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Framework for solving time-delayed Markov Decision Processes
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Reinforcement learning has revolutionized our understanding of evolved systems and our ability to engineer
systems based on a theoretical framework for understanding how to maximize expected reward. However, time
delays between the observation and action are estimated to be roughly ∼150 ms for humans, and this should
affect reinforcement learning algorithms. We reformulate the Markov Decision Process framework to include
time delays in action, first deriving a new Bellman equation in a way that unifies previous attempts and then
implementing the corresponding SARSA-like algorithm. The main ramification—potentially useful for both
evolved and engineered systems—is that, when the size of the state space is lower than that of the action space,
the modified reinforcement learning algorithms will prefer to operate on sequences of states rather than just the
present state with the length of the sequence equal to 1 plus the time delay.
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I. INTRODUCTION

Reinforcement learning is, simply put, learning with re-
inforcement. An agent moves around in some (potentially
complicated) world and, by taking various actions, accrues
rewards. Its goal is to maximize the sum total of its discounted
rewards by adjusting its action policy, or how it reacts to being
in a particular world state. This problem is difficult because
we are interested in the sum total of discounted rewards in the
future, and not just the present. Many textbooks [1–3] have
been written to elucidate algorithms to solve such problems.

Reinforcement learning is now used to engineer artificial
systems, robots included [2]. And it is now nearly canon that
different regions of the brain are implementing different kinds
of reinforcement learning algorithms [4]. Even so, there has
been a surprising lack of attention on a key constraint that
affects both biological and engineered systems: time delays.
There are delays associated with reception of reward signals,
delays associated with taking actions, and delays associated
with observation. We focus on the second of these, the action
delays: agents take some time �t to take an action after
perceiving the world’s state, and this time delay can greatly
affect their ability to collect rewards.

Deterministic action delays (hereafter simply referred to
as “time delays”) and their effect on the reinforcement learn-
ing framework have been previously considered [5–8]. Much
work has focused on Markov Decision Processes (MDPs), in
which the agent fully observes the world state at all times.
Previous authors have argued that an MDP with action delays
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is still an MDP, once transformed, and propose a new set
of corresponding variables that the agent should now use to
decide upon a time-delayed action given an environmental
state. We find a new set of variables for solving MDPs with
action delays based on state sequences rather than action
sequences. Furthermore, we find that the optimality results
for MDPs without time delays (that there is a deterministic
optimal policy) do not carry over to the case of MDPs with
action delays.

We therefore formulate a new framework for solving
MDPs with constant action delays, relying heavily on an early
paper by Blackwell [9]. Using this framework, we slightly
modify some existing algorithms for solving MDPs so that
they can tackle MDPs with action delays. Our main prediction
is that brain regions that try to estimate the value of taking an
action in a particular state need information about sequences
of states or sequences of actions, with the length of the se-
quences being equivalent (roughly) to the time delay. Which
sequences one uses are a balance of at least two factors. First,
sequences of states will be preferred biologically if efference
copies—signals about actions taken that propagate back to
earlier sensory layers, useful for computing using sequences
of actions—are costly compared to the machinery required to
store sequences of states. But algorithmically, sequences of
states may also be preferred if the effective number of world
states is less than the effective number of possible actions.

Finally, it seems intuitively as though a time delay between
action and perception would need to be taken into considera-
tion in order to find the most effective action policy and would
lead to less collected reward, as the information one effec-
tively receives about the state of the world becomes less and
less relevant to its actual state as the time delay increases. We
show these two things using the framework developed here in
a simple example. This has two biological implications. First,
the organism must know its own time delays in order to formu-
late the most effective action policy. And second, populations
of organisms would endeavor over evolutionary timescales to
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minimize these time delays, similar to the predictions of the
minimal cortical wiring hypothesis [10].

The paper proceeds as follows. In Sec. II, we describe the
MDP’s mathematical formulation and the formulation of an
action delay. In Sec. III, we describe our new framework,
derive optimality results and comment upon when they cannot
be derived, and propose slight modifications of existing algo-
rithms for MDPs. In Sec. III C, we use an example to illustrate
that time delay negatively affects collected reward and must
be considered in order to collect as much reward as possible.
Section IV concludes.

II. SETUP

We imagine a world with states s ∈ S and actions a ∈
A. It will turn out that we are interested in sequences
of states, (st , . . . , st+�t ) ∈ S�t+1, and sequences of actions,
(at , . . . , at+�t ) ∈ A�t+1. When in state s, upon taking ac-
tion a, an agent receives a reward r(s, a). [The framework
can be easily generalized to the important case that r(s, a)
is itself probabilistic.] The agent is said to take action a in
state s with the probability π (a|s), and following Blackwell
[9], we instead allow for a nonstationary policy and write
π = (πt , πt+1, . . .) to describe the policy in which πt (a|s)
governs the action choice at time t . We simply write T π to
denote (πt+1, πt+2, . . .), i.e., T is an operator incrementing the
time index by 1. The environment is governed by a transition
probability p(st+1|st , at ), the probability of the environment
transitioning to state st+1 given that it was in st and that the
agent has taken action at . The goal is to maximize r(st , at ) +
γ r(st+1, at+1) + · · · where γ ∈ [0, 1) is the commonly used
discount factor.

In this article, we place a constraint on the relationship
between states and actions. When experiencing a state st ,
we choose an action a. This action is, perhaps confusingly,
not the same as the action taken at time t , at . Instead, this
action a is the action taken at time t + �t , at+�t = a. This
simulates a time delay of �t between perception and action,
and forces us to reformulate the MDP framework. We call this
a time-delayed MDP. See Fig. 1 for an explanation.

Altogether, the reward function, the transition probability,
the policy, the discount factor, and the time delay describe
a time-delayed MDP. Achieving our goal—finding the opti-
mal action policy, perhaps given initial conditions—is called
“solving the time-delayed MDP.”

To solve the time-delayed MDP, it is not enough to choose
an action at that maximizes the current reward, as this may
adversely affect which states you end up in later. One must
consider the long-term behavior of the system. This is com-
monly done using dynamic programming, which we describe
later.

Throughout this article, when doing numerical examples,
|S|, |A| < ∞ such that there are a finite number of actions
and states, i.e., the “tabular” case.

III. RESULTS

The results follow in three parts. In Sec. III A, we adapt
well-known techniques in the solution of MDPs (dynamic
programming) to define and find a value function that

Agent
π(at|st−τ )

Environment
p(st+1|at, st)

Action at

State st+1

State st

Reward r(st, at)

FIG. 1. The setup of a Markov Decision Process (MDP) with
action delay τ , or a time-delayed MDP. The reinforcement learning
agent has an action policy π (at |st−τ ), indicating that it uses the
sensory perception from a time τ ago to choose its action. The action
is taken, and the environment responds by transitioning to a new state
st+1 according to the transition probability p(st+1|at , st ). Meanwhile,
the reward accrued is r(st , at ), based on the current environmental
state and current action.

describes the value of a sequence of successive states. In
Sec. III B, we show that there is no optimal policy for when
we have a time-delayed MDP. And in Sec. III C, we use
existing model-free algorithms for solving MDPs to solve
time-delayed MDPs.

A. Reformulating Bellman’s equations

As stated in Sec. II, solving both the MDP and the
time-delayed MDP is not as easy as finding the action that
maximizes r(s, a). Such actions may benefit the agent in the
short term, but in the long term, these actions may send the
agent into undesirable states s for which maxa r(s, a) is far
lower. Hence, planning over long time horizons is required.

An obvious experience-based approach to this issue is
the Monte Carlo approach: choose a policy and experience
the rewards, and from that calculate Eπ [r(s1, a1) + γ r(s2, a2)
+ · · · ]. Then, improve the policy (in a way that we have yet
to describe) so that one continually improves this running
weighted average. We pursue a typical and different approach
that allows us to get beyond the large sample complexities and
high variance estimates in Monte Carlo approaches.

We first define a “value function” that indicates the value of
being in a particular sequence of states. The idea of this is that
some states or sequences of states may be particularly valu-
able, in that they are likely to lead to higher expected reward.
But in defining this value function, we must take some care
to also consider another factor. The eventual goal of defining
such a value function is to make it easier for us to solve
time-delayed MDPs. We would, in the spirit of the Bellman
equation for non-time-delayed MDPs, like to formulate our
revised Bellman equation so that the value function is easy to
compute from the reward function, the transition probability,
and the action policy. We therefore choose to define the value
of a sequence of states rather than that of a single present state:

Vπ (st , st+1, . . . , st+�t )

:= E[r(st+�t , at+�t ) + γ r(st+�t+1, at+�t+1)

+ · · · |St = st , . . . , St+�t = st+�t ]. (1)
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The subscript π indicates that the value function is a func-
tion of the policy π . With work shown in the appendices,
the linearity of the expectation value and the law of iterated
expectation reveal that

Vπ (st , st+1, . . . , st+�t )

=
∑

at+�t

πt (at+�t |st )r(st+�t , at+�t )

+ γ
∑

at+�t ,st+�t+1

πt (at+�t |st )p(st+�t+1|st+�t , at+�t )

×VT π (st+1, . . . , st+�t+1), (2)

where T π is the time-shifted action policy sequence (see
Sec. II). In the case of a stationary policy π = (π, π, . . .), we
have

Vπ (st , st+1, . . . , st+�t )

=
∑

at+�t

π (at+�t |st )r(st+�t , at+�t )

+ γ
∑

at+�t ,st+�t

π (at+�t |st )p(st+�t+1|st+�t , at+�t )

×Vπ (st+1, . . . , st+�t+1). (3)

If we consider �Vπ to be a vector of dimension |S|�t+1

of the values of all sequences of states, then one
can rewrite the above set of equations as a linear
equation, �Vπ = bπ + γ Aπ �Vπ , for (bπ )(st , . . . , st+�t ) =∑

at+�t
π (at+�t |st )r(st+�t , at+�t ), and

Aπ (st+1, . . . , st+�t+1; s′
t+1, . . . , s′

t+�t+1)

= δst+1,s′
t
. . . δst+�t ,s′

t+�t−1

×
∑

at+�t ,st+�t+1

π (at+�t |st )p(st+�t+1|st+�t , at+�t ).

We can therefore simply solve for �Vπ as

�Vπ = (I − γ Aπ )−1bπ . (4)

But this calculation can be difficult for many reasons. First,
when there are large time delays or when there are many
states, the matrix inversion becomes more computationally
intensive. Second, we may not know the transition probabili-
ties or reward function, and so we may not know Aπ and bπ .
Hence, we introduce the temporal difference (TD) learning
algorithm for time-delayed MDPs, following the usual formu-

lation for MDPs. One guesses a value function �̃Vπ and takes

actions governed by π , updating �̃Vπ at all times to minimize
the TD error:

δṼπ (st , . . . , st+�t )

= r(st+�t , at+�t ) + γ Ṽπ (st+1, . . . , st+�t+1)

− Ṽπ (st , . . . , st+�t ). (5)

One can view this as an error that encapsulates the gradient
descent on a mean-squared error between the left- and right-
hand sides of the revised Bellman equation. When used in an
algorithm to evaluate a policy, we multiply the TD error by
the learning rate α. This governs how quickly we approach the

correct value function, although a value of α that is too large
can cause us to overshoot the answer or even move away from
the answer. In TD, our value function stops changing when the
right-hand side is 0, or when the Bellman equation is (on av-
erage) solved. As such, if α is small enough, TD updates will

cause �̃Vπ to converge. Note that updates to the value function
are “model-free,” meaning that no model of the environment
is needed to update said value function—only experience.

So far, the framework of MDPs has carried over easily to
the framework for time-delayed MDPs. But the difference is
that one must operate on sequences of states in order to under-
stand time-delayed MDPs. This has a memory cost and a time
cost. When using the matrix inversion method (which requires
a model), one has a time complexity of roughly O(|S|3�t ),
and therefore, increases in the time delay �t exponentially
increase the computational power required. While TD does
not suffer as much from increases in �t , we do have to store
�̃Vπ , and therefore, we find a memory cost of O(|S|�t ). We also
need to experience all the sequences of states and therefore
suffer a sample complexity of at least O(|S|�t ).

This is not the only approach to solving time-delayed
MDPs. Previous authors [5] have considered state-action
value functions of the form

Qπ (at−�t , . . . , at−1, st )

:= E[r(st , at ) + γ r(st+1, at+1)

+ · · · |At−�t = at−�t , . . . , St = st ]. (6)

This formulation seems ill-suited for computing optimal poli-
cies, as one would like a past state to guide a future action in
the time-delayed setup—we do not have access to st at time
t . Otherwise, causality is broken. Hence, one cannot turn this
state-action value function into a policy improvement theorem
[3], a change to the action policy that allows one to accrue
more reward. However, with some modifications [8], one can
reformulate the information for optimal action selection to be
at , . . . , at+�t and st , and define

Qπ (at , . . . , at+�t , st ) := E[r(st , at ) + γ r(st+1, at+1)

+ · · · |At = at , . . . , St = st ]. (7)

The Bellman equation follows as

Qπ (at , . . . , at+�t , st )

= r(st , at ) + γ
∑

st+1

p(st+1|st , at )π (at+�t+1|st+1)

× Qπ (at+1, . . . , at+�t+1, st+1). (8)

One can certainly solve this and convert the resulting solu-
tion into the averaged state-action value function, described
in a later subsection. And so, the main difference between
the formulation with sequences of states and the formulation
with sequences of actions is one of computational power.
When using temporal difference learning, the memory scales
as |S|�t+1 for the Bellman equation of the main text and
as |S||A|�t . Which one is preferred will largely depend on
the size of the state space versus the size of the action
space.
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B. Is there an optimal policy?

The key question in reinforcement learning is not usually,
“What is the value of a particular state or sequence of states?”,
but instead, “What is the policy that I should follow?” In fact,
we only care about the value of sequences of states so that we
can find an “optimal policy,” a point that we flesh out in this
subsection.

Let us return to the MDP case. There, our value function
only depends on our current state. Our goal is to maximize this
value function with respect to policy π . Naively, one might
think that this leads to a set of optimal policies π∗(s) ∈ �∗(s)
that depends on the current state s. However, one can show
(and we will revisit this) that there is at least one π∗ that does
not depend on s. So, one can think of this optimal policy as
being in the intersection of optimal policies for each state,
π∗ ∈ ∩s∈S�∗(s).

Alternatively—and this is the usual definition—one can
define an ordering on policies π as follows: π � π ′ if Vπ (s) �
Vπ ′ (s) for all s ∈ S . The optimal policy π∗ is a policy such that
π∗ � π for all policies π . Again, with MDPs, the two defini-
tions are one and the same. At least one optimal deterministic
policy exists, and your plan of what to do has nothing to do
with what state you start in, i.e., the initial conditions.

We find that a policy is optimal if and only if it satisfies the
Bellman optimality equation, and there exists a deterministic
optimal policy (see the appendices). However, we have used
the Bellman equation of Sec. III A to find value functions of
deterministic policies in simple time-delayed MDPs. We find
generically that there is no deterministic policy that maxi-
mizes the value function of all sequences of states. Hence,
there is no optimal policy, generically. An example of this is
shown in Sec. III C.

Why is this? Imagine that we find �∗(st , . . . , st+�t ). In
order for there to be an optimal policy that respects the
constraints of the problem, we need for π∗ ∈ �∗(st , . . .) to
depend only on st and not on any of the other states. This is not
a mathematical condition—it is a physical one. One cannot
choose one’s action at time t based on future state information;
this is simply not allowed in our setup, as it would be acausal.
And this physical condition leads to a stringent mathematical
condition that is, it seems, unlikely to be satisfied. But note
that in the case of no time delay, �t = 0, there is no issue. We
can choose one πt for each state s without restriction.

The same logic holds for the alternative Bellman equa-
tion formulation discussed earlier. There, the issue is that the
optimal policy for a particular value function depends on ac-
tions taken at other times, which depend on the environmental
states presented that you have no advance knowledge of.

So what should one do when faced with a time-delayed
MDP? It seems to us that, although we needed to define value
functions on sequences of states in order to ease computation
of said value functions, policy improvement theorems are
better defined on averages of said value functions so that only
current and not future information can be used to choose the
next action. In other words, for policy improvement purposes,
we really want

V̂π (s) = E[r(st+�t , at+�t ) + · · · |St = s], (9)

Q̂π (s, a) = E[r(st+�t , at+�t ) + · · · |St = s, At+�t = a]. (10)

Once we have calculated Vπ (st , . . . , st+�t ) and
Qπ (st , . . . , st+�t , at+�t ), we merely need to average both
over pπ (st+1, . . . , st+�t |st = s), where the subscript indicates
that this conditional probability depends on the action policy:

V̂π (st ) =
∑

st+1,...,st+�t

pπ (st+1, . . . , st+�t |st )

×Vπ (st , . . . , st+�t ), (11)

Q̂π (st , at+�t ) =
∑

st+1,...,st+�t

pπ (st+1, . . . , st+�t |st , at+�t )

× Qπ (st , . . . , st+�t , at+�t ). (12)

Suppose that we wait a bit before we start estimating the
accumulated reward. The average that we use could be one of
two types: an average based on initial conditions of the system
that we cannot alter or an average over state sequences that
depends mostly on our action policy and the environmental
transition probability. If our burn-in period is long enough,
the initial conditions of the system that are not under our
control become unimportant. This is similarly true if γ is
high enough, so that initial conditions do not take on undue
importance. But the lack of an optimal policy insinuates itself
into our attempts to solve the MDP by refusing to let us
completely forget the system’s initial conditions. Using the
Bellman equations of the previous section, we find that

V̂π (st ) =
∑

at+τ

π (at+τ |st )pπ (st+τ |st )r(st+τ , at+τ )

+ γ
∑

at+τ ,st+τ+1

π (at+τ |st )pπ (st+τ |st )

× p(st+1, st+τ+1|st+τ , at+τ )V̂π (st+1), (13)

Q̂π (st , at+τ ) =
∑

st+τ

pπ (st+τ |st )r(st+τ , at+τ )

+ γ
∑

st+τ+1

p(st+τ+1|at+τ , st+τ )

× pπ (st+1, st+τ |st )V̂π (st+1). (14)

Notice the dependence of the reformulated Bellman equa-
tions on pπ (st+1, st+τ |st )—a transition probability that de-
pends in a highly nonlinear way on both of the accessible
quantities, π (at+τ |st ) and p(st+1|st , at ), as an eigenvector of a
complex transition matrix. Hence, one cannot use the Bellman
equations for V̂π and Q̂π if given π (at+τ |st ) and p(st+1|st , at )
to estimate V̂π and Q̂π without a great deal of extra (hidden)
legwork. In this way, these equations are deceptive. It appears
that the time-delayed MDP is simply a regular MDP, but the
Bellman equations obtained from this viewpoint are not useful
in a model-based framework. It is still necessary to operate on
sequences of states if one wants to efficiently calculate value.
But in a model-based framework, Eq. (14) is quite useful, as
discussed in the subsection below.

Choosing a∗(st ) = arg maxat+�t Q̂π (st , at+�t ) is guaranteed
to improve our averaged value function, and these improve-
ments will be achievable, since we only need assign one action
per state. We discuss algorithms for doing so in Sec. III C.
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Failed Trial

Successful

Trial

FIG. 2. Basic illustration of a failed and a successful trial (action)
in the windy grid world environment. The environment is a 2 × 3
table of possible positions. Possible actions in this environment are
up, down, left, and right. The wind pushes the agent up in the second
column, and if the agent passes the upper boundary of the grid, it is
sent back to the upper leftmost state.

C. An illustrative example: The effect of time
delay on collected reward

We introduce the ramifications of the action time delay
through a concrete example. Consider an agent that is per-
mitted to move between spots on a given grid in a given
environment. This grid therefore imposes the agent to occupy
specific positions (representing the states) at specific instants
of time. At each of these steps, the agent can take one of
the four possible moves: up, down, left, or right. This move
represents the agent’s action. Furthermore, the environment
contains an outside factor (the wind in the windy grid world
environment) which biases the agent’s move. In the example
shown in Fig. 2, whenever the agent is present in the second
column, the wind takes it one position up. Each time the agent
takes one step, it receives a reward of −1. That is, the objective
of the agent is to take the least possible steps required to reach
the terminal state. The world and the example paths are shown
in Fig. 2.

Our goal is to finally discuss algorithms that can compute
Q̂π∗ (st , at+�t ), and from that, we can calculate π∗(a|s) =
δa,a∗(s) from

a∗(s) = arg max
a

Q̂π∗ (s, a). (15)

We focus on the state-action-reward-state-action (SARSA)
algorithm [11]. The SARSA algorithm is based on the suc-
cessive evaluation of the value function Q̂π using temporal
difference learning and policy improvement. When π is im-
proved, we first flip a biased coin such that heads comes up
with the probability ε. We follow the policy π (a|s) = δa,a∗(s)

when tails and choose an action uniformly at random when
heads. In the tabular case, these algorithms converge under
well-known conditions on ε and the learning rate α [12]. This
is referred to as ε-greedy.

As this is a model-free algorithm, the fact that we cannot
easily obtain pπ (st+τ |st ) from the action policy π (at+τ |st ) and
environmental transition probabilities p(st+1|st , at ) is of no

FIG. 3. Violin plots showing reward in the windy grid world for
increasing values of time delay. Reward decreases as time delay
(and the length of state sequence used in SARSA) increases. The
algorithms that lead to reward near the top of the violin plots for
various time delays are discussed in the text.

concern. We simply look at our experience—at what state was
seen at time t + τ and at what state was seen at time t . We
use this to calculate two types of error in our estimate of the
state-action value function Q̂π (st , at+τ ).

In SARSA, we measure the deviation between the current
Q̂π (st , at+τ ) and that predicted by the corresponding Bellman
equation. From Eq. (14), after some manipulation, we see that
this error is

δQ̂(st , at+τ ) = r(st+τ , at+τ ) + γ Q̂(st+1, at+τ+1)

− Q̂(st , at+τ ). (16)

Every n time steps, we choose actions based on the ε-greedy
algorithm and update Q̂ based on the accumulation of δQ̂ in
that time period. This gives us an improved estimate of the
state-action value function for that policy. Then we improve π

using our policy improvement theorem. This continues until
convergence of the policy. It is customary to decrease ε as
the number of epochs increases. One can show by numerical
brute force that there is no optimal policy, as expected from
Sec. III B.

We first show that a non-time-delayed SARSA algorithm
collects less reward than a time-delayed SARSA algorithm
when the agent has an action time delay. We then show that
with time delay, the agent receives less reward, as it is forced
to use less information to choose its actions.

While we expect to see that time delay decreases reward,
we might—and will—encounter different trajectories. This
is because there is stochasticity in the environment through
p(st+1|at , st ) and some initial stochasticity in the action policy
π . Hence, we must average over many trials in the figures that
follow.

From two runs, we see that a SARSA algorithm that does
not account for the time delay produces less reward than an
algorithm that correctly accounts for the time delay. Figure 3
portrays a run example for values of the time delay from 0 to 8.
The reward accounting for a time delay equal to 1 falls in the
interval (1.02, 3.06) and the obtained reward for the nondelay
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case falls in the interval (−17.17,−8.45). Note that often we
do obtain rewards in an interval with positive values, which
nearly never occur for the non-time-delayed case.

In Fig. 3, we see that once our algorithm is optimized for
time delay, we accrue less reward with a larger time delay.
When the time delay is larger, the information used to opti-
mize actions is less relevant to the action. Hence, the reward
generally decreases as the time delay increases—as the overall
shape of the graph in Fig. 3 shows. In fact, in the limit that the
time delay is infinite, the agent moves with no memory of the
previous states and a preference for one specific nonchanging
direction.

Why? Consider the case where at t = 0, the agent observes
that it is in the top left corner, and at t = 1, it is still in the same
state. Based off its observation one time-step earlier, the agent
executes at t = 1 the action corresponding to its earlier state.
The optimal policy for this problem and for these specific
initial conditions is that the agent goes downwards, ending
up in the bottom left-hand corner. Because it responds only
knowing that it was previously in the top left-hand corner, it
chooses to go down again, going out of the grid and thus end-
ing up in the same state it was in. This step shows clearly why
an agent with time delay will perform more poorly than one
without delay. Although the agent is in the bottom left corner,
its action at this instant is determined by its observation one
time step earlier. It is not until one time step later that it takes
the correct action and moves right. This means that due to
its slower reaction time, the agent has wasted a time step and
reduced its reward in the process. One can follow the progress
of the agent using this optimal policy to see that, following this
step, the agent takes all the right actions to reach the terminal
state in two steps.

A larger time delay also implies larger sequences of state
and bigger computational complexity. For instance, although
it does not affect our results due to guarantees on convergence,
the computational complexity associated with choosing the
appropriate action policy increases. Moreover, agents may
accrue more varying and less reward. As the time delay is
increased, it gets more challenging for the agent to “choose”
the best action to take at the following far step.

Note that there are model-based approaches to solving
time-delayed MDPs that we are simply not considering in
this paper. Model-based approaches make a model of the
environmental transition probability p(s′|a, s) and the reward
structure r(s, a) and then use the Bellman equation (or here,
the revised Bellman equation) to evaluate the value of a partic-
ular sequence of states or actions. Sometimes, in model-based
approaches, the law of iterated expectations is applied more
than once, unrolling the expectation value. These approaches
are quite flexible in that, if the environment changes in any
way, one can learn new transition probabilities and reward
structures and easily update the optimal action policy, but
these model-based approaches lack the computational effi-
ciency of the model-free approaches that we consider.

IV. DISCUSSION

We showed that solving time-delayed Markov Decision
Processes (MDPs) in which action lags sensory perception is
different than solving ordinary MDPs. First, one must operate

on sequences of states or sequences of actions. Second, there
is no optimal policy generically, and your initial conditions
govern what the optimal policy is. Finally, time delay de-
creases the reward that you can get, and ignoring time delay in
model-free algorithms leads to diminished reward. The litera-
ture on time-delayed MDPs has focused on using sequences of
actions rather than sequences of states to solve the MDP [6–8],
but we see sequences of states stored in the brain [13,14], and
as such, this represents new work on time-delayed MDPs that
may be applicable to biological organisms.

We hope that these advances aid those who engineer
artificial cognitive systems. Previous work on time delays
has discussed time-delayed MDPs in terms of the informa-
tion required to turn that time-delayed MDP into an MDP;
this information is called an “information state.” Indeed,
Ref. [8] uses an information state similar to one in the appen-
dices while Ref. [5] uses the information state introduced in
Sec. III B as an approximation for the model-free algorithms.
Hence, this manuscript introduces a new information state and
unifies previous descriptions.

Moreover, we hope that these results provide insight
into brain function, as reinforcement learning algorithms are
thought to be implemented in the brain [15,16]. It is thought
that evolved organisms are reinforcement learners, and they
necessarily have a time delay between visual perception and
action of roughly 150 ms [17] due to the time needed for
signals to propagate through the neural architecture. Hence,
we would expect organisms to store sequences of states or se-
quences of actions, depending on which requires less memory
and requires less time to process. If the size of the state space
is lower than that of the action space, we expect the biological
organism to operate on state sequences. Several recent articles
suggest that the brain does indeed operate on state sequences
[13,14], though the reasons for doing so have not yet been
tied to solving time-delayed MDPs. The already observed
tendency of brains to minimize cortical wiring length so as to
minimize time delays [18–20] is correspondingly explainable
as a way to minimize computational costs associated with
reinforcement learning.

Unfortunately, we do not have an explanation as to why
you would see a typical nonzero time delay in the brain such
as those seen in human stick balancing. Even more repro-
ducibility in the reward accrued or a higher probability that it
is above some threshold would lead to one choosing a smaller
time delay. However, time delays are known to be useful for
causing recurrent neural networks with feedback to optimally
predict their input [21], and they may be useful for other
computations. We might, therefore, expect brain regions that
are doing model-free reinforcement learning to minimize time
delays, while brain regions that are doing model-based re-
inforcement learning, which can require explicit predictions,
require a finely tuned time delay [22].

In summary, we have introduced a new set of algorithms
for solving time-delayed MDPs based on sequences of states
rather than sequences of actions. Given that humans have a
time delay of ∼150 ms, this algorithm may have ramifications
for interpreting minimization of time delays and storing of
state sequences in brain regions associated with model-free
reinforcement learning as trying to solve time-delayed MDPs.
We hope that further experimental work [15,16] helps uncover
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whether or not neurotransmitter responses inherently involve
the ∼150-ms time delay, which would be a signature of the
brain solving a time-delayed MDP.
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APPENDIX A: DERIVATION OF THE MODIFIED
BELLMAN EQUATION

We have

Vπ (st , st+1, . . . , st+�t )

= E[r(st+�t , at+�t )|St = st , . . . , St+�t = st+�t ] (A1)

+ γE[r(st+�t+1, at+�t+1) + γ r(st+�t+2, at+�t+2)

+ · · · |St = st , . . . , St+�t = st+�t , St+�t+1 = st+�t+1]

(A2)

=
∑

at+�t

πt (at+�t |st )r(st+�t , at+�t )

+ γ
∑

at+�t ,st+�t+1

πt (at+�t |st )p(st+�t+1|st+�t , at+�t )

×E[r(st+�t+1, at+�t+1) + γ r(st+�t+2, at+�t+2) + · · ·
(A3)

× |St = st , . . . , St+�t = st+�t , St+�t+1 = st+�t+1]

(A4)

=
∑

at+�t

πt (at+�t |st )r(st+�t , at+�t )

+ γ
∑

at+�t ,st+�t+1

πt (at+�t |st )p(st+�t+1|st+�t , at+�t )

×VT π (st+1, . . . , st+�t+1). (A5)

APPENDIX B: THERE IS NO OPTIMAL POLICY

We now introduce a Bellman optimality equation for se-
quences of states which, it turns out, are not satisfied by any

existing policy. This will illustrate the difficulty of finding
an optimal policy in time-delayed MDPs. In deriving these
equations, we imagine that we choose our action policy at
time t , π∗

t , so as to maximize the value and then, following
the policy T π , finding

Vπ (st , . . . , st+�t )

= max
πt

∑

at+�t ,st+�t

πt (at+�t |st+�t )

+ γ
∑

st+�t+1,at+�t

πt (at+�t |st+�t )p(st+�t+1|st+�t , at+�t )

×VT π (st+1, . . . , st+�t+1). (B1)

Relatedly, we can suppose that we are maximizing

Qπ (st , . . . , st+�t , at+�t )
= E[r(st+�t , at+�t ) + · · · |St = st , . . . , St+�t

= st+�t , At+�t = at+�t ] (B2)

= r(st+�t , at+�t ) + γ
∑

st+�t+1

p(st+�t+1|st+�t , at+�t )

×VT π (st+1, . . . , st+�t+1) (B3)

with respect to at+�t . As maximization of Qπ achieves the
maximum of Vπ with respect to π∗

t , there exists a deterministic
optimal policy, if an optimal policy exists.

Note already that there is a fly in the ointment. It is likely
that improvements to the policy will require πt to know some-
thing about st+1, . . . , st+�t , which it cannot do.

Imagine choosing a policy π∗
t based on this maximization

over and over again. One can show that π � (π∗
t , T π ) �

(π∗
t , π∗

t+1, T 2π ) � · · · and, in this way, we have derived a
policy improvement theorem: we have a way of continually
improving any policy. A policy stops improving when it sat-
isfies the Bellman optimality equation. Hence, if a policy
satisfies the Bellman optimality equation, it is optimal. On
the flip side, a policy that is optimal will choose π∗

t so as to
maximize value and so on, and hence, a policy that is optimal
satisfies the Bellman optimality equation. Together, a policy
is optimal iff it satisfies the Bellman optimality equation and
there exists a deterministic optimal policy.

As such, if we find that there is no deterministic policy that
has maximal value on all sequences of states, we have shown
that there is no optimal policy.
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