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Trapped ions quantum logic gate with optical tweezers and the Magnus effect
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We consider the implementation of quantum logic gates in trapped ions using tightly focused optical tweezers.
Strong polarization gradients near the tweezer focus lead to qubit-state-dependent forces on the ion. We show that
these may be used to implement quantum logic gates on pairs of ion qubits in a crystal. The qubit-state-dependent
forces generated by this effect are located on the plane perpendicular to the direction of propagation of the laser
beams opening alternate ways of coupling to motional modes of an ion crystal. The proposed gate does not
require ground-state cooling of the ions although the waist of the tightly focused beam needs to be comparable
to its wavelength in order to achieve the needed field curvature. Furthermore, the gate can be implemented
on both ground-state and magnetic-field-insensitive clock-state qubits without the need for counterpropagating
laser fields. This simplifies the setup and eliminates errors due to phase instabilities between the gate laser beams.
Finally, we show that imperfections in the gate execution, in particular, a 30-nm tweezer alignment error, lead
to an infidelity of ∼10−3. In the absence of experimental imperfections and within the limits of the gate model
explored in this paper the fidelity is predicted to be ∼0.999 88 when using a Laguerre-Gaussian beam to suppress
photon scattering errors.

DOI: 10.1103/PhysRevResearch.5.033036

I. INTRODUCTION

Trapped ions are one of the most mature platforms for the
implementation of quantum computing, and quantum logic
gates have been implemented with very high fidelity in these
systems [1,2]. Usually, the quantum logic gates in trapped
ions rely on state-dependent forces applied to the ions by
laser fields or magnetic fields. The exchange of motional
quanta between the ions then leads to effective qubit-qubit
interactions. Several recent works have explored how the use
of state-of-the-art optical tweezer technology can benefit the
trapped ion quantum computer. Optical tweezers can be used
to confine atoms very strongly by inducing a dipole in them
and find application in neutral atomic quantum simulators, in
which tweezers are used to levitate individual atoms [3–7]. In
trapped ions, tweezers may be used to tune the sound-wave
spectrum in the ion crystal and thereby to program the inter-
actions between the qubits [8–10]. Furthermore, in a recent
paper [11] we have proposed combining state-dependent opti-
cal tweezers with oscillating electric fields to build a universal
trapped ion quantum computer with extremely long ranged
interactions between the qubits.

In this paper, we consider another scenario, in which we
make use of the strong polarization gradients that occur in
optical tweezers. We note that strong gradients in optical po-
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tentials have been previously investigated to implement two-
qubit gates without the need for ground-state cooling [12–14].
However, our approach utilizes the state-dependent displace-
ment of the tweezer potential due to polarization gradients
[15–17]. We propose to use this optical analog of the Magnus
effect to implement quantum logic gates in trapped ions [16].

II. SETUP

We consider linearly x-polarized, Gaussian tweezers,
pointing in the −y direction and tightly focused at two qubits,
between which we wish to implement a quantum logic gate.
The quantum computing platform here considered is a linear
crystal of N alkali-like trapped ions of mass m. In the focal
plane the ions experience a strong polarization gradient along
the x direction, such that the polarization is linear (x) in the
center and circular (σ±)z in the wings of the Gaussian. A
direct calculation (see Appendix A) decomposing the field
in the focal plane into its circular components (σ±)z (and πz)
shows that, to a good approximation, the circular components
are near-Gaussian distributions, displaced in opposite direc-
tions along the x axis. We depict this setup in Fig. 1. Note that
the circular components rotate in the xy plane, i.e., a plane
containing the k vector of the light. As shown in Fig. 1, the
(σ±)z component is displaced by an amount ±λ̄ ≡ ±λ/2π ,
with λ being the tweezer wavelength. As the total field is
the superposition of two displaced Gaussians, its intensity
is slightly elongated along x. Hollow tweezers (Laguerre-
Gaussian) can be used instead of Gaussian ones. This will
provide the needed field curvature while keeping near-zero
intensity at the center of the beam, drastically reducing the
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FIG. 1. Schematic representation of the two-qubit gate. (a) We
apply tweezers propagating along the −y direction on the two ions
forming the gate. The tweezer intensity can be decomposed into three
polarization components. (b) Simplified level scheme of an alkaline-
earth-like ion without nuclear spin showing the encoding of the qubit
in its Zeeman ground states. The two polarization components of the
tweezer couple to different states in the P1/2 manifold with detuning
�. This causes the minima of the tweezer potentials to be shifted
by an amount ±λ̄ depending on the qubit state. (c) Main polariza-
tion components for Gaussian and Laguerre-Gaussian (l = 1, n = 0)
tightly focused tweezers.

probability of off-resonant scattering that might limit the gate
fidelity.

For simplicity, we first consider ions without nuclear spin,
such as 40Ca+, 88Sr+, 138Ba+, and 174Yb+. The qubits are
encoded in the electronic ground states 2S1/2 and |0〉 = | j =
1/2, mj = 1/2〉 and |1〉 = | j = 1/2, mj = −1/2〉 with j be-
ing the total electronic angular momentum and mj being its
projection on the quantization axis. The magnetic field lies
along the z direction, and the tweezers are polarized along the
x direction, such that the ions experience linearly polarized
laser light. The direction along the x axis is the long direction
of the ion trap, with trap frequency ωx. The motion of the ions
along the x direction can be described by collective modes of
harmonic motion with frequencies ωm and mode vectors bi,m,
with m labeling the mode and i labeling the ion [18].

We choose the detuning between the tweezers and the D1
transition to be large enough to avoid photon scattering, but
much smaller than the spin-orbit coupling splitting of the 2P
state. In this way, we can neglect coupling to the P3/2 state.
In what follows we will show that this requirement can be
satisfied experimentally. Close to the center of the tweezer,
strong polarization gradients appear, and as a result, the two
qubit states experience slightly different tweezer potentials. In
particular, as we show in Fig. 1(a), the optical Magnus effect
causes each qubit state to experience a tweezer potential that
is offset from the apparent center of the tweezer by ∼λ̄ [16].
Hence we may approximate the tweezer potential as

Û (x) = −U0 exp
( − 2(x̂ + σ̂zλ̄)2/w2

0

)
(1)

≈ −Ũ0 + 1
2 mω2

twx̂2 + gxσ̂z (2)

with ωtw =
√

4Ũ0(w2
0 − 4λ̄2)/(mw4

0 ), g = 4Ũ0λ̄/w2
0, and

Ũ0 = U0 exp(−2λ̄2/w2
0 ) ≈ U0. Here, U0 is the tweezer poten-

tial in the center, and the beam waist is w0. Our approximation
replaces the tweezer potential with a harmonic potential and
is valid for w0 � lm, with lm = √

h̄/2mωm. The last term in
U (x) is the result of the spin-dependent force g coupling the
internal state of the qubit, σ̂z, to its motion x̂. Thus the optical
Magnus effect allows us to straightforwardly implement a
quantum gate.

III. TWEEZER HAMILTONIAN

In the interaction picture with respect to Ĥ0 = h̄ωmâ†
mâm

the tweezer Hamiltonian on ions i and j is

Ĥ1 = A(t )
(

1
2 mω2

tw

(
x̂2

i + x̂2
j

) + g
(
σ̂ (i)

z x̂i + σ̂ ( j)
z x̂ j

))
. (3)

Here, x̂i = ∑
m lmbim(âme−iωmt + â†

meiωmt ) is the position op-
erator of ion i in the interaction picture, with â†

m being the
creation operator for the mode m, and 0 � A(t ) � 1 specifies
the time dependence of the tweezer intensity. The qubit-state-
independent terms in Ĥ1 do not alter the dynamics of the
quantum gate. We ignore these terms and arrive at

Ĥ2 = A(t )g
(
x̂iσ̂

(i)
z + x̂ j σ̂

( j)
z

)
, (4)

which takes the form of a spin-phonon coupling Hamiltonian
reminiscent of the Mølmer-Sørensen scheme for phonon-
mediated quantum gates in trapped ions [19]. However, at
this stage we still have various choices available for A(t ),
depending on which type of quantum gate we would like to
implement. For instance, pulsed A(t ) could be used to imple-
ment fast gates. Here, we choose A(t ) to obtain a geometric
phase gate. For this, we set 2A(t ) = 1 − cos(νt + φ), where
φ = 0 assures a smooth ramp of the tweezer intensity and
ν = ωc + δ with the subscript “c” denoting the center-of-mass
(c.m.) mode for which ωc = ωx and bi,c = 1/

√
N . We write

the operators x̂i and x̂ j in terms of âc and â†
c and perform the

rotating-wave approximation to arrive at

Ĥ3 = glc

4
√

N

(
âceiδt + â†

ce−iδt
)(

σ̂ (i)
z + σ̂ ( j)

z

)
. (5)

To derive the qubit-qubit interactions forming the geomet-
ric phase gate, we perform a unitary transformation Û1 =
e−iδâ†

c âct to eliminate the time dependence, followed by a
Lang-Firsov [20] transformation, Û2 = exp (α̂(â†

c − âc)) with
α̂ = − g̃

δ
(σ̂ (i)

z + σ̂
( j)
z ). Disregarding qubit-independent terms,

we obtain

Heff = 2g̃2

h̄δ
σ̂ (i)

z σ̂ ( j)
z , (6)

with g̃ = glc/(4
√

N ) = η̃Ũ0, with the proportionality factor
η̃ = λ̄lc/(

√
Nw2

0 ). This Hamiltonian generates qubit-qubit in-
teractions that can be used to implement a geometric phase
gate by setting the gate time τ = 2π/δ and g̃2τ

h̄2δ
= π/4.

IV. CHARACTERIZATION OF THE GATE

We analyze the gate dynamics by performing numerical
simulations of the full dynamics generated by the Hamil-
tonian Ĥsim = Ĥ0 + Û (xi ) + Û (x j ) for a two-dimensional
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FIG. 2. Calculated infidelities based on numerical simulations of
the full Hamiltonian Ĥsim, neglecting errors due to photon scatter-
ing (see Table I). We report the infidelity for ground-state cooled
ions n̄c, n̄s = 0 (blue); the sub-Doppler cooled thermal state with
n̄c = 0.62, n̄s = 0.23 (orange); and the sub-Doppler cooled thermal
state with n̄c = 15, n̄s = 0.23 (red, using in this case a Fock cutoff
nc � 120, ns � 10). (a) Process infidelity of the two-qubit Magnus
gate for different gate times. (b) Effects of misalignment ε (orange)
and intensity noise �1/τ (blue) on the gate fidelity. The size of
each intensity noise data point represents the standard deviation of
20 simulations where we generated a random Gaussian noise with
σ = �1/τ on each of the two pulses. This implies a noise on the laser
intensity at frequency 1/τ that cannot be removed by the spin-echo
sequence.

ion crystal where the tweezer potentials Û (xi; j ) on ions i
and j have been expanded up to fourth order including
spin-independent terms. We use realistic experimental pa-
rameters: ∼450 µW of tweezer laser power focused to a
waist of w0 ∼ 0.5 µm and tuned 22 THz to the red from
the 2S1/2 → 2P1/2 transition in 174Yb+ (λ = 369.5 nm). This
results in Ũ0/h ∼ 1.6 MHz, g̃/h = 2.1 kHz/

√
N ; setting

δ = 2π × 12.2 kHz/
√

N , the gate time for the geometric
phase gate is τ = 170

√
N µs. With a calculated qubit-state-

independent tweezer potential of ωtw ∼ 2π × 37 kHz, the
center-of-mass mode frequency (ωc/2π ∼ 1 MHz) is shifted
by ∼2ω2

tw/ωcN ∼ 2π × 710/N Hz. This shift can easily be
taken into account by correcting δ accordingly. In these
estimates, we neglected the contribution from other dipole
allowed transitions, which are detuned by ∼66 THz (the rel-
atively weak 2S1/2 → 3[3/2]3/2 transition) and 115 THz (the
strong D2 line) or more.

We consider the gate unitary with a spin-echo sequence
given by U (0, τ ) = X ⊗2U (τ/2, τ )X ⊗2U (0, τ/2), where X ⊗2

is a qubit flip on both qubits. This spin-echo sequence is
needed in order to remove local rotations on the qubit states
and possible timing errors. We calculate the unitary time evo-
lution operator U (0, τ ) for a system of two ions with their
motional c.m. and stretch modes and truncate their respective
Hilbert spaces to nc � 18 and ns � 10. In Fig. 2 we show the
process fidelity of the gate assuming that the ions are in their
motional ground state (n̄ = 0) as a function of gate time.

The gate fidelity of F = 0.999 988 with nc = ns = 0 rivals
the current standard approaches. Moreover, the performance
of our gate is robust in the presence of thermal occupation
of the motional modes. We characterize the gate performance
in the presence of thermal phonons using the average gate
fidelity [21] (see Appendix C and find that it depends weakly
on the motional state of the two ions. In fact, using n̄c = 0.62,
n̄s = 0.23, the fidelity is almost unaltered at Fth = 0.999 989.

In Table I we report the main sources of the gate’s infideli-
ties. One of main experimental challenges is perfect tweezer
alignment. We have studied the resilience of the gate in the
presence of misalignment of the tweezer in the x direction,
which we denote by ε. In the presence of misalignment, Ũ0 →
U0 exp−2(ε+σ̂zλ̄)2/ω2

0 . Thus the misalignment has two effects: (i)
It changes the tweezer potential at the center of the tweezer
and therefore the phase accumulation in the phase gate, and
(ii) it shifts the potential in a qubit-state-dependent way. The
second contribution is corrected to lowest order by a spin-echo
sequence. Figure 2(b) shows the infidelity as a function of ε.
Here we assume that the tweezers are misaligned on both ions
in the same way, which seems the experimentally most likely
case. The unitary U (0, τ ) leads to phase-space trajectories
for 〈x(t )〉 and 〈px(t )〉 associated with the c.m. motion (see
Appendix B). As expected, we find approximately circular
phase-space orbits for the even-parity states |00〉 and |11〉
and very little motion for the odd-parity ones. We see that
every state combination leads to ion motion, but the difference
in motion still leads to a high fidelity of �0.999 as shown
in Fig. 2(b). For the quoted experimental parameters the fi-
delity is limited by the scattering rate to 0.999 88 when using
Laguerre-Gaussian beams. Note, however, that this limit can
be further reduced by increasing the detuning at the expense
of the required laser power.

TABLE I. Main sources of gate errors. We estimate γph as the probability of off-resonant scattering in 174Yb+ during the gate time (τ =
240 µs) for Gaussian and Laguerre-Gaussian beams. Other typical sources of error are misalignment ε, tweezer intensity noise �1/τ , and timing
�τ . The values here reported are for laser parameters used in our numerical simulations.

Error source γph (Gaussian) γph (Laguerre-Gaussian) ε = 30 nm �1/τ = 0.5% �τ = ±5 µs

1 − F 2.4 × 10−3 1.2 × 10−4 1.3 × 10−3 9.3 × 10−5 2.7 × 10−4
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FIG. 3. Relevant energy levels of 171Yb+ for implementing the
gate on a hyperfine qubit split by ωq. The coupling can be achieved
using a pair of Raman beams detuned from the upper state 2P1/2 by �.
In the parentheses are the angular contributions to the various dipole
transition elements.

V. CLOCK-STATE CASE

While the calculation was performed for the electron spin
qubit states in 174Yb+, it should also be possible to use the
hyperfine clock states |F = mF = 0〉 and |F = 1, mF = 0〉
in 171Yb+ (Fig. 3). This qubit is insensitive to magnetic
field noise, and coherence times of up to an hour have
been measured [22]. In this case, the tweezers are formed
by a bichromatic copropagating laser field detuned by �

from the D1 transition at 369.5 nm with overall detuning
� � ωFS, the fine structure splitting. We set the frequency
difference in the bichromatic tweezer to 12.6 GHz, corre-
sponding to the transition between the qubit states [23]. The
tweezer laser then causes Raman coupling between the qubit
states via two distinct paths. In the first path, the qubits
are coupled via the state |P1/2, F = 1, mF = −1〉 due to the
σ− polarization component in the tweezer. In the other, the
qubits are coupled via the state |P1/2, F = 1, mF = +1〉 due
to the σ+ component in the tweezer. We denote the Rabi
frequencies of each path as �±

1,2(x). The corresponding Ra-
man couplings of each path interfere destructively in the
center of the tweezer due to a relative minus sign between
�+

1 (x) and �+
2 (x) in their Clebsch-Gordan coefficients, ∝

(�−
1 (0)�−

2 (0) + �+
1 (0)�+

2 (0))/� = 0. However, the Mag-
nus effect causes a strong position dependence of the relative
strength of both paths of magnitude

�eff(x) = �−
1 (x)�−

2 (x)

�
+ �+

1 (x)�+
2 (x)

�
≈ �2

�

4λ̄x

w2
0

, (7)

where we assumed x � λ̄ � w0 and |�±
i (0)| = �/

√
2 with

i = 1, 2, such that both laser frequencies have the same power.
As a result, a qubit-state-dependent force appears as in Eq. (4),
except that we must now replace σ̂

(i, j)
z → σ̂

(i, j)
x and the gate

takes the form of the usual Mølmer-Sørensen interaction ∝
σ̂ (i)

x σ̂
( j)
x [19]. Amplitude modulation via A(t ) allows again for

resonant enhancement of the gate. In addition to the Raman
coupling, we obtain a tweezer potential (ac Stark shift) for
each qubit state of magnitude

δ|k〉
ac (x) =

∑
i=1,2

∑
j=+,−

∣∣� j
i (x)

∣∣2

�i,|k〉
(8)

with �1,|0〉 = � − ωq, �2,|0〉 = �, �1,|1〉 = �, and �2,|1〉 =
� + ωq. This causes an additional trapping potential �(x) ≈
1
2 mω2

twx2 that is independent of the qubit state as before, as
well as a position-dependent differential Stark shift δac(x) =
δ

|1〉
ac (x) − δ

|0〉
ac (x). In the limit ωq � |�|,

δac(x) ≈ − ωq

�2

∑
i=1,2

∑
j=+,−

∣∣� j
i (x)

∣∣2
(9)

= −ωq

�
Ũ0(x). (10)

This differential Stark shift is estimated to be small, δac/2π ≈
2.7 kHz, for the numbers used in the simulations and can be
compensated by a corresponding Raman detuning.

Photon scattering on the D1 transition can be estimated as
γph ∼ Ũ0�/(h̄�) ∼ 9 s−1 with � = 1.23 × 108 s−1 in Yb+.
This adverse effect may be reduced significantly by em-
ploying hollow tweezers [11,24–26] at the expense of added
complexity. For a hollow beam with a waist w0 = 0.5 µm
and ∼450 µW we obtain a scattering rate of ∼0.47 s−1. As
long as ωtw � �rf, the drive frequency of the Paul trap, no
parametric excitations can occur, and micromotion of the ions
is not a problem. Other errors, such as those due to intensity
noise of the laser, heating of the ions due to electric field
noise, and decoherence due to magnetic field noise have the
same effect as in other gate implementations. Finally, we note
that because the tweezers are far detuned from the closest
transitions, the exact overall frequency of the tweezer laser is
irrelevant.

VI. CONCLUSIONS

In conclusion, we have described a quantum phase gate
based on the optical Magnus effect using optical tweezers in
a linear chain of trapped ions. The main benefit is that the
gate does not require counterpropagating laser fields, greatly
simplifying the setup and eliminating errors due to phase
instabilities between the gate laser beams. Furthermore, the
state-dependent force generated by the Magnus effect allows
us to perform the gate operation by coupling to motional
modes on the plane perpendicular to the direction of propaga-
tion of the tweezers offering further experimental possibilities.
The proposed gate does not require ground-state cooling and
can be performed on any pair of ion qubits by spatial address-
ing. The expected gate fidelity rivals the state of the art also
for ions that are not cooled to the ground state of motion.
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FIG. 4. Intensity of the polarization components for a LG beam
calculated at the focus. The π -polarization component has been
enhanced by a factor of 100 to make it visible. Here we set wθ = 0.6.
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APPENDIX A: OPTICAL MAGNUS EFFECT

A key characteristic of a tightly focused beam is the strong
field curvature near the focus. This affects not only the local
intensity but also its polarization structure. To calculate the
polarization structure near the focus, we take a superposition
of plane waves labeled by their wave vectors in spherical
coordinates, k = (k, θ, φ). Taking k = ω/c as fixed, we write

E(r) ∝
∫ 2π

0
dφ

∫ π

0
dθ sin θ ux(θ, φ) a(θ, φ) eik·r

with ux(θ, φ) being a polarization vector obtained by coro-
tating the x unit vector when k is rotated from z to (θ, φ),
such that ux(θ, φ) · k = 0; see also Ref. [16]. In the calcula-
tion we center the beam around θ = 0, and the focal plane
is given by r = (x, y, 0). The shape of the beam is deter-
mined by the amplitude function a(θ, φ). For a Gaussian beam
we set a(θ, φ) = exp(−θ2/w2

θ ); for the lowest-order (l = 1)
Laguerre-Gaussian (LG) beam we set a(θ, φ) = θ exp(iφ −
θ2/w2

θ ). After performing the above integral we rotate the
results for tweezers propagating along the −y direction. Fi-
nally, the circular field components σ± shown in Fig. 1 of
the main text are obtained as the projection onto unit vectors
(x ± iy)/

√
2. In Fig. 4, all three polarization components for a

Laguerre-Gaussian beam are shown. Note that the σ− and σ+
components have similar intensity while the π polarization is
suppressed by a factor of ∼100.

APPENDIX B: PHASE-SPACE DYNAMICS

We study the phase-space dynamics of the ions by sim-
ulating the time-dependent Hamiltonian using Trotterization
with time steps of 10−4 τ . At each time step we evaluate the
expectation value of the 〈x̂〉 and 〈p̂〉 for the center-of-mass
mode. As expected, we find approximately circular phase-
space orbits for the even-parity states |00〉 and |11〉 and very
little motion for the odd-parity ones. In Fig. 5 it is possible to
see the evolution in phase space for all four spin states in the
cases of perfectly aligned and slightly misaligned tweezers.
As described in the main text we simulate numerically the full
Hamiltonian defined as Ĥsim = Ĥ0 + Û (xi ) + Û (x j ), where in

FIG. 5. Center-of-mass mode phase-space dynamics for per-
fectly aligned tweezers (left) and for ones misaligned by 30 nm
(right). For the simulation we used the same parameters as for the
τ/2 = 120 µs point in Fig. 1(a) of the main text.

case of misalignment ε, Û (x) reads as

U (x)

≈ −U0 e−2((x̂−ε̂)+σ̂zλ̄)2/w2
0

≈ −Ũ0 + 4Ũ0
σ̂zλ̄ − ε̂

w2
0

x̂

+1

2
Ũ0

(
4
(
w2

0 − 4λ̄2
)

w4
0

)
x̂2 − 1

2
Ũ0

(
16(ε̂2 − 2σ̂zε̂λ̄)

w4
0

)
x̂2

−
(

8Ũ0σ̂zλ̄
3w2

0 − 4(3ε̂2 + λ̄2)

3w6
0

)
x̂3

+
(

8Ũ0ε̂
3w2

0 − 4(ε̂2 + 3λ̄2)

3w6
0

)
x̂3

−
(

2Ũ0σ̂zλ̄ε̂
−48w2

0 + 64(ε̂2 + λ̄2)

3w8
0

)
x̂4

+
(

2Ũ0
3w4

0 − 24w2
0 (ε̂2 + λ̄2) + 16(ε̂4 + 6ε̂2λ̄2 + λ̄4)

3w8
0

)
x̂4

with

Ũ0 = U0e−2(ε̂+σ̂zλ̄)2/w2
0 .

A small tweezer misalignment ε gives rise to new spin-
dependent terms in the Hamiltonian that shift the trapping
potential in a state-dependent way. In Fig. 5 is shown how
the dynamics is affected in the case where the tweezers are
misaligned by 30 nm.

APPENDIX C: GATE FIDELITY

We characterize the gate by calculating the average process
fidelity as follows [21]:

F̄
(
Ûid, ÛĤsim

) =
∑

j tr
[
Ûidσ̂

†
j Û †

idσ̂ j
(
ÛĤsim

)] + d2

d2(d + 1)
,

where Ûid is the unitary of an ideal geometric phase
gate and σ̂ j (ÛĤsim

) ≡ trFS(ÛĤsim
[|n〉〈n| ⊗ σ̂ j]Û

†
Ĥsim

) projects
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the unitary matrix generated by the time evolution of
the Hamiltonian used for the simulations ÛĤsim

on the
Fock state |n〉 and on d-dimensional representation Pauli
matrices.
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