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Antihelical edge magnons in patterned antiferromagnetic thin films
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Helical edge states in topological insulators generate a counterpropagating spin current on the two parallel
edges. We here propose antihelical edge states of magnons in patterned antiferromagnetic thin films, which host
a copropagating spin current on the two parallel edges, where the two magnon modes with opposite chirality act
like the spin. The embedded heavy metal dot array in the thin film induces interfacial Dzyaloshinskii-Moriya
interactions (iDMIs), drives the magnon bands into nontrivial topological phases, characterized by spin Chern
number. The resulting helical edge modes lead to spin current with the direction dependent on the sign of
the iDMI parameter. In a strip geometry, we combine two subsystems with two embedded metal dot arrays,
which give opposite iDMI parameters. Antihelical edge states emerge, compensated by the counterpropagating
bulk-confined states. Helical and antihelical edge states are verified by the micromagnetic simulations. We
consider these results promising and inspiring for further developments of magnon spintronic devices based
on antiferromagnets.
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I. INTRODUCTION

Chiral or helical edge states are a hallmark feature of two-
dimensional topological insulators [1,2]. Chiral edge states
emerge in quantum Hall or Chern insulators with time-
reversal symmetry breaking and propagate along the edges
either clockwise or counterclockwise. As a consequence, a
typical strip geometry supports opposite propagating edge
states along the two parallel edges. Helical edge states can
be treated as two copies of chiral edge states, protected by the
time-reversal symmetry, holding great potential applications
in spintronics. The edge states for opposite spin hold opposite
chirality, compensating the charge current with the net spin
current flowing in the opposite direction along parallel edges
in the narrow strip geometry considered.

Recent theory predicted the so-called antichiral edge
states [3], which copropagate in the same direction at oppo-
site edges, compensated by counterpropagating bulk modes,
distinct from the chiral edge states. The original hypothe-
sis was based on the modified Haldane model in electronic
systems [3], which is considerably difficult for experimental
implementation. Nevertheless, many theoretical and experi-
mental works followed, reporting the possible realization of
this mechanism in a large variety of systems, including elec-
trons in graphene [4,5], the exciton polariton [6], magnon [7],
photon [8,9], and classical electric circuit systems [10]. The
experimental works in photonic [9] and electric circuit [10]
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systems observed the copropagating behavior of antichiral
edge states based on the modified Haldane model. All these
reports suggested the use of the systems with broken time-
reversal symmetry. A natural question arises: Is it possible
to realize “antihelical” edge states in the time-reversal sym-
metric systems where the spin current on the parallel edges
propagates in the same direction? Only a few theoretical
and experimental results were published in this direction to
date [11].

In recent yeas, antiferromagnets have attracted significant
attention in spintronics due to the ultrafast spin dynamics
and lack of stray fields [12,13]. Importantly, antiferromagnets
support both left-handed and right-handed polarized magnon
modes, related by the pseudotime reversal symmetry [14],
analogous to the electron spin. This coexistence of both
polarizations gives rise to many novel spin-related physical
phenomena, such as the magnon spin Nernst effect [15,16],
the Stern-Gerlach effect [17], and the Hanle effect [18]. Ma-
nipulating the polarization may facilitate the chirality-based
computing [19,20] and logic devices [21]. Therefore, the ex-
ploration on topologically protected helical or even antihelical
edge state could be greatly helpful in the field of magnon
spintronics based on antiferromagnets [22].

In this paper, we report theoretical results concerning the
possible realization of antihelical edge states of magnons in
the patterned antiferromagnetic thin film in which the spin
currents at parallel edges flow in the same direction, compen-
sated by the counterpropagating bulk-confined spin currents,
as illustrated in Fig. 1(a). Here the degenerate two magnon
modes with opposite chirality are treated as the spin degree
of freedom, an approach already taken in the previous works
mentioned above. The heavy metal dot array is embedded into
the thin film to fold the free dispersion of magnons into bands.
Moreover, the inversion symmetry breaking at the interfaces
between metal dots and the thin film will generate interfacial
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FIG. 1. (a) The illustration of antihelical edge spin waves in a
patterned antiferromagnetic thin film. The heavy metal dot array
is arranged in a triangular lattice configuration. We consider the
metal dot array being formed of two different metals, resulting in
antihelical edge states. The distance between the metal dot center is
a. (b) Top view of the unit cell for the antiferromagnetic thin film
when only one type of metal dot is embedded. The vectors n and
et are the normal and in-plane tangential vectors of the interfaces,
respectively. The radius of the metal dot is r.

Dzyaloshinskii-Moriya interactions (iDMIs), which modify
the exchange boundary condition and induce a nontrivial topo-
logical phase for the magnon bands, characterized by the spin
Chern number. As a result, helical edge magnons arise in a
finite-width strip geometry. The left-handed and right-handed
edge magnons flow in opposite directions at the same edge,
leading to a pure spin current, which is confirmed with micro-
magnetic simulations. The direction of the edge spin current is
determined by the sign of iDMI parameter D. In a finite-width
ribbon geometry, we combine two subsystems embedded with
different metal dot arrays, which are assumed to induce iDMIs
with opposite sign of D, as shown in Fig. 1(a). Importantly, the
spin currents are flowing in the same direction, while those
at the domain boundary go in the opposite direction. The
emergence of the antihelical edge states is also confirmed by
the micromagnetic simulations.

This paper is organized as follows. In Sec. II, we derive the
eigenvalue problem for the magnons in the patterned antifer-
romagnetic thin film in the presence of metal dot array and the
iDMIs. In Sec. III, we discuss the band topological properties
due to the iDMIs, the topological phase transitions and the
construction of strip geometry supporting antihelical edge
states. Micromagnetic simulations were performed to confirm
and verify the analytical results. In Sec. IV, we summarize our
results. In Sec. V, we describe calculation methods and list the
main parameters used in the numerical calculations.

II. PATTERNED ANTIFERROMAGNETIC THIN FILM

We consider thin antiferromagnetic film with a periodic
array of embedded heavy metal dots, which form a triangular
lattice. Two magnetic domains can be constructed by using
two different metals in the top and bottom halves of the sam-
ple. This approach permits achieving antihelical edge states
[Fig. 1(a)]. An infinite system with only one type of embed-
ded metal dot array is a two-dimensional artificial magnonic
crystal. The corresponding unit cell is shown in Fig. 1(b).
The strip geometry with one or two embedded metal dot
arrays is a one-dimensional artificial magnonic crystal. The
magnetization dynamics in antiferromagnets can be described
by two coupled Landau-Lifshitz-Gilbert (LLG) equations for

each sublattice

ṁi = −γ mi × hi + αmi × ṁi, (1)

where i = 1, 2 denote the two sublattices. γ is the gyromag-
netic ratio, α is the Gilbert damping constant. Here γ hi =
Kzm

z
i z + A∇2mi − Jexmī (with 1̄ = 2 and 2̄ = 1) is the ef-

fective magnetic field acting locally on sublattice mi, where
Kz is the easy-axis anisotropy along the z direction A and
Jex characterize the Heisenberg exchange coupling constant
of the intrasublattice and intersublattice, respectively. The
equilibrium magnetization is in collinear order for the two
sublattices and parallel to the z-direction. To get the magnon
dispersions, we can divide the magnetization and effective
magnetic fields on each sublattice into the static and dynam-
ical ones. Let mi = m0

i + δmi and hi = hi,0 + δhi with m0
i

the equilibrium magnetization and |δmi| � m0
i . hi,0 is the

z-component of the effective magnetic field. By neglecting the
damping, we have ∂δmi/∂t = −γ (m0

i × δhi + δmi × hi,0).
To solve the dispersion in the artificial crystals, we employ
the ansatz δmi = δmk

i (r)ei(k·r−ωt ), and after a transformation,
we can get the eigenvalue equations, given by

ωψ±,k = ∓σzĤkψ±,k, (2)

where ψ±,k = (δmk
1,±, δmk

2,±)T , δmk
i,± = δmk

i,x ± iδmk
i,y,

Ĥk = [Kz + Jex + (∇ + ik)2]σ0 + Jexσx. σ0 is 2 × 2 identity
matrix, σx,y,z are the Pauli matrices. The solution for ψ+,k
denotes left-handed modes while ψ−,k is the solution for
right-handed modes. As discussed in our recent work [14],
the two polarized modes are totally decoupled but related
by a pseudotime reversal symmetry. Besides the above
classical treatment to get the spin wave solution, we can
also make the Holstein-Primakoff (HP) transformation for
the magnetization [23,24] and neglect the magnon-magnon

interaction to get a quantum description δmk
1,+ ∝

√
2

Ms
ak,

δmk
1,− ∝

√
2

Ms
a†

k, δmk
2,+ ∝

√
2

Ms
b†

k, δmk
2,− ∝

√
2

Ms
bk. Then the

above eigenvalue equation in Eq. (2) becomes a fully quantum
version, corresponding to the Heisenberg equation of motion
for HP boson operators with monochromatic solution. In our
work, considering the large lattice constant of the artificial
magnonic crystal and the nontrivial boundary condition due to
the metal dots discussed below, we still apply the convenient
classical approach to discuss the spin-wave dispersion and
the topological properties.

We turn to the role of the embedded heavy metal dots. The
first effect is to fold the free dispersion into magnon bands due
to the scattering by the periodic interfaces from the metals.
More importantly, as discussed in many theoretical [25–30]
and verified in experimental works [31–35], the heavy metals
(such as Pt, W, Au, Re, Ir, etc.) with strong spin-orbit cou-
pling can generate chiral interfacial Dzyaloshinskii-Moriya
interactions (iDMI) due to the inversion symmetry breaking at
the magnets/heavy metal interfaces. In our system, the iDMI
hDM is given by γ hDM = Dz × (et · ∇ )mi by comparing our
curvilinear surfaces to the previous plane surface [26,35].
et = n × z is the in-plane tangential vector of the interface
and n the normal vector of the interface, both depicted in
Fig. 1(b). D may be either positive or negative, depending
on the metal materials [27,28]. Without loss of generality, we
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FIG. 2. (a) The Brillouin zone and the path illustration for plotting the bands. (b) The band diagrams for the right-handed magnon modes
calculated for D0 = 0, D0 = 0.05A, D0 = 0.11A, and D0/A = 0.2A, respectively. The left-handed modes are degenerate to the right-handed
ones. The Chern numbers for each band are indicated in red. The Chern numbers for the left-handed modes are opposite. (c) The dependence
of the eigenfrequency for the first and second bands at the K (K ′) point with respect to D0. (d) The dependence of the eigenfrequency for the
third and fourth bands at the 	 point with respect to D0.

assume D is uniform at the curvilinear surfaces. The iDMI
will give an interfacial torque [29] and change the exchange
boundary condition into the formalism below:

n · ∇mi + Dd

A
z × (et · ∇ )mi = 0, (3)

with d the thickness of interface atomic layer and D0 = Dd is
a constant, only depending on the materials. This constant D0

value accounts for the experimentally observed approximately
inverse thickness dependence of spin-wave frequency shift in
ferromagnets/heavy metal heterostructures [33,34].

By solving the eigenvalue equation in Eq. (2) with the
nontrivial boundary condition in Eq. (3), we can obtain the
magnon dispersions in the k-space. The strip geometry illus-
trated in Fig. 1(a) can also be calculated. The results are shown
in the subsequent section.

III. RESULTS AND DISCUSSIONS

A. Band topological phase transitions

Before addressing the antihelical edge states, we first dis-
cuss the topological properties of magnons in the thin AFM
film containing an embedded array composed of a single type
of heavy metal dots. The corresponding Brillouin zone (BZ) is
shown in Fig. 2(a). We present the band dispersions at four dif-
ferent D0 values for the right-handed modes in Fig. 2(b). The
left-handed bands are degenerate to the right-handed ones.
When D = 0, all the bands are topological trivial. The first
(fourth) and second (fifth) bands are degenerate at the K and
K ′ points, which gives multiple Dirac points in the spectrum.
The second (fifth) and third (sixth) bands intersect at the 	

point.
A finite D lifts all the above the band degeneracies and

open band gap at 	, K , and K ′ points. As the right-handed
and left-handed modes are totally decoupled, we can use

the Chern number to characterize the topological properties
for the bands of each polarized mode. The Berry connection
of the nth band is given by Ak

n,± = ∓i
∫

uc ψ
n,†
±,kσz∇kψ

n
±,kdr

and Berry curvature Bk
n,± = ∇k × Ak

n,±. The Chern number
Cn,± = 1

2π

∫
BZ Bk

n,z,±d2k. The integral for the Berry con-
nection is done over the unit cell. The Chern number for
the corresponding right-handed magnon bands are shown in
Fig. 2(b) by the number on the bands. We find the Chern
numbers for the left-handed magnon bands are opposite to the
right-handed ones for each degenerate band. Therefore, we
can use the spin Chern number to characterize the topological
properties of the total system, Cn,s = (Cn,− − Cn,+)/2. We can
also define the nth gap spin Chern number C̄n,s associated with
the gap above the nth band as

C̄n,s =
n∑

n′=1

Cn′,s. (4)

The number C̄n,s determines the number of helical edge states
in the nth gap according to the bulk-boundary correspondence.
When D reverses sign, the Chern number for each mode will
reverse the sign accordingly. The spin Chern number will also
reverse sign. Therefore, the spin current due to the helical edge
states are expected to change the flow direction. As the sign of
D is determined by the heavy metal materials, we can design
our system by choosing the heavy metal as desired. Based on
this feature, we can construct the antihelical edge magnons by
structural design.

For the first gap, a larger D will give a larger band gap at the
K and K ′ points, as shown in Fig. 2(c). At any value of D, the
spin Chern number of the first gap is always −1. Interestingly,
increasing D will drive a topological phase transition for the
third and fourth bands. We find when D0 = Dc

0 � 0.11A, the
band gap between the third and fourth bands at the 	 point
will be closed. A larger D0 will reopen the gap, as shown
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FIG. 3. (a) The illustration of the edge termination on the upper
edge for the finite width ribbon with a single type of heavy metal
dots embedded. (b) Band dispersion diagrams for the right-handed
magnons in the ribbon calculated for D0 = 0.05A and D0 = 0.2A,
respectively. The left-handed magnon bands are degenerate to the
right-handed ones. The edge states are displayed with red curves. The
width of the ribbon is 716 nm. (c) Zoomed-in part of the band dia-
gram calculated for D0 = 0.05A from the green dashed box shown in
(b). (d) Snapshot of right-handed spin wave propagation at frequency
ω/2π = 16.2 GHz. (e) Snapshot of left-handed spin wave propa-
gation at frequency ω/2π = 16.2 GHz. (d),(e) D0 = 0.2A. Black
arrows labeled “source” mark the position of the microwave antenna.

in Figs. 2(b) and 2(d). The spin Chern number for the third
band C3,s will change from 1 to 0, while for the fourth band,
C4,s changes from 1 to 2. The total (spin) Chern number of
the two bands remain unchanged. But this topological phase
transition will change the third gap spin Chern number C̄3,s

from 0 to −1. This indicates that the third gap will experience
a topologically trivial to nontrivial phase transition. From
Fig. 2(b) we can see only the first and third band gap are full
gaps.

B. Helical edge magnons

The nonvanishing nth gap spin Chern number is expected
to give rise to helical edge states covering the band gap. To
verify this prediction, we calculate the band dispersion in
a strip geometry with a finite width along the y direction
and infinite along the x direction. The strip geometry with
only upper edge termination is presented in Fig. 3(a). The

band diagrams for the ribbon-like system, calculated for the
right-handed modes, are shown in Fig. 3(b) with D0 = 0.05A
(left) and D0 = 0.2A (right), respectively. The bands for left-
handed modes are degenerate to the right-handed ones. For
D0 = 0.05A, the edge states still can be see in the first and
second band gaps. The spin Chern number of the third gap is
0, indicating a trivial gap without supporting edge states. Edge
states are also expected to exist in higher bands. But due to
the absence of full gaps, they are not distinguishable from the
bulk states, and thus not illustrated. For D0 = 0.2A, the edge
states in the first and second gaps remain in place. Additional
edge states emerge in the third band gap due to the topological
phase transition for D0 > Dc

0 compared to D0 < Dc
0.

The zoomed-in image of the band diagram calculated
for D0 = 0.05A in the vicinity of the first band gap
[Fig. 3(c)]reveals that the edge states with the frequency
located in the shaded region correspond to purely chiral fea-
tures. These edge states thus propagate unidirectionally. We
can also see this feature for the states in the first and third
gaps for D0 = 0.2A. The excitation of the states with other
frequencies in the first gap and the states in the second gap
will do not show unidirectional flow. In the subsequent sim-
ulations, we mainly focus on the states in the first band gap.
Due to the helical nature of the edge states, spin current flows
principally at the edges of the ribbon. To verify the pres-
ence of topologically protected edge magnons, we perform
micromagnetic simulations by selectively exciting spin waves
of left-handed and right-handed polarizations. The details of
micromagnetic simulations is presented in Sec. V. The results
are shown in Figs. 3(d) and 3(e). We apply a right-handed
microwave source with the frequency corresponding to the
first band gap. The excited right-handed spin waves propagate
to the left [Fig. 3(d)], consistent with the in-pane magnetiza-
tion distributions obtained from band calculation. When we
changed the microwave source to the left-handed one, the
excited spin waves propagates to the right [Fig. 3(e)]. When
the excitation microwave source is linearly polarized, both
magnon modes will be excited. A higher frequency oscilla-
tion corresponding to the third band gap will also feature the
same behavior. When the excitation source is placed in the
opposite parallel edge, the moving direction of each mode
will be opposite. The obtained dynamics of excited spin waves
confirm the helical nature of the edge states. Similarly, in the
case of electron systems, it will cause magnon spin currents
at the edges, propagating in the opposite direction. These
states are topologically protected and are thus robust against
the disorders from the nanofabrication process. Similar results
were already reported in a previous work [36].

The sign of the spin Chern number is locked to the sign
of iDMI parameter D, which is dependent on the heavy metal
materials. When we embed different heavy metal dot arrays to
induce an opposite D, both polarized edge states will change
the direction of their propagation. Spin currents will also
reverse their directions. This feature in our system is the key
point for the construction of antihelical edge states.

C. Antihelical edge magnons

Based on the locking behavior between spin Chern number
and D, we now construct the antihelical edge magnons in our
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FIG. 4. (a) Ribbon geometry required for the formation of anti-
helical edge states. Blue dashed line marks the boundary between
two arrays of embedded heavy metal dots. These metals should
be different for producing the opposite signs of D in the iDMI.
(b) The band dispersion for the left-handed and right-handed modes
for the configuration shown in (a). The width of the of the ribbons
is 1236 nm. The edge states are marked with red curves. The edge
states confined at the interface between two types of metal dot arrays
are displayed in green. Doubly degenerate edge states are localized
at the upper and lower edges, respectively. The absolute value of D0

used in our calculation is 0.2A.

system that the edge spin currents at the parallel edges will
flow in the same direction. As the the sign of D is determined
by the heavy metal materials, we create the domain boundary
at the middle of the strip [Fig. 1(a)]by using two different
types of metal dots at the either side from the interface. The
two metal materials are assumed to induce iDMI with opposite
D, as illustrated in Fig. 4(a). For simplicity, we assume the
absolute value of D is the same. The different absolute value
of D will lead to quantitatively similar physical picture.

We plot the bands for both polarized modes in Fig. 4(b)
at |D0| = 0.2A. The edge states are marked in red. The green
color is used for the modes localized along the interface be-
tween the two domains with different embedded heavy metal

dot arrays. These edge and interfacial states are still topo-
logically protected. The edge modes are doubly degenerate
for both spin polarizations at the upper and lower edges. For
each polarized edge state covering the first and third gaps, the
two degenerate states propagate in the same direction, while
the states at the interface propagate in opposite directions.
The left-handed polarized bands can be mirrored to the right-
handed ones with respect to kxa = π (time-reversal invariant
point) and vice versa. On each edge and on the interface, two
polarized modes flow in contrast to each other.

The antihelical feature of the edge magnons can also be
revealed in the micromagnetic simulations. The results are
shown in Figs. 5(a) and 5(b). The excited left-handed spin
waves on the parallel edges flow towards the right while
the interfacial ones flow to the left. On the contrary, the ex-
cited right-handed edge spin waves propagate to the left and
the interfacial ones propagate to the right. These behaviors
demonstrate the successful construction of antihelical edge
magnons. In a cell with a finite width along the x direction, a
linearly polarized microwave source will excite both polarized
spin waves, as shown in Fig. 5(c). When the spin waves meet
the left and right vertical edges, they will be totally transmitted
without backscattering due to the topological protection. But
they cannot propagate into the bottom part of the system
because of the antihelicity: polarized magnons moving along
vertical edges can travel only along the interface [Fig. 5(c)].
Upon reaching the opposite vertical edge, they will split into
two flows, one of which can be partially transmitted to the
bottom part of the system [Fig. 5(c), inset]. Therefore, all
magnons traveling along the edges can move between the
upper and lower parts of the system only after propagating
along the interface separating them.

D. Discussions

Above all, we discussed the band topology due to the
iDMIs, in addition to the helical and the antihelical edge
magnons in the patterned antiferromagnetic thin film. In our
calculations, the thickness of the film is 4 nm. If another
thickness value is chosen, the same band dispersion will be

FIG. 5. Propagation of spin waves excited by microwave antennas, which are marked with short vertical arrows in the figure. The excitation
frequency is ω/2π = 16.2 GHz. (a) Left-handed spin waves move to the right along the edges while the confined modes at the interface move
to the left. (b) Right-handed spin waves move to the left along the edges while the confined modes at the interface move to the right. The
color scheme for panels (a) and (b) corresponds to the m1,x . (c) Spin-wave propagation from a linearly polarized microwave source, which
excites both left- and right-handed modes. The propagation paths are shown in the inset with red (blue) denoting the right-handed (left-handed)
modes. The color scheme for panel (c) shows ny = m1,y − m2,y. The illustrated results are obtained with micromagnetic calculations over the
1500 nm× 975 nm grid.
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observed if we focus only on bulk modes with kz = 0. The
modes with higher frequency at nonvanishing kz for any film
thickness are also expected to give the same physics as any kz

mode shares the same symmetry in the xy plane. We adopt the
triangular symmetry for the embedded array of heavy metal
dots. For the other array configuration (for example, a square
lattice), a similar magnon dynamics is expected.

We here adopted a medium lattice constant (a = 50 nm) for
the calculations. A larger lattice constant is not likely to alter
the topological properties of the magnon bands but will give
a smaller band gap, making it harder to observe the edge and
interfacial states. For example, when the lattice constant and
radius of the metal dot are both doubled with D0 = 0.2A, the
value of the first band gap at K will decrease from �ω/2π =
1.3 GHz to 0.45 GHz. In realistic experiments, a proper lattice
constant should be chosen considering both the experimental
detection and difficulties from nanofabrication. The helical,
antihelical, and interfacial states can be probed in the spin
pumping process as opposite magnon chirality could generate
opposite spin polarization, discussed in a recent experimental
work [37]. They can also be detected by the polarization
selective spectroscopy [38]. In addition, our configuration in
a ferromagnetic thin film will lead to the antichiral edge states
as there is only one magnon polarization in ferromagnets.

IV. SUMMARY

We propose a theoretical framework for realizing antihe-
lical edge magnons in antiferromagnetic thin film with an
embedded array of heavy metal dots. The iDMIs induce heli-
cal edge states with the direction of spin current dependent on
the sign of the iDMI parameter. The system can be efficiently
split into two working areas by embedding two different types
of metal dots. Such a subdivision will favor the opposite direc-
tion of spin current flows at the long edges of the system and
at the interface. The proposed system is experimentally fea-
sible. The new methods for controlling magnon spin currents
in antiferromagnets suggested here can be promising for the

development and improvement of magnon spintronic devices
based on antiferromagnetic materials.

V. METHODS

The band calculation and micromagnetic simulations are
performed by using the software COMSOL MULTIPHYSICS,
where the eigenvalue problem and the Landau-Lifshitz-
Gilbert (LLG) equation are transformed into the coefficient
forms by using the mathematical module. The nearest dis-
tance between the metal dot center (lattice constant) is a = 50
nm. The radius of the metal dot is r = 15 nm. The parame-
ters in the coupled LLG equation are as follows [39]: Kz =
8.55 GHz, A = 7.25 × 10−6 Hz · m2, Jex = 1.105 × 1011 Hz.
The saturation magnetization Ms = 1.94 × 105 A/m, the gy-
romagnetic ratio γ = 2.21 × 105 Hz · m/A. The values of D0

in the unit of A are given in the main text according to our need
for the discussions. The micromagnetic simulation is based on
Eq. (1). The damping constant is adopted as α = 2 × 10−4 to
get a long decay length. We did not take the dipolar fields
into calculation due to the antiferromagnet environment. The
temperature for the calculation is choose to be T = 0 K and
no stochastic noise is considered.

We can selectively excite either one or both of the polar-
ized modes simultaneously by setting the microwave fields.
The effective field of the radio wave is given by hr f (t ) =
h0[cos(ωt )ex ± sin(ωt )ey], where + denotes the right-handed
source and − denotes the left-handed source. Only one com-
ponent above along the x or y direction give a linearly
polarized source. In our micromagnetic simulation h0 = 2 ×
109 Hz, ω = 2π × 16.2 GHz.
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