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Highly excited Rydberg atoms inherit their level structure, symmetries, and scaling behavior from the
hydrogen atom. We demonstrate that these fundamental properties enable a thermodynamic limit of a single
Rydberg atom subjected to interactions with nearby ground-state atoms. The limit is reached by simultaneously
increasing the number of ground-state atoms and the level of excitation of the Rydberg atom, for which the
Coulomb potential supplies infinitely many and highly degenerate excited states. Our study reveals a surprising
connection to an archetypal concept of condensed matter physics, Anderson localization, facilitated by a direct
mapping between the Rydberg atom’s electronic spectrum and the spectrum of a tight-binding Hamiltonian. The
hopping amplitudes of this tight-binding system are determined by the arrangement of ground-state atoms and
can range from oscillatory and long-ranged to nearest-neighbor. In the latter we identify clear signatures of the

Anderson localization of the Rydberg electron.
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I. INTRODUCTION

The origin of quantum mechanics is inextricably linked to
the bound-state spectrum of hydrogen, which consists of an
infinite series of discrete levels labeled by an integer-valued
principal quantum number v [1-3]. Because of hydrogen’s
underlying SO(4) symmetry, these levels are v-fold degener-
ate [4,5]. This enhances the effect of external perturbations,
as evinced by the response of hydrogen atoms to electric
and magnetic fields [6] or to electron scattering [7,8]. The
study of these aspects exposes deep connections between
the excited electronic structure of hydrogen and seemingly
disparate physical arenas. Compelling examples include the
hydrogen atom in a strong magnetic field, which is funda-
mental to quantum chaos and nonlinear dynamics [9,10], and
the organization of doubly excited H™ states into multiplets, a
phenomenon akin to the symmetry classifications ubiquitous
in elementary-particle physics [11]. In this article, we forge a
connection between the hydrogen atom and condensed matter
via Anderson localization.

Hydrogen’s properties are shared by the highly excited Ry-
dberg states of other atomic species, since the influence of the
multielectron core essentially vanishes for these exaggerated
states characterized by large v values, almost millisecond life-
times, and micron-scale orbits [5,12]. Localized perturbations
to a Rydberg atom, caused by the scattering of its electron
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off of one or more ground-state atoms—denoted scatterers in
the following—mix the degenerate states within each v mani-
fold, giving the otherwise weak interaction of the scatterers a
surprisingly strong effect [13,14]. Recently, optical tweezer
arrays have become available which can hold ground-state
atoms in nearly arbitrary arrangements [15—17]. This allows
for the possibility to create a Rydberg composite by perturbing
a Rydberg atom with a predetermined configuration of point-
like impurities [18].

Figure 1(a) illustrates the level structure of such a Ryd-
berg composite, formed after the immersion of M scatterers
within the Rydberg wave function. Many states in each v
manifold are not affected, but a subspace of dimension M
splits away and possesses a density of states which depends
nontrivially on the scatterer arrangement [18]. The spectrum
of this perturbed subspace coincides identically with that of a
tight-binding Hamiltonian

M M M
H=Y"Elg)gl+) Y Vela)dl, ¢h)
q=1

q=1 q'#q

where {|g)} is a basis of states localized on individual
sites [19]. The on-site potentials E, and hopping ampli-
tudes V,, arise from the Rydberg electron’s motion in the
confluence of the infinite-ranged Coulomb and zero-ranged
electron-scatterer potentials. Equation (1) creates an unex-
pected conceptual link between a Rydberg atom interacting
with many ground-state atoms and the dynamics of a particle
hopping through a lattice.

We exploit this link to demonstrate that a Rydberg electron
can undergo Anderson localization: in the thermodynamic
limit of infinite system size, the entire spectrum of electron
eigenstates exponentially localizes in the presence of arbitrar-
ily weak disorder [20-24]. To construct the thermodynamic
limit in the Rydberg system we determine a relationship
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FIG. 1. (a) The level structure of the Rydberg composite. The Coulomb potential V(r) = —1/r supports an infinite bound spectrum,
E, = —1/2v?, denoted with blue lines. The length of each line represents the level degeneracy D, = v? and the typical size of the electronic
states, (r) ~ v2. The inset highlights the densities of states (DOSs) of three Rydberg levels when the atom is perturbed by a ring of M scatterers
with radius 2v2. A highly structured DOS consisting of M perturbed states (orange) forms, shifted away from the unaffected M — v? states
(blue). In the thermodynamic limit, M, v — oo, the bandwidth and center of mass of the shifted DOS are (within an overall scaling factor)
independent of M and v. (b), (c) The eigenstate amplitudes located at the marked positions in the DOSs for both periodic and disordered arrays
are shown in the Rydberg (blue) and site (black spheres) representations. Both representations exhibit the same features in the vicinity of the
scatterers (orange spheres). (d) An exemplary Rydberg state, which is spherically symmetric and delocalized. (¢) An exemplary trilobite state
for the scatterer ¢ marked in red. The trilobite’s amplitude at ¢ determines the on-site potential E,, while its amplitude at ¢’ determines the

hopping amplitude V.

between M and v such that increasing them in tandem—
relying on the infinite series and scaling relations of Rydberg
levels—leads to a well-defined Hamiltonian whose matrix
elements are independent of its size. We study effectively
one-dimensional localization by placing the scatterers on a
ring around the Rydberg atom’s core, and then randomly dis-
ordering their positions. Different ring radii lead to different
hopping amplitudes, ranging from the nearest-neighbor in-
teractions conventionally studied to more unusual long-range
and sign-changing interactions. This flexibility gives rise to a
variety of Anderson models.

II. MAPPING RYDBERG DYNAMICS
TO A LATTICE MODEL

The bare Rydberg states |vi) are labeled by the princi-
pal quantum number v and a collective index i = {/, m} for
the angular momentum quantum numbers, 0 </ < v — 1 and
|m| < I. We consider each v manifold individually since the
perturbation from the M scatterers is too weak to couple
different manifolds. In each of the resulting D,-dimensional
degenerate subspaces, where D, = v2, the Hamiltonian ma-
trix elements are

1 z o
Hip = — 538 + 21 ;as[k<Rq>]<w|Rq><Rq|w ) Q)

in atomic units. The first term is the Rydberg atom’s energy,
and the second is a sum over zero-range pseudopotentials

describing the electron-scatterer interaction in terms of the
s-wave electron atom scattering length a,[k(R,)] and the am-
plitudes (vi|R,) of the Rydberg states at the scatterer positions
[13,25]. Appendix A provides further background for Eq. (2),
including a discussion of its generality.
Expressing #H in terms of the rectangular matrix W;, =
as[k(R, )](vi|ﬁq) makes explicit its separable form and
shows that rank(#) = M. We project onto the image of H
using U = WW)~12W?T, which is a semiunitary transfor-
mation since U and its Moore-Penrose right inverse U ' satisfy
UU" =1y, and UTU # 1p,. However, we can still transform
H into H = UHU " using UTUHU U = H, where

H= f} |q><—

q.9'=1

D
1 S ,
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i=1

is a tight-binding Hamiltonian in the form of Eq. (1) and
possessing the same nonzero eigenenergies as H. Its eigen-
vectors |U;) = Zyzl cM]q) transform back into the Rydberg
basis via |Wi)rya = V2T JE Y2 Wiqc;k)lvi), where Ej is
the eigenenergy. Appendix B describes this transformation
in more detail. Figures 1(b) and 1(c) display exemplary
eigenstates in both representations for both a periodic and a
disordered scatterer array.

Equation (3) reveals the connection between the perturbed
Rydberg spectrum and a tight-binding Hamiltonian. A phys-
ical interpretation emerges upon considering the so-called
“trilobite” eigenstate of a Rydberg atom and a single scatterer,
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|T,) = lezvl Wiqlvi) [13,26]. Unlike the spherically symmet-
ric eigenstates of the bare Rydberg atom, which extend over
the entire scatterer array [Fig. 1(d)], the trilobite state is
peaked at the scatterer’s position [Fig. 1(e)]. The matrix ele-
ments H,, are proportional to the trilobite overlaps (T;|7;/) or,
equivalently, the amplitudes (ﬁquﬂ]) [27-29]. This provides
a convenient means to pictorially estimate the properties of
the tight-binding Hamiltonian, as in Fig. 1(e). Furthermore,
closed-form expressions for (7;|T,/) simplify calculations and
facilitate asymptotic expansions, as discussed in Appendix E
[28,29].

III. THERMODYNAMIC LIMIT

In a typical solid-state system described by a tight-binding
Hamiltonian Eq. (1), the elements E, and V,, are independent
of M and the thermodynamic limit is reached by increasing
the system’s size, i.e., M — oo. However, the matrix ele-
ments H,, of Eq. (3) depend strongly on both v and M:
the Rydberg atom’s size and energy scales are v-dependent,
and the hopping amplitudes depend on the distance, inversely
proportional to M, between scatterers. As an initial step in
separating these scales, we accommodate the overall size of
the Rydberg wave function by parametrizing the ring’s ra-
dius as 2v2R, where R € [0, 1]. This parametrization ensures
that systems with different v but identical R values have
similar properties [19], and the range of R keeps the scat-
terers within the classically allowed region. We will discuss
three specific cases in detail in this article: R = 1, R = 0.75,
and R =0.5.

In a subsequent step, for each R we eliminate the M
dependence at a coarse-graining level by fixing M as a func-
tion of v such that the interscatterer distance, and hence the
hopping amplitudes, are invariant with respect to changes
in v. The functional form of M(v) hinges on the resolving
power of the Rydberg wave functions. A useful heuristic is
that Rydberg states can resolve as many in-plane scatterers
as they have available azimuthal nodes, requiring a linear
relationship M (v) = v for most R values. For R — 1 those
Rydberg states possessing the many azimuthal nodes needed
to resolve scatterers become exponentially small. Thus, fewer
scatterers can be resolved and a sublinear relationship is re-
quired. In particular, for the case R = 1, we set M(v) ~ v>/3
(specifically, M = [3v*/3], where |x] is the integer part of
x). For the cases R =0.5 and R = 0.75 we use the linear
scaling M (v) = v. We then extract the residual v dependence
of the matrix elements H,, . For R = 1 we find that the matrix
elements are proportional to v=13/3, but for R = 0.75 they are
proportional to v=*. The matrix elements of the R = 0.5 case
do not simultaneously possess a global v dependence. All of
these scaling laws are discussed in further detail below and in
Appendix E.

Now, we are in a position to factor out an overall v de-
pendence such that the matrix elements H,,, for fixed R
and M(v), are independent of v. Taking advantage of the
infinite series of Rydberg levels, the thermodynamic limit of
a Rydberg atom is realized with v — oo. Figure 2(a) illus-
trates this analysis for the R = 1 case. The three curves show
the angular dependence of the trilobite states with v = 30,
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FIG. 2. Characteristic energies and scaling laws for R =1.
(a) Hopping amplitudes as a function of angle around the ring.
The angular positions of the scatterers are marked with points. (b),
(c) Dispersion relations for 30 < v < 500 in increments of 5. As v
increases, these discrete spectra tend towards the analytic dispersion
relation (shown as the dashed black curve) derived for an infinite lat-
tice using the model Hamiltonian for R = 1 discussed in Appendix E.

250, and 500. When appropriately scaled, these functions
have identical values when evaluated at the site positions,
and hence the matrix elements of H become independent of
v and M. As can also be seen in the full trilobite picture
in Fig. 1(e), the hopping amplitudes here are non-negligible
only for the nearest-neighbor site. The scaled eigenspectra,
shown in Fig. 2(b) for v € [30, 500], are likewise independent
of v.

A. Disorder and numerical methods

We introduce disorder by randomly varying the positions
of the scatterers, either shifting them radially off of the ring
or perturbing the angles between them. While angle disorder
results in anticorrelated off-diagonal disorder in the matrix
elements H,,, radial disorder leads to uncorrelated on-site
disorder and correlated off-diagonal disorder in H,, . The dis-
order scaling requires additional analysis since it is not clear a
priori that the disorder in position has the same v dependence
as the resulting disorder in the matrix elements. For example,
although angular disorder leads to first-order energy disorder
shifts with the same v scaling for all considered R values, in
the R = 1 and R = 0.5 cases radial disorder leads to additional
v dependencies that must be removed by scaling the positional
disorder with v. For R = 1 the radial disorder strength must
be diminished as v=%/3. These details are discussed further in
Appendix E. Figure 2(c) shows exemplary eigenspectra for
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FIG. 3. (a), (b) The minimum, mean, and maximum values of the normalized participation ratios for radial and angular disorder,
respectively. The dashed lines show the asymptotic behavior P ~ v”, labeled by the numerical fit values for y. (c), (d) The energy-resolved
distributions for 30 < v < 500, using the exact Hamiltonian, and 10® < v < 10° (blue curves) using the asymptotic model Hamiltonian. Note

that the equivalent M values are used as labels in (d).

weak radial disorder in the R = 1 ring. We used exact diago-
nalization to obtain the Rydberg composite’s eigenspectrum,
averaging over N' = 1000 disorder realizations.

An accurate extrapolation to the thermodynamic limit
demands the study of very high v. The transformed Hamil-
tonian [Eq. (3)] provides a clear numerical advantage over
brute-force diagonalization of the Rydberg Hamiltonian
[Eq. (2)] due to the reduced matrix dimension. For the largest
v studied here, 500, we diagonalize a matrix of dimension
500 in the site representation; this (fully dense) matrix has
dimension 2.5 x 10° in the Rydberg representation.

B. Localization measures

To quantify the extent of localization and systematically
show that all eigenstates localize in the thermodynamic limit,
one typically examines statistical properties of the eigenspec-
trum [30,31] or, as we do here, the eigenstates directly [32,33].
The normalized participation ratio, defined for the eigenstate

W) =30, cWlg) as

-1

M
Py = MY [P ] 4)
g=1

is a good indicator of the localization length. In a maximally
localized (delocalized) state, P — 1/M (P — 1). Perfectly
delocalized states with strictly real coefficients are character-
ized by P(k) = 2/3, and therefore we consider states with
P > 2/3 to be extended. In Appendix C we demonstrate
that the participation ratio in the site basis is equivalent to a
spatial participation ratio measured at the scatterer positions.
Localization therefore occurs simultaneously in both repre-
sentations.

IV. EXAMPLES OF DIFFERENT TYPES OF
INTERACTIONS

A. R = 1: Nearest-neighbor interactions

As implied by the nearest-neighbor hopping terms revealed
by Fig. 2, the R = 1 case allows for a direct comparison with
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FIG. 4. Characteristics of the perturbed Rydberg atom at R = 0.75 and R = 0.5. (a) Eigenspectra of the R = 0.75 ring for 30 < v < 500
plotted as a function of wave number (the mirror-image k > 0O spectra are not shown). The black curve shows the approximate spectrum
obtained in the v — oo limit. (b) The R = 0.75, v = 30 trilobite state. (c), (d) Eigenspectra of the R = 0.5 ring. The spectra for even v are
plotted only for negative & in (c) and odd v values are plotted only for positive k in (d). The black lines correspond to the flat band and on-site
energies for v = 500 discussed in Appendix E. (e) The R = 0.5 trilobite state for v = 30 and two exemplary eigenstates of the disordered
system. (f), (g) P distributions for several v values with fixed radial (for R = 0.75) or angular (for R = 0.5) disorder.

the standard Anderson model. The key results for this R value
are displayed in Fig. 3. In Figs. 3(a) and 3(b) we characterize
the extent of localization by plotting the minimum, mean,
and maximum values of P as a function of v. The fixed
disorder strength is sufficiently weak such that extended states
having P > 2/3 are still present for the lowest v values. Nu-
merical power-law fits of this data show that (P) ~ v=2/3 ~
M~', where () denotes an average over the entire spectrum
and disorder realizations. This numerical evidence clearly
indicates that all eigenstates of the R = 1 ring localize in the
thermodynamic limit.

To obtain these quantitative results, we performed addi-
tional calculations for v > 500, where the exact Hamiltonian
becomes numerically cumbersome to evaluate. For these val-
ues, we used the model Hamiltonian containing only nearest
and next-nearest neighbor hopping amplitudes detailed in Ap-
pendix E. These amplitudes, obtained asymptotically as v —
oo, give a quantitatively accurate model even for relatively
low v values v ~ 100. We demonstrate in Fig. 2(b) that the
spectra of the exact system and this model agree excellently
for all v values, and we then used the R = 1 model Hamilto-
nian for v > 500. Here, a calculation in the full Rydberg basis
would have involved the diagonalization of a dense matrix of
dimension 10! rather than the sparse matrix of dimension 10°
in the site representation.

The energy-resolved participation ratios shown in
Figs. 3(c) and 3(d) provide insight into the role of correlations
and the distinction between on- and off-diagonal disorder
[34-37]. The positively correlated off-diagonal radial
disorder manifests itself in the pronounced asymmetry
seen in Fig. 3(c), especially in contrast to the anticorrelated
off-diagonal disorder in Fig. 3(d), where only a small
residual asymmetry is present due to the negative
next-nearest-neighbor hopping term (see Appendix E). A
sharp feature in the band middle depends on the parity of
M: when M is odd (even) there is a minimum (maximum).
A state with infinite localization length is predicted to occur

at the exact band middle in one-dimensional models with
off-diagonal disorder [37-39]; this could be the source of this
feature, which is further modified by the correlated disorder.

B. R < 1: Long-ranged interactions

To illustrate the diversity of localization scenarios possible
with a perturbed Rydberg atom, we briefly discuss two other
ring sizes, R =0.75 and R = 0.5. As seen in the trilobite
states plotted in Figs. 4(b) and 4(e), the hopping amplitudes
for these cases extend over some (R = 0.75) and all (R = 0.5)
sites. We will first contrast the disorder-free properties of these
two systems before discussing their responses to the presence
of disorder.

For R = 0.75, the hopping terms oscillate as a function
of |¢ — ¢'| before decaying rapidly around |q — ¢'| ~ M/10.
At v — oo, the continuous form of the hopping ampli-
tudes tends asymptotically toward a sinc function, Vg, ~

v4sinc[+/3(g — ¢')], as discussed in Appendix E. As shown
in Fig. 4(a) this results in an eigenspectrum closely approx-
imated by a box function, whose flat bands are broadened
by the deviations from the asymptotic form of the hopping
amplitudes. Note that the spectra are only shown for half the
range of allowed wave numbers, since they are symmetric
about k = 0.

On the other hand, the R = 0.5 hopping amplitudes oscil-
late over the entire ring, rising to a maximum at the opposite
side [see Fig. 4(e)]. The effect is particularly strong for even
values of v, leading to a dimerization of the system [40] and
strongly impacting the observed disorder-free eigenspectra
shown in Fig. 4(c). These spectra condense into two relatively
flat bands separated by a wide band gap when v is even, or a
single band when v is odd. We find that the dominant hopping
amplitude V, ;12 scales as v='3/3, while the other hopping
amplitudes scale as v~>. When v is even, the model Hamil-
tonian discussed in Appendix E shows that the width of the
band gap scales as v~!/3 and thus closes in the thermodynamic
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limit. The strongly split levels around k =0 are mani-
festations of the all-to-all coupling, and survive in the
thermodynamic limit, as shown for a simplex model [41].

We now analyze which phenomena in the disordered cases
arise because of these different spectral features and hopping
amplitudes. Figure 4(f) shows three P distributions for the
radial-disordered R = 0.75 system. The regions with nearly
flat bands localize uniformly. The levels lying in the band gap
are well separated in energy, impeding localization, but as v
increases the gaps between these levels is found numerically
to close approximately as v~"27. This causes the band of ex-
tended states visible in Fig. 4(f) around i/M = 0.75 to shrink
as v increases, suggesting that the boundaries of this region
are not mobility edges but rather finite-size effects.

The P distributions for the angular-disordered R = 0.5
system are shown in Fig. 4(g). As in the previous cases,
localization occurs most rapidly at band edges: the band gap
present in the even-v spectrum leads to a pronounced valley
in the participation ratio that is absent in the odd-v case.
Figure 4(e) shows two exemplary v = 30 eigenstates from
this valley. These are approximately symmetric under reflec-
tion and localize on two opposite sites due to the dominant
opposite-neighbor coupling. Although the overall P distribu-
tions shrink to lower values as v increases, we find that states
near k = 0, for this disorder strength and range of v, appear to
remain extended. This is akin to the behavior of systems with
sufficiently long-range power-law interactions, which have an
extended state at the band edge in the thermodynamic limit
[42—44]. However, these results cannot be applied so simply
to the Rydberg system for which long-range correlation and
off-diagonal disorder can enhance localization [45].

V. CONCLUSIONS AND OUTLOOK

By uncovering and exploiting the surprising relationship
between the electronic eigenstates of a Rydberg composite
and those of a tight-binding Hamiltonian, we have connected
two paradigmatic concepts in atomic and condensed matter
physics and showed that the Rydberg electron of a hydrogen-
like atom can undergo Anderson localization. This mapping is
contingent on two atypical conditions in a single-particle sys-
tem: high degeneracy and an infinite spectrum of bound states.
Bertrand’s theorem states that the only central force potentials
in which all bound orbits are closed are the Coulomb and har-
monic oscillator potentials [46]; quantum mechanically, this
implies that these are unique in providing both the requisite
degeneracy and infinite spectrum. We expect that the states
of a quantum harmonic oscillator will localize under similar
conditions as discussed here, which may further elucidate the
supersymmetric links between these systems [47]. The study
of the two-dimensional hydrogen atom or elliptical harmonic
oscillators could reveal the role of inherent symmetry proper-
ties of the underlying structure in the localization properties
[48]. A ring of ground state atoms is not the only interesting
implementation of a Rydberg composite. Two-dimensional
systems could be considered by arranging scatterers into a
spherical shell, staggered, stacked, or intersecting rings, or
a helix. More generally, Rydberg atoms can be perturbed
by external fields rather than ground-state atoms; dynamical
localization and localization in the time domain have both

been predicted to occur in microwave-driven Rydberg atoms
[49,50].

We close with a few comments on the experimental study
of the isomorphism between these two systems that we have
described here. The experimental realization of a Rydberg
atom in a designed environment involves trade-offs between
the challenges of preparing and manipulating high Rydberg
states and the difficulty of positioning ground-state atoms.
Although a demonstration of Anderson localization as we
have strictly defined it here in the thermodynamic limit would
require large v and many scatterers, we stress that interesting
localization effects can already be seen for small numbers
of scatterers and moderate v. Experimental signatures of the
localization length could be provided by observables such as
the photoionization rate or dipole moments of the eigenstates.

To avoid the challenges associated with trapping the scat-
terers in tweezer arrays close to the Rydberg atom, one could
study instead a Rydberg atom in a dense ultracold gas. Such
experiments are routinely performed at densities where many
tens or hundreds of atoms are found within the Rydberg orbit
[14]. Due to the random positions of the scatterer atoms, the
corresponding tight-binding system is characterized by strong
on-site disorder and a complicated set of strongly disordered
hopping amplitudes. Although the phenomenology of local-
ized states under these conditions is generally known [51,52],
characterizing localization systematically in the thermody-
namic limit will be more challenging here, as the disorder
is very strong and uncontrolled and it is not even clear if a
thermodynamic limit exists.
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APPENDIX A: ADDITIONAL DETAILS OF THE
HAMILTONIAN

In this Appendix we show how to construct the Hamil-
tonian [Eq. (2)] from the microscopic Hamiltonian of the
perturbed Rydberg atom,

M
H = Hyya + ) Hin(9). (A
g=1
The Hamiltonian for an alkali Rydberg atom is
Vi1
HRyd = _7 - ; + Vae(r), (A2)

where Vi (r) is an empirically derived potential parametrizing
the effect of the multielectron core [29]. Because of this non-
Coulombic potential, the eigenenergies of Hgyq are in general
different from those of hydrogen. The energies follow a mod-
ified Rydberg formula including a set of energy-independent
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quantum defects u,, i.e.,

Hgyq|vi) = [vi). (A3)

20— w)?
We use the Fermi pseudopotential to describe the interaction
between the electron and a scatterer [25]:

Hin(q) = 27 a,[k(R)18*(F — R,). (A4)

In doing so, we include only the contribution due to s-wave
scattering of the electron from each atom. This is justified due
to the low kinetic energy characteristic of the Rydberg elec-
tron, which suppresses the influence of higher order partial
waves.

Expressing Hryq in terms of its eigenstates |vi) and rewrit-
ing the Fermi pseudopotentials yields the Hamiltonian

M
H=-3 ————— 421> akR)IIR)(R,|. (A5)
vi 2(‘) - H“li) g=1

|vi){vi|

The quantum defects in the first term break the level degener-
acy which is crucial for the separable form of . However,
because of the short-ranged character of V.(r), u; = 0 in
alkali atoms for all / > 3. The derivations used throughout can
therefore proceed just by excluding the low angular momen-
tum states from the degenerate manifold. For simplicity, we
have set all i; = 0 in our calculations. To obtain Eq. (2) all
that remains is to express Eq. (A5) in the basis of degenerate
states with fixed v.

The coupling between different degenerate manifolds is al-
ready negligible for the smallest v we consider here (v = 30)
due to the relatively weak effect of the scatterers compared to
the overall Coulomb energy scale. Furthermore, this coupling
will vanish in the thermodynamic limit because the energy
separation between Rydberg manifolds, determined by the
first term in Eq. (A5), scales as v—>, while the width and center
of mass of the perturbed subspace drop off as v or faster.
Thus, we are well justified in considering each degenerate v
manifold of H separately for all v considered. If desired, the
three approximations discussed here—the neglect of higher-
order partial waves, of nonperturbative coupling to other v
manifolds, and of quantum defects—can be relaxed using the
generalized trilobite orbital protocol developed in Ref. [29].

APPENDIX B: TRANSFORMATION BETWEEN RYDBERG
ATOM AND LATTICE REPRESENTATIONS

In this Appendix, we discuss in more detail the transfor-
mation U used in the text and the transformation between
eigenstates in both representations. We use Einstein notation
when summing over repeated indices, using g or p to label
scatterer indices which run from 1 to M and indices i and j
to label Rydberg basis states, which range from 1 to v2. For
all scenarios considered in this article, v2 > M. To review the
relationships defined in the main text, we have

Hi =20 W W, (B1)
Uy = [W'W)™721, W], (B2)
Ul =W loWWw)~'2],,. (B3)

It is straightforward to show from these definitions that U is a
semiunitary transformation satisfying

i
quUiq/ = (Sqq’s (B4’)
Ut Uy = Wil VW) Wi = Q. (BS)
Furthermore, using these derivations, we have
Hir = QijH;jy Qi (B6)
i
Hyy = UyiHii Uy B7)

We use Eq. (B6) to rewrite the eigenvalue equation yielding
the eigenenergies in the Rydberg basis:
EU,‘ = ’H,-i/v,-r = U;;quijUlijpi/U,‘f.
Applying U,; to both sides and defining the transformed eigen-
vector
ﬁq = Uqﬂ)l‘ (B8)

gives

Evy = Uy MU By = Hyg oy (B9)

Diagonalization of H yields the M nonzero eigenvalues Ej of
‘H and their associated eigenvectors f);k).

To complete this section, we show the transformation be-
tween these eigenvectors and those in the Rydberg basis, vfk).
Using Eq. (B2) to rewrite Eq. (B8) yields

[(WTW)I/Z]qu);k) — WT U(k).

qi”i

(B10)

Since »(") is an eigenvector of H, we can replace the matrix
on the left side of this equation with the eigenvalue E:

Ec/Q@m)od = Wi (B11)
Multiplying by 27 W, leads to
V2T E Wy 58 = Hyo®. (B12)

Using the eigenvalue equation again to replace the right-hand
side of this expression with Ekvl.(k) yields the relationship

2
o = |2y, 5
E; 4

between the eigenvectors in the two representations.

(B13)

APPENDIX C: EQUIVALENCE OF
LOCALIZATION MEASURES

We have used the normalized participation ratio P to
characterize the localization of the electron and relate its
localization behavior to that of a particle in a lattice. As
defined in Eq. (4), P characterizes localization in the site
basis. However, a desirable condition is that localization in
this representation remains physically meaningful when we
discuss the localization of the Rydberg electron. As seen in
the eigenstate figures presented in the text and the relationship
Eq. (B13), the amplitudes of the eigenstates in both repre-
sentations are clearly related; here we make this argument
rigorous by showing that the normalized participation ratio
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computed in position space is equivalent to what is calculated
in the site basis.

To begin, we compute the probability of finding the elec-
tron at the position of scatterer p,

2
Prob(p) = PRy (C1)
which can be rewritten in terms of W,
2
— Fo, k)
Prob(p) = ‘ZWW v; (C2)

By then transforming the eigenvector vi(k)

we obtain

into the site basis

Prob(p) = @1,

2
1q q _
Z (k)]l 20 T (€3)
where we have recognized the appearance of the Hamiltonian
matrix acting on the eigenvector.
We define Pypyiar(k), the normalized spatial participation
ratio, by summing the probabilities to find the electron at any
of the scatterer positions,

-1
Ppatial (k) = (MZ |Prob<p>|2) :
P

Using Eq. (C3) in Eq. (C4) and comparing the result with
the definition of P(k), we see that Pgpaiar (k) = Pk)/[e®12.
Localization in the site basis implies spatial localization, al-
beit with a normalization factor given by the eigenenergy of
state k.

This normalization factor can be removed by considering
relative spatial probabilities in the formulation of Pgpagiar (k),
since the most relevant localization measure is not localization
relative to the entire allowed volume (which our previous mea-
sure characterizes) but instead localization within the spatial
volume of interest. The probability of finding the electron at
the position of one scatterer relative to the total probability of
finding it at any scatterer is

Prob(P) — |1"}(k) |2
> p Prob(p)

Note that as long as the eigenvectors are normalized, this
probability is normalized so that there is unit probability to
find the electron on the ring of scatterers, i.e., Zp P(p)=1.
Using this probability to define the spatial participation ratio
gives

(C4)

P(p) = (©5)

-1 —1
MY PP =m0
p p

This final step is identical to P(k), and thus we conclude that
the two participation ratios are equivalent.

Pspatial (k) =

APPENDIX D: NUMERICAL DETAILS OF THE DISORDER

We introduce disorder to the ring Rydberg composite either
by shifting the angles of the scatterers, ¢, — 2ﬁ”[q + 841,

or their positions, R, — [1 + 8,(v)IR,. We take §,, §, to be
independent Gaussian random variables with variance o> and
mean zero. For the specific examples shown in the text, we
choose different values of o. For R =1, we choose o =
17 x 1073 for angle disorder and o = (2 x 1073)(30%/3) ~
0.01931 for radial disorder. For R = 0.75 we show only re-
sults for radial disorder, where o = 1.33 x 1073, and for R =
0.5 we show only angular disorder with ¢ = 22 x 1073, In all
cases we averaged over 1000 disorder realizations.

APPENDIX E: MATRIX ELEMENTS IN THE
THERMODYNAMIC LIMIT

In order to study the behavior of the ring Rydberg compos-
ite in the thermodynamic limit, we need to carefully examine
the analytical expressions for the matrix elements H,,. The
on-site potentials £, and hopping amplitudes V,,, are [19,29]

E; =) Rin(Ry. Ry), (El)
1

Vig = 3 Rin(Ry, Ry)e " @0, (E2)

Im

where
+ g =
le(Rq’ Rl]') - (l 2)(l lml)'l(_l,:_ m2)'
y |:le(21)2Rq):| [Muz(szRq,)

2 2
R,v Ryv

:|. (E3)

The functions u,;(r) are the reduced hydrogen radial functions
and u,(r) = % These expressions can be analytically
summed [29], yielding

_ (Rq_] - 1)[uuo(2v2Rq)]2 + v [, (V2RI

¢= 212 E4
and
Vyy = o (1o (t4) — qu(t—)u(,()(t-k), (ES)
2tr —1-)
with
tr =V (R, +Ry) £ uz\/Rg + Ré, — 2R, Ry cos(¢y — Py
(E6)

It is remarkable that only the s-wave radial wave function is
necessary to evaluate these expressions, making them useful
for determining asymptotic properties and for computations.
Although u,(r) and u,,(r) oscillate as a function of v, some
well-defined limits exist:

u,0(0) =0, (E7)
iy (0) = 2072, (E8)
vli{go Uy (202) = av /6, (E9)

lim Uy (2v?) = by /0 (E10)
where a ~ —0.56355 and b ~ (0.326.
We can study the behavior of the composite for the three

R values discussed in the text. For each, we will study the
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asymptotic behavior of the matrix elements in the disorder-
free scenario to uncover their scaling behavior and develop
useful model Hamiltonians. Following that, we will treat the
influence of disorder analytically by expanding the Hamilto-
nian matrix elements to first order in the positional disorder,
and perform the asymptotic analysis again to find the influence
of positional disorder on the energies.

R =1 ring. The R =1 case has some particular scaling
laws not followed by the other ring sizes due to its size
coinciding with the outermost classical turning point. From
Egs. (E4), (ES), and (E10), we obtain

[u;0(2U2)]2 ~ b2U_13/3

lim E, = Ell
Vb 2 2 (EID
Plugging in numerical values yields E, = a;v~'¥/3 where

a; ~ 0.053138. To obtain off-diagonal matrix elements with
the same v~'3/3 scaling, we find that we must set M =
Floor(3v?/?). With this choice, the largest hopping amplitudes
are

lim V01 = biv "3, by 2 0.01355, (E12)
V—>00
lim V10 = —civ™ ", ¢; & 0.0004. (E13)
V—>00

We see that the next-nearest-neighbor hopping amplitude is
already 30 times smaller than the nearest-neighbor amplitude;
longer-ranged hopping amplitudes continue to decrease in
size and are negligible. This justifies the model Hamiltonian
discussed in the text,

M
HEL =v733 > (ailg) (gl + bilg) (g + 1]
q=1

—cilg)(g + 2| +c.c.). (E14)

The next-nearest-neighbor hopping term creates the slight
asymmetry in the eigenspectrum shown in Fig. 3.

We now perturb the positions of the scatterers as prescribed
in Appendix D. The matrix elements are, for large v,

VBBE, ~ ay — g5, (E15)
VPV 2 by — fi(Sy —8y) — e (8, +384), (E16)
vIBY, 0~ —cy, (E17)

where e; =~ 0.015, f; = 0.04, and g; =~ 0.1519. As stated in
the text, angle disorder (terms depending on E) leads to an-
ticorrelated off-diagonal disorder in the Hamiltonian matrix
elements, proportional to §, — 8,. On the other hand, radial
disorder leads to uncorrelated diagonal disorder proportional
to §, and a weaker, correlated off-diagonal disorder propor-
tional to Sq + 8_(,/. These conclusions are true in general for
all values of R. However, a special feature of this R = 1 case
is the scaling of the terms proportional to 8, with v?/3. This
indicates that we must rescale the radial positional disorder
by a factor v=%/3 in order to provide a constant matrix element
disorder as v increases in order to obtain a proper thermody-
namic limit.

R = 0.75 ring. This R value is more challenging to address
analytically as there are more nonzero hopping elements to

0.006

T

=2
>
N

-0.006 J
0.00 0.02 0.04 0.06 0.08 0.10 0.12

FIG. 5. Exact hopping amplitudes for v = 1000 for the R = 0.75
ring (blue) compared with the asymptotic form, Eq. (E19) (red). The
points mark specific scatterer positions.

consider than in the previous case. The diagonal matrix ele-
ments are

1 2
1=57 |:§[uvo(3/2\12)]2 + vz[u;oo/zvz]} . (E18)
which simplifies further as v — oo to become E, ~ “* with
ap.75 = 0.1833. In this same limit, the hopping terms for rela-
tively small |¢ — ¢'| < v/20 approach the functional form

ag.7s sinfw(g — ¢")]

Vg ~
“ vt wlg—q)

, (E19)

where w = 7+/3. For larger distances along the ring, v/20 <
lg — ¢'| < v/10 (approximately), the hopping terms continue
to oscillate, but with mostly constant amplitude. At |¢ — ¢'| =
v/10, the hopping terms rapidly decay to zero (see Fig. 5).

Asinthe R = 1 case, we use this as the basis for an analytic
model for this case, although it gives only qualitative insight
here. We assume that the hopping amplitudes follow Eq. (E19)
for |g — ¢'| < v/10 and vanish for all other ¢, ¢’ pairs. The
eigenspectrum of such a Hamiltonian, shown as the black
curve in Fig. 4(a), is a very good qualitative match to the actual
Rydberg spectrum. The cutoff length, after which the hopping
amplitudes vanish, affects the bandwidth of the two individual
bands, which flatten and narrow as the cutoff length increases.

Performing the same disorder analysis as for R = 1, we
find that the energy disorder stemming from radial disorder is
proportional to §v™*, and therefore the radial disorder in this
case needs no additional scaling. The angular disorder scaling
behaves similarly as before, requiring no additional v scaling
beyond what is done for the matrix elements.

R = 0.5 ring. The diagonal elements are straightforward to
evaluate for the R = 0.5 ring:

Ey = 53 (0P + 2, 00P), (B20)
which becomes E, ~ agsv~*, where ags ~ 0.3183, as v —
oo. The largest hopping amplitude, due to the shape of the
trilobite orbitals, connects site g to site g + M/2 if M is even
and site ¢ + (M £ 1)/2 if M is odd. The parity of M therefore
plays a key role in the overall form of the eigenspectrum, in

contrast to the previous R values where it was irrelevant. When
M is even, the dominant hopping term is

MLO(O)Mvo(sz) _ qu(zvz)
42 T2

Vq,q+M/2 = (E21)

033032-9



EILES, EISFELD, AND ROST

PHYSICAL REVIEW RESEARCH §, 033032 (2023)

Asymptotically, this scales like V, g4mp =~ —cosv 133,

where cos ~ 0.2818. When M is odd, the two neighboring
particles on the opposite side of the ring have identical am-
plitudes, also scaling like v='3/3. For other hopping terms the
expression V,, no longer depends on the exceptional scaling
of u,0(2v?) and u/,(2v?) [see Egs. (E9) and (E10)] and we
can use the “standard” scaling behavior u,o(v?) ~ v~ and
u;o(vz) ~ v~2. Together this gives a v™> scaling for the off-
diagonal elements.

This ring is therefore distinct from the other two that we
have considered in that its matrix elements scale with v in
different ways. To understand the resulting eigenspectrum in
the even parity case, we construct an approximate Hamil-
tonian, specializing to the even-M case for simplicity. This
approximate Hamiltonian is

M
Hypo =v7*) [ao.5|q><q| —cosv™Plg) (g +M/2|
q=1

(E22)

>

q'#q,9+M/2

b().5V1|Q>(q,|:|-

The crucial simplification in this Hamiltonian that is not
present in the exact Rydberg Hamiltonian is the assumption
of a constant hopping amplitude for all sites except the one
on the opposite side of the ring. In actuality, the amplitudes
vary over the entire range of the ring. We ignore the overall
v~* scaling and the trivial diagonal energy ags in the fol-
lowing. Equation (E22) can be diagonalized analytically to
gain some insight into the Rydberg composite’s spectrum.
It has a v/2 degenerate eigenvalue e; = cosv~"/3, a v/2 —

1 degenerate eigenvalue e, = —2bgsv~' —cosv~"/3, and a

single eigenvalue e; = bys(v — 2w~ — ¢osv~1/3. For large

v the eigenspectrum consists of two flat bands at the energies
+c5v71/3, and a single state lying at by s — cosv~'/3. In the
thermodynamic limit the band gap closes completely and the
system condenses to a flat band at zero energy and a single
shifted state at energy bgs. In this limit, the system qualita-
tively resembles the odd-parity M state. Although this is a
highly simplified qualitative picture of the R = 0.5 Rydberg
eigenspectra, the basic features exist also in the real case, as
can be seen by studying Fig. 4(c).

Just as the disorder-free properties of this ring size are more
complicated than those of the other rings, so is its disorder
scaling. Angle disorder perturbs the dominant hopping ampli-
tude by a term which is second order in the positional disorder
strength, but overall scales as v~13/3 the same scaling as the
disorder-free value. Angle disorder is, therefore, weaker in
this case than it is in the previous R values. Under radial disor-
der, this hopping amplitude is perturbed by a first-order term
in the positional disorder strength. This term scales as v—'!/3,
which, like in the R = 1 case, demands that the positional dis-
order be rescaled to obtain a consistent thermodynamic limit
scaling. Like the R = 1 case, this also requires a rescaling
of the positional disorder, § — v~%/3§. This rescaling would
cause the diagonal disorder to vanish as v — o0, as it scales
with disorder as V4.

Since all of the relevant matrix elements discussed in this
section decrease as a function of v as either v=* or v—13/3,
the relevant timescales for the dynamics in the tight-binding
Hamiltonian grow as v* or v'3/3, respectively. The lifetime
of the Rydberg atom, on the other hand, increases (averaging
over all  and m states of a fixed v) as v%/? [5]. Therefore, as v
increases, the Rydberg lifetime is guaranteed to be sufficient
for interesting dynamics to occur.
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