a given free-electron
density, �ω increases with temperature. However, for a given
temperature, the density dependence becomes more complex.
In particular, for the highest temperatures, the frequency dif-
ference �ω only weakly depends on r∗

s . For illustration, we
included all points from the table for which �ω exceeds 1 eV
in Fig. 9.

Equally important for the experimental setup is the differ-
ence of the scattering angles, �θs, that refer to q1 and qmin,
respectively, cf. Fig. 11. For all temperatures, �θs is largest
at the smaller photon energy of 6 keV. Also, �θs increases
with the free electron density, even though this effect is less

FIG. 11. Temperature dependence of the Thomson scattering an-
gles required to detect the roton feature in hydrogen for two photon
energies ki = 3 Å−1 (6 keV, orange) and ki = 4.6 Å−1 (9 keV, blue)
and two densities r∗

s = 5 (≈1.29 · 1022 cm−3, solid lines) and r∗
s = 7

(≈0.47 · 1022 cm−3, dashed lines). Upper (lower) lines of each pair
of lines with the same color and style correspond to the minimum
(maximum) of the dispersion ω0(q), cf. Fig. 10. The angles were
computed using Eq. (6).

pronounced. The largest value, �θs ≈ 8.25◦, for a mean
value of θs ≈ 11.5◦, is obtained for r∗

s = 5, at 80 000 K. For
the lower density, r∗

s = 7, the difference between angles is
smaller. A further decrease of �θs is observed for the higher
photon energy of 9 keV, for r∗

s = 5 and r∗
s = 7, in this order.

The only exception is at 20 000 K, where �θs is larger for
r∗

s = 7 than for r∗
s = 5. The angle difference �θs for these two

values of r∗
s and several temperatures are included in Fig. 9

together with the frequency change �ω.
We can give a simple estimate for the angle difference �θs

using Eq. (6) where, for the present small angles, the sine can
be replaced by its argument. Furthermore, using qF ≈ 3.63 ·
(r∗

s )−1 Å−1, we obtain for the angle difference in degrees

�θs[
◦] ≈ q̄min − q̄1

ki[Å−1]
· 207.9

rs α[ntot
e , T ]

, (7)

where q̄ = q/q∗
F , and we used r∗

s = rsα. Thus, the angle
difference increases if the total density is increased (rs is
lowered) and if the degree of ionization decreases. Reading
off the values of q̄min and q̄1, from Fig. 10, formula (7) yields
results for �θs that are in very good agreement with Fig. 11.

A successful experimental determination of the dispersion
depends on the obtainable precision when determining the
peak positions. In recent XRTS experiments, the plasmon
shift has been used to determine the free electron density,
e.g., n∗

e = 2.5 · 1022 cm−3 ± 16% from the plasmon shift of
7 eV (deuterium [79]), or n∗

e = 1.8 · 1023 cm−3 ± 5% from
the plasmon shift of 19 eV (aluminum [80,81]). This corre-
sponds to uncertainties in energy in the range of 1 − 2 eV in
the best fit of the applied theoretical model.

The resolution in XRTS is currently mainly limited by the
x-ray bandwidth and the resolution of the spectrometer. The
limitations of the SASE bandwidth can be overcome by us-
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TABLE I. Parameters of the roton feature: minimum (maximum)
of the wave number qmin (q1) and frequency, ωmin (ωmax), and the
depth of the minimum, �ω∗ [in units of ω∗

p] and �ω [in eV] for two
electron densities r∗

s = 5 and 7, for five temperatures. The data refer
to Fig. 10. In addition, the total electron density, ntot

e , is calculated
with the procedure from Sec. III.

r∗
s = 5 (n∗

e ≈ 1.29 · 1022 cm−3)

T q1 qmin ωmax ωmin �ω∗ �ω ntot
e in

in kK in q∗
F in q∗

F in ω∗
p in ω∗

p in ω∗
p in eV 1022cm−3

20 1.00 1.35 1.38 1.36 0.02 0.08 6.24
40 0.72 1.27 1.34 1.22 0.12 0.51 2.75
60 0.62 1.15 1.34 1.11 0.23 0.97 2.15
62 0.61 1.14 1.35 1.11 0.24 1.01 2.11
80 0.54 1.14 1.36 1.07 0.29 1.22 1.87
100 0.51 1.08 1.37 1.01 0.36 1.52 1.66

r∗
s = 7 (n∗

e ≈ 0.47 · 1022 cm−3)

T q1 qmin ωmax ωmin �ω∗ �ω ntot
e in

in kK in q∗
F in q∗

F in ω∗
p in ω∗

p in ω∗
p in eV 1022 cm−3

20 0.70 1.41 1.28 0.96 0.32 0.81 2.93
40 0.55 1.24 1.29 0.84 0.45 1.14 0.99
60 0.49 1.16 1.32 0.84 0.48 1.22 0.76
80 0.46 1.10 1.36 0.83 0.53 1.35 0.65
100 0.43 1.04 1.40 0.82 0.58 1.47 0.58

ing seeded x-rays, especially self-seeded x-rays [81–84]. For
example, Ref. [82] reports the SASE bandwidth to be on the
order of 0.1, . . . , 0.2% and the seeded bandwidth to be around
0.005, . . . , 0.01%. Thus, the band width could be on the order
of 0.4 eV for a photon energy of 8 keV which is in the range of
�ω, see above. However, the precision is essentially limited
by the resolution of the spectrometer, which is at best around
0.1% [81], i.e., for the 8 keV photon energy the spectrometer
resolution would be 8 eV.

Up to now, the highest measured energy resolution of a
few meV with x-ray bandwidth 10−4% was demonstrated in
inelastic x-ray scattering measurements of the phonon dis-
persion of single-crystal diamond at room temperature and
T ∼ 500 K at European XFEL in Ref. [85]. With the origi-
nally intended application of seeded x-rays, there will be even
further improvements [86].

IV. DISCUSSION

In this paper, we analyzed whether an exciting correla-
tion effect—the roton feature—that was observed in a variety
of systems including superfluid helium and cold alkali met-
als [17], may also show up in warm dense hydrogen. The
motivation was that this feature was recently predicted to exist
also in the model of the warm dense electron gas [34], and
was explained to be due to the spatial alignment of pairs of
electrons for certain densities [47]. Being carried by the free
electrons, plasma oscillations are routinely observed in dense
partially ionized plasmas where they are detected by x-ray
Thomson scattering and serve as an important diagnostic for
the plasma parameters. Therefore, it is tempting to inquire
whether the roton feature will feature in dense plasmas too,
and under what conditions. The results of the present paper

FIG. 12. Dynamic structure factor at r∗
s = 5, T = 62 000K , for

different approximations, as explained in the inset. Blue curve:
Mermin+LFC result which is additionally convolved with a Gaus-
sian instrument function with σ = 3.65 eV ≈ 0.1378ω∗

p. The vertical
dotted line indicates the local maximum ωmax of the peak position
(Mermin+LFC).

provide strong confirmation for this effect to be observable in
dense hydrogen.

Our analysis was based on path integral Monte Carlo sim-
ulations for the strongly coupled electron components that
were combined with the Mermin formalism to compute the
electron response function of the two-component electron-
proton plasma. The presence of the ion component does not
destroy the roton feature. In contrast, this feature appears even
stronger compared to the uniform electron gas. It is stabilized
and extends toward higher densities. By taking into account
the partial ionization of hydrogen, we estimated the total elec-
tron densities and temperatures for which the effect should
be observable in XRTS experiments with hydrogen. Good
candidates are states of solid or liquid hydrogen produced
by jets that undergo moderate expansion. We specified the
experimental resolution necessary to observe the effect. First,
the frequency resolution necessary to detect the monotonic
behavior of ω0(q) has to be in the range of 1eV. Second,
the difference in scattering angles that has to be resolved to
probe the relevant points on the dispersion curve is around
eight degrees. These parameters pose a challenge to current
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experiments but should be well within reach of upcoming
XRTS measurements at x-ray free electron lasers.
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