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Intertwined orders and electronic structure in superconducting vortex halos

Yi-Hsuan Liu,1,2 Wei-Lin Tu ,3 Gia-Wei Chern,2 and Ting-Kuo Lee 1,4,5,*

1Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan
2Department of Physics, University of Virginia, Charlottesville, Virginia 22904, USA

3Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
4Department of Physics, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan

5Institute of Physics, Academia Sinica, Nankang 11529, Taiwan

(Received 20 December 2022; revised 3 May 2023; accepted 7 June 2023; published 14 July 2023)

We present a comprehensive study of vortex structures in d-wave superconductors from large-scale renor-
malized mean-field theory of the square-lattice t-t ′-J model, which has been shown to provide a quantitative
modeling for high-Tc cuprate superconductors. With an efficient implementation of the kernel polynomial method
for solving electronic structures, self-consistent calculations involving up to 105 variational parameters are
performed to investigate the vortex solutions on lattices of up to 104 sites. By taking into account the strong
correlation of the model, our calculations shed new light on two puzzling results that have emerged from recent
scanning tunneling microscopy experiments. The first concerns the issue of the zero-biased-conductance peak
(ZBCP) at the vortex core for a uniform d-wave superconducting state. Despite its theoretical prediction, the
ZBCP was not observed in most doping range of cuprates except in heavily over-doped samples at low magnetic
field. The second issue is the nature of the checkerboard charge-density waves (CDWs) with a period of about
eight unit cells in the vortex halo at optimal doping. Although it has been suggested that such bipartite structure
arises from low-energy quasiparticle interference, another intriguing scenario posits that the checkerboard CDWs
originate from an underlying bidirectional pair-density wave (PDW) ordering with the same period. We present a
coherent interpretation of these experimental results based on systematic studies of the doping and magnetic-field
effects on vortex solutions with and without a checkerboard structure. Due to the small size of Cooper pairs, the
vortex core has a radius of about three unit cells, which results in a strong spatial dependence on pairing fields.
This may be an important mechanism for the formation of PDW states inside the vortex core.

DOI: 10.1103/PhysRevResearch.5.033028

I. INTRODUCTION

The high-temperature superconductivity (SC) of cuprates
is marked by the many ordering tendencies that either compete
or coexist with the superconducting phase itself [1–5]. For
example, charge-density waves (CDWs), either unidirectional
or bidirectional, have been observed in all families of hole-
doped high-temperature superconductors (HTSCs) [6–8]. The
extensively studied stripe order in cuprates correspond to a
unidirectional CDW, often accompanied by a spin-density
wave (SDW). The CDW order, which is intimately related to
the intriguing pseudogap phase of cuprates, is short-ranged at
zero field [9–12]. Both the strength and correlation length of
the CDW is enhanced by the magnetic field [13–15]. On the
other hand, the onset of SC causes the reduction of the CDW
amplitude, suggesting that these two orders are strongly in-
tertwined with each other [10,16]. The many unusual features
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of charge-density modulations in the pseudogap phase, such
as the doping dependence of the modulation period, suggest
that the CDW is a subsidiary order which results from a more
fundamental pair-density wave (PDW) ordering.

A PDW is a superconducting state in which the pairing
order parameter varies periodically in space [17]. The idea
of a modulated pairing density was first introduced by Fulde
and Ferrell and by Larkin and Ovchinnikov (FFLO) in a BCS
model to overcome the Pauli limiting effect of a magnetic field
[18,19]. Recently, PDW states without any explicit breaking
of time-reversal symmetry have been proposed to exist in
cuprates, especially in connection with the pseudogap phases
[20–22]. In particular, the PDW order and its partial melt-
ing could lead to a variety of vestigial states including the
CDW, possibly coexisting with a SDW mentioned above, and
an unusual charge-4e superconductivity [23], among others.
The rich PDW phenomenology seems to provide a natural
explanation for the complexity of cuprate HTSC. Moreover,
the scenario of decoupled layers of orthogonal planar PDW
orders could account for the observed huge anisotropy of
resistivity well above the nominal SC transition temperatures
in La2−xBaxCuO4 at the 1/8 hole doping [24–26].

Direct imaging of PDW orders has also been reported
in hole doped Bi2Sr2CaCu2O8+x (Bi2212) using atomic-
resolution superconducting STM tips [27]. The amplitude
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of these modulations is characterized by a eight-unit-
cell periodicity or wave vectors Qx = (1/8, 0)(2π/a) and
Qy = (0, 1/8)(2π/a), where a is the lattice constant. Simulta-
neous measurement of local density of states found electronic
modulations with wave vectors Qx,y and 2Qx,y [27], which
are consistent with the picture of a PDW coexisting with a
uniform d-wave superconductivity [28]. The nature of this SC
state at zero magnetic field and its relationship with the PDW
order, however, remains to be resolved. Given the complex
nature of the cuprate superconductors with several energeti-
cally nearly degenerate ordered states, extrinsic effects such
as impurity and disorder likely play an important role in the
stabilization of this intriguing state with mixed SC and PDW
ordering.

As the pairing order parameter is suppressed near a vortex
core, magnetic-field induced vortices offer a fruitful platform
to further investigate the subtle interplay between PDW and
superconducting condensate. Indeed, for quite some time, a
number of STM experiments have reported a nonuniform
charge density and spectra inside the halo region surrounding
the vortex core [29–33]. A checkerboard pattern with a 4a ×
4a unit cell were observed in almost all samples. This checker-
board charge-density modulation can also be viewed as a
bi-directional CDW with wave vectors 2Qx and 2Qy, which
are twice that of a fundamental PDW discussed above [27,34].
What is also striking is the bipartite electronic structure at
the vortex core [33]. At low energy, quasiparticle interference
(QPI) dominates in the conductance while at higher energy,
the energy-independent CDW patterns emerge.

Recently this vortex halo has been further studied and
proposed to be a bidirectional PDW by Edkins et al. [34]. The
discrete Fourier transform of the conductance map of the halo
reveals a modulation of the charge density N (r) with peaks at
wave vector Qx,y, in addition to the previously observed 2Qx,y.
Phenomenologically, this again suggests the coexistence of
uniform SC condensate �SC and the PDW order �Q with
wave vectors Q = Qx and Qy. In this scenario, a CDW order
could result from couplings �Q�∗

SC as well as �Q�∗
−Q, hence

giving rise to charge modulations with a wave vector Q and
2Q, respectively [17].

The recent STM experiments also reinvigorate a long-
standing puzzle of cuprates. Due to the nodes of d-wave
pairing order, it is expected and confirmed by theoretical cal-
culations [35,36] that a zero-biased conductance peak (ZBCP)
[37] should be present at an isolated vortex center. Intrigu-
ingly, however, this peak has so far not been detected in
most experiments. Instead, a subgap structure was reported
[33]. Several scenarios, e.g., the presence of a concomitant
antiferromagnetic or SDW order [38,39] or an induced hidden
dxy pairing [36] in the halo region, have been proposed to
explain this discrepancy. A consensus has yet to be reached
among researchers.

The issue of the vortex-induced ZBCP is further compli-
cated by a recent experiment showing a ZBCP at the vortex
core under extremely low magnetic field (B ≈ 0.16 T) in an
over-doped Bi2212 sample [40]. In addition, at a hole doping
of around δ = 0.2, the conductance map and spectra in the
halo region of a 3T vortex are shown to be very similar to
that due to a checkerboard charge modulation in under-doped
samples reported by others. However, the wave vectors associ-

ated with the checkerboard seem to disperse within an energy
range of 3 to 10 meV. This result seems to be related with
the aforementioned bipartite structure found by Machida et al.
[33] for an optimally doped sample under an 11.25 T magnetic
field, yet with very different dopant density and field strength.

All these recent results posed several new interesting ques-
tions. Is the ZBCP only present in over-doped samples? Or is
it suppressed by the presence of a PDW or checkerboard state?
Is the bipartite structure inside a vortex an intrinsic property of
the PDW state? What role does the QPI play in the formation
of checkerboard halo states? What is the mechanism for the
inducement of the checkerboard pattern inside a vortex? To
answer these questions, one must examine the vortex struc-
ture as a function of magnetic field and dopant density. In
particular, under- and optimal-doped samples may have very
different structures from that of the over-doped samples.

The effects of PDW order on the vortex and the associated
electronic structures have also been examined in several re-
cent theoretical studies [28,41,42]. In these approaches, the
order parameter fields of a vortex are obtained from phe-
nomenological Ginzburg-Landau free energy functionals. A
quadratic lattice fermion model with input from the order-
parameter solutions is diagonalized to study the electronic
properties, e.g., local density of states, of the vortex. Such
semi-empirical approaches can provide qualitatively experi-
mental signatures due to different ordering scenarios, such as
whether the checkerboard pattern is driven by a primary PDW
order, or the other way around. Yet, a fully self-consistent
theoretical modeling of vortex halos, especially one based on
well-defined microscopic models, is still lacking. Moreover,
electron correlation effects, which are known to be important
for cuprate materials, cannot be properly included in the phe-
nomenological approaches.

In this paper, we present a comprehensive study on the
structure of vortex halos based on large-scale self-consistent
calculations of the well-studied t-J model with an additional
frustrated second-neighbor t ′ hopping. It is worth noting that
several advanced many-body techniques, ranging from un-
restricted mean-field method and variational Monte Carlo
(VMC) simulation to density matrix renormalization group
(DMRG) and tensor-network methods, have been applied to
study the intertwined orders in strongly correlated electron
systems [43–49]. In particular, PDW order has been demon-
strated in the Hubbard and t-J models, as well as their
variants. While sophisticated methods, such as DMRG or
infinite projected entangled paired states (iPEPS), generally
can give more accurate results, and numerically exact results
for 1D models, so far they can only be applied to relatively
small two-dimensional (2D) systems, and hence are not fea-
sible for studying large-scale inhomogeneous states such as
superconducting vortices.

On the other hand, renormalized mean-field theory
(RMFT) has proven an efficient method for solving complex
structures in t-J type correlated electron models [50–54]. As
in most mean-field type approaches, the many-body Hamil-
tonian is reduced to an effective single-particle problem
which is to be solved self-consistently. Yet, unlike standard
Hartree-Fock type approximations, the strong electron cor-
relation effects in such systems can be properly captured by
the Gutzwiller approach employed in the RMFT [55–57].
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Importantly, fairly quantitative agreement with STM and
angle-resolved photoemission spectroscopy experiments on
cuprates have been obtained from RMFT calculations of the
frustrated t-t ′-J model [58–62]. The efficiency of our RMFT
calculations is further improved significantly by incorporating
the kernel polynomial method (KPM) [63,64] for solving
the renormalized tight-binding Hamiltonians, which has to
be repeated up to thousand of times in the self-consistency
calculation. By applying the RMFT method to the t-t ′-J model
on square-lattice of up to 104 sites, we obtain detailed vortex
solutions where up to 105 variational parameters are solved
self-consistently.

Our large-scale RMFT calculations find several vortex
solutions with nearly degenerate energies. This result again
underscores the complex nature of the superconducting phase,
and is reminiscent of previous works showing multiple
density-wave states whose energies are almost degenerate
with that of uniform d-wave SC state [48,49,53,58]. In addi-
tion to conventional vortices in a uniform d-wave background,
of particular interest is a self-consistent vortex solution where
a bidirectional PDW with a period 8a coexists with a charge-
density modulation of the same period, which is twice the
period of the charge-density wave order resulting from the
second harmonic of a unidirectional PDW in the absence of
a vortex. This solution, which is obtained without invoking
special features of the Fermi surface, is consistent with recent
STM experiment [34].

By carrying out systematic study of the field and doping de-
pendencies of these vortex solutions, a coherent and consistent
picture is provided for recent STM experiments and the issues
of ZBCP. We show that, due to the strong correlation and the
orbital dx2−y2 symmetry, the conductance spectra of STM does
not have a ZBCP in the under- and optimal-doped regimes
even for a plain vortex state. Moreover, the vortex solution
with a bipartite checkerboard patterns is shown to result from
coexisting bi-directional PDW, CDW, and SDW orders. Such
vortices with intertwined orders exhibit energy independent
wave vectors at higher energy but with QPI dispersion at low
energy. It also shows a larger s + s′ form factor than that of the
d-wave symmetry. Finally, the mechanism for the emergence
of the checkerboard state inside a vortex is discussed.

II. MODEL AND METHODS

The hole-doped CuO2 plane of copper oxides can be well
described by the generalized t-J model, which corresponds to
the strong-coupling limit of the Hubbard model. Its Hamilto-
nian reads

Ĥ = −
∑

i j

∑
σ=↑,↓

P̂Gti j ĉ
†
iσ c jσ P̂G + J

∑
〈i j〉

Ŝi · Ŝ j, (1)

where ĉ†
iσ (ĉiσ ) is the creation (annihilation) operator of an

electron at site-i with spin σ , and Ŝi = ĉ†
iσ σσ,σ ′ ĉiσ ′ is the

electron-spin operator at site i, ti j denotes the electron transfer
integral between the Cu dx2−y2 orbitals at sites i and j. In the
t-t ′-J model to be studied in this work, only electron hopping
t between nearest-neighbor and t ′ between next-nearest-
neighbor pairs are included in the first term. The notation 〈i j〉
in the second term denotes the nearest neighbors. The effect
of the strong on-site Coulomb repulsion U → ∞ is accounted

for by the Gutzwiller projector P̂G = ∏
i(1 − n̂i↑n̂i↓), which

eliminates all doubly occupied orbitals; here n̂iσ = ĉ†
iσ ĉiσ is

the electron number operator at site i. The residual charge
fluctuations between nearest-neighboring pairs 〈i j〉 leads to
the antiferromagnetic superexchange J ∼ t2/U in the second
term above. In the presence of a magnetic field B, its effect
is accounted for by the Peierls substitution ti j = teiφi j , where
φi j = −π

�0

∫ r j

ri
A(ri ) · dri, where �0 = hc

2e is the superconduct-
ing flux quantum, and A is the corresponding vector potential.
In our implementation, a Landau gauge A = B(0, x) is used.

For large-scale calculations of inhomogeneous states such
as those with vortices, the above t-t ′-J model is solved using
the RMFT method [50–54,58–62]. In this approach, the strong
electron correlation, as encapsulated by the projector P̂G, is
treated by the Gutzwiller approximation, giving rise to the
following renormalized Hamiltonian

Ĥrenorm = −
∑
i j,σ

gt
i jσ ti j (ĉ

†
iσ ĉ jσ + H.c.)

+
∑
〈i, j〉

J

[
gs,z

i j Ŝz
i Ŝz

j + gs,xy
i j

(
Ŝ+

i Ŝ−
j + Ŝ−

i Ŝ+
j

2

)]
. (2)

Here gt
i j and gs

i j are Gutzwiller factors that account for the
renormalization of the hopping amplitude and the exchange
interaction, respectively. The exchange interaction J , which
leads to the SC pairing [65] and other intertwined orders,
is treated by the Hartree-Fock-Bogoliubov mean-field decou-
pling. In this work, we consider the following mean-field
order-parameters:

(i) the on-site hole density

δv
i = 1 − 〈(n̂i↑ + n̂i↓)〉; (3)

(ii) the local magnetization

mv
i = 〈Ŝz〉 = h̄

2
〈(n̂i↑ − n̂i↓)〉; (4)

(iii) the bond-order between neighboring Cu sites

χv
i jσ = 〈ĉ†

iσ ĉ jσ 〉; (5)

(iv) and the local electron pairing field on nearest-
neighbor bonds (σ̄ = −σ )

�v
i jσ = σ 〈ĉiσ ĉ jσ̄ 〉. (6)

Here the superscript v is a reminder that these parameters,
while each related to physical observables, are not directly
measurable quantities; a proper renormalization factors have
to be included for experimental comparisons. The average
〈Ô〉 = 〈	0|Ô|	0〉 denotes expectation value of operator Ô
with respect to a variational Slater wave function |	0〉. The
Slater state is constructed from eigenstates of an effective
tight-binding Bogoliubov–de Gennes (TB-BdG) Hamiltonian

Ĥeff =
∑
(i j),σ

(Ti j,σ ĉ†
iσ ĉ jσ + H.c.) −

∑
i,σ

μiσ n̂iσ

+
∑
〈i j〉,σ

(σDi jσ ĉ†
iσ̄ ĉ†

jσ + H.c.), (7)

where Ti jσ , Di jσ , and μiσ are effective hopping, pairing,
and on-site energy parameters, respectively, defined as the
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derivatives of the variational energy of the renormalized
Hamiltonian with respect to the local order parameters:

Ti jσ = ∂W

∂χv
i jσ

, Di jσ = ∂W

∂�v∗
i jσ

, μiσ = ∂W

∂niσ
. (8)

Here W = 〈	0|Ĥrenorm|	0〉 supplemented by Lagrangian mul-
tipliers for enforcing the wave function normalization and
the conservation of electron number, and niσ = 〈n̂iσ 〉 is the
local electron number; see Appendix A for details. These
parameters in turn depend the local order-parameters listed
in Eqs. (3)–(6), that are determined self-consistently. To allow
for spatial inhomogeneity, these site and bond-dependent pa-
rameters, with a total number of the order of 105, are treated as
independent and optimized in real-space RMFT calculations;
details of the method are presented in Appendix A.

In the RMFT calculations, the numerous local mean-field
parameters are solved self-consistently through iterations. For
systems with up to N = 104–105 sites, each iteration re-
quires solving a large 2N × 2N tight-binding matrix. For
unrestricted optimizations, a number of 1000–3000 iterations
are routinely required to reach satisfactory convergence. Al-
though the TB-BdG Hamiltonian can be exactly solved by
the exact diagonalization (ED), the poor O(N3) scaling of
ED renders it infeasible for large-scale calculations. Here,
instead, we incorporate the kernel polynomial method (KPM)
[63,64,66], which provides a linear-scaling O(N ) approach to
electronic structure problems, into the RMFT framework.

In this approach, the total or local DOS of the system is ex-
panded as a Chebyshev polynomial series whose coefficients
are efficiently computed through matrix-vector products,
which can be made linear-scaling for large sparse TB matri-
ces. The various correlation functions 〈c†

iσ c jσ ′ 〉 and 〈ciσ c jσ ′ 〉
required for the computation of local order parameters are
obtained through automatic differentiation. We note in passing
that KPM has been used within the conventional Hartree-
Fock-Bogoliubov mean-field to study large-scale structures
of SC states [67–69]. Yet, the introduction of the Gutzwiller
renormalization factors significantly increases the compu-
tational complexity of RMFT. In our implementation, the
efficiency of KPM is further enhanced by employing the prob-
ing method [70,71] for estimating the trace of large matrices
and the utilization of GPU programming; more details can be
found in Appendix B.

The KPM-RMFT method discussed above is mainly used
to obtain the various local parameters in a vortex structure,
a calculation which often requires up to thousands repeated
solutions of the TB-BdG Hamiltonians in order to reach self-
consistency. Once these local orders are obtained, a hybrid
approach is employed to compute the corresponding elec-
tronic structures such as local density of states. We combine
efficient exact diagonalization (ED) package [72] with the
supercell method [73,74] to obtain the exact eigenfunctions
of the converged TB-BdG equation. We note that even though
large-scale ED is time-consuming, this is a one-shot calcu-
lation using the converged order-parameters. The supercell
method allows us to further reduce the finite-size effect and
enhance the momentum resolution.

The electron Green’s function, which is directly related to
several experimental measurements, can be computed from

the exact eigenfunctions of the renormalized TB-BdG Hamil-
tonian. In particular, the local density of states (LDOS) at
the ith site corresponds to the diagonal element of the lattice
Green’s function

Ni(ω) = − 1

π
ImGii(ω). (9)

For better comparisons with experiments, one can take into
account the effects of electron orbitals using the continuum
Green’s functions [75,76] defined as

G(r, r′, ω) =
∑

i j

Gi j (ω)Wi(r)W ∗
j (r′). (10)

Here Wi(r) is the Wannier function centered at site i. The cor-
responding continuum LDOS, which can be directly measured
by the tunneling conductance, is

g(r, ω) = − 1

π
ImG(r, r, ω). (11)

In practical calculations, a broadening factor � is used to
incorporate the finite lifetime or scattering effect, which
effectively replaces the δ function δ(ω ± En) of the ImG
by a Lorentzian function �/[(ω ± En)2 + (�)2]. In this
work, the broadening parameter � is assumed to have an
energy-dependent form, α|ω| + 3.0 × 10−4, where α = 0.25
is shown to give best agreement with experiments [58,60,77].
Please find more discussion about the choice of � in the
Supplemental Material Sec. VII [78]. In this work the pa-
rameters for the t-t ′-J model are set to be t ′/t = −0.3, J/t =
0.3. These parameters were chosen for Bi2212 by compar-
ison with a number of experiments [79]. For comparison
with experiments, we use t = 400 meV as a reference, and
t is the unit of energy throughout this paper. Notice that
we did not choose the values of parameters to get a best
fit with experiments, those were just commonly used values,
see discussion in Ref. [79]. The lattice sizes considered are
Nx × Ny = 48 × 48, 48 × 96, and 96 × 96, which correspond
approximately to magnetic fields B ∼ 11.92, 5.96 and 2.98
Tesla, respectively, assuming a lattice constant a = 3.88 Å.
The number of magnetic supercells Mx × My are selected to
ensure that Mx × Nx = My × Ny = 384.

III. RESULTS

To obtain vortex solutions in the RMFT calculation, the
various local order parameters need to be properly initialized.
For example, a point singularity or 2π vorticity has to be
introduced to the phase of the pairing parameters �i j . Sim-
ilarly, proper modulations of the pairing amplitudes, bond
variables, and hole densities are required for the initial state
of the RMFT iterations. Depending on the initial conditions,
our calculations uncover several vortex solutions with nearly
degenerate energies, including, among others, plain d-wave
vortex and one with intertwined PDW and CDW orders. The
many vortex solutions with comparable energies obtained in
our studies are reminiscent of the multitude of bulk states with
intertwined orders that compete with the uniform d-wave SC
state [53]. These intriguing results from the generalized t-J
models, including both bulk and vortex solutions, highlight
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FIG. 1. Site-dependent order parameter δi, �i, and Mi of a simple d-wave vortex centered at the position (23,23) for the dopant
concentration of δ = 0.16. There are two identical vortices on the lattice with size 48 × 96, which corresponds to the magnetic-field B = 5.96 T.
One of the two is shown here. (a) The plain-vortex solution. (b) The CB-h solution. The top parts of panels (a) and (b) show the 2D map of
δi. The middle part of panels (a) and (b) show the 3D map of pairing amplitude |�i|. The bottom part of panel (a) shows the pairing phase
arg �i/π . The bottom part of (b) shows the 2D map of staggered magnetization Mi.

the complex nature of cuprate superconductors and the im-
portance of extrinsic effects such as disorder and impurities.

In this work we consider two particular vortex solutions,
which are most relevant to experiments. The first one, to be
called plain vortex in the following, can be viewed as the
natural topological defects of the uniform d-wave SC state.
The corresponding pairing field is not accompanied by either
PDW or CDW orders. The second solution describes a vortex
structure with a checkerboard modulations in both pairing,
charge-density, and magnetization. The structures of one of
the two identical vortices on a lattice with size Nx × Ny =
48 × 96 are shown in Figs. 1(a) and 1(b). An average hole
density δ = 0.16 and a magnetic field B = 5.96 T is used in
the KPM-RMFT calculation. Because of the periodic bound-
ary conditions, a configuration with two vortices separated by
half the linear size in the y direction was used as the initial
state. Large-scale calculations are necessary here to ensure
that Ny, Ny � ξ , where ξ is the characteristic size of vortex,
hence minimizes the finite-size effect.

At the top of Figs. 1(a) and 1(b) are the density plots of
the on-site hole density δi around the vortex for plain-vortex
and checkerboard-halo solution, respectively. For both types
of vortices, the suppression of the pairing field at the vortex
core leads to a deficiency of hole density near the vortex core.
Importantly, the hole density δi of the second vortex solution
exhibits a checkerboard halo extending over tens of lattice
constants. Next we examine the configuration of the pairing
field. To that end, we first define a physical pairing order
parameter, which takes into account the local dx2−y2 structure
and the renormalization effect:

�i = 1

8

∑
σ,τ

gt
i,i+τ,σ (−1)τy�i,i+τ,σ ei π

�0

∫ r j
ri A(ri )·dri , (12)

where τ represents the unit vectors ±x̂ or ±ŷ. The correspond-
ing three-dimensional (3D) map of the pairing amplitude �i

is shown in the middle of Figs. 1(a) and 1(b) for the two
different vortex solutions. The point singularity of the pairing
field is demonstrated in the bottom panel of Fig. 1(a) for the
case of plain vortex, which shows a clear branch cut with a
2π phase jump running along the negative-x direction. The
amplitude of the pairing field can be well approximated as
|�(ri )| ∼ �0 tanh(|ri|/ξc), where the vortex size is estimated
to be ξc ∼ 3a from the fitting. Using a lattice constant a =
3.88 Å for the Cu-O plane, this corresponds to a vortex size of
2–3 nm, which agrees well with the experimental result [34].
Finally, the bottom panel of Fig. 1(b) illustrates the staggered
magnetization Mi of the checkerboard-halo solution. Taking
into account the renormalization effect, the staggered magne-
tization is given by

Mi = (−1)x+y gs,xy
i

4

∑
τ

√
gs,z

i,i+τ

gs,xy
i,i+τ

mi, (13)

where τ represents the unit vectors ±x̂ and ±ŷ, and gs,xy, gs,z

are the Gutzwiller factors for the exchange interactions [80].
Below we present details of these vortex structures and their
experimental manifestations.

A. Tunneling conductance

The tunneling conductance measured by STM is related to
the LDOS defined in Eqs. (9) and its continuous version (11),
which takes into account the structure of the electron orbitals
through the Wannier functions. For comparison, we first show
in Figs. 2(a)–2(d) the bare LDOS, Ni(ω), at the center Rcore of
the vortex under a magnetic field of 5.96 T for four different
dopant densities δ = 0.125, 0.16, 0.2, and 0.24. Also shown
for comparison is a reference LDOS corresponding to the bulk
of the uniform d-wave SC. The spectra at the vortex core
exhibit a pronounced peak at the Fermi level, especially for
large hole doping as shown in Fig. 2(b)–2(d). Interestingly,
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FIG. 2. Evolution of the electronic structure near the vortex core for plain-vortex state at B = 5.96 T. Panels (a)–(e) show the LDOS Ni(ω)
while the corresponding continuum LDOS g(r, ω) are shown in panels (f)–(j). The dopant in panels (a)–(d) and (f)–(j) are δ = 0.125, δ = 0.16,
δ = 0.2, and δ = 0.24. Panels (e) and (j) plot the low-energy spectrum of the discrete and continuum LDOS, respectively, at the vortex core
for four dopant data together for comparison.

this central peak of the LDOS is immediately suppressed even
at locations one lattice constant away from the center. For
better comparison, the LDOS in the vicinity of the Fermi level
is shown in Fig. 2(e) for the four different dopant densities.
The large enhancement near zero energy increases rapidly
with doping.

For the underdoped (UD) case with δ = 0.125, as shown
in Fig. 2(a), the enhancement of the LDOS is relatively small
compared with those at larger dopings. The general features
of OD results are in good agreement with calculations in
Refs. [35,36]. This is expected since those calculations have
not considered the strong-coupling renormalization effect,
which is less important in OD. We also note a subgap structure
is seen for all dopings. This kind of structure was also seen in
the weak-coupling calculation in Ref. [36], where the authors
attributed it to the finite-size effect. Indeed, our result for
UD and OP samples, shown in Ref. [78], exhibits decreasing
subgap structure as the magnetic field decreases from 12 to 3 T
where the lattice size increases from 48 × 48 to 96 × 96. Thus
the subgap structure could be due to the interaction between
vortices, and it will be absent for a very weak magnetic field.
However a note of caution is warranted here. Since the gap
energy of order 0.01 is near the margin of accuracy of our
RMFT, it is beyond our current calculation to clarify this issue
further.

To compare with the tunneling conductance in the vicin-
ity of a SC vortex reported in recent STM experiments
[33,34,40], Figs. 2(f)–2(i) show the computed continuum
LDOS g(r, ω) for the same four dopant densities inside a
vortex of 5.96 T field. Compared with the bare spectra Ni(ω),
the continuum LDOS is suppressed at low energies at the
vortex core, especially for the UD δ = 0.125 and OP δ = 0.16
cases. Indeed, the conductance in both low-doping cases is
expected to exhibit a suppression at low energies, in stark
contrast to the enhanced conductance of the lattice LDOS
Ni(ω). On the other hand, a weak enhancement or ZBCP at
low energies remains only in the OD cases of δ = 0.2 and

0.24, as shown in Figs. 2(h) and 2(i). Finally, we note that
the conductance at the nearest-neighbor sites of the core, the
red and green curves in Figs. 2(f)–2(i) is suppressed at low
energies for all dopant densities.

Importantly, our results resolve a long-standing puzzle
concerning the issue of ZBCP. Despite the prediction of its
existence by Wang and MacDonald [35], the ZBCP was not
detected in almost all of the early STM measurements [33,34].
The absence of the ZBCP, in our view, can be attributed to
the fact that these early experiments are mostly carried in
either the UD or OP samples which are expected to exhibit
a suppression of conductance near zero energy according to
our calculations shown in Figs. 2(f) and 2(g). On the other
hand, our calculation shows that the ZBCP remains in the
case of large doping, as illustrated in Figs. 2(h) and 2(i). Such
enhanced conductance at ω ≈ 0 was indeed observed in the
OD sample of BSCO [40].

The qualitatively different behavior of the tunneling con-
ductance between the UD and OP cuprates and the OD ones
are mainly due to two reasons: First, as demonstrated by Wang
and MacDonald in their conventional mean-field calculation
of a d-wave vortex [35], the enhancement of the LDOS can
be attributed to the resonant states in the vortex core. Such
resonance, however, is suppressed due to strong electron cor-
relation at small hole densities in the UD and OP cuprates.
Since the renormalization effect is less significant at large hole
density, a resonance-induced conductance remains in the OD
samples. The second reason is that the STM measurement
involves the contribution from the Wannier function used in
Eq. (10), which has copper dx2−y2 orbital symmetry. This
symmetry strongly suppresses the contribution at the copper
site, especially along the y = ±x directions, as shown in Fig. 2
in Ref. [81]. Thus, the ZBCP vanishes in the UD and OP
samples. ZBCP in the OD samples is also greatly reduced but
still visible.

Another interesting observation mentioned by Gazdić et al.
[40] is that the interaction between vortices or vortices at
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FIG. 3. Spatial profile of the intertwined order parameters of the CB-h vortex solution at B = 5.96 T and δ = 0.16: (a) hole density δi,
(b) staggered magnetization Mi, and (c) pairing amplitude |�i|. The corresponding discrete Fourier transform of the spatial pattern along the kx

axis are shown in panels (d)–(f), respectively. The think and thick dashed lines indicate the characteristic wave vectors Qx = (1/8, 0)(2π/a)
and 2Qx = (1/4, 0)(2π/a), respectively

higher field could change details of the conductance spectra
near zero energy. In Ref. [78], the LDOS of the lattice model
inside a vortex under a 2.98, 5.96, and 11.92 T magnetic field
is shown in Fig. S4 for the same four dopant densities as
Fig. 2. The distances between two vortices are 24

√
2, 48, and

48
√

2 for the fields B = 11.92, 5.96, and 2.98 T, respectively.
Within this range of distances we have not found signifi-
cant differences in spectra except that the subgap structure
of the tunneling conductance at high field 11.92 T becomes
more pronounced. Although this is in qualitative agreement
with experiment [40], as mentioned earlier, we are not sure
the accuracy of our method can definitely substantiate this
result. The second issue raised in Ref. [40] about the QPI
versus charge order will be discussed later after we discuss
the checkerboard-halo state.

B. Checkerboard halo state

So far, the result of the plain-vortex could explain the
experiment at low field and in the OD regime of cuprates.
However, a recent STM experiment [34] found a bidirec-
tional PDW state inside a vortex halo. This PDW-vortex
mixed state exhibits CDW peaks at Qx = (2π/8a, 0) and
2Qx = (2π/4a, 0) and in y direction as well. It is also worth
noting that the CDW peaks are energy-independent [33],
which is inconsistent with the plain-vortex solution. In addi-
tion, experiments found a dominant s + s′-like form factors
in the conductance map. All these features can be consis-
tently explained based on a self-consistent vortex solution in
our large-scale RMFT calculations. As this vortex solution

exhibits a bidirectional PDW state inside a vortex halo, it will
be called the checkerboard-halo (CB-h) solution.

The spatial profiles of the three order parameters, hole
density δi, staggered magnetization Mi, and pairing amplitude
�i, of the CB-h state obtained assuming a dopant density
δ = 0.16 and a magnetic field B = 5.96 T, are shown in
Figs. 3(a)–3(c), respectively. The calculation was performed
on a 48 × 96 lattice which contains two vortices separated by
a distance of 48 lattice constants. The size of the halo is about
24 × 24 around the vortex center. Outside the halo, all order
parameters quickly relax to the values of a uniform d-wave
pairing state in the absence of a magnetic field. Only staggered
magnetization still has a vary small value about 0.02 left
outside the halo. Figures 3(d)–3(f) show the discrete Fourier
transform of the hole density, staggered magnetization, and
pairing amplitude, respectively. To highlight the nature of the
spatial modulations, the constant background values of these
order-parameters are removed; these background values are
listed in Table SII of the Supplemental Material [78]. As the
CB-h vortex solution preserves the tetragonal symmetry, the
profiles of these order parameters are the same along the x
and y directions.

The Fourier transforms of all three order parameters exhibit
a clear peak at the wave vector Qx, while the peak at 2Qx is
more evident for the charge-density modulation. On the other
hand, the 2Qx peak is essentially negligible for staggered
magnetization. It is worth noting that such CDW order with
both wave vectors Q and 2Q agrees well with recent STM ex-
periment [34]. We also note that both hole density and pairing
amplitude shows a peak at small kx, which is simply due to the
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FIG. 4. Conductance of the CB-h solution at B = 5.96 T for (a) δ = 0.16, (b) δ = 0.2, and (c) δ = 0.22. The black dashed line is the
conductance far from the vortices core, which approach to uniform SC case.

smooth variation of the vortex profile, and is unrelated to the
modulation. A similar peak is observed in the discrete Fourier
transform of a plain vortex state, as shown in Fig. S2 in the
Supplemental Material [78].

The structure of the CB-h vortex at different hole densities
as well as the magnetic field effects are also systematically
investigated. In general, the Q-peak of the CDW is more
pronounced than the 2Q peak. Yet, this difference between
Q and 2Q is reduced with increasing doping. On the other
hand, the 2Q peak of the CDW is enhanced by the magnetic
field relative to that at Q. Indeed, in the presence of a large
magnetic field, the period-4a modulation can become even
more prominent than that of the 8a period for the OD cases.
More details of these doping and field dependencies can be
found in Fig. S8 to S10 in the Supplemental Material [78].

Our calculation also shows that the bidirectional checker-
board of the vortex halo is accompanied by a bidirectional
SDW with an 8a period in both x and y directions; see
Figs. 3(b) and 3(e). In the STM experiment in Ref. [34], it
is unclear whether there is an associated SDW order with
their observed PDW order. In an early neutron-scattering ex-
periment [82,83], the field-induced AFM order is reported for
the optimally doped La-based cuprates. More recent analysis
of the NMR result of La-based cuprates [84] indicates the
spin order in the vortex core. Similar conclusions have been
reached for YBCO [85]. But no similar result is yet to be
reported for BSCO.

In Fig. 4, the tunneling conductance of the CB-h state
is shown for dopant densities δ = 0.16, 0.2 and 0.22, at a
magnetic field of B = 5.96 T. The conductance of the uniform
d-wave SC, shown as the black-dashed line, serves as a ref-
erence. As expected, the energies of the two coherent peaks
shrink with increasing dopant density from the OP to the OD
regime. At the optimum doping δ = 0.16, a tiny peak appears
near the zero bias, which evolves into a subgap structure, as
exemplified by a dip in Fig. 4(c), as the dopant increases. In
the presence of a magnetic field, the small peak at ω ≈ 0 at the
OP is also suppressed and disappears at B = 11.92 T, which
is shown in the Supplemental Material [78]. As mentioned
above, the accuracy of our method probably is not enough to
make a definite conclusion about these features with such a
small energy scale of order 0.01.

Most notably, contrary to the case of plain vortices shown
in Fig. 2, there is no enhancement of conductance at all dopant
densities. Indeed, there is little difference in the spectra at the
OP doping δ = 0.16 between the plain and Ch-B vortices.
On the other hand, as discussed previously, the plain-vortex
solution exhibits an enhancement of the cLDOS in the large
hole density OD regime at the vortex core; see, e.g., Fig. 2(i).
Yet, the conductance spectra of the CB-h vortex at OD is
marked by a subgap structure, as shown in Fig. 4(c). This
difference in conductance spectra thus could serve as the
indicator of the presence of the PDW in the vortex for the OD
samples. However, as both plain and CB-h vortices show sim-
ilar conductance spectra in the UD and OP cases, the spectral
detection of the PDW requires a more careful examination of
the spatial dependence of the spectra by taking into account
the various form factors.

To this end, the form factors are calculated by first ob-
taining the sublattice conductance map or g map, which can
be separated into contributions from the copper and oxygen
sites at distinct nearest-neighbor bonds Cu(r, ω), Ox(r, ω),
and Oy(r, ω). In the t-J model, the copper sites correspond
to the lattice point R of the square lattice, which means
Cu(r) = g(R). The oxygens sit on the nearest-neighbor x or
y bonds, the oxygen conductance thus could be recognized
as Ox(r) = g(R + 0.5x̂) and Oy(r) = g(R + 0.5ŷ). After the
Fourier transform of these quantities, one obtains the follow-
ing form factors:

s(q, ω) = Cu(q, ω),

s′(q, ω) = 1
2 [Ox(q, ω) + Oy(q, ω)], (14)

d (q, ω) = 1
2 [Ox(q, ω) − Oy(q, ω)].

The form factors of the CB-h vortex at a magnetic field
B = 5.96 T are summarized in Fig. 5. Figures 5(a)–5(c) show
the s + s′ form factors at dopant densities δ = 0.16, 0.2, and
0.22, respectively, while the corresponding d form factors are
shown in Figs. 5(d)–5(f). Here we focus on the low-energy
regime where |ω| � 0.2. This energy range accounts for about
50% to 75% of the coherence peak of d-wave pairing state.
It is about the same energy range used in experiments of
Ref. [34] with form factors shown at 30 meV while the
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FIG. 5. Form factors of the CB-h vortex solution at B = 5.96 T for four different energies ω = ±0.15 and ±0.2. The three top panels show
the s + s′ form factors at dopant densities (a) δ = 0.16, (b) δ = 0.2, and (c) δ = 0.22, while the corresponding d form factors are shown in the
bottom three panels (d)–(f). The two dashed lines indicate the characteristic wave vectors Qx = (1/8, 0)(2π/a) and 2Qx = (1/4, 0)(2π/a).

coherence peak is about 40 meV. A systematic investigation
of the energy dependence can be found in the Supplemental
Material [78].

One of the interesting STM results of Ref. [34] is the ob-
servation of the same form factors at the positive and negative
bias of 30 meV. This low-energy particle-hole symmetry of
the form factors is also reproduced in our RMFT calculations,
as both the s + s′ and d form factors are nearly identical for
ω = ±0.2 and ±0.15; see Figs. 5(a) and 5(d) for δ = 0.16.
This dopant density is also close to the hole density 0.17
reported in the same STM experiment [34]. Similar particle-
hole symmetry also persists in the presence of magnetic field
at B = 2.98T and 11.92, as demonstrated in the Supplemental
Material [78]. However, the disparity between the positive and
negative bias becomes more evident with increasing doping
toward the OD regime.

Another important feature of the CB-h vortex is a more
substantial s + s′ form factor than the d form factor, a result
which is also consistent with the Fourier analysis of the STM
experiment [34]. In our calculations, this dominance of the
s + s′ over the d form factors can be attributed to the presence
of SDW order in addition to CDW and PDW within the vortex
halo. Indeed, as pointed out in our previous works on the bulk
PDW order, the conductance map is dominated by the d form
factor in the absence of the SDW order. One of our important
prediction is thus the existence of a SDW coexisting with both
PDW and CDW in the vortex halo state reported in the recent
STM experiment [34].

C. Bipartite vortex structure between quasiparticle
interference and charge order

Another intriguing puzzle related to the checkerboard pat-
terns in a vortex halo is the role played by the QPI. For

example, a recent experiment [40] on heavily over-doped
Bi2212 sample reveals a checkerboard in the vortex halo
under a magnetic field B = 3 T. Interestingly, for energy less
than half of the superconducting gap, the peaks at the char-
acteristic wave vectors 2Qx = (± 2π

4a , 0) and 2Qy = (0,± 2π
4a )

of the g(k, ω) map seem to be energy dependent. A similar
energy-dependent bipartite structure has also been reported
on an OP Bi2212 sample at B = 11.25 T by Machida et al.
[33], who suggested that these period-4a modulations could
arise from an enhanced QPI at low energy and become energy
independent at larger ω.

To investigate this scenario, we examine the Fourier trans-
form g(k, ω) of the conductance map as well as the QPI
signatures for both a plain vortex and a CB-h vortex at a
magnetic field B = 2.98 T. First, the results of a plain vortex
are shown in Figs. 6(a)–6(c) for three hole densities δ = 0.16,
0.2, and 0.24, respectively. The overall conductance behaviors
are rather similar for the three dopant densities. The conduc-
tance is dominated by contributions from small wave vectors.
Moreover, as expected, there are no special features at the
characteristic wave vectors ka/2π = 0.125 (Q) and 0.25 (2Q)
for such a plain vortex.

The conductance map of a CB-h vortex, on the other hand,
exhibits a more complex energy-momentum dependence, as
demonstrated in Figs. 6(d)–6(f). In particular, qualitatively
different behavior can be seen between the OP case and the
OD cases. At the optimum doping, as shown in Fig. 6(d), a
clear energy-independent dispersion at Q and 2Q can be seen
for bias potential 0.2 � ω � 0.15, indicating the presence
of a CDW order. Interesting, this is also the energy range
that a dominant s + s′ form factor is obtained as discussed
above. For bias smaller than 0.15, the 2Q peaks are reduced,
and there seems to be some energy dispersion. This bipartite
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FIG. 6. Electronic structure of a vortex state in the momentum space under a magnetic field B = 2.98 T. The discrete Fourier transform of
the conductance |g(k, ω)| is shown along the kx direction within the first Brillouin zone. Panels (a)–(c) shows the case for a plain-vortex state
at dopant concentration δ = 0.16, δ = 0.2, and δ = 0.24, respectively. The Fourier transform of the conductance maps of the CB-h vortex at
these three doping are shown in panels (d)–(f), respectively.

structure become more apparent for the OD samples. In
Figs. 6(e) and 6(f) the feature at the fundamental wave vector
Qa/2π = 0.125 merges with the low k feature and is no
longer identifiable. The intensity at 2Q also becomes weaker,
and an energy dispersion seems to be developing for |ω| <

0.15. Although the CB-h vortex of both OP and OD cases
exhibit a CDW order, as can be directly seen in the real-space
configurations [Figs. S12(b) and S12(c) in the Supplemental
Material [78]], the apparently stronger dispersion at low en-
ergy in the OD case could result from a more prominent QPI
effect.

Our results also shed light on the seemingly conflicting
interpretations of the experiment in Ref. [40]. While their
STM imaging on a sample of dopant density of ≈0.2 in a
3 T magnetic field found a checkerboard pattern inside the
vortex halo, an energy dispersion similar to Fig. 6(e) was
also observed, which prompted the authors to suggest the
QPI origin, instead of CDW, for the observed checkerboard
pattern. However, our calculations of the CB-h vortex state
clearly show that a dispersive feature of the conductance map
could also result from an intertwined PDW or CDW state.
This bipartite structure is consistent with the previous work

[33] that the PDW is related to the antinode or the pseudogap
with higher energy than the BCS pairing near the nodal region
which dominates in QPI.

D. Checkerboard-halo state induced by vortex

There are significant experimental evidence [24,34,86–
90] and numerous theoretical works [22,43,44,49,51,53,58–
61,91,92] that support the presence of PDW states in the UD
and OP cuprates without a magnetic field. Thus it is easier
to foresee that inside a vortex where both hole density and
pairing amplitude are reduced so that the situation is more
like an UD regime that PDW states will become energetically
favorable. By comparison the plain-vortex solution with the
CB-h state we found another reason for the strong coupling of
PDW state with a vortex.

As mentioned earlier the order parameter of a PDW state is
a Cooper pair with a finite total momentum Q, 〈ck+ Q

2
c−k+ Q

2
〉,

or the FFLO order.
Thus the pairing amplitude is nonuniform. Since inside

the vortex, the pairing amplitude decays exponentially from
the center of the vortex, as shown in Fig. 1(b). Its Fourier
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FIG. 7. The discrete Fourier transform of the pairing amplitude
of a plain vortex obtained by (a) the RMFT and (b) by an un-
renormalized mean-field calculation for a simple model without
strong correlation. The inset in panel (b) shows the 3D map of pairing
amplitude |�i|. (c) Positional dependence of the pairing amplitude
|�i| of the traditional d-wave vortex state for B = 5.96 T and δ =
0.16. A line cut along the x axis passing through the center of the
vortex at core (23, 23). The fitting curve here used ξc ∼ 8a.

transform, shown in Fig. 7(a), decays rapidly as k increases
but with a small peak around ka/2π = 0.3. Its inverse is close
to the radius of the vortex about 3a. Thus all these momenta
will provide an FFLO order. The corresponding curve for CB-
h state shown in Fig. 3(f), has a similar-shaped except a peak
at ka/2π = 0.125. But notice the magnitude is of order 10−4,
thus two cases are quite close. Further more the values of
| ∑k〈ck+ Q

2
c−k+ Q

2
〉| for Qa/2π = (0125, 0) and (0.25,0) are

the same, 0.016 and 0.0096 for plain-vortex and CB-h states
respectively. Details are given in the Supplemental Material
[78]. This surprising result has two implications. The plain-
vortex already has FFLO orders with a range of momentum,
possibly smaller than ka/2π = 0.3. Thus the choice of one
particular order such as ka/2π = 0.125 only causes a very
minor effect on the vortex. This may explain why the CB-h
state has almost same energy as plain-vortex state (Table SI in
Ref. [78]) and many properties are similar. On the other hand
the period of the PDW state or CB is not determined a priori.
Just like the calculations of the ground state without magnetic
field for the Hubbard [48] or t-J model [53], PDW states with
different periods have almost the same energy.

To support our argument above, we also calculate a tradi-
tional d-wave vortex without including the strong correlation
and applying RMFT. We choose a simple d-wave pairing
model with the pairing amplitude same as δ = 0.16 of our
plain-vortex solution shown in Fig. 1(a). The discrete Fourier
transform of pairing amplitude of such a traditional vortex at
5.98 T is shown in Figs. 7(b). The inset of Fig. 7(b) shows

the 3D map of pairing amplitude. Due to the large radius
of the vortex shown in Fig. 7(c) where the core size in the
fitting curve ξc ∼ 8a is found. The Fourier transform only
shows a very large peak at small k and decays smoothly
with k. This is very different from Fig. 7(a) with a small
peak around ka/2π ≈ 0.3. It turns out the values FFLO or-
der | ∑k〈ck+ Q

2
c−k+ Q

2
〉| at Qa/2π = 0.125 is about two times

smaller than the plain vortex and CB-h solutions. The smaller
size of the vortex core due to strong correlation has a much
larger coupling with FFLO order at larger Qa/2π = 0.125.

IV. SUMMARY

By taking into account the renormalization effect due to
the strong correlation in the t-t ′-J model, the vortex structure
in a d-wave SC state is calculated for several hole densities
with magnetic field in the range of 3 to 12 T. Two states
with almost the same energy are used to understand puzzles
found by experiments. Tunneling conductance is analyzed for
the plain-vortex and CB-h states to compare with the STM
experiments [33,34,40]. The absence of ZBCP in vortex core
for UD and OP cuprates [33,34] but not for heavily OD sam-
ples is easily explained. The presence of PDW states in CB-h
solution will suppress the conductance peak with a subgap
structure. However, even if there were no PDW presence, the
ZBCP is greatly reduced in conductance spectra due to the
influence of dx2−y2 orbital symmetry of the copper on the STM
tip. Only for OD samples, the greatly reduced ZBCP is still
visible as shown in the experiment of Ref. [40]. The CB-h
state in the vortex halo has a bidirectional PDW state with
modulation period of 8a and it shows clear s + s′ form factors
at wave vectors Qx = (1/8, 0)2π/a and 2Qx as well as peaks
in the y direction, as reported by Ref. [34].

The presence of both QPI at low energy and CDW at higher
energy of the bipartite structure reported by Ref. [33] is also a
distinct property of the CB-h state. In these states the interplay
between QPI and CDW depend on the hole density. For UD
and OP cases, the nondispersive CDW shows strong presence
in the conductance map g(k, ω) for energy around or greater
than half of the SC gap but it has a QPl-like energy dispersion
at lower energy. The CDW signal becomes weaker as hole
density increases toward the OD regime. The QPI effect is
mostly contributed by the Bogoliubov quasiparticles near the
nodes of SC gap; hence they are at lower energy. By contrast,
the CDW is related to the PDW state at antinodes with higher
energy close to pseudogap. Such a bipartite structure in the
solutions without magnetic field [61] is nicely reflected in the
vortex structure.

Just as reported in Ref. [34] our CB-h state has stronger
s + s′ form factors than d form factors. However our state
has the presence of SDW order intertwined with PDW and
CDW orders while the STM experiment did not provide the
magnetic information. If there were no SDW order, the d form
factors dominate (this part is not included in this paper). Al-
though there are several experiments indicating the magnetic
signal inside the vortex [82,83], more direct evidence for the
presence of SDW is welcome.

Our result provides a different insight about the coupling
between the bidirectional PDW states or CB with a vortex.
The pairing order parameter inside a vortex is a function of
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the position, its discrete Fourier transform is the FFLO order
〈ck+Q/2,↑c−k+Q/2,↓〉. But for usual superconductors, the long
coherence length will have a vortex with large radius, thus
only small-Q FFLO orders are important. However, the strong
correlation makes the size of a Cooper pair in cuprates rather
small, hence a small vortex core with a radius of three unit
cells only. Thus large-Q FFLO orders are also important, and
the vortex could then easily induce the specific-Q PDW states
already preferred in the cuprates without magnetic field.

In our previous works [53], we have shown that unidi-
rectional PDW states with different periods all have similar
energies in this approach using RMFT for the t-J model. This
is also found by more accurate numerical methods [48] for the
Hubbard model. Thus it is difficult to identify what value of
the period is more preferred for the PDW ground state from
numerical calculations. Or the preference of particular period
like 8a is just not included in the model. A recent experiment
has indicated that the electron-phonon coupling may favor
CDW to have a period 4a than 6a [93]. A consequence of
the presence of FFLO orders in the vortex is that the heavily
doped samples, which have no PDW states reported so far
and also not favored in the theoretical calculations [53,58],
will be induced by the magnetic field. Finally, besides the
electron-phonon interaction that may couple with the PDW
as discussed above, the disorder and the interlayer coupling
could also have a strong effect on the alignment of PDW states
in the vortex and these are not considered in the present work.
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APPENDIX A: RENORMALIZED MEAN-FIELD THEORY

Here we present details of the RMFT calculations for the
t-t ′-J model. In Gutzwiller’s original calculation, the strong
on-site electron correlation effectively leads to a reduced in-
tersite electron hopping [55]. By generalizing this approach to
also account for the intersite exchange interaction [56,57,94],
the t-J Hamiltonian in Eq. (1) becomes

Ĥrenorm = −
∑
i j,σ

gt
i jσ ti j (ĉ

†
iσ ĉ jσ + H.c.)

+
∑
〈i, j〉

J

[
gs,z

i j Ŝz
i Ŝz

j + gs,xy
i j

(
Ŝ+

i Ŝ−
j + Ŝ−

i Ŝ+
j

2

)]
,

(A1)

where the various g factors, also known as the Gutzwiller
factors, depend on the local order parameters Eq. (3)–(6).
Specifically, the electron hopping is renormalized by the fac-
tor gt

i jσ = gt
iσ gt

jσ , where the on-site Gutzwiller factor is

gt
iσ =

√√√√ 2δv
i

(
1 − δv

i

)
1 − (

δv
i

)2 + 4
(
mv

i

)2

1 + δv
i + σ2mv

i

1 + δv
i − σ2mv

i

. (A2)

In this work, we focus on collinear SDW and assume that
its magnetization points along the ±z direction, so the SU(2)
rotational symmetry is explicitly broken. The renormalization
of the transverse xy exchange is given by gs,xy

i j = gs,xy
i gs,xy

j ,
where

gs,xy
i = 2

(
1 − δv

i

)
1 − (

δv
i

)2 + 4
(
mv

i

)2 . (A3)

The renormalization factor for the exchange interaction along
the z direction is related to that of the xy direction via

gs,z
i j = gs,xy

i j

2
[(

�̄v
i j

)2 − (
χ̄v

i j

)2] − 4mv
i mv

j X
2
i j

2
[(

�̄v
i j

)2 − (
χ̄v

i j

)2] − 4mv
i mv

j

, (A4)

where �̄v
i j = ∑

σ �v
i jσ /2 and χ̄v

i j = ∑
σ χv

i jσ /2, and the X
factor is defined as

Xi j = 1 + 12
(
1 − δv

i

)(
1 − δv

j

)
√[

1 − (
δv

i

)2 + 4
(
mv

i

)2][
1 − (

δv
j

)2 + 4
(
mv

j

)2] .

Note that in the absence of magnetic order mi = 0, the
exchange renormalization factors reduce to gs,z

i j = gs,xy
i j , indi-

cating an intact SU(2) rotation symmetry.
The effective mean-field Hamiltonian can be obtained by

minimizing the total energy of the system computed from a
Slater-determinant state |�0〉, which is to be self-consistently
determined. As the minimization is subject to the constraints
of fixed electron number

∑
i ni = Ne and of a normalized

variational wave function 〈	0|	0〉 = 1, we introduce two La-
grangian multipliers and define the following effective energy:

W = 〈	0|Ĥrenorm|	0〉 − λ(〈	0|	0〉 − 1)

− μ

(∑
i

ni − Ne

)
. (A5)

The optimization with respect to the unprojected wave func-
tion ∂W/∂|	0〉 leads to the following effective TB-BdG
Hamiltonian

Ĥeff =
∑
i j,σ

(
∂W

∂χv
i jσ

ĉ†
iσ ĉ jσ + H.c.

)

+
∑
〈i j〉,σ

(
∂W

∂�v
i jσ

ĉiσ ĉ jσ̄ + H.c.

)
+

∑
iσ

∂W

∂niσ
n̂iσ , (A6)

which is equivalent to Eq. (7) in the main text. The above
expression also provides the definition for the effective hop-
ping, pairing, and on-site energy parameters, given in Eq. (8).
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Explicitly, they are given by

Ti jσ = −gt
i jσ ti j − J

(
gs,z

i j

4
+ gs,xy

i j

2

χv∗
i jσ̄

χv∗
i j,σ

)
χv∗

i jσ +
[

∂W

∂χv
i jσ

]
g

,

(A7)

Di jσ = −J

(
gs,z

i j

4
+ gs,xy

i j

2

�v∗
i jσ̄

�v∗
i j,σ

)
�v∗

i jσ +
[

∂W

∂�v
i jσ

]
g

, (A8)

μiσ = −μ + 1

2
σ

∑
j

gs,z
i j Jmv

j +
[

∂W

∂niσ

]
g

. (A9)

Here the terms [ ∂W
∂O ]g refer to the derivative of W with respect

to the order parameter O via all possible Gutzwiller factor g,[
∂W

∂�v
i jσ

]
g

= ∂W

∂gs,z
i j

∂gs,z
i j

∂�v
i jσ

,

[
∂W

∂χv
i jσ

]
g

= ∂W

∂gs,z
i j

∂gs,z
i j

∂χv
i jσ

,

[
∂W

∂niσ

]
g

= ∂W

∂gs,xy
i j

∂gs,xy
i j

∂niσ
+ ∂W

∂gs,z
i j

∂gs,z
i j

∂niσ
+

∑
σ ′

∂W

∂gt
i jσ ′

∂gt
i jσ ′

∂niσ
.

Computing the various local order-parameters in Eqs. (3)–
(6) from the ground state of the effective Hamiltonian Ĥeff

is a central step in the RMFT iteration. In most calculations
for a system of 105 lattice sites, up to 103 iterations are
routinely required before convergence can be reached. Con-
sequently, a highly efficient GPU-based kernel polynomial
method (KPM), discussed in Appendix B, is used for the
optimization of the various local orders δi, mi, χi jσ , and �i jσ ;
the total number of these parameters is of the order of 105.

APPENDIX B: KERNEL POLYNOMIAL METHOD

The kernel polynomial method (KPM) [64] and the tech-
nique of automatic differentiation [63,66] play a crucial role
in our large-scale RMFT calculations. The basic formulation
of these techniques is outlined in this section. Conventional
KPM provides an efficient approach to computing the cor-
relation function, or single-particle density matrix, ρiα, jβ =
〈c†

jβciα〉 of large sparse tight-binding matrices. For supercon-
ducting systems, one needs to include the pairing term, as well
as calculate the anomalous correlation 〈ciσ c jσ̄ 〉. A straightfor-
ward generalization of KPM by expressing the Hamiltonian
in terms of Nambu spinors can be used to compute these
additional correlation functions. To this end, we define the
two-component Nambu spinor as

d̂i =
(

d̂i,1

d̂i,2

)
=

(
ĉi↑
ĉ†

i↓

)
. (B1)

The effective Hamiltonian (7) can then be expressed as

Ĥeff =
∑

i j

d̂†
i

(
Ti j,↑ − μi↑δi j Di j↑

D∗
ji↓ −T ∗

i j,↓ + μi↓δi j

)
d̂ j

=
∑
iα, jβ

hiα, jβ d̂†
iα d̂ jβ =

∑
IJ

hIJ d̂†
I d̂J . (B2)

Here we have introduced the single-particle Hamiltonian
matrix hiα, jβ , where α, β = 1, 2 is the Nambu index. For

convenience, we have further introduced the short-hand no-
tation I = (i, α), J = ( j, β ), . . . , and so on. The correlation
function, or single-particle density matrix, of the d fermions
is defined as

ρIJ ≡ 〈d̂†
I d̂J〉. (B3)

It is worth noting that ρIJ now includes both the normal
correlation function 〈ĉ†

iσ ĉ jσ 〉 and the anomalous 〈ĉi↑ĉ j↓〉. Here

〈Ô〉 = Tr(e−βĤeff Ô)/Z denotes the expectation value com-
puted from the effective TB-BdG Hamiltonian, where Z =
Tre−βĤeff is the partition function of the quadratic effective
Hamiltonian. To compute the correlation functions, we con-
sider the energy of the ground state:

E = 〈Ĥeff〉 =
∑

IJ

hIJ〈d̂†
I d̂J〉. (B4)

It is then easy to see that the density matrix is then given by
the derivative

ρIJ = ∂E
∂hIJ

. (B5)

Next we introduce the total density of states (DOS) ρ(ε) of
the system and express the energy as

E =
∫

ρ(ε) f (ε)dε, (B6)

where f (ε) = −T ln[1 + e−(ε−μ)/T ]. The central step of KPM
is to approximate the DOS as a Chebyshev polynomial series,

ρ(ε) = 1

π
√

1 − ε2

M−1∑
m=0

(2 − δ0,m)μmTm(ε), (B7)

where Tm(x) are Chebyshev polynomials, and μm are the
expansion coefficients. The expansion is valid only when all
eigenvalues of HIJ have magnitude less than one. This can
in general be achieved through a simple shifting and rescal-
ing of the Hamiltonian. Moreover, damping coefficients gm

are often introduced to reduce the unwanted artificial Gibbs
oscillations. Substituting ρ(ε) into the free-energy expression
gives

E =
M−1∑
m=0

Cmμm, (B8)

where coefficients

Cm = (2 − δ0,m)gm

∫ 1

−1

Tm(ε) f (ε)

π
√

1 − ε2
dε

are independent of the Hamiltonian and may be efficiently
evaluated using Chebyshev-Gauss quadrature.

In KPM, the calculation of the Chebyshev moments μm =
TrTm(h) is approximated by an ensemble average μm =
〈Tm(h)〉 = 1

R

∑R
�=1 r†

� · h · r� over random normalized column
vectors r [70]. Taking advantage of the recursive relation
of Chebyshev polynomials: Tm(h) = 2H · Tm−1(h) − Tm−2(h),
the moments can be evaluated recursively as follows:

μm = r† · αm, (B9)

where r is a random vectors with complex elements drawn
from the uniform distribution |rI |2 = 1. The random vectors
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αm are given by

αm =
⎧⎨
⎩

r, m = 0
h · r, m = 1
2h · αm−1 − αm−2, m > 1.

(B10)

The above recursion relation also indicates that evaluation of
μm that are required for computing E only involves matrix-
vector products. For sparse matrix h with O(N ) elements, this
requires only O(MN ) operations, where M is the number of
Chebyshev polynomials. On the other hand, even with the
efficient algorithm for E , a naive calculation of the derivatives
∂E/∂hIJ based on finite difference approximation is not only
inefficient but also inaccurate. The computational cost of finite
difference is similar to the KPM-based Monte Carlo method
with local updates.

To circumvent this difficulty, we employ the technique of
automatic differentiation with reverse accumulation. Instead
of directly using Eq. (B8), the trick is to view E as a function
of vectors αm and write

∂E
∂hIJ

=
M−1∑
m=0

∂E
∂αm,K

∂αm,K

∂hIJ
. (B11)

Here αm,K denotes the K th component of vector αm, and
summation over the repeated index K is assumed. Using
Eq. (B10), we have

∂α0,K

∂hIJ
= 0,

∂α1,K

∂hIJ
= δIKα0,J ,

∂αm,K

∂hIJ
= 2δIKαm−1,J (m > 1). (B12)

The expression of ∂E/∂hIJ can be simplified by introducing a
new set of random vectors:

βm ≡ ∂E
∂αm+1

. (B13)

From Eqs. (B11) and (B12), we obtain

∂E
∂hIJ

= β0,Iα0,J + 2
M−2∑
m=1

βm,Iαm,J . (B14)

Remarkably, the vectors βm can also be computed recursively.
To this end, we note that the recursion relation (B10) implies
that E depends on αm through three paths:

∂E
∂αm,K

= ∂E
∂μm

∂μm

∂αm,K
+ ∂E

∂αm+1,L

∂αm+1,L

∂αm,K

+ ∂E
∂αm+2,L

∂αm+2,L

∂αm,K
. (B15)

The various terms above can be straightforwardly calculated:

∂E
∂μm

= Cm,
∂μm

∂αm,K
= r∗

K ,

∂αm+1,L

∂αm,K
= 2hLK ,

∂αm+2,L

∂αm,K
= −δLK . (B16)

Consequently,

βm = Cm+1r† + 2βm+1 · h − βm+2, (B17)

for m < M − 1. As in standard KPM, there are two indepen-
dent sources of errors in our method [64,66]: the truncation
of the Chebyshev series at order M − 1, and the stochastic
estimation of the moments using a finite number R of random
vectors. The performance of the stochastic estimation can be
further improved using correlated random vectors based on
the probing method [71]. The number of Chebyshev polyno-
mials used in the simulations is in the range of M = 1000
to 2000. The number of correlated random vectors used is
R = 64 to 144.

APPENDIX C: CALCULATION OF LOCAL DENSITY OF
STATES AND MAGNETIC SUPERCELL METHOD

Once the various local order parameters δi, mi, χi jσ , and
�i jσ are obtained in the KPM-RMFT calculations discussed
above, we combine the exact diagonalization (ED) with the
supercell method to compute the electron Green’s function
and the local density of states. It is worth noting that, although
the ED of large TB-BdG matrices is rather time-consuming
due to its O(N3) scaling, here only one diagonalization is
required for each set of the local order parameters. Moreover,
the eigen wave functions obtained from the ED allow us to
utilize the supercell method to further increase the resolution
of the Green’s functions and density of states. To this end,
we first express the effective mean-field Hamiltonian in the
standard Bogoliubov–de Gennes (BdG) form:

Heff

(
un

j

vn
j

)
=

∑
j

(
Ti j,↑ − μi↑δi j Di j↑

D∗
ji↓ −T ∗

i j,↓ + μi↓δi j

)(
un

j

vn
j

)

= En

(
un

i

vn
i

)
, (C1)

where the effective hopping, pairing, and on-site energy pa-
rameters are defined in Eqs. (A7)–(A9), respectively, and
(un

i , v
n
i ) and En are the eigenvectors and eigenvalues.

Next the effect of a magnetic field on a tight-binding model
is described using the standard Peierls substitution, which
adds a phase factor to the bare hopping constant: ti j → ti jeiφi j ,
where φi j = −π

�0

∫ r j

ri
A(ri ) · dri, �0 = hc/2e is the supercon-

ducting flux quantum, and A(r) is the vector potential that
generates the magnetic field, i.e., B = ∇ × A. A Landau
gauge A = B(0, x) is used for magnetic fields along the z
direction. The field strength is set to be B = 2�0/NxNy, where
Nx × Ny is the size of the system.

Given the TB-BdG equation (C1), the magnetic supercell
method [74] allows us to extend the effective linear dimension
of the system to Mx × Nx and My × Ny, along the x and y
directions, respectively. Here Mx and My are the number of
supercells in the two orthogonal directions. From the magnetic
Bloch theorem [95], the boundary conditions for the eigen-
states now becomes

(
un

k(TRr̃i )

vn
k(TRr̃i )

)
= e−ik·Ri

(
e−iξ (ri,R)/2uk(r̃i )

eiξ (ri,R)/2vk(r̃i )

)
. (C2)

The magnetic supercell of the enlarged lattice is indexed
by R = Rnx,ny = nxNxx̂ + nyNyŷ, the vector r̃i denotes the

033028-14



INTERTWINED ORDERS AND ELECTRONIC STRUCTURE … PHYSICAL REVIEW RESEARCH 5, 033028 (2023)

relative position vector within a given magnetic unit cell,

k = kmx,my = 2πmx

MxNx
x̂ + 2πmy

MyNy
ŷ

is the momentum of the enlarged lattice, and the phase
ξ (ri, R) = 2π

�0
A(R) · ri − 4πnxny. We have also defined the

magnetic translation operator TR = exp[−iR · (k + qA/ch̄)]
[96] which commutes with the BdG Hamiltonian.

From the eigenfunctions {un
i , v

n
i } of the TB-BdG Hamilto-

nian, the lattice Green’s function in frequency-domain is given

by [97]

Gi j (ω) =
∑

n

(
gt

i j,↑un
i un∗

j

ω − En + i�
+ gt

i j,↓vn∗
i vn

j

ω + En + i�

)
. (C3)

The local density of states and other experimental measure-
ments can be obtained from the lattice Green’s functions.
Please see the Supplemental Material [78] for the discussion
of �.
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