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Key observable for linear thermalization
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For studies on thermalization of an isolated quantum many-body system, the fundamental issue is to determine
whether a given system thermalizes or not. However, most studies tested only a small number of observables,
and it was unclear whether other observables thermalize. Here, we study whether “linear thermalization” occurs
for all additive observables: We consider a quantum many-body system prepared in an equilibrium state and its
unitary time evolution induced by a small change � f of a physical parameter f of the Hamiltonian, and examine
whether all additive observables relax to the equilibrium values in a manner fully consistent with thermodynam-
ics up to the linear order in � f . We find that the additive observable conjugate to f is key for linear thermalization
in that its linear thermalization guarantees, under physically reasonable conditions, linear thermalization of all
additive observables. Such a linear thermalization occurs in the timescale of O(|� f |0 ), and lasts at least for a
period of o(1/

√|� f |). We also consider linear thermalization against the change of other parameters, and find
that linear thermalization of the key observable against � f guarantees its linear thermalization against small
changes of any other parameters. Furthermore, we discuss the generalized susceptibilities for cross responses
and their consistency between quantum mechanics and thermodynamics. We demonstrate our main result by
performing numerical calculations for spin models. The present paper offers an efficient way of judging linear
thermalization because it guarantees that examination of the single key observable is sufficient.
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I. INTRODUCTION

Thermalization of isolated quantum many-body systems
has long been studied as the question of how the ther-
mal equilibrium state arises from the quantum unitary
dynamics [1–61].

As in classical systems, the relation of thermalization with
chaos has been attracting much attention. It has brought
a wealth of findings [7,16,17,59], such as the relations to
the scrambling [62–64], which was originally discussed in
quantum information theory [65–67], and to the out-of-
time-ordered correlations [68–72], which characterize the
dynamical feature of quantum chaos [72–74].

Many studies have also been devoted to the eigenstate
thermalization hypothesis (ETH) [1,4,5], which states that
every energy eigenstate represents an equilibrium state. This
hypothesis leads to thermalization, and is expected to hold in
quantum chaotic systems [11–14,16,17,23]. However, since
there also exist many systems that do not satisfy the ETH,
how universally it holds and when it fails are still the subjects
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of active research [24–33]. Furthermore, while the ETH is a
sufficient condition for thermalization, whether it is also a nec-
essary condition seems to be controversial because the answer
depends on the choices of the initial state and observables that
are employed to check thermalization [22,24,25].

Researches in the opposite directions, i.e., mechanisms for
absence of thermalization and related problems in nonther-
malizing systems, are also attracting much attention. They
include integrable systems [75–87], many-body localization
[51,88–105], many-body scars [5,46,106–117], and Hilbert
space fragmentation [118–124], which lead to absence of
thermalization and failure of the ETH.

In such nonthermalizing systems, the entanglement en-
tropy of energy eigenstate often behaves anomalously
[108,118,119,125,126], and hence is sometimes employed
to discriminate between thermal and nonthermal eigenstates
[108,127–130]. However, even if the entanglement entropy
agrees with thermodynamic entropy, it does not necessar-
ily imply that the eigenstate represents the equilibrium state
because there exist many quantum states with the same en-
tanglement entropy. For this reason, many studies examined
the expectation values of observables to discriminate between
thermal and nonthermal states [18,42,47,131–134].

When testing thermalization using observables, most of
previous studies examined only a small number of observables
[11–14,16,18,22,42,47,131–134]. However, thermalization of
such observables does not necessarily guarantee thermaliza-
tion of other observables. For example, the authors showed
in Figs. 2(b) and 2(c) of Ref. [135] that, in the XXZ and the
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XY spin chains, the magnetization of any nonzero wavenum-
ber (such as the staggered magnetization) thermalizes while
the uniform (zero wavenumber) magnetization does not. A
simpler example is the case where thermalization trivially
occurs by symmetry. For instance, when both the Hamilto-
nian and the initial state are symmetric under spin rotation
by π around the z axis, the x component of magnetization
is kept 0 under the unitary time evolution (because of the
symmetry) and hence thermalizes trivially. Nevertheless, if
this system is integrable many other observables such as in-
teractions between nearest-neighbor spins do not thermalize,
as in the case of Model III of this paper. Another example,
which seems nontrivial and most interesting, is the possibility
that all one-body observables thermalize whereas two- and
more-body observables do not. All these examples show that
thermalization of some observables does not necessarily imply
thermalization of all observables.

These issues have also been long-standing questions even
in the linear nonequilibrium regime. For example, Kubo stated
in his famous paper on the “Kubo formula” [136] that if the
system has an “ergodic property” then his formula would
give the isothermal response. However, his discussion turned
out wrong [137–139]: Later studies proved that the Kubo
formula gives the adiabatic response under certain conditions
[135,137–139], and it can also give the isothermal response
under another condition by taking the limit of vanishing
wavenumber [135]. However, the conditions given by these
studies were for individual observables, which do not guar-
antee the conditions for all observables. In other words, the
above-mentioned fundamental issue of thermalization has left
unsolved even in the linear nonequilibrium regime.

In this paper, we study the unitary time evolution induced
by a small change (quench) � f of a physical parameter f ,
and examine whether the quantum state relaxes to an equilib-
rium state that is fully consistent with thermodynamics up to
O(� f ). We call the relaxation in this sense linear thermaliza-
tion, which is obviously necessary for thermalization against
an arbitrary magnitude of � f . We place a particular emphasis
on the full consistency. That is, when comparing the quantum
state with a thermal equilibrium state we examine all additive
observables because thermodynamics assumes that all addi-
tive observables take macroscopically definite values in an
equilibrium state [140–142], although the state is specified
by only a small number of variables (such as temperature).
Furthermore, we consider the case where the initial state is
an equilibrium state because thermodynamics basically treats
transitions between equilibrium states.

We find that the additive observable B̂, which is conjugate
to f is the key observable in linear thermalization. We show
rigorously that, if its expectation value relaxes to the value
predicted by thermodynamics, so do the expectation values of
all additive observables. Even when B̂ is a simple one-body
observable, its relaxation guarantees relaxation of all other
additive observables including two- and more-body ones. In
addition to this theorem, we prove two propositions, which
state that, under reasonable conditions, the time fluctuations
of the expectation values and the variances of all additive
observables are sufficiently small. These results mean that
linear thermalization of the single observable B̂ guarantees
linear thermalization of all additive observables. This linear

thermalization occurs in timescale of O(|� f |0). We prove that
it lasts at least for a period of o(1/

√|� f |). Furthermore, we
show that linear thermalization of B̂ against the quench of � f
implies linear thermalization of B̂ against the quench of any
other parameters. Moreover, for the generalized susceptibil-
ities (crossed susceptibilities) our theorem gives a necessary
and sufficient condition for the consistency between quantum
mechanics and thermodynamics. As demonstrations of the
theorem, we present numerical results for three models of spin
systems.

These results dramatically reduce the costs of experiments
because a single quench experiment on the key observable
in a timescale of O(|� f |0) gives rich information about all
additive observables, a longer time scale o(1/

√|� f |), and the
quench of other parameters.

The paper is organized as follows. Section II explains the
setup. Section III defines linear thermalization by introducing
three criteria. The theorem (main result) and two propositions
are summarized in Sec. IV. We discuss the timescale of linear
thermalization in Sec. V, and prove the third proposition about
a longer timescale. Generalized susceptibilities are analyzed
in Sec. VI, where two corollaries are presented. Numerical
demonstrations are given in Sec. VII. We prove the theorem
and propositions in Sec. VIII. In Sec. IX, we show that our
results are also applicable to the case of continuous change
of f , and explain a relation between our main result and the
ETH. Section X summarizes the paper.

II. SETUP

We study an isolated quantum many-body system that is
defined on a lattice with N sites and described by a finite
dimensional Hilbert space [143]. The system obeys the unitary
time evolution generated by the Hamiltonian Ĥ ( f ), which
depends on a physical parameter f [144] such as an external
magnetic field. We use units where the reduced Planck con-
stant h̄ and the Boltzmann constant kB are unity.

We investigate the system prepared in an equilibrium state
and its time evolution induced by a change of f . We specif-
ically consider a quench process, in which f is changed
discontinuously. This does not mean any loss of generality
because the same results can also be obtained for continuous
change of f , as shown in Sec. IX B.

Since we are interested in the consistency with thermody-
namics, we consider the case where each equilibrium state
of the system is uniquely specified macroscopically by an
appropriate set of variables. Here, the number of the variables
in the set is finite and independent of N . (This is one of the
basic assumptions of thermodynamics [145].) To be specific,
we here assume that f , N , and the inverse temperature β

is such a set of variables. Then, equilibrium states can be
represented by the canonical Gibbs state

ρ̂can(β, f ) := e−βĤ ( f )/Z (β, f ), (1)

where Z (β, f ) is the partition function.
For time t < 0, f takes a constant value f0, which defines

the initial Hamiltonian,

Ĥ0 := Ĥ ( f0), (2)
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FIG. 1. (a) The quench process considered in this paper. See
Sec. II for details. (b) A schematic plot of typical time evolution
of the expectation value of an additive observable per site after the
quench at t = 0.

and the system is in an equilibrium state at a finite inverse
temperature β0, represented by

ρ̂
eq
0 := ρ̂can(β0, f0). (3)

At t = 0, f is changed from f0 to another constant value
f0 + � f discontinuously, as shown in Fig. 1(a). Due to this
quench of f , the state for t > 0 evolves according to the
Schrödinger equation described by the postquench Hamilto-
nian

Ĥ� f := Ĥ ( f0 + � f ). (4)

Consequently the expectation values of additive observables
evolve in time, as shown in Fig. 1(b). Here, we say an observ-
able Â is additive when it is the sum of local observables âr

over the whole system,

Â =
∑

r

âr, (5)

where we say an observable âr is local when its support
consists of sites within a distance of at most O(N0) from the
site r.

Note that a local observable âr is not necessarily a one-
body observable. It can be, say, a two-spin observable such as
the one given by Eq. (41) below. Note also that the additive
observable Â can be noninvariant under a spatial translation.
For example, for a magnetic field of a wavenumber k with
magnitude f ,

h(r) = f sin(k · r), (6)

its interaction with spins,

−
∑

r

h(r)σ̂ z
r = − f

∑
r

sin(k · r)σ̂ z
r , (7)

is an additive observable with âr = −h(r)σ̂ z
r . This example

also shows that our theory is applicable to the case where
a spatially-varying external field is applied. Since we allow
such an r-dependent coefficient in âr, we exclude strange
cases where the operator norm ‖âr‖∞ diverges as |r| → ∞
by imposing

‖âr‖∞ � CA for all r, (8)

where CA is a constant independent of N and r. From this
restriction, any additive observable Â satisfies

‖Â‖∞ = O(N ). (9)

We also make a natural assumption that Ĥ ( f ) and its
derivative

B̂ := −∂Ĥ

∂ f
( f0) (10)

are additive observables. Indeed this assumption is satisfied
for the above example of Ĥ ( f ) [see also Eq. (32) below]. We
say that the observable B̂ is conjugate to the parameter f , and
vice versa.

We examine whether the system relaxes to the equilibrium
state for small |� f |. For this purpose, we consider the case
where an equilibrium state exists not only for f = f0 but also
for f = f0 + � f . That is, we exclude, for instance, electric
conductors in a uniform electric field. Furthermore, to ex-
clude uninteresting divergences, we also limit ourselves to the
case where no phase transition occurs in the neighborhood
of the initial equilibrium state. This implies that the initial
equilibrium state is stable against the changes of parameters
conjugate to any additive observables. [This condition is pre-
cisely expressed by Eq. (53) in Sec. VIII A.]

III. CRITERIA FOR LINEAR THERMALIZATION

Since we consider the case of small |� f |, we examine
the consistency with thermodynamics up to the linear order
in � f : We say linear thermalization occurs for an additive
observable Â if the following three criteria are satisfied up to
O(� f ).

Criterion (i) (consistency of expectation value): The long
time average of the expectation value of Â after the quench is
sufficiently close to the equilibrium value. More precisely,

〈Â� f (t )〉eq
0

T − 〈Â〉eq
� f = o(N ) (11)

for sufficiently long time T . (See Sec. V for detailed discus-
sions on T .) Here

Â� f (t ) := eiĤ� f t Âe−iĤ� f t (12)

is the Heisenberg operator of Â evolved by Ĥ� f , and, for any
t-dependent quantity g(t ),

g(t )
T

:= 1

T

∫ T

0
dtg(t ). (13)

Furthermore, 〈•〉eq
0 := Tr[ρ̂eq

0 •] is the expectation value in the
initial state ρ̂

eq
0 , while 〈•〉eq

� f := Tr[ρ̂eq
� f •] is the expectation

value in

ρ̂
eq
� f := ρ̂can(β� f , f0 + � f ). (14)

The latter state ρ̂
eq
� f represents the final equilibrium state

predicted by thermodynamics. Its inverse temperature β� f is
determined from energy conservation

〈Ĥ� f 〉eq
� f = 〈Ĥ� f 〉eq

0 . (15)

Note that β� f �= β0 even in O(� f ), as explicitly given by
Eq. (A3) in Appendix A 1.
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Criterion (ii) (equilibration): At almost all t > 0, the ex-
pectation value of Â is sufficiently close to its long time
average. That is, their difference is macroscopically negligible
in the sense that

∣∣∣〈Â� f (t )〉eq
0 − 〈Â� f (t )〉eq

0

T ∣∣∣2
T

= o(N2) (16)

for sufficiently long time T .
Criterion (iii) (smallness of variance): At almost all t > 0,

the variance of Â is macroscopically negligible such that

Var0[Â� f (t )]
T = o(N2) (17)

for sufficiently long time T . Here Var0[•̂] := 〈(•̂)2〉eq
0 −

(〈•̂〉eq
0 )2.

Thermodynamics assumes that all additive observables
take macroscopically definite values in an equilibrium state
[140–142]. Since we are interested in full consistency with
thermodynamics, we examine whether linear thermalization
occurs, i.e., whether these criteria are satisfied, for all additive
observables.

IV. SUMMARY OF RESULTS

Among three criteria of the previous section, Criterion
(i) has been studied most intensively because in many cases
it discriminates thermalizing systems from nonthermalizing
ones. For instance, it was observed in many integrable systems
that relaxation to some steady states occurs, indicating that
Criteria (ii) and (iii) are satisfied, whereas they are nonther-
mal states, which do not satisfy Criterion (i) [41,43,44,75–
78].

Therefore we place a theorem about Criterion (i) as our
main result. We also obtain additional results, which show that
Criteria (ii) and (iii) are easily satisfied in our setting, under
conditions weaker than those of previous studies [7,146,147].
These results are summarized in this section. We will extend
them slightly in Sec. V, and thereby discuss the timescale of
the linear thermalization.

A. Theorem for Criterion (i)

Our main result is that if the additive observable B̂ conju-
gate to f , given by Eq. (10), satisfies Criterion (i) of Sec. II up
to O(� f ), then so do all additive observables. To be precise,
we obtain

Theorem (main result):

lim
T →∞

lim
� f →0

〈Â� f (t )〉eq
0

T − 〈Â〉eq
� f

� f
= o(N ) (18)

holds for every additive observable Â if and only if it holds for
Â = B̂,

lim
T →∞

lim
� f →0

〈B̂� f (t )〉eq
0

T − 〈B̂〉eq
� f

� f
= o(N ). (19)

This theorem identifies B̂, which is conjugate to f , as
the key observable for linear thermalization of all additive
observables. That is, one can judge whether the long time
average of the expectation value of every additive observable

Â is consistent with thermodynamics by examining the single
observable B̂. This striking result has the following significant
features.

Firstly, it is in sharp contrast with the existing approaches
to Criterion (i) [11–15,148], such as the ETH. In fact, previ-
ous studies clarified that the ETH for an observable implies
Criterion (i) for that observable. However, it did not guar-
antee either the ETH or Criterion (i) for other observables.
By contrast, our Theorem does guarantee that Criterion (i)
is satisfied by all additive observables up to O(� f ) if it is
satisfied by B̂. (We will demonstrate this point numerically in
Sec. VII.) This result may be most surprising in the case where
B̂ is a one-body observable: If Eq. (19) holds for that one-body
observable, then it also holds for all other additive observables
including two- and more-body [O(N0)-body] ones.

Secondly, the ETH for B̂ implies condition (19) but the
converse is not necessarily true, as will be discussed in
Sec. IX C.

Thirdly, our Theorem has significant meanings about the
generalized susceptibilities for cross responses, as will be
discussed in Sec. VI.

Fourthly, we can extend the result such that Â and B̂ in
Eqs. (18) and (19) are not restricted to additive observables,
as will be discussed in Sec. IX A.

B. Proposition for Criterion (ii)

Under the reasonable condition that Ĥ0 does not have ex-
ponentially many resonances, all additive observables satisfy
Criterion (ii) up to O(� f ). That is, we obtain

Proposition 1: If the maximum number of resonances Dres

[defined by Eq. (54) in Sec. VIII B] satisfies

DresTr
[(

ρ̂
eq
0

)2] = o(1/N2), (20)

then

lim
T →∞

lim
� f →0

∣∣∣∣∣
〈Â� f (t )〉eq

0 − 〈Â� f (t )〉eq
0

T

� f

∣∣∣∣∣
2
T

= o(N2) (21)

for every additive observable Â. [A detailed expression of the
right-hand side (r.h.s) will be given in Sec. VIII B.]

This proposition is obtained by adapting the argument
of Short and Farrelly [146] to our setting. While their re-
sult contains the effective dimension of the initial state, our
condition (20) instead contains its purity Tr[(ρ̂eq

0 )2]. Since
the postquench Hamiltonian Ĥ� f is different from the ini-
tial Hamiltonian Ĥ0, evaluation of the effective dimension
of the initial state ρ̂

eq
0 in terms of Ĥ� f is not an easy task.

By contrast, its purity can be evaluated easily as shown in
Appendix A 2.

Note that our condition is weaker than the “nonresonance
condition,” Dres = 1, of the previous studies [6,149,150]. The
nonresonance condition often fails even in nonintegrable sys-
tems, e.g., when energy eigenvalues have degeneracies due to
symmetries. By contrast, condition (20) is expected to hold
not only in such systems but also in wider classes of systems,
including interacting integrable systems (such as Model III of
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Sec. VII), because

Tr
[(

ρ̂
eq
0

)2] = e−�(N ) (22)

at any nonzero temperature 1/β0 as shown in Appendix A 2.

C. Proposition for Criterion (iii)

Under the reasonable condition that the fluctuation of every
additive observable in the initial equilibrium state is suffi-
ciently small, the variances of all additive observables after
the quench remain small enough such that Criterion (iii) is
satisfied up to O(� f ). To be precise, we find

Proposition 2: If the fourth order central moment of every
additive observable Â in the initial state satisfies〈(

Â − 〈Â〉eq
0

)4〉eq

0 = O(N2), (23)

then

lim
T →∞

lim
� f →0

∣∣∣∣∣∣
Var0[Â� f (t )]

T − Var0[Â]

� f

∣∣∣∣∣∣ = O
(
N

3
2
)

(24)

for every additive observable Â. [A detailed expression of the
r.h.s will be given as Eq. (62) in Sec. VIII C.]

Note that condition (23) also bounds the variance in the
initial state as

Var0[Â] �
√〈(

Â − 〈Â〉eq
0

)4〉eq

0 = O(N ), (25)

which follows from the Cauchy-Schwarz inequality. By in-
serting this into Eq. (24), we have [151]

Var0[Â� f (t )]
T = O(N ) + � f × O

(
N

3
2
) + o(� f ), (26)

which shows that Criterion (iii) is satisfied up to O(� f ).
Since we exclude phase transition points, our condition

(23) seems plausible. By contrast, previous results on Crite-
rion (iii) [59,147] required a condition that is stronger than
the ETH. The above proposition shows that the criterion is
satisfied under a much weaker condition in our setting.

To sum up these theorem and propositions, linear ther-
malization of the single key observable B̂ guarantees linear
thermalization of all additive observables, under physically
reasonable conditions.

V. TIMESCALE OF LINEAR THERMALIZATION

When studying thermalization theoretically, it is customary
to take the limit T → ∞ [59,61], as we did above. However,
more detailed information about the timescale is necessary
because in experiments thermalization occurs in reasonably
short timescales [42,47]. The timescale is particularly non-
trivial when “prethermalization” [61,152–157] occurs, i.e.,
when the system first relaxes to a nonthermal quasisteady
state, and at some time stage after that, it relaxes to a true
thermal equilibrium state. In nearly integrable systems, the
timescale for the relaxation to a true thermal equilibrium state
crucially depends on the magnitude of � f and is typically
of �(1/|� f |2) [158–161]. Thus the � f dependence of the
timescale is very important. In this section, we investigate it
for linear thermalization.

(a)

t

〈Â〉/N

O(|Δf |0) o(1/
√|Δf |)

thermal value

0

(b)

t

〈Â〉/N

O(|Δf |0) o(1/
√|Δf |)

thermal value

0

(c)

t

〈Â〉/N

O(|Δf |0) o(1/
√|Δf |) Θ(1/|Δf |2)

thermal value

0

FIG. 2. Schematic plots of the time evolution of 〈Â� f (t )〉eq
0 /N in

three typical cases. (a) Linear thermalization occurs, corresponding
to cases (1) of Sec. V A and (1′) of V B. (b) Linear thermalization
does not occur, corresponding to cases (2) of Sec. V A and (2′) of
V B. (c) Prethermalization occurs, which is discussed in Sec. V C.

A. Timescale of linear thermalization in Theorem and
Propositions 1 and 2

Our results of Sec. IV, namely Theorem and Propositions
1 and 2, take the two limits T → ∞ and � f → 0 in the
following order [162]:

lim
T →∞

lim
� f →0

[function of T and � f ]. (27)

In this order of limits, T is smaller than any timescale that
grows as � f → 0 [163]. That is, it extracts the behavior of the
system in the time interval [0, T ] such that T = �(|� f |0).
This leads to the following observations:

Timescale in Theorem and Propositions 1 and 2: (1) If linear
thermalization occurs in the limit (27), as in Theorem and
Propositions 1 and 2, then it occurs in some t = O(|� f |0),
as illustrated in Fig. 2(a). (2) On the other hand, if linear
thermalization does not occur in the limit (27), then it does
not occur in any timescale of O(|� f |0), as in Fig. 2(b).

That is, the timescale of thermalization is independent of
the magnitude of � f . Behaviors in longer timescales will be
discussed in the following two subsections.

B. Extension to a longer timescale

We now extend our results to a longer timescale
o(1/

√|� f |), and explain its implications for linear thermal-
ization.

Let T� f be a timescale that grows as � f → 0 satisfying
T� f = o(1/

√|� f |). As will be shown in Sec. VIII D, we find
that the values of the left-hand sides of Eqs. (18), (21), and
(24) do not change when the limit (27) is replaced with

lim
� f →0

[function of T and � f with T replaced by T� f ]. (28)

That is, we obtain the following proposition [164].
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Proposition 3: For any T� f = o(1/
√|� f |) and for any

additive observable Â,

lim
� f →0

〈Â� f (t )〉eq
0

T� f − 〈Â〉eq
� f

� f

= lim
T →∞

lim
� f →0

〈Â� f (t )〉eq
0

T − 〈Â〉eq
� f

� f
, (29)

lim
� f →0

∣∣∣∣∣
〈Â� f (t )〉eq

0 − 〈Â� f (t )〉eq
0

T� f

� f

∣∣∣∣∣
2
T� f

= lim
T →∞

lim
� f →0

∣∣∣∣∣
〈Â� f (t )〉eq

0 − 〈Â� f (t )〉eq
0

T

� f

∣∣∣∣
2
T

, (30)

lim
� f →0

Var0[Â� f (t )]
T� f − Var0[Â]

� f

= lim
T →∞

lim
� f →0

Var0[Â� f (t )]
T − Var0[Â]

� f
. (31)

This proposition shows that Theorem, Propositions 1 and
2 hold even when T is replaced with a longer timescale T� f ,
and leads to the following observations:

Timescale of linear thermalization: (1′) If linear thermal-
ization occurs in some t = O(|� f |0), it lasts at least for a
period of o(1/

√|� f |). Conversely, if linear thermalization
occurs at some o(1/

√|� f |), it already occurs at some t =
O(|� f |0). See Fig. 2(a). (2′) On the other hand, absence
of linear thermalization in a shorter timescale of O(|� f |0)
guarantees its absence in a longer timescale of o(1/

√|� f |),
and vice versa. See Fig. 2(b).

This result, together with the results of Secs. IV and V A,
implies, in particular, that linear thermalization of the single
key observable B̂ in the timescale of O(|� f |0) guarantees
linear thermalization of all additive observables not only in the
same timescale but also in a longer timescale of o(1/

√|� f |).

C. Stationarity and implications for prethermalization

We here discuss stationarity of the system and its implica-
tion for prethermalization.

From Eqs. (29)–(31), we obtain the following observations:
Stationarity throughout a certain time region: Suppose

that conditions (20) and (23) for Propositions 1 and 2 are
fulfilled. Then, throughout a time region from O(|� f |0) to
o(1/

√|� f |), all additive observables take macroscopically
definite and stationary values, up to O(� f ). In other words,
the system relaxes to a macroscopic state and stays in the same
macroscopic state throughout this time region, up to O(� f ).

Note that this stationary state can be either thermal or
nonthermal, depending on whether condition (19) of our The-
orem is satisfied or not. If the state is thermal as illustrated in
Fig. 2(a), it means that linear thermalization occurs. On the
other hand, if the state is nonthermal [i.e., if condition (19) is
not satisfied] as in Fig. 2(b), it is a nonthermal stationary state.

The latter case includes systems which exhibit prether-
malization [61,152–157]. The prethermalization often occurs
when � f switches the system from integrable to noninte-

grable. (Shiraishi proved the existence of a system in which
such switching is possible by an arbitrary nonvanishing value
of � f [165].) In a typical case of such prethermalization, the
system first relaxes to a nonthermal stationary state in some
timescale of O(|� f |0), and then relaxes to the true thermal
equilibrium state at some timescale of �(1/|� f |2) [61], as
illustrated in Fig. 2(c). For such a system, our results detect the
nonthermal stationary state in the time region from O(|� f |0)
to o(1/

√|� f |) and the absence of linear thermalization in this
time region.

VI. GENERALIZED SUSCEPTIBILITIES FOR CROSS
RESPONSES

Our Theorem has significant meanings about the general-
ized susceptibilities for cross responses.

In response to the change of a parameter (such as an exter-
nal field), not only its conjugate observable B̂ but also other
observables often change their values. The magnetoelectric
effect and the piezoelectric effect are well-known examples.
Such responses of observables Â that are not conjugate to the
changed parameter are called cross responses, and have been
attracting much attention [166–170]. They are characterized
by the generalized susceptibilities (crossed susceptibilities),
which we denote by χ (A|B).

For example, when a magnetic field of an arbitrary
wavenumber k, Eq. (6), is applied to a spin system, Eq. (7)
yields the additive observable conjugate to f as

B̂ =
∑

r

sin(k · r)σ̂ z
r , (32)

which is the total magnetization M̂k of wavenumber k.
Then, if we take Â to be the total electric polarization P̂k

of wavenumber k the generalized susceptibility χ (A|B) is
the magnetoelectric susceptibility at wavenumber k [171],
whereas if we take Â = B̂ = M̂k the corresponding suscepti-
bility χ (B|B) is just the ordinary magnetic susceptibility at
wavenumber k.

We here compare two types of generalized susceptibilities.
One is χ (A|B) obtained in quantum mechanics,

χ
QM
N (A|B) := lim

T →∞
lim

� f →0

〈Â� f (t )〉eq
0

T − 〈Â〉eq
0

� f N
, (33)

which is defined by the Schrödinger dynamics. The other is
χ (A|B) predicted by thermodynamics [172],

χTD
N (A|B) := lim

� f →0

〈Â〉eq
� f − 〈Â〉eq

0

� f N
, (34)

where the final state ρ̂
eq
� f is determined by thermodynamics

and equilibrium statistical mechanics using the energy con-
servation, Eq. (15).

From these definitions, Eqs. (18) and (19) are equivalent to

lim
N→∞

χ
QM
N (A|B) = lim

N→∞
χTD

N (A|B), (35)

lim
N→∞

χ
QM
N (B|B) = lim

N→∞
χTD

N (B|B), (36)

respectively. Therefore, our Theorem can be rephrased as fol-
lows.
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Consistency of cross responses: Equation (35) holds for
every additive observable Â if it holds for B̂.

Furthermore, the following symmetries follow from
Eqs. (A2) and (A5) in Appendix A 2:

χ
QM
N (A|B) = χ

QM
N (B|A), (37)

χTD
N (A|B) = χTD

N (B|A). (38)

(The latter is just a Maxwell relation of thermodynamics.)
From these relations, Eq. (35) can be rewritten as

lim
N→∞

χ
QM
N (B|A) = lim

N→∞
χTD

N (B|A). (39)

Therefore, we obtain the following result.
Corollary 1 (consistency of responses to other parameters):

Equation (39) holds for every additive observable Â if Eq. (36)
holds for B̂.

That is, the quantum-mechanical response of an additive
observable B̂ to the parameter fA conjugate to an arbitrary
additive observable Â is consistent with thermodynamics if
the quantum-mechanical response of B̂ to its own conjugate
parameter f is consistent with thermodynamics.

Moreover, this corollary has the following implication for
linear thermalization.

Corollary 2: Under the conditions (20) and (23) for Propo-
sitions 1 and 2, linear thermalization of B̂ against the quench
of its conjugate parameter f implies linear thermalization of
the same observable B̂ against the quench of any other param-
eter fA that is conjugate to an arbitrary additive observable
Â.

These corollaries dramatically reduce the costs of exper-
iments and theoretical calculations of linear thermalization
and cross responses. For example, suppose that one wants
to examine the cross response of the magnetization M̂ of a
spin system against the quench of an interaction parameter
J , whose quench is, however, technically difficult. In such a
case, one can perform an alternative experiment in which an
external magnetic field that is conjugate to M̂ is quenched.
If the quantum-mechanical response of M̂ is consistent with
thermodynamical one in the latter experiment, then Corollary
1 guarantees their consistency in the former experiment.

VII. EXAMPLES

In this section, we demonstrate our Theorem using one-
dimensional spin systems. For a nonintegrable model, we first
show linear thermalization of B̂, which implies, according
to our Theorem, linear thermalization of all other Â’s. We
demonstrate it for typical Â’s. We also present integrable
models in which linear thermalization does not occur neither
for B̂ nor for typical Â’s.

A. Models

If a system had many symmetries, one would have to
investigate thermalization separately in individual symmetry
sectors not to overlook the degeneracy of energy eigenval-
ues. To avoid such complicated procedures, we construct our
model Hamiltonian by adding two extra terms to the one-

TABLE I. Values of the parameters in the Hamiltonian, Eq. (40),
for the three models.

Model Jxx Jyy Jzz (= f ) hz Jyz hx

fixed fixed initial value f0 fixed fixed fixed

I (nonintegrable) cos 1 1 e ln 5 ln 3 π

II (integrable) 0 1 e 0 ln 3 π

III (integrable) 1 1 e ln 5 0 0

dimensional XYZ model in a magnetic field [165] as

Ĥ = −
N∑

r=1

(
Jxxσ̂

x
r σ̂ x

r+1 + Jyyσ̂
y
r σ̂

y
r+1 + Jzzσ̂

z
r σ̂ z

r+1 + hzσ̂
z
r

+ Jyzσ̂
y
r σ̂ z

r+1 + hxσ̂
x
r

)
, (40)

where σ̂
μ
N+1 = σ̂

μ
1 (μ = x, y, z). The last two terms are the

extra terms that break all known symmetries, except for the
translation symmetry, of the conventional XYZ model in a
magnetic field. Indeed, the Jyz term breaks the lattice inversion
symmetry and the spin π rotation symmetry around z axis.
Furthermore, the Jyz and the hx terms break the complex
conjugate symmetry.

We believe this model, when all parameters are nonzero
and Jxx �= Jyy, is nonintegrable in the sense that it has no local
conserved quantities other than the Hamiltonian, because so is
the conventional model with Jyz = hx = 0 [165]. As a support
of this belief, we have confirmed in Appendix B 3 that the en-
ergy level statistics in each momentum sector is described by
the Gaussian unitary ensemble (GUE) of the random matrix
theory [88,173,174].

We tabulate the values of the parameters used in the numer-
ical calculations as Model I in Table I. The values are taken in
such a way that the ratio of every two of them is irrational in
order to avoid a possible accidental symmetry.

For comparison, we also study Model II in which Jxx =
hz = 0 (see Table I). Although this model is slightly different
from known models [175], we find it integrable in the sense
that it can be mapped to a noninteracting fermionic system
by the Jordan-Wigner transformation. We give its analytic
solutions in Appendix C.

In addition, Model III in which Jxx = Jyy and Jyz = hx = 0
(see Table I) is studied. It is just the XXZ model, whose energy
eigenstates and additive conserved quantities are constructed
by using the Bethe ansatz [176–184].

These models cover three typical types of systems: the non-
integrable systems, the “noninteracting integrable systems,”
and the “interacting integrable systems” that are solvable by
the Bethe ansatz.

In all these models, we choose Jzz as the quench parameter
f in order to demonstrate that our additive observables are
not restricted to one-body observables. In fact, the additive
observable conjugate to f = Jzz is the two-spin operator,

B̂ =
N∑

r=1

σ̂ z
r σ̂ z

r+1 =: M̂zz. (41)

We write Ĥ of Eq. (40) as Ĥ ( f ), and Ĥ0 = Ĥ ( f0), where the
initial value f0 of f = Jzz is given in Table I. Taking the initial
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FIG. 3. χ
QM
N (B|B) (blue circle) and χTD

N (B|B) (orange triangle)
against the system size N in (a) Model I (nonintegrable) and in
(b) Model II (integrable). The solid lines in (b) show the thermody-
namic limits of these susceptibilities. Inset of (a): A log-log plot of
N dependence of |χQM

N (B|B) − χTD
N (B|B)| in Model I, which can be

fitted by a function a/Nb with constants a = 0.123(5), b = 1.30(2),
and the solid line shows the fitting function 0.123/N1.30.

state as the canonical Gibbs state ρ̂
eq
0 of Ĥ0 with the inverse

temperature β0 = 0.15, we study the quench process in which
f = Jzz is changed suddenly.

We calculate χ
QM
N (A|B) and χTD

N (A|B) for several choices
of Â including the case of Â = B̂. For this purpose, we express
the susceptibilities as Eqs. (A2) and (A5) of Appendix A 1,
and calculate them by performing the exact diagonalization of
Ĥ0 from N = 6 to 19.

We here present the results for Models I and II, whereas
those for Model III are presented in Appendix B 2.

B. Susceptibilities of B̂

First we calculate the two susceptibilities of B̂, χ
QM
N (B|B)

and χTD
N (B|B), and examine whether condition (36), which is

equivalent to condition (19), is satisfied.
The two susceptibilities of Model I are plotted against the

system size N in Fig. 3(a). They approach the same value as
N is increased. The inset of Fig. 3(a) shows the N dependence
of their difference, χTD

N (B|B) − χ
QM
N (B|B), in a log-log plot,

indicating a power-law decay. From these results we conclude
that Model I satisfies condition (36) and, equivalently, condi-
tion (19).

For comparison, we plot the two susceptibilities of Model
II against N in Fig. 3(b). The solid lines depict their ther-
modynamic limits, which are calculated from the analytic
solutions (C20) and (C21) given in Appendix C. These results
clearly show that Model II violates condition (36) and hence
condition (19).
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FIG. 4. χ
QM
N (A|B) (blue circle) and χTD

N (A|B) (orange triangle)
for Â = M̂x against the system size N in (a) Model I (nonintegrable)
and in (b) Model II (integrable). Inset of (a): A log-log plot of N
dependence of |χQM

N (A|B) − χTD
N (A|B)| in Model I, which can be

fitted by a function a/Nb with constants a = 0.084(2), b = 1.180(9),
and the solid line shows the fitting function 0.084/N1.180.

C. Susceptibilities of Â

Next we calculate the susceptibilities of additive observ-
ables Â that are not conjugate to the quench parameter f = Jzz

in order to demonstrate our Theorem (in the form rephrased in
Sec. VI). That is, we demonstrate that Eq. (35) is satisfied for
such Â’s in Model I while it is violated in Model II.

As typical Â’s, we choose the following observables for
the demonstration. The first one is the sum of single-site
observables,

M̂x :=
N∑

r=1

σ̂ x
r . (42)

The second one is the sum of two-spin observables,

M̂xx :=
N∑

r=1

σ̂ x
r σ̂ x

r+1. (43)

The third one is also the sum of two-spin observables, but the
two spins are the next nearest to each other,

M̂z1z :=
N∑

r=1

σ̂ z
r σ̂ z

r+2, (44)

where σ̂ z
N+2 = σ̂ z

2 .
The susceptibilities of Â = M̂x of Model I are plotted

against the system size N in Fig. 4(a), and those of Â = M̂xx

and M̂z1z are plotted in Figs. 5(a) and 6(a) of Appendix B,
respectively. In each figure, χ

QM
N (A|B) and χTD

N (A|B) ap-
proach the same value with increasing N . The insets of these
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figures show the difference of the susceptibilities in a log-
log plot. They indicate power law decays, as in the case of
Fig. 3(a). From these results, we confirm that Eq. (35) is
satisfied for all the three additive observables.

For comparison, the susceptibilities of Â = M̂x, M̂xx, and
M̂z1z of Model II are plotted in Figs. 4(b), 5(b), and 6(b),
respectively. In all these figures, χ

QM
N (A|B) and χTD

N (A|B)
deviate from each other. Therefore we conclude that, in Model
II, Eq. (35) is not satisfied for the three additive observables
[185]. This is consistent with our Theorem because this inte-
grable model violates condition (36).

VIII. OUTLINES OF THE PROOFS

In this section, we describe outlines of proofs of Theorem
and Propositions of Secs. IV and V. A combination of these
outlines and the detailed discussions in Appendix A gives the
complete proofs.

A. Outline of the proof of Theorem

Since our Theorem in Sec. IV can be rephrased as the
Consistency of cross responses of Sec. VI, we prove the latter.

It is known that the generalized susceptibilities can be
expressed in terms of the canonical correlation [136,186,187],
which is defined for arbitrary operators X̂ and Ŷ by

〈X̂ ; Ŷ 〉eq
0 :=

∫ 1

0
dλTr

[(
ρ̂

eq
0

)1−λ
X̂ †

(
ρ̂

eq
0

)λ
Ŷ

]
. (45)

We start from such expressions. We then introduce an projec-
tion superoperator. We finally make use of the fact that the
canonical correlation defines an inner product, i.e., it satisfies
all of the axioms of an inner product (hence is called the
Kubo-Mori-Bogoliubov inner product).

In Appendix A 1, we have expressed χ
QM
N (A|B) and

χTD
N (A|B) using the canonical correlations as Eqs. (A2) and

(A5), respectively. These expressions yield

χTD
N (A|B) − χ

QM
N (A|B) = 1

N
〈β0δB̂; δÂ0〉eq

0

− 〈β0δB̂δĤ0〉eq
0 〈δĤ0δÂ〉eq

0

N〈(δĤ0)2〉eq
0

, (46)

where δ•̂ := •̂ − 〈•̂〉eq
0 is the deviation from the initial equilib-

rium value, and we have introduced the Heisenberg operator,

X̂ 0(t ) := eiĤ0t X̂ e−iĤ0t , (47)

and its long time average,

X̂ 0 := lim
T →∞

X̂ 0(t )
T

. (48)

Here, we have put the superscript 0 because X̂ 0(t ) evolves by

the initial Hamiltonian Ĥ0. Since [X̂ 0, Ĥ0] = 0 holds for any
operator X̂ , we can rewrite the first term of Eq. (46) as

〈δB̂; δÂ0〉eq
0 = 〈δB̂δÂ0〉eq

0 = 〈δB̂0(t )δÂ0〉eq
0 = 〈δB̂0δÂ0〉eq

0 .

(49)

Now we introduce the following projection superoperator,

P[X̂ ] := δX̂ 0 − 〈δĤ0δX̂ 0〉eq
0

〈(δĤ0)2〉eq
0

δĤ0. (50)

It projects an operator X̂ onto the operator subspace whose
elements (operators) commute with Ĥ0 and are orthogonal to
1̂ and Ĥ0 (under the Kubo-Mori-Bogoliubov inner product).
By using this superoperator, Eq. (46) can be written as

χTD
N (A|B) − χ

QM
N (A|B) = β0

N
〈P[B̂];P[Â]〉eq

0 . (51)

Since the r.h.s. is an inner product, we apply the Cauchy-
Schwarz inequality, and obtain

|χTD
N (A|B) − χ

QM
N (A|B)|2

� (β0)2

N2
〈P[Â];P[Â]〉eq

0 〈P[B̂];P[B̂]〉eq
0

= (
χTD

N (A|A) − χ
QM
N (A|A)

)(
χTD

N (B|B) − χ
QM
N (B|B)

)
� χTD

N (A|A)
(
χTD

N (B|B) − χ
QM
N (B|B)

)
, (52)

where we have used χ
QM
N (A|A) � 0, which follows from

Eq. (A2), and χTD
N (B|B) � χ

QM
N (B|B) [137,139], which is ob-

vious from Eq. (51). Since we exclude phase transition points
as stated in Sec. II, it is required that

χTD
N (A|A) = O(N0) for any Â (53)

from thermodynamics and equilibrium statistical mechanics
[188]. Therefore, Eq. (52) yields the Consistency of cross
responses of Sec. VI, and hence our Theorem in Sec. IV.

B. Outline of the proof of Proposition 1

Let |ν〉 be an eigenstate of Ĥ0 with an energy eigenvalue
Eν . We take these eigenstates such that they form an or-
thonormal basis even if the eigenvalues are degenerate. The
maximum number of resonances in condition (20) is defined
by

Dres := max
ν1,ν2 (Eν1 �=Eν2 )

∑
ν3,ν4 (Eν3 �=Eν4 )

δEν1 −Eν2 ,Eν3 −Eν4
. (54)

As shown in Appendix A 2, the left-hand side of Eq. (21)
can be rewritten as

lim
T →∞

lim
� f →0

∣∣∣∣ 〈Â
� f (t )〉eq

0 − 〈Â� f (t )〉eq
0

T

� f N

∣∣∣∣
2
T

= lim
T →∞

(
χ

QM
N (A|B; t ) − χ

QM
N (A|B)

)2
T

. (55)

Here χ
QM
N (A|B; t ) is the time-dependent susceptibility,

χ
QM
N (A|B; t ) := lim

� f →0

〈Â� f (t )〉eq
0 − 〈Â〉eq

0

N� f
, (56)

which is related to χ
QM
N (A|B) via

χ
QM
N (A|B) = lim

T →∞
χ

QM
N (A|B; t )

T
. (57)
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The r.h.s. of Eq. (55) is bounded from above by

lim
T →∞

(
χ

QM
N (A|B; t ) − χ

QM
N (A|B)

)2
T

� (β0)2‖Â‖2
∞‖B̂‖2

∞
N2

DresTr
[(

ρ̂
eq
0

)2]
. (58)

The proof of this inequality, shown in Appendix A 2, is similar
to that by Short and Farrelly [146]. Combining Eqs. (55) and
(58) with the condition (20), we prove Eq. (21) for every
additive observable Â.

We remark that Eq. (58) can be extended to finite T , as in
Ref. [146].

C. Outline of the proof of Proposition 2

As explained in Appendix A 3, we can show that

lim
� f →0

Var0[Â� f (t )] − Var0[Â]

� f

= 〈β0δB̂; (δÂ)2〉eq
0 − 〈β0δB̂; (δÂ0(t ))2〉eq

0 , (59)

where δÂ0(t ) = Â0(t ) − 〈Â0(t )〉eq
0 = Â0(t ) − 〈Â〉eq

0 . An upper
bound of the last term is obtained by the Cauchy-Schwarz
inequality as

|〈δB̂; (δÂ0(t ))2〉eq
0 |2 � 〈δB̂; δB̂〉eq

0 〈(δÂ0(t ))2; (δÂ0(t ))2〉eq
0

= 〈δB̂; δB̂〉eq
0 〈(δÂ)2; (δÂ)2〉eq

0 � 〈(δB̂)2〉eq
0 〈(δÂ)4〉eq

0 . (60)

Here the last line follows from Eq. (A26) of Appendix A 3.
By using this inequality, we have

lim
� f →0

∣∣∣∣∣
Var0[Â� f (t )] − Var0[Â]

� f

∣∣∣∣∣ � 2β0

√
〈(δB̂)2〉eq

0 〈(δÂ)4〉eq
0 .

(61)

Since the time average of the left-hand side (l.h.s.) of this in-
equality can also be bounded from above by the same quantity,
we have

lim
T →∞

lim
� f →0

∣∣∣∣∣∣
Var0[Â� f (t )]

T − Var0[Â]

� f

∣∣∣∣∣∣
� 2β0

√
〈(δB̂)2〉eq

0 〈(δÂ)4〉eq
0 . (62)

Here, we have used interchangeability of the time integration
and the limit � f → 0, which is shown in Eqs. (A43)–(A45)
of Appendix A 4. Combining this with the condition (23) and
its consequence (25), we obtain Eq. (24).

It should be remarked that Eq. (61) holds at an arbitrary
time t > 0 without taking time average. That is, the variance
remains small at all t > 0, although Criterion (iii) requires it
only for almost allt > 0.

D. Outline of the proof of Proposition 3

We use the following inequalities that are proved in Ap-
pendix A 4:∣∣∣∣∣

〈Â� f (t )〉eq
0

T − 〈Â〉eq
0

� f N
− χ

QM
N (A|B; t )

T
∣∣∣∣∣

� (D1T + D2T 2)|� f |, (63)

∣∣∣∣∣
( 〈Â� f (t )〉eq

0 − 〈Â〉eq
0

� f N

)2
T

− (
χ

QM
N (A|B; t )

)2
T

∣∣∣∣∣
� (D3T + D4T 2)|� f |

+ (D5T 2 + D6T 3 + D7T 4)|� f |2, (64)

∣∣∣∣∣
〈(Â� f (t ))2〉eq

0

T − 〈Â2〉eq
0

� f N2
− χ̃N (A2; t )

T
∣∣∣∣∣

� (D8T + D9T 2)|� f |. (65)

Here

χ̃N (A2; t ) := lim
� f →0

〈(Â� f (t ))2〉eq
0 − 〈Â2〉eq

0

� f N2
, (66)

and D1, · · · , D9 are nonnegative constants of O(|� f |0) that
are independent of T . By noting that the right-hand sides
of these equations vanish in the limit (28), we can prove
Eqs. (29)–(31) as follows.

Firstly, combining Eq. (63) with Eq. (57), we have

lim
� f →0

〈Â� f (t )〉eq
0

T� f − 〈Â〉eq
0

� f N
= χ

QM
N (A|B). (67)

Using Eqs. (33), (34), and (67), we obtain Eq. (29).
Next we evaluate

∣∣∣∣∣
〈Â� f (t )〉eq

0 − 〈Â� f (t )〉eq
0

T

� f N

∣∣∣∣∣
2
T

=
( 〈Â� f (t )〉eq

0 − 〈Â〉eq
0

� f N

)2
T

−
( 〈Â� f (t )〉eq

0

T − 〈Â〉eq
0

� f N

)2

.

(68)

By taking the limit (28), we can evaluate the first and second
terms from Eqs. (64) and (67), respectively. Then we have

lim
� f →0

∣∣∣∣∣
〈Â� f (t )〉eq

0 − 〈Â� f (t )〉eq
0

T� f

� f N

∣∣∣∣∣
2
T� f

= lim
T →∞

(
χ

QM
N (A|B; t )

)2
T

− (
χ

QM
N (A|B)

)2
. (69)

Combining this with Eq. (55), we obtain Eq. (30).
Finally we evaluate

Var0[Â� f (t )]
T − Var0[Â]

� f N2

= 〈(Â� f (t ))2〉eq
0

T − 〈Â2〉eq
0

� f N2
−

( 〈Â� f (t )〉eq
0 −〈Â〉eq

0

� f N

)2

� f

T

− 2
〈Â〉eq

0

N

〈Â� f (t )〉eq
0

T − 〈Â〉eq
0

� f N
(70)

By taking the limit (28), we can evaluate the first and third
terms from Eqs. (65) and (67), respectively. Note that the
second term vanishes in this limit because of Eq. (64). As a
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result, we have

lim
� f →0

Var0[Â� f (t )]
T� f − Var0[Â]

� f N2

= lim
T →∞

χ̃N (A2; t )
T − 2

〈Â〉eq
0

N
χ

QM
N (A|B)

= lim
T →∞

(
lim

� f →0

Var0[Â� f (t )] − Var0[Â]

� f N2

)T

. (71)

In the last line, we have used

lim
� f →0

Var0[Â� f (t )] − Var0[Â]

� f N2

= χ̃N (A2; t ) − 2
〈Â〉eq

0

N
χ

QM
N (A|B; t ), (72)

which follows from Eqs. (A22) and (A23) of Appendix A 3.
From Eqs. (A43)–(A45) of Appendix A 4, the time integration
and the limit � f → 0 can be interchanged, and hence Eq. (71)
yields Eq. (31).

IX. DISCUSSIONS

A. Extension to nonadditive observables

In the above proof, additivity of Â and B̂ is not crucial. In
fact, we can extend our Theorem as follows.

Extension to nonadditive observables: Suppose that the
observable B̂ defined by Eq. (10) is not necessarily additive. If
Eq. (18) holds for B̂ then it holds for any observable Â that is
not necessarily additive but satisfies

χTD
N (A|A) − χ

QM
N (A|A) = O(N0). (73)

This result will be particularly useful when discussing
nonlocal properties of the system, such as the entanglement.
Nevertheless, we have focused on additive observables be-
cause we are interested in consistency with thermodynamics
in this paper.

B. Case of continuous change of f

We have studied the case of a quench process, in which
f is jumped discontinuously. Our Theorem holds also for
processes in which f is changed continuously as

f (t ) = f0 + λ(t )� f . (74)

Here, λ(t ) is a continuously differentiable function such that
λ(t ) = 0 for t � 0 and λ(t ) = 1 for t∗ � t , where t∗ is a
constant independent of � f and T .

The validity of our Theorem for this process is shown
as follows. χ

QM
N (A|B) of this process agrees with that of

the quench process because χ
QM
N (A|B) is the zero-frequency

component of a linear-response coefficient and hence in-
dependent of the time profile of f , as will be shown in
Sec. IX E. χTD

N (A|B) is also independent of the time profile
of f because it agrees with the adiabatic susceptibility re-
gardless of the time profile of f . In fact, the entropy does
not change in O(� f ) because if the entropy increased by
O(� f ) then it would decrease when the sign of � f is in-
verted, in contradiction to the second law of thermodynamics.

Therefore, our Theorem holds independently of details of the
process.

C. ETH for B̂ implies condition (19) but they are inequivalent

In this subsection, we show that the ETH for B̂ implies
condition (19) but the converse is not necessarily true.

In Ref. [135], we have shown that if the ETH (referred
to as the “strong ETH” there) is satisfied for the uniform
magnetization then condition (8) of Ref. [135] holds. This
condition is equivalent to Eq. (4) of Ref. [135], which states
that the k = 0 components of two types of magnetic suscep-
tibilities, denoted by χ

qch
N (0) and χS

N (0) there, coincide. We
can easily show that the proof is applicable when χ

qch
N (0)

and χS
N (0) are replaced with the generalized susceptibilities

χ
QM
N (B̂|B̂) and χTD

N (B̂|B̂) introduced in Sec. VI, respectively,
and the uniform magnetization with B̂. Therefore, the ETH for
B̂ implies Eq. (36) of the present paper, which is equivalent to
condition (19) as explained in Sec. VI.

Note that this result is not so obvious because, as shown
in Sec. V, the timescale of linear thermalization in condition
(19) is shorter than the timescale where the ETH is usually
applied. In other words, when applying the ETH, one usually
take T → ∞ before � f → 0, which differs from the limit
(27) employed in condition (19).

On the other hand, condition (19) for B̂ is weaker than its
ETH. In fact, Shiraishi and Mori [24,25] constructed systems
in which a certain observable violates the ETH but satisfies
Criterion (i) when the initial state is an arbitrary equilibrium
state at a nonzero temperature. Hence, when f is chosen as the
parameter conjugate to that observable, these systems satisfy
condition (19) but violate the ETH for B̂.

D. How to test our results experimentally

In this section, we discuss a way of testing our results
experimentally. For concreteness, we discuss how to measure
χ

QM
N (A|B) and χTD

N (A|B). Other quantities such as fluctuation
can also be measured in a similar manner.

To measure χ
QM
N (A|B) experimentally, prepare the system

in an equilibrium state [189]. This can be achieved, for exam-
ple, by making the system be in thermal contact with a heat
bath of inverse temperature β0. Obtain 〈Â〉eq

0 by measuring
Â in this state. After that, detach the heat bath, so that the
system undergoes the unitary time evolution. Then, 〈Â� f (t )〉eq

0
evolves as schematically shown in Fig. 1. By measuring this
evolution, one can judge whether the system relaxes to a
(quasi)steady state or not. Note that the (quasi)steady state
can be a nonthermal state because the relaxation occurs much
more easily than thermalization, as pointed out at the begin-
ning of Sec. IV. When the relaxation occurs, one obtains

〈Â� f (t )〉eq
0

T
and the relaxation time. By taking |� f | small

enough and T long enough [190], and extrapolating the data
to � f → 0 and T → ∞, one obtains χ

QM
N (A|B) as Eq. (33).

One also obtains the � f dependence of the relaxation time
from the � f dependence of the data.

For χTD
N (A|B), its measurement might look difficult when

the system does not thermalize under the unitary evolution.
Fortunately, one can fully utilize a heat bath to realize equilib-
rium states because χTD

N (A|B) is a state function and therefore
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independent [apart from a finite-size-effect term of o(N0)]
of how the equilibrium state is prepared. Firstly, set f = f0

and β = β0, and obtain 〈Â〉eq
0 by measuring Â. Then, supply a

small amount of energy dU to the total system (composed of
the system and the bath), and measure the resultant decrease
dβ of the inverse temperature and the change dB of the equi-
librium value of B̂. Since the thermal capacity of the bath is
known, one obtains the specific heat c0 of the system from dU
and dβ. Furthermore, dB/dβ gives

(
∂

∂β
Tr

[
ρ̂can(β, f0)

B̂

N

])∣∣∣∣∣
β=β0

= −〈δĤ0δB̂〉eq
0 /N. (75)

Then, using this and Eq. (A4), one can determine the inverse
temperature β� f , given by Eq. (A3), of the final equilibrium
state that is predicted by thermodynamics after the quench of
� f [191]. Finally, set f = f0 + � f and β = β� f , and obtain
〈Â〉eq

� f by measuring Â. By substituting the measured values

for 〈Â〉eq
0 and 〈Â〉eq

� f of Eq. (34), one obtains χTD
N (A|B).

E. Relation to linear response theory

The quantum-mechanical susceptibility χ
QM
N (A|B) is

closely related to that given by the linear response theory.
Hence, the consistency of χ

QM
N (A|B) with χTD

N (A|B), dis-
cussed in Sec. VI, is also related to the validity of the linear
response theory. We finally discuss these points.

Following the pioneering studies by Callen, Welton,
Greene, Takahashi, and Nakano [192–196], Kubo established
the linear response theory for quantum systems [136]. He
assumed that the system, which is initially in an equilibrium
state, is isolated from environments while an external force is
applied adiabatically, which means, in our notation, that

f (t ) = f0 + � f eεt cos ωt . (76)

Here ε is a small positive number and ω is the frequency.
Then, the Kubo formula for the response of Â/N reads

χKubo
N (A|B)[ω + iε] =

∫ ∞

0
dte(iω−ε)t i

N
〈[Â0(t ), B̂]〉eq

0 , (77)

where Â0(t ) is defined by Eq. (47).
Note that the validity of this formula is never obvious be-

cause it depends on the degree of complexity of the dynamics.
The conditions for the validity have been discussed by Kubo
himself [136] and by many authors [135,137,139,186]. For
technical reasons, these discussions have been made for finite
N , although it is sometimes stressed that the thermodynamic
limit should be taken before taking other limits such as
ε → +0 [197–201].

If we keep N finite following these studies, we can show
that [135]

lim
ε→+0

χKubo
N (A|B)[0 + iε] = χ

QM
N (A|B). (78)

Therefore, the validity of the Kubo formula can be judged
from the validity of χ

QM
N (A|B), which was discussed in

Sec. VI. That is, the validity for the response of the key
observable against � f guarantees the validity for those of
other observables and for the responses against any other

parameters. By contrast, the previous conditions for the va-
lidity [135–137,139,186] required investigations of individual
observables and responses.

It is worth mentioning that the above validity means the
agreement of the response between quantum mechanics and
thermodynamics. On the other hand, the classical limit of
Eq. (77) yields the “fluctuation-dissipation theorem” (FDT).
It states that

[response at ω] = β × [correlation spectrum at ω], (79)

where the r.h.s. is not a formal one but the observed spec-
trum. In classical systems the FDT, despite its name, holds
even for nondissipative responses [195]. Many authors dis-
cussed its quantum corrections [136,186,192,196,202–210].
Although their results partially disagree with each other, it can
be interpreted as due to different assumptions on the ways
of measurements. However, it is recently shown rigorously
that the observed fluctuation in macroscopic systems is in-
dependent of details of the ways of measurements when the
measurement is performed as ideally as possible [211,212].
This universal result clarified when the FDT [in the form of
Eq. (79)] holds and when it is violated [211–214].

These studies on the FDT also demonstrate that the
nonequilibrium statistical mechanics is never trivial even in
the linear response regime.

X. SUMMARY

We have studied how quantum mechanics is consistent
with thermodynamics with respect to infinitesimal transitions
between equilibrium states. We suppose that an isolated quan-
tum many-body system is prepared in an equilibrium state,
and then a parameter f of the Hamiltonian is changed by a
small amount � f , which induces the unitary time evolution.
By inspecting the expectation values and the variances of
all additive observables, we have investigated whether linear
thermalization occurs, i.e., whether the system relaxes to the
equilibrium state that is fully consistent with thermodynamics
up to the linear order in � f .

By comparing the long time average of the expectation
value of an arbitrary additive observable Â with its equilib-
rium value predicted by thermodynamics, we have obtained
Theorem described in Sec. IV A. It states roughly that the two
values coincide for every Â if and only if they coincide for a
single additive observable. This key observable is identified as
the additive observable B̂ that is conjugate to f . We have also
pointed out that this condition for B̂ is weaker than the ETH
for B̂.

To reinforce Theorem, we have then proved two propo-
sitions. Proposition 1, described in Sec. IV B, shows that
the time fluctuation of the expectation value (after chang-
ing f ) is macroscopically negligible for every Â as long as
the number of resonating pairs of energy eigenvalues (be-
fore changing f ) is not exponentially large. Proposition 2,
described in Sec. IV C, shows that the variances of all Â’s
remain macroscopically negligible if fluctuations of Â’s in
the initial equilibrium state have reasonable magnitudes as
Eq. (23). Reinforced with these propositions, Theorem ensures
that, under the reasonable conditions, the linear thermaliza-
tion of the key observable B̂ implies linear thermalization of
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all additive observables, which means full consistency with
thermodynamics.

We have also proved Proposition 3 in Sec. V, which
extends the above theorem and propositions to a longer
timescale. It show that when linear thermalization occurs, it
occurs in a timescale that is independent of the magnitude
of � f , t = O(|� f |0), and it lasts at least for a period not
shorter than o(1/

√|� f |). On the other hand, when linear
thermalization does not occur by t = O(|� f |0), it does not
occur at least in a period of o(1/

√|� f |).
Furthermore, we have shown that Theorem has signif-

icant meanings about the generalized susceptibilities for
cross responses, which have been attracting much attention
in condensed matter physics. Theorem guarantees that the
quantum-mechanical susceptibility of every additive observ-
able Â coincides with the thermodynamical one if those of
the key observable B̂ coincide. We have also obtained two
corollaries, described in Sec. VI, about response of B̂ to an-
other parameter fA that is conjugate to an arbitrary additive
observable Â. Corollary 1 states that the quantum-mechanical
susceptibility of B̂ to fA and the thermodynamical one coin-
cide if those of B̂ to its own conjugate parameter f coincide.
This is rephrased in terms of linear thermalization as Corol-
lary 2: Linear thermalization of B̂ against � f implies linear
thermalization of B̂ against any other � fA.

We have demonstrated Theorem by numerically calculating
the generalized susceptibilities in three models. In a noninte-
grable model, we have first shown linear thermalization of B̂,
and then confirmed that of other Â’s predicted by Theorem. We
have also studied two integrable models; one can be mapped
to noninteracting fermions, the other is solvable by the Bethe
ansatz. We have found that linear thermalization does not
occur either for B̂ or for other Â’s in these models. This is
again consistent with Theorem.

Our results will dramatically reduce the costs of exper-
iments and theoretical calculations of linear thermalization
and cross responses because testing them for a single key
observable against the change of its conjugate parameter in
a timescale of O(|� f |0) gives much information about those
for all additive observables, about those against the changes
of any other parameters, and about a longer timescale.

ACKNOWLEDGMENTS

We thank N. Shiraishi, R. Hamazaki, and T. Mori for help-
ful comments on the manuscript and Y. Yoneta for fruitful
discussions. Y.C. is supported by Japan Society for the Pro-
motion of Science KAKENHI Grant No. JP21J14313. A.S.
is supported by Japan Society for the Promotion of Science
KAKENHI Grant No. JP22H01142.

APPENDIX A: DERIVATION OF RELATIONS USED IN
PROOFS

1. Relations used in proof of Theorem

From the linear response theory [136,137,139,186], the
time-dependent quantum-mechanical susceptibility defined
by Eq. (56) can be written as

χ
QM
N (A|B; t ) = 1

N
〈β0δB̂; δÂ〉eq

0 − 1

N
〈β0δB̂; δÂ0(t )〉eq

0 , (A1)

which results in

χ
QM
N (A|B) = 1

N
〈β0δB̂; δÂ〉eq

0 − 1

N
〈β0δB̂; δÂ0〉eq

0 . (A2)

For χTD
N (A|B), we obtain β� f from energy conservation,

Eq. (15), as

β� f − β0 = −〈β0δB̂δĤ0〉eq
0

〈(δĤ0)2〉eq
0

� f + o(� f ). (A3)

Here, since (β0, f0) is not at a phase transition point, the
specific heat

c0 := β2
0

〈(δĤ0)2〉eq
0

N
(A4)

takes a positive finite value for sufficiently large N , c0 =
�(N0). By substituting Eq. (A3) into Eq. (34), we have

χTD
N (A|B) = 1

N
〈β0δB̂; δÂ〉eq

0 − 〈β0δB̂δĤ0〉eq
0 〈δĤ0δÂ〉eq

0

N〈(δĤ0)2〉eq
0

.

(A5)

2. Relations used in proof of Proposition 1

We derive Eqs. (55), (58), and (22).
First, we derive Eq. (55). The temporal fluctuation of

〈Â� f (t )〉eq
0 can be divided into two terms,

∣∣∣∣∣
〈Â� f (t )〉eq

0 − 〈Â� f (t )〉eq
0

T

� f N

∣∣∣∣∣
2
T

=
∣∣∣∣∣
〈Â� f (t )〉eq

0 − 〈Â〉eq
0

� f N

∣∣∣∣∣
2
T

−
∣∣∣∣∣
〈Â� f (t )〉eq

0

T − 〈Â〉eq
0

� f N

∣∣∣∣∣
2

.

(A6)

We evaluate these two terms in the limit � f → 0. The first
term will be evaluated in Appendix A 4 as Eq. (A44). From
Eq. (A43), which will also be given in Appendix A 4, the
second term is evaluated as

lim
� f →0

∣∣∣∣∣
〈Â� f (t )〉eq

0

T − 〈Â〉eq
0

� f N

∣∣∣∣∣
2

= (
χ

QM
N (A|B; t )

T )2
. (A7)

Therefore, Eq. (A6) is evaluated, in the limit � f → 0, as

lim
� f →0

∣∣∣∣∣
〈Â� f (t )〉eq

0 − 〈Â� f (t )〉eq
0

T

� f N

∣∣∣∣∣
2
T

= (
χ

QM
N (A|B; t ) − χ

QM
N (A|B; t )

T )2
T

= (
χ

QM
N (A|B; t ) − χ

QM
N (A|B)

)2
T

− (
χ

QM
N (A|B; t )

T
− χ

QM
N (A|B)

)2
. (A8)

By taking the limit T → ∞, we obtain Eq. (55).
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Next, we derive Eq. (58). Using Eqs. (45), (A1), (A2), and
the eigenstates of Ĥ0, we have

χ
QM
N (A|B; t ) − χ

QM
N (A|B)

= 1

N
〈β0δB̂; δÂ0〉eq

0 − 1

N
〈β0δB̂; δÂ0(t )〉eq

0

= −
∑

ν1,ν2(Eν1 �=Eν2 )

β0

N

∫ 1

0
dλρ1−λ

ν1
〈ν1|B̂|ν2〉ρλ

ν2
〈ν2|Â|ν1〉

× e−i(Eν1 −Eν2 )t , (A9)

where

ρν := e−β0Eν /Z (β0, f0) (A10)

and we have used

Â0 =
∑

ν1,ν2 (Eν1 =Eν2 )

|ν1〉〈ν1|Â|ν2〉〈ν2|. (A11)

Hence we have

χ
QM
N (A|B; t ) − χ

QM
N (A|B)

= −
∑

ν1,ν2 (Eν1 �=Eν2 )

1

N

ρν2 − ρν1

Eν1 − Eν2

〈ν1|B̂|ν2〉〈ν2|Â|ν1〉

× e−i(Eν1 −Eν2 )t

= −
∑

ν1,ν2 (Eν1 �=Eν2 )

v(ν1,ν2 )e
−i(Eν1 −Eν2 )t , (A12)

where, for Eν1 �= Eν2 , we have introduced

v(ν1,ν2 ) := 1

N

ρν2 − ρν1

Eν1 − Eν2

〈ν1|B̂|ν2〉〈ν2|Â|ν1〉 (A13)

= v∗
(ν2,ν1 ). (A14)

Using this expression, the time fluctuation of χ
QM
N (A|B; t ) is

evaluated as

lim
T →∞

(
χ

QM
N (A|B; t ) − χ

QM
N (A|B)

)2
T

=
∑

(ν1,ν2 )∈G

∑
(ν3,ν4 )∈G

v∗
(ν3,ν4 )v(ν1,ν2 ) lim

T →∞
ei(Eν3 −Eν4 −Eν1 +Eν2 )t

T

=
∑

(ν1,ν2 )∈G

∑
(ν3,ν4 )∈G

v∗
(ν3,ν4 )v(ν1,ν2 )δEν1 −Eν2 ,Eν3 −Eν4

. (A15)

By using |v∗
(ν3,ν4 )v(ν1,ν2 )| � (|v(ν3,ν4 )|2 + |v(ν1,ν2 )|2)/2, we have

lim
T →∞

(
χ

QM
N (A|B; t ) − χ

QM
N (A|B)

)2
T

�
∑

(ν1,ν2 )∈G

∣∣v(ν1,ν2 )

∣∣2 ∑
(ν3,ν4 )∈G

δEν1 −Eν2 ,Eν3 −Eν4

� Dres

∑
(ν1,ν2 )∈G

∣∣v(ν1,ν2 )

∣∣2
. (A16)

The term |v(ν1,ν2 )|2 can be bounded from above by using

1

β0

ρν2 − ρν1

Eν1 − Eν2

� ρν2 + ρν1

2
, (A17)

which follows from the inequality, sinh x/x � cosh x. Com-
bining this inequality with |(ρν2 + ρν1 )/2|2 � (ρ2

ν2
+ ρ2

ν1
)/2,

we have∑
(ν1,ν2 )∈G

∣∣v(ν1,ν2 )

∣∣2

� (β0)2

N2

∑
(ν1,ν2 )∈G

ρ2
ν2

+ ρ2
ν1

2
|〈ν1|B̂|ν2〉|2|〈ν2|Â|ν1〉|2

� (β0)2

N2
‖B̂‖2

∞
∑

(ν1,ν2 )∈G
ρ2

ν1
|〈ν2|Â|ν1〉|2

� (β0)2‖Â‖2
∞‖B̂‖2

∞
N2

Tr
[(

ρ̂
eq
0

)2]
. (A18)

From these expressions, we obtain Eq. (58).
Finally, we show that the purity of ρ̂

eq
0 is exponentially

small with respect to N , i.e., Eq. (22). The purity of canonical
ensemble satisfies

− ln Tr
[(

ρ̂
eq
0

)2]
= SvN[ρ̂can(2β0, f0)] + 2D

(
ρ̂can(2β0, f0)|ρ̂eq

0

)
(A19)

� SvN[ρ̂can(2β0, f0)]. (A20)

Here SvN[ρ̂] = −Tr[ρ̂ ln ρ̂] is the von Neumann entropy
and D(ρ̂|σ̂ ) = −Tr[ρ̂ ln σ̂ ] − SvN[ρ̂] is the quantum rel-
ative entropy for arbitrary density matrices ρ̂ and σ̂ .
The above inequality is obtained from D(ρ̂|σ̂ ) � 0. Since
SvN[ρ̂can(2β0, f0)] gives the thermodynamic entropy of the
equilibrium state (2β0, f0) in the limit N → ∞, it satisfies

SvN[ρ̂can(2β0, f0)] = �(N ). (A21)

Equations (A20) and (A21) yield Eq. (22).
Note that Eq. (58) can be extended to the case where T is

finite, by evaluating the term ei(Eν3 −Eν4 −Eν1 +Eν2 )t
T

in Eq. (A15)
more carefully, as in Short and Farrelly [146]. However, such
extension is meaningful only when 1/T is sufficiently small
compared to the mean level spacing, which means that T
has to be exponentially large with respect to N [215]. Hence
we think that the difference between such extension and the
original result (58) is physically unimportant, and for simplic-
ity, we omit the precise description of such a extension. We
also remark that a result similar to Eq. (58) was derived in
Ref. [216].

3. Relation used in proof of Proposition 2

First we derive Eq. (59). Its left-hand side consists of four
terms,

Var0[Â� f (t )] − Var0[Â] = 〈(Â� f (t ))2〉eq
0 − (〈Â� f (t )〉eq

0

)2

− 〈Â2〉eq
0 + (〈Â〉eq

0

)2
. (A22)

For the second and the fourth terms, we have

lim
� f →0

(〈Â� f (t )〉eq
0

)2 − (〈Â〉eq
0

)2

� f

= lim
� f →0

〈Â� f (t )〉eq
0

(〈Â� f (t )〉eq
0 − 〈Â〉eq

0

)
� f
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+ lim
� f →0

(〈Â� f (t )〉eq
0 − 〈Â〉eq

0 )〈Â〉eq
0

� f

= 2〈Â〉eq
0 Nχ

QM
N (A|B; t ), (A23)

which corresponds to the Leibniz rule of calculus. On the
other hand, because the first and the third terms of Eq. (A22)
give the time-dependent susceptibility of Â2 and Eq. (A1) is
also applicable to this susceptibility, we have

lim
� f →0

〈(Â� f (t ))2〉eq
0 − 〈Â2〉eq

0

� f

= 〈β0δB̂; Â2〉eq
0 − 〈β0δB̂; (Â0(t ))2〉eq

0 . (A24)

Combining these with Eq. (A1), we have

lim
� f →0

Var0[Â� f (t )] − Var0[Â]

� f

= 〈β0δB̂; Â2〉eq
0 − 〈β0δB̂; (Â0(t ))2〉eq

0

− 2〈Â〉eq
0

(〈β0δB̂; Â〉eq
0 − 〈β0δB̂; Â0(t )〉eq

0

)
, (A25)

which results in Eq. (59).
Next, inserting Eq. (A17) of Appendix A 2 into Eq. (45),

we can show the following inequality between the canonical
correlation and the symmetrized correlation:

〈X̂ ; X̂ 〉eq
0 � 1

2
〈X̂ †X̂ + X̂ X̂ †〉eq

0 (A26)

for an arbitrary operator X̂ . This was proved by Bogoliubov
[217,218].

4. Relations used in proof of Proposition 3

In this Appendix, we show Eqs. (63)–(65) of Sec. VIII D.
We also show that the time integration and the limit � f → 0
are interchangeable.

We introduce a function

φ( f , t ) := 〈eiĤ ( f )t Âe−iĤ ( f )t 〉eq
0 /N. (A27)

This function satisfies

φ( f0 + � f , t ) − φ( f0, t ) = 〈Â� f (t )〉eq
0 − 〈Â〉eq

0

N
, (A28)

∂φ

∂ f
( f0, t ) = χ

QM
N (A|B; t ), (A29)

where χ
QM
N (A|B; t ) is defined by Eq. (56). According to Tay-

lor’s theorem, for each t there is a constant θt ∈ [0, 1] such
that

〈Â� f (t )〉eq
0 − 〈Â〉eq

0

� f N
− χ

QM
N (A|B; t )

= 1

2

∂2φ

∂ f 2
( f0 + θt� f , t )� f . (A30)

[Here the differentiability of φ( f , t ) with respect to f follows
from the concrete expression (A32) below.]

Let us derive an upper bound of the absolute value of the
right-hand side of Eq. (A30). From the identity

∂

∂ f
eiĤ ( f )t =

∫ t

0
dt1eiĤ ( f )(t−t1 )i

∂Ĥ

∂ f
( f )eiĤ ( f )t1 , (A31)

we have

∂2φ

∂ f 2
( f , t ) =

∫ t

0
dt1

〈
eiĤ ( f )(t−t1 )

[
i
∂2Ĥ

∂ f 2
( f ), eiĤ ( f )t1

Â

N
e−iĤ ( f )t1

]
e−iĤ ( f )(t−t1 )

〉eq

0

+ 2
∫ t

0
dt1

∫ t1

0
dt2

〈
eiĤ ( f )(t−t1 )

[
i
∂Ĥ

∂ f
( f ), eiĤ ( f )(t1−t2 )

[
i
∂Ĥ

∂ f
( f ), eiĤ ( f )t2

Â

N
e−iĤ ( f )t2

]
e−iĤ ( f )(t1−t2 )

]
e−iĤ ( f )(t−t1 )

〉eq

0

.

(A32)

Since the integrands are bounded from above by using the operator norms of Â and the derivatives of Ĥ ( f ), we have

∣∣∣∣∂
2φ

∂ f 2
( f0 + θt� f , t )

∣∣∣∣ � ‖Â‖∞
N

(
2

∥∥∥∥d2Ĥ

df 2
( f0 + θt� f )

∥∥∥∥
∞

)
|t | + ‖Â‖∞

N

(
2

∥∥∥∥dĤ

df
( f0 + θt� f )

∥∥∥∥
∞

)2

|t |2 (A33)

� ‖Â‖∞
(
C2|t | + C2

1 |t |2)/N. (A34)

Here, we have introduced two constants

C1 := 2 sup
f s.t. | f − f0|�|� f |

∥∥∥∥dĤ

df
( f )

∥∥∥∥
∞

, (A35)

C2 := 2 sup
f s.t. | f − f0|�|� f |

∥∥∥∥d2Ĥ

df 2
( f )

∥∥∥∥
∞

, (A36)

which are of O(|� f |0) since they decrease monotonically as
|� f | → 0. Using Eqs. (A30) and (A34), we obtain Eq. (63).

In addition, using Eq. (A30) we have
( 〈Â� f (t )〉eq

0 − 〈Â〉eq
0

� f N

)2

− (
χ

QM
N (A|B; t )

)2

= χ
QM
N (A|B; t )

∂2φ

∂ f 2
( f0 + θt� f , t )� f

+
(

1

2

∂2φ

∂ f 2
( f0 + θt� f , t )� f

)2

. (A37)

Furthermore, using Eqs. (60), (A26), and (A1), we find
that |χQM

N (A|B; t )| is bounded from above by a quantity
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independent of t ,

∣∣χQM
N (A|B; t )

∣∣ � 2β0

N

√
〈(δB̂)2〉eq

0 〈(δÂ)2〉eq
0 . (A38)

Combining this with Eqs. (A34) and (A37), we obtain
Eq. (64).

Next we introduce a function

ψ ( f , t ) := 〈eiĤ ( f )t Â2e−iĤ ( f )t 〉eq
0 /N2. (A39)

This function satisfies

∂ψ

∂ f
( f0, t ) = χ̃N (A2; t ), (A40)

where χ̃N (A2; t ) is defined by Eq. (66). According to Taylor’s
theorem, for each t there is a constant θt ∈ [0, 1] such that

〈(Â� f (t ))2〉eq
0 − 〈Â2〉eq

0

� f N2
− χ̃N (A2; t )

= 1

2

∂2ψ

∂ f 2
( f0 + θt� f , t )� f . (A41)

In a way similar to the derivation of Eq. (A34), we have∣∣∣∣∂
2ψ

∂ f 2
( f0 + θt� f , t )

∣∣∣∣ � ‖Â‖2
∞

(
C2|t | + C2

1 |t |2)/N2. (A42)

Combining Eqs. (A41) and (A42), we obtain Eq. (65).
Finally, we notice that, in the limit � f → 0 Eqs. (63)–(65)

yield

lim
� f →0

〈Â� f (t )〉eq
0

T − 〈Â〉eq
0

� f N
= χ

QM
N (A|B; t )

T
, (A43)

lim
� f →0

∣∣∣∣∣
〈Â� f (t )〉eq

0 − 〈Â〉eq
0

� f N

∣∣∣∣∣
2
T

= (
χ

QM
N (A|B; t )

)2
T

, (A44)

lim
� f →0

〈(Â� f (t ))2〉eq
0

T − 〈Â2〉eq
0

� f N2
= χ̃N (A2; t )

T
, (A45)

which show that the time integration and the limit � f → 0
can be interchanged.

APPENDIX B: ADDITIONAL NUMERICAL RESULTS

1. Susceptibilities of Model I and II

In this Appendix, we perform additional calculations of the
susceptibilities in Model I and II. As explained in Sec. VII A,
we choose the quench parameter as f = Jzz, and hence B̂ is
given by Eq. (41). We take the initial state as the canonical
Gibbs state ρ̂

eq
0 given by Eq. (3) with the inverse temperature

β0 = 0.15. Using Eqs. (A2) and (A5) of Appendix A 1, we
calculate χQM(A|B) and χTD(A|B) by the exact diagonaliza-
tion from N = 6 to 19.

The results are plotted in Figs. 5 and 6. See Sec. VII C for
discussions on these results.

2. Susceptibilities of Model III

In this Appendix, we calculate the susceptibilities of Model
III (see Table I) in the same way as described in Sec. VII A or
Appendix B 1.
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FIG. 5. The same plots as in Fig. 4 of Sec. VII C for Â = M̂xx .
In the inset of (a), the points can be fitted by a function a/Nb with
constants a = 0.069(2), b = 1.22(1), and the solid line shows the
fitting function 0.069/N1.22.

First we investigate whether Model III satisfies condition
(36). In Fig. 7, χQM

N (B|B) and χTD
N (B|B) of Model III are plot-

ted against the system size N . This shows Model III violates
condition (36). Hence, our Theorem (in the form rephrased in
Sec. VI) indicates that some of the additive observables Â do
not satisfy Eq. (35). To investigate this point, we calculate,
as in Sec. VII C, χQM(A|B) and χTD(A|B) for three additive
observables Â = M̂x, M̂xx, M̂z1z.

In the main of Fig. 8, χ
QM
N (A|B) and χTD

N (A|B) are plotted
against the system size N for Â = M̂xx. It is seen that these
susceptibilities deviate from each other, indicating the viola-
tion of Eq. (35).

The inset of Fig. 8 is the same plot for Â = M̂x. In this
case, Eq. (35) is satisfied in the trivial form χ

QM
N (A|B) =

χTD
N (A|B) = 0, which follows from the spin rotation symme-

try around z axis. This does not contradict our Theorem, which
does not state violation of Eq. (35) for all Â.

Figure 9 shows the same plot as in Fig. 8 for Â = M̂z1z.
Interestingly, χ

QM
N (A|B) and χTD

N (A|B) have opposite signs,
which clearly indicates the violation of Eq. (35).

3. Energy level spacings

In this Appendix, we study level spacing statistics of Ĥ0 for
Models I, II, and III, which are defined in Table I.

Let Dk be the dimension of the eigenspace of the lattice
translation with an eigenvalue e−ik where k = 2πnk/N (nk =
0, 1, ..., N − 1) is wavenumber. We here label eigenvalues of
Ĥ0 in this subspace using an integer j = 0, ..., Dk − 1 as Ek

j ,
and sort them in ascending order, Ek

j � Ek
j+1 for all j. We

consider the ratio of two consecutive energy level spacings
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FIG. 6. The same plots as in Fig. 4 of Sec. VII C for Â = M̂z1z.
In the inset of (a), the points can be fitted by a function a/Nb with
constants a = 0.085(3), b = 0.96(1), and the solid line shows the
fitting function 0.085/N0.96.

Ek
j+1 − Ek

j and Ek
j+2 − Ek

j+1 in the subspace

rk
j := min

{
Ek

j+2 − Ek
j+1

Ek
j+1 − Ek

j

,
Ek

j+1 − Ek
j

Ek
j+2 − Ek

j+1

}
, (B1)

which satisfies 0 � rk
j � 1. (When Ek

j+2 = Ek
j+1 = Ek

j , we
define rk

j := 0.) In order to investigate the level statistics in
the bulk of energy spectrum, we use the ratios rk

j satisfying
Dk/4 � j < 3Dk/4. By using all these ratios, we define the
histogram of the ratio Pk (r). [We take the width of the interval
of r for the construction of Pk (r) as 0.05.]

Atas et al. [174] proposed the following functional forms of
Pk (r) using the random matrix theory. When the energy levels

0
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6 8 10 12 14 16 18

χ
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|B
)

N

χQM

χTD

FIG. 7. χ
QM
N (B|B) (blue circle) and χTD

N (B|B) (orange triangle)
against the system size N in an integrable system (Model III). The
quench parameter is f = Jzz and hence B̂ = M̂zz. This plot reveals
that the condition (36) is violated in Model III.
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FIG. 8. χ
QM
N (A|B) (blue circle) and χTD

N (A|B) (orange triangle)
against the system size N in an integrable system (Model III). The
quench parameter is f = Jzz and the observable of interest is Â =
M̂xx . This plot reveals Eq. (35) is violated for Â = M̂xx in Model
III. Inset: The same plot as the main of this figure for Â = M̂x .
The susceptibilities satisfy χ

QM
N (A|B) = χTD

N (A|B) = 0 because of
the spin rotation symmetry around z axis.

obey the Poisson law, Pk (r) is given by

PPoi(r) := 2
1

(1 + r)2
, (B2)

which is expected for typical integrable systems. When the
energy levels obey the GUE, its Pk (r) is well approximated by

PGUE(r) := 2
81

√
3

4π

(r + r2)2

(1 + r + r2)4
+ 2

0.578846

(1 + r)2

{(
r + 1

r

)−2

− 4
4 − π

3π − 8

(
r + 1

r

)−3}
. (B3)

This is expected for typical nonintegrable systems that have
no symmetries other than the lattice translation. Further-
more, when the levels obey the Gaussian orthogonal ensemble
(GOE), its Pk (r) is well approximated by

PGOE(r) := 2
27

8

(r + r2)

(1 + r + r2)5/2
+ 2

0.233378

(1 + r)2

{(
r + 1

r

)−1

− 2
π − 2

4 − π

(
r + 1

r

)−2}
, (B4)

which is expected for typical nonintegrable systems.
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FIG. 9. The same plots as in Fig. 8 for Â = M̂z1z. This plot
reveals Eq. (35) is violated for Â = M̂z1z in Model III.
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FIG. 10. Histogram Pk (r) of the ratio of consecutive energy level
spacings of Model I in a momentum sector of wavenumber k. They
are plotted for the system size N = 21, 22 and wavenumber k =
0, 2π/N, π . The solid line shows the GUE prediction PGUE(r), while
two dashed lines show the distribution for the Poisson case PPoi(r)
and the GOE prediction PGOE(r).

We have numerically calculated Pk (r) of our Models by
the exact diagonalization, and compared the results with the
above forms. Note that the symmetry properties of the sub-
space of wavenumber k sometimes depend on whether N is
even or odd. In addition, the properties at special wavenum-
bers k = 0, π are sometimes very different from those at
other wavenumbers. Therefore we consider three values of
wavenumber k = 0, 2π/N, π , and both even and odd N .
(Results for k = π with odd N are absent, since k = π is
impossible when N is odd.) We plot Pk (r) of Model I for N =
21, 22 in Fig. 10. It is well fitted by the GUE form PGUE(r)
(solid line). For comparison, the Poisson form PPoi(r) and the
GOE form PGOE(r) are depicted by the dashed lines, which
clearly deviate from Pk (r). These results indicate that Model I
has no local conserved quantities other than the Hamiltonian.
In Fig. 11, Pk (r) of Model II is plotted for N = 21, 22. It
is well fitted by the Poisson form PPoi(r) (solid line), while
it clearly deviates from the GUE form PGUE(r) (dotted line)
and the GOE form PGOE(r) (dashed line). These are consistent
with the integrability of Model II. In Fig. 12, Pk (r) of Model
III is plotted for N = 20, 21. The Pk (r) for k = 2π/N is well
fitted by the Poisson form PPoi(r) (solid line). This is consis-
tent with the integrability of Model III. On the other hand,
Pk (r) for k = 0, π show δ-function-like behaviors, which are
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FIG. 11. Same plot as in Fig. 10 for Model II. The solid line
shows the distribution for the Poisson case PPoi(r), while two dashed
lines show the GUE prediction PGUE(r) and the GOE prediction
PGOE(r).
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FIG. 12. Same plot as in Fig. 10 for Model III. They are plotted
for the system size N = 20, 21, and wavenumber k = 0, 2π/N, π .
The orange solid line shows the distribution for the Poisson case
PPoi(r), while two dashed lines show the GUE prediction PGUE(r)
and the GOE prediction PGOE(r). The light blue solid line depicts the
δ function like behavior of Pk (r).

much different from the GUE form PGUE(r) (dotted line)
and the GOE form PGOE(r) (dashed line). The δ-function-like
behaviors come from the fact that almost all energy eigen-
values have certain degeneracies [219]. These degeneracies
indicate that the subspaces of k = 0, π have additional
non-Abelian symmetries, which would be related to the in-
tegrability of Model III [220].

APPENDIX C: ANALYTIC RESULTS FOR MODEL II

In this Appendix, we consider the following model:

Ĥ = −
N∑

r=1

(
Jyyσ̂

y
r σ̂

y
r+1 + Jzzσ̂

z
r σ̂ z

r+1

+ Jyzσ̂
y
r σ̂ z

r+1 + Jzyσ̂
z
r σ̂

y
r+1 + hxσ̂

x
r

)
, (C1)

which reduces to Model II by setting Jzy = 0. This spin system
can also be written as a fermionic system

Ĥ = −
N−1∑
r=1

((J+−ĉ†
r ĉr+1 + H.c.) + (J++ĉ†

r ĉ†
r+1 + H.c.)

+ hx(2ĉ†
r ĉr − 1)) + R̂(J+−ĉ†

N ĉ1 + H.c.)

+ R̂(J++ĉ†
N ĉ†

1 + H.c.) − hx(2ĉ†
N ĉN − 1), (C2)

by the Jordan-Wigner transformation

ĉ†
r = σ̂

y
r + iσ̂ z

r

2

∏
r′(<r)

( − σ̂ x
r′
)
. (C3)

Here

R̂ :=
N∏

r=1

( − σ̂ x
r

) =
N∏

r=1

(1 − 2ĉ†
r ĉr ) (C4)

and
J+− := Jyy + Jzz + iJyz − iJzy, (C5)

J++ := Jyy − Jzz − iJyz − iJzy. (C6)

The operator R̂ takes 1 for the states with even number of
fermions, whereas it takes −1 for the states with odd num-
ber of fermions. Hence depending on whether the number
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of fermions is even or odd, terms containing R̂ in Eq. (C2)
become the antiperiodic or periodic boundary condition, re-
spectively.

To resolve this boundary condition that depends on R̂, we
consider two types of the Fourier transformation. We intro-
duce two sets of wavenumbers

Ke :=
{

2πnk

N
+ π

N

∣∣∣∣nk = 0, 1, ..., N − 1

}
, (C7)

Ko :=
{

2πnk

N

∣∣∣∣nk = 0, 1, ..., N − 1

}
, (C8)

and perform the following Fourier transformation:

c̃a
k :=

N∑
r=1

e−ikr

√
N

ĉr for k ∈ Ka (a = e, o). (C9)

Using new fermionic operators, the Hamiltonian (C2) can be
written as

Ĥ = −
∑

a=e,o

P̂a
R

∑
k∈Ka

((
J+−eik c̃a†

k c̃a
k + H.c.

)

+ (
J++eik c̃a†

k c̃a†
−k + H.c.

) + hx
(
2c̃a†

k c̃a
k − 1

))
, (C10)

where

P̂e
R := 1 + R̂

2
, (C11)

P̂o
R := 1 − R̂

2
(C12)

are the projection operators to the eigenspace of R̂ with eigen-
values 1 and −1, respectively.

When J++ �= 0, Eq. (C10) includes the off-diagonal terms
c̃a†

k c̃a†
−k . To eliminate these, we perform the following Bogoli-

ubov transformation for k �= 0, π ,

d̂a
k := cos θk c̃a

k + ieiφ++ sin θk c̃a†
−k, (C13)

where eiφ++ := J++/|J++| and θk ∈ (−π/2, π/2) is deter-
mined from

cos 2θk = −2(Re[J+−] cos k + hx )

rk
, (C14)

sin 2θk = −2|J++| sin k

rk
(C15)

with

rk = 2
√

(Re[J+−] cos k + hx )2 + |J++|2 sin2 k. (C16)

As a result, the Hamiltonian is given by

Ĥ = −
∑

a=e,o

P̂a
R

∑
k∈Ka∩{0,π}

2(Re[J+−] cos k + hx )

(
c̃a†

k c̃a
k − 1

2

)

−
∑

a=e,o

P̂a
R

∑
k∈Ka\{0,π}

εk

(
d̂a†

k d̂a
k − 1

2

)
, (C17)

where

εk := rk + 2Im[J+−] sin k. (C18)

[Note that when J++ = 0, Eq. (C10) is already of the same
form as the above.]

On the other hand, B̂ given by Eq. (41) can be written as

B̂ =
∑

a=e,o

P̂a
R

∑
k∈Ka

(cos k cos 2θk + sin k sin 2θk cos φ++)

× (
2d̂a†

k d̂a
k − 1

) +
∑

a=e,o

P̂a
R

∑
k∈Ka

(
(− cos k ieiφ++ sin 2θk

+ i sin k(cos2 θk − e2iφ++ sin2 θk )
)
d̂a†

k d̂a†
−k + H.c.

)
.

(C19)

As a result, the susceptibilities of B̂ can be calculated by
using Eqs. (A2) and (A5) of Appendix A 1, whose thermody-
namic limits are given by

lim
N→∞

χ
QM
N (B̂|B̂)= 1

2π

∫ 2π

0
dk2

e2β0rk − 1

rk

1

eβ0εk + 1

1

eβ0ε−k + 1

× | − cos k ieiφ++ sin 2θk + i sin k(cos2 θk

− e2iφ++ sin2 θk )|2, (C20)

lim
N→∞

χTD
N (B̂|B̂) − lim

N→∞
χ

QM
N (B̂|B̂)

= β0

2π

∫ 2π

0
dk

(cos k cos 2θk + sin k sin 2θk cos φ++ − Cεk )2

cosh2(β0εk/2)
,

(C21)

where

C := 1

2π

∫ 2π

0
dk

εk (cos k cos 2θk + sin k sin 2θk cos φ++)

cosh2(β0εk/2)

×
/

1

2π

∫ 2π

0
dk

ε2
k

cosh2(β0εk/2)
. (C22)
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