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Single particle entropy stability and the temperature-entropy diagram in quantum dot transistors
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Single and double quantum dot (QD) transistors have been used to investigate entropy transitions in the single
particle limit. Precisely controlled QD electron states allow a few-particle thermodynamic system to be defined.
Charge stability diagrams are calculated to find the Gibbs entropy S vs bias voltage, providing a framework
to define single particle entropy diagrams. The calculation method is applied to experimental dopant atom
QD transistor characteristics. As multiple states become occupied, S increases in a stepwise manner towards
S = k ln �, where � is the total number of microstates, retaining the Boltzmann interpretation of entropy. The
T -S diagram vs gate voltage, where T is temperature, reflects underlying single particle state transitions and
enables the definition of heat cycles. These diagrams approximate the behavior of macroscopic phase changes in
magnetic, liquid-vapor, and superconducting systems.
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I. INTRODUCTION

Interpreting fundamental laws of thermodynamics, for-
mulated historically using many particles or microstates,
becomes increasingly complex at the few-particle level [1].
A well-known example is Maxwell’s demon and its reduction
to a single particle system by Szilard [2,3]. Here, statistical
variations in particle energy lead, theoretically, to contradic-
tions of the second law of thermodynamics. Resolving this
requires careful consideration of information entropy changes
[3–5]. Recently, quantum dots (QDs), which enable precise
control over single electrons, have been used experimen-
tally to realize Szilard’s engine and to observe Landauer’s
entropy for 1 bit of information, S = k ln 2 [6–11], where
S is the Gibbs entropy and k is Boltzmann’s constant. En-
ergy exchange and heat cycles in quantum computation have
also been analyzed using a single particle thermodynamics
framework [12–15].

Semiconductor QDs and single electron transistors (SETs)
[16–18] provide a tool to tunably probe thermodynamics at
the single particle, microstate level. These devices control
precisely the number of particles N on a QD, suggesting a
method to define thermodynamic macrostates with a known
number of constituent microstates. Thermodynamic parame-
ters, e.g., energy and entropy, of small macrostates may then
be probed as the number of underlying microstates is changed
one by one. Single QDs and double QDs (DQDs) [17,19]
have been used to investigate single particle entropy exchange

*z.durrani@imperial.ac.uk

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

[6,10,20,21], theoretically predict spin-charge-to-charge-state
phase transitions [22], build heat pumps [9,23], and propose
heat engine cycles [24–26]. Single particle thermodynamics
is also of great interest in understanding surface molecu-
lar dynamics [27,28] and determining fundamental limits on
the minimum power consumption of integrated circuits [29].
However, S and energy changes in QD devices have yet to be
mapped to their charge stability diagrams. The evolution from
single particle to multiple particle, classical entropy also re-
mains unclear. Furthermore, multiparameter T -S plots, where
T is temperature, widely used in classical thermodynamics to
understand phase transitions and entropy dynamics at phase
boundaries and to underpin heat engines [30,31], have yet to
be determined for these single particle systems.

In this paper, a method to extract S for single QD, DQD,
and multi-QD systems, from zero to moderate (<10) elec-
tron number, is developed and applied to the experimental
characteristics of a dopant atom DQD transistor [32]. Each
electron is associated with a particle microstate such that
the quantum system forms a thermodynamic macrostate with
size controlled by applied bias. This provides a generalized
approach to understand entropy and state transitions in sin-
gle particle systems. A numerical method, applying single
electron master equation simulations [33], is used to extract
the Gibbs entropy S corresponding to the single and double
QD transistor charge stability diagrams. Within this frame-
work, S vs transistor bias voltages is quasi-phase-diagram-like
where each constant entropy charge state is separated from
neighboring states by the single electron charging energy
Ec [19]. For points in the stability diagram where � states
meet, S/k = ln �, Boltzmann’s entropy formulation. We show
that S/k is equal to ln 1, ln 2 (Landauer’s 1-bit limit [4]),
and ln 3, at points where a single state, two states, and
three states coexist. S/k → ln � as the number of states
increases further. It is then possible to predict few-particle
T -S diagrams vs gate voltage, enabling heat cycles to be
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FIG. 1. (a) A series DQD circuit for single electron simulation results in (b). Tunnel junctions Tx are represented as a resistor and capacitor
in parallel. Cg1 (Cg2) couples QD1 (QD2) to Vg1 (Vg2). (b) DQD charge stability diagram with average additional number of electrons (N1 and
N2) regions marked. Units are scaled to the electron charge (Cg1Vg1/e and Cg2Vg2/e), while the conductance, gds, is normalized to the total
conductance of the device. (c) N2 on QD2 with a hexagon charge stability region marked by a white line. (d) S/k for the DQD calculated using
the results in (b) and (c). (e) Horizontal (lines A and B) and (f) vertical (lines C and D) line traces of the S/k plot in (d). (g) S/k for a single
QD device with normalized axes. (h) A vertical line trace in (g) at CgVgs/e = 0.2 between CtVds/e = +1 and CtVds/e = −1.

defined. Our T -S diagrams show similarities with many-
particle antiferromagnetic-paramagnetic phase diagrams vs
magnetic field [34,35] and, more broadly, with phase dia-
grams in liquid-vapor (e.g., water-steam) [30], ferromagnetic-
paramagnetic [36], and superconducting-normal systems [15].
However, while near-constant temperature regions are ob-
served in our T -S diagrams, these show smooth, thermally
activated transition edges. This differs from the observation
of constant temperature regions with abrupt edges in classical
multiparticle phase transitions.

II. SINGLE ELECTRON ENTROPY EXTRACTION

A. Numerical analysis

Figure 1 shows the numerical analysis results for a general
series of DQD and single QD transistors. In Fig. 1(a) the DQD
circuit is illustrated. When considering a single QD transistor
circuit, Tm is instead connected to ground. The conductance
(gds) for the DQD is shown in Fig. 1(b) with plot axes scaled
to the electron charge (Cg1Vg1/e and Cg2Vg2/e). The average
additional numbers of electrons (N1, N2) on QD1 and QD2
is also marked in Fig. 1(b). These are calculated using N1 =∑

m,n mp(m,n) and N2 = ∑
m,n np(m,n). The integers m and n

represent the number of electrons on QD1 and QD2, respec-
tively, and p(m,n) is the probability that a QD is in the charge
configuration (m, n), summed over all possible combinations
of (m, n). Figure 1(c) shows N2 vs Cg1Vg1/e and Cg2Vg2/e for
QD2 with changes in N2 occurring along the Cg2Vg2/e axis.
In contrast, changes in N1 vs Cg1Vg1/e and Cg2Vg2/e for QD1
occur along the Cg1Vg1/e axis; this plot is not shown.

The probabilities p(m,n) are found by solving the single
electron master equation [33]. The N1 and N2 values show the
dominant charge configuration (N1, N2) within each charge
stability region, and the dominant charge configurations are
the most likely values of N1 (N2) at given Vg1 (Vg2) and Vds

values. To calculate the entropy S for a QD in a DQD system,
we use Gibbs’s entropy definition S = −k

∑
i pi ln pi, where

k is the Boltzmann constant, pi is the probability that the
system is in the charge state i, and the summation is carried
over all these possible states. Furthermore, the sum of the
probabilities for having i electrons on the QD is

∑
i pi = 1.

Therefore the entropy for each QD is S1 = −k
∑

i p(1)
i ln p(1)

i

and S2 = −k
∑

j p(2)
j ln p(2)

j , where the superscripts “(1)” and
“(2)” for pi( j) and the subscripts “1” and “2” for S correspond
to QD1 and QD2. The total reduced entropy (Stot/k) of the
system is calculated in a similar way:

Stot = S1+2 = −k
∑

i, j

p(i, j) ln p(i, j), (1)

where p(i, j) is the probability that QD1 has i electrons and
QD2 has j electrons and the summation is carried over all
possible combinations of (i, j).

B. Statistical dependence between QDs

We now consider the case that QD1 and QD2 are statis-
tically independent. Here, Stot/k is the same as in Eq. (1);
however, since the two dots are assumed to be statisti-
cally independent, the following joint probability relation is
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used:

p(i, j) = p(1)
i p(2)

j . (2)

Hence, using Eq. (2), Stot from Eq. (1) may be rewritten for
two independent QDs as

Stot = S1+2 = −k
∑

i, j

p(i, j) ln p(i, j)

= −k
∑

i

∑

j

p(1)
i p(2)

j ln p(1)
i p(2)

j

= −k
∑

i

p(1)
i ln p(1)

i + −k
∑

j

p(2)
j ln p(2)

j

= S1 + S2. (3)

Equation (3) shows that Stot for two independent QDs will
be the same as the sum of entropies for each individual QD,
i.e., Stot = S1 + S2. However, since QD1 and QD2 are tunnel
coupled [Fig. 1(a)], the two dots in a DQD are statistically
dependent, and Stot �= S1 + S2.

C. Entropy plots

The DQD’s reduced entropy, S/k, is shown in Fig. 1(d).
The hexagon patterns that appear in the charge stability di-
agram are also present in the N2 plot; an example of this
is marked by the white hexagon in Fig. 1(c). Figures 1(e)
and 1(f) show changes in S/k across hexagon boundaries for
horizontal (dashed lines A and B) and vertical (dashed lines C
and D) line traces in Fig. 1(d). Traces across hexagon edges
in both horizontal and vertical cases show peaks with height
S/k = ln 2, corresponding to the two states defined by the two
hexagon regions. However, when tracing across a triple point
[horizontal line A in Fig. 1(d)], where three hexagon regions
meet and three states are available for occupancy [(0,0), (0,1),
and (1,0)], S/k = ln 3. A small shoulder [arrow in Fig. 1(e)]
is observed at S/k = ln 2 as pi changes from one to three
probable states.

Similar S/k characteristics are observed in the charge sta-
bility diagram for a single QD device [Fig. 1(g)]. Coulomb
diamonds, where no current flows, have S/k = 0, while
boundaries and regions outside are >0. A vertical line trace
between −1 < CtVds/e < 1 for CgVgs/e = 0.2 is shown in
Fig. 1(h). Here, the number of available states � increases as
|CtVds/e| increases, resulting in S/k → ln �.

The observation of S = 0 within each charge stability
hexagon in Fig. 1(d) and, in addition, constant S diamonds
in Fig. 1(g) implies that these regions may be viewed as ther-
modynamic states of fixed order. This has analogies to Kondo
charge-spin states based on order which have been interpreted
previously as phase regions [22]. Each state is separated from
its neighbors by a change in energy Ec with a two-state bound-
ary at the hexagon or Coulomb diamond edges. Triple points
occur at the hexagon vertices. In a DQD, Ec corresponds to the
relevant QD charging energy for (0,0)–(0,1) transitions and
inter-QD coupling energy for (0,1)–(1,0) transitions. A change
in energy is essential to move from one thermodynamic region
to another, and at nonzero temperature the state boundary is
mixed due to nonzero probability of either state.

D. Double quantum dot entropy

The DQD may be considered within a statistical mechanics
picture. A full DQD macrostate can be constructed using
microstates consisting of the total possible electron states on
each QD. The number of significantly occupied microstates
(electrons), and hence S, can then be controlled with Vds, Vg1,
Vg2, and T , forming a macrostate controlled by applied bias.

Figures 2(ai)–2(aiii) show S/k diagrams for a DQD at
T = 30, 60, and 90 K, respectively. As T rises, the uncer-
tainty in N1 and N2 increases, raising S/k at the boundaries
and towards hexagon centers. Figure 2(b) shows S/k curves
for traces along Vg2 = 0 V for different temperatures, with
peaks occurring when crossing hexagon boundaries. These
peaks arise from the changes in electron number for adjacent
hexagons [see Figs. 1(b) and 1(c)]. For lower temperatures,
e.g., 30 K, these peaks are narrow with a maximum at ln 2
because there are only two states available. However, at higher
temperatures, these peaks broaden and their height rises to
S/k > ln 2. This is because, although two states are likely,
other, less likely, states are also available. Minimum S/k val-
ues appear at hexagon centers, where T has a reduced effect
because the Coulomb blockade effect is maximized.

Figures 2(c) and 2(d) show T vs S/k curves for points along
the paths I–II and II–III, respectively, marked in Fig. 2(ai) for
increasing Vg1. At points I and III, hexagon centers, T has a
minimum effect. However, at point II, a hexagon boundary,
a small rise in T shifts S/k towards a ln 2 limit. A further
rise in temperature sees S/k � ln 2 as more states become
thermally accessible. The 1-bit information limit, ln 2, is
also seen in experimentally observed entropy variations of
a doublet state in magnetic phase transitions. These have a
remarkably similar T -S diagram as a function of external
magnetic field [35]. Here, the underlying physics, based on
a change in order from one to two states, is the same as in
our single particle system. The symmetric behavior between
the paths I–II and II–III is a reflection of the hexagon patterns
in the charge stability diagram. This behavior, where order
changes from S/k = 0 to S/k = ln 2 to S/k = 0, is analogous
to (α or β)–γ –δ phase (bcc-fcc-bcc atomic configuration)
ferromagnetic-paramagnetic transitions [36] (see Sec. IV).
However, as our state transitions are thermally activated,
abrupt edges where d2T/dS2 → ∞ are not observed.

III. EXPERIMENTAL ANALYSIS

The preceding method for extraction of S can be applied to
experimental single electron transistor characteristics to quan-
tify energy exchanges in nonideal experimentally fabricated
devices, propose heat cycles, and estimate the corresponding
efficiency. We now extract entropy plots from the experimen-
tal current-voltage (I-V ) characteristics of a phosphorous (P)
dopant atom DQD point-contact transistor, capable of room
temperature (RT) operation.

A. Fabrication method

Dopant atom, Si/SiO2/Si point-contact QD transistors
are fabricated in the heavily n-doped (P, concentration
∼1020/cm3), ∼30-nm-thick top Si layer of silicon-on-
insulator (SOI) material. Device patterns are defined using
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FIG. 2. (a) Temperature T dependence of S/k in a DQD device for (i) 30 K, (ii) 60 K, and (iii) 90 K. (b) Line traces at Cg2Vg2/e = 0 between
Cg1Vg1/e = −2 and Cg1Vg1/e = 2 with maximum transitions between two states, ln 2, marked by a dashed line. (c) and (d) T -S diagrams, with
S/k = ln 2 marked by a dashed line, for the path from point I to point II and the path from point II to point III, respectively, marked in (ai).

high-resolution electron beam lithography in bilayer
poly(methyl methacrylate) (PMMA) resist, followed by
reactive-ion etching in SF6 plasma to transfer the pattern
into the top Si layer. Side gates are trench isolated
from the point-contact, source, and drain regions. The
device geometry is exploited to oxidize completely the
approximately 10 × 10 × 30-nm planar area point-contact
region, trapping P dopant atom QDs within a SiO2 tunnel
barrier [20,21,32,37,38]. The QDs tunnel couple to each other
and to source and drain terminal regions on either side. Side
gates electrostatically control QD energy states and device
current and allow tuning to single or double QD operation
[32,37,38]. Tunnel barrier heights are ∼3 eV, sufficient for
RT confinement of electrons on the dopant atom states [37].
Figure 3(a) shows a scanning electron micrograph (SEM) of
the device, and Fig. 3(b) illustrates the device schematically.

A simplified equivalent circuit for this device is illustrated
in Fig. 4(a). Here, two QDs are capacitively coupled to a
single gate and are used to reproduce the electrical charac-
teristics and identify QD coupling configurations. The device

FIG. 3. (a) False-color SEM of the DQD device in SOI material.
Source (S) and drain (D) terminals connect to the point contact,
approximately 10 × 10 nm in planar area. Side gates (G1 and G2)
couple capacitively to the point contact. (b) Schematic diagram of
the device. Source, drain, point-contact, and gate layers are defined
in the top Si layer. Geometric oxidation of the device completely
oxidizes the point-contact region, isolating P dopant atom QDs (red
dots). The Bohr radii (circles) of the P dopant atoms (black dots) in
the device terminals overlap, such that these remain conductive

is measured using a single gate that is capacitively coupled
to multiple QDs in the SiO2 point-contact region. Figure 4(b)
shows the electrical characteristics, where Coulomb current
oscillations are observed. These lead to Coulomb diamonds in
the charge stability diagram. While a random arrangement of
QDs exists in the point-contact region, tuning the gate voltage
window allows single or double QD stability regions to be
identified [32,37,38].

B. Electrical measurement

Figures 4(c) and 4(d) show drain-source current Ids vs drain
(Vds) and gate (Vgs) voltage characteristics for a representative
device at RT = 290 K. Measurements are performed using a
single gate that couples to multiple QDs. Equivalent circuit
modeling is then used to reproduce electrical characteristics
and identify the QD coupling configuration [see Fig. 4(a) for
the equivalent circuit]. As the current level is low and near the
noise threshold (∼1 pA) in our measurement, data are aver-
aged 17 times per measurement point to reduce noise. Three
Coulomb diamonds are visible in Fig. 4(c), which overlap and
change in size and shape with Vgs due to different gate capaci-
tances coupling to the two dominant QDs. Further changes in
diamond size can occur due to changes in the potential well
shape with charge [37]. For Vgs > 1 V, no further charging
states exist in this device, and Ids ∼ 0 A. This is because the
number of charging states in dopant atom QDs tends to be
limited [37].

Figure 4(d) shows simulated I-V characteristics of the
device, using equivalent circuit single electron “master
equation” modeling [33,37]. Three overlapping Coulomb di-
amonds with changing heights are observed, qualitatively
similar to the experimental results in Fig. 4(c). The character-
istics correspond to Coulomb gaps Ec1 ≈ 0.3 eV and Ec2 ≈
0.24 eV for QD1 and QD2, respectively [19]. Figure 4(e)
shows the result for S/k for a Cgs2 = 2Cgs1 DQD device at
10 K, similar to the RT simulation in Fig. 4(d) (see Sup-
plemental Material [39] for a discussion regarding changes
in the Cgs1-to-Cgs2 ratio). Thermodynamic state boundaries
extend from Coulomb diamond edges into overlapping dia-
mond regions [an example of a boundary is marked by the
white dashed lines in Fig. 4(e)]. Traces along Vds = 0 and
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FIG. 4. (a) Equivalent circuit for DQD transistor. Tunnel junctions Tx are represented as a resistor and capacitor in parallel. Cgs1 (Cgs2)
couples QD1 (QD2) to Vgs. (b) Ids vs Vds, Vgs characteristics at RT = 290 K. (c) Image plot of |Ids| vs Vds, Vgs characteristics at RT = 290 K.
Extracted Coulomb diamond charge stability regions are marked by white dashed lines. (d) Simulation results at RT for a DQD. (e) Simulation
results for a circuit configuration with different gate coupling capacitance to the two QDs (Cgs2 = 2Cgs1 = 0.16 aF), at T = 10 K. (f) Horizontal
line scans at Vds = 0 V (blue) and Vds = +0.2 and −0.2 V (yellow and red, respectively) between Vgs = 2 V and Vgs = −2 V with maximum
transitions between two states, with ln 2 marked by a dashed line. (g) and (h) T -S curves between points A and B and between points B and C
in (e), respectively.

±0.2 V in the S/k diagram [Fig. 4(e)] between Vgs = −2 V
and Vgs = 2 V are presented in Fig. 4(f). Along the trace
for Vds = 0 V (blue curve), S/k peaks at ln 2 at Coulomb
diamond boundaries, as predicted. Along traces for Vds =
±0.2 V, asymmetric curves are produced, peaking at different
values owing to additional available states.

C. Single electron T -S diagram

Figures 4(g) and 4(h) show T -(S/k) diagrams vs Vgs

predicted for the experimental data in Fig. 4(c), sweeping
between regions A and B and between regions B and C in
Fig. 4(e), respectively. A large entropy change, S/k = 0 to
S/k = ln 2, occurs at diamond boundaries (e.g., point B) as
two states become equally probable. This region is suppressed
for curves with Vgs values closer to thermodynamic state cen-
ters. In Fig. 4(g), mixed-state behavior is observed within
the area bounded by the black dashed line. Similar, though
reversed behavior with increasing Vgs occurs in Fig. 4(h).

In the T -(S/k) plots of Figs. 4(g) and 4(h), Vgs has
analogies to the external magnetic field in antiferromagnetic
T -S diagrams and to pressure in liquid-vapor T -S diagrams
[30,35] (see Sec. IV for these T -S diagrams). Unlike liquid-
vapor diagrams at moderate pressure, constant T (isothermal)
sections are not observed in our T -S diagrams as a nonzero
slope is observed. Our T -S diagram may be used as a basis
to define heat cycles, e.g., the Carnot cycle or more complex
cycles such as the Rankine cycle, with a view to exploit the
energy changes for a quantum heat engine (see Sec. IV for
Carnot and Rankine-like cycles).

IV. DISCUSSION

The QD T -S diagrams may be compared with T -S dia-
grams extracted for classical multiparticle systems. The latter
are often used to demonstrate phase change behavior, e.g., the
liquid-vapor diagram, and define heat cycles for extraction
of heat engine efficiency. While our QD T -S diagrams do
not show phase change behavior where it is necessary for
dT/dS = 0, the quasi-phase-change-like behavior we observe
may be compared with liquid-vapor and antiferromagnetic-
paramagnetic transitions.

A. Comparison with liquid-vapor T -S diagram

Figure 5 shows a comparison between the liquid-vapor and
QD T -S diagrams. The liquid-vapor T -S diagram in Fig. 5(a)
is drawn schematically for isobars with increasing pressure
P [30,31,40]. Figure 5(b) shows the T -(S/k) diagram for the
DQD transistor discussed in the previous section. In Fig. 5(a),
for all isobars passing below the critical point A, a phase
change from liquid to vapor is observed with T constant,
corresponding to a two-phase changing liquid-vapor mixture.
In each isobar, the width of the phase change region corre-
sponds to the latent heat of evaporation, �Q = T �S. As P
increases beyond the critical point and the corresponding crit-
ical pressure isobar passing through this point, a clear phase
change region is no longer observed. Phase change regions
exist only for the area below the bell-shaped red dashed line,
with the left and right half boundaries of the bell defining
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FIG. 5. (a) Schematic T -S plot of the transition between water
and vapor at different pressures. The bell-shaped curve indicates the
phase change region with the critical phase changing point labeled
“A.” The ideal Rankine thermodynamic heat cycle is also labeled
(points 1–4, solid red line). (b) T -(S/k) diagram for the DQD device.
A partial bell curve (blue dashed lines) is drawn to identify regions
where T does not change rapidly with S. A Rankine-like cycle
is indicated by the solid green curve (points I–II–III–IV–I), and a
further heating-cooling cycle is indicated by the dashed green curve
(points I–II–III–IV′–I).

saturated liquid and saturated vapor boundaries, respectively.
A superheated vapor region exists to the right of the phase
change region, and a liquid region exists to the left. To the
right, well away from the saturated vapor boundary, the curves
obey ideal gas laws. The ideal gas Carnot cycle, consisting
of two adiabatic (vertical lines on the T -S diagram) and two
isothermal (horizontal lines on the T -S diagram) legs, then
maps as a rectangle (not shown for clarity) onto the diagram.
The solid red line in Fig. 5(a) indicates the ideal Rankine ther-
modynamic heat cycle, often used to describe steam turbines
[30,31]. Here the phase change region is explicitly exploited
in the cycle. The process from point 1 to point 2 (process
1–2) corresponds to constant S, isentropic liquid compression.
Process 2–3 corresponds to heat flow to the working fluid,
from liquid to saturated vapor, e.g., in the boiler of a steam
turbine. Process 3–4 corresponds to isentropic expansion of
the fluid, e.g., in the turbine. Process 4–1 corresponds to heat
flow from the fluid at constant P and T , e.g., in the steam
turbine condenser, until the saturated liquid point. The thermal
efficiency for the cycle is given by η = (Pt − Pp)/Q′

in, where
Pt and Pp are the turbine and pump power and Q′

in is the rate
of heat transfer in the boiler. Typically, η ∼ 30–40%.

The liquid-vapor T -S diagrams in Fig. 5(a) may be com-
pared with the DQD transistor T -(S/k) diagram [Fig. 5(b)].
Here, increasing P in (a) corresponds to decreasing gate bias
Vg1 in Fig. 5(b), where Vg1 < V ′

g1. Furthermore, in Fig. 5(b)
a reduced nonzero slope region occurs within the dashed
blue line area. This is unlike the flat, constant T , regions
in the liquid-vapor isobars and is closer to operating nearer
the critical point A in the liquid-vapor diagram [Fig. 5(a)].
The reduced slope region in Fig. 5(b) also does not form a
symmetrical “bell-like” shape as in Fig. 5(a), a consequence of
the underlying Coulomb blockade region shapes for the DQD.

Performing a heat cycle analogous to the Rankine cycle in
Fig. 5(a) for a DQD would require changing both Vg1 and T
for the isentropic, vertical legs (legs 1–2 and 3–4) in Fig. 5(b)
and changing temperature, i.e., heating or cooling the DQD,
to travel along a given curve for the upper and lower legs. An

FIG. 6. Comparison between water-steam and DQD T -S dia-
grams. (a) Experimental, water-to-steam, T -S diagram for phase
transitions at different pressures. Data are extracted from Ref. [40].
(b) Experimentally extracted T -(S/k) diagram for the DQD transistor
described in Fig. 4.

example of a Rankine-like cycle for a DQD is shown by the
solid green curve, points I–II–III–IV–I, in Fig. 5(b), where the
stages 1–2–3–4–1 are replaced by stages I–II–III–IV–I. This
quasi-Rankine cycle does not have horizontal, isothermal, legs
as in the liquid-vapor Rankine cycle in Fig. 5(a), due to the
finite slopes of the curves in the quasi-phase-change area. An
isothermal path in the DQD T -S diagram requires changing
Vg1 at constant T and leads to a transfer from one curve to
another horizontally. During this cycle, the DQD may be used
to extract heat from the environment in the leg II–III, i.e., the
DQD work can potentially be used as a cooling region for
nearby regions. Furthermore, change in Vg1 from point III to
point IV can in principle carry heat away from the DQD elec-
trons, reducing electron temperature. The cycle then follows
the path III–IV. If the electron remains at higher temperature
at point III, then the path III–IV′ is followed.

Assuming that this quasi-Rankine cycle is applicable to the
DQD device, the maximum efficiency η may be calculated
in an analogous manner to the liquid-vapor cycle. However,
in our case, η = Qout/Q′

in = �Vg1/(�Vg1 + kT ), where �Vg1

is the change in applied bias to gate 1 and kT is the ther-
mal energy of the electron gained as it stays at a particular
Vg1 value. For the cycle I–II–III–IV–I presented in Fig. 5(b),
an efficiency of η = (0.82 − 0.78) eV/((0.82 − 0.78) eV +
8.617 × 10−5 eV K−1 × 27 K) = 94.5% is calculated. How-
ever, only a small amount of work, ∼0.4 eV, is performed as
this is extracted for only a single electron.

Another heat cycle may be designed specifically for the
DQD to operate as a cooling mechanism; this is shown by
the solid green curve I–II–III continuing towards the dashed
green curve III–IV′–I. This process is similar to the Rankine
cycle; however, at point III, instead of an isentropic process,
an isothermal process takes place with an increase in Vg1.
From point IV′ to point I, the electron on the QD cools down,
such that a nearby coupled system may cool.

Figure 6 compares an experimentally measured water-
steam T -S diagram [Fig. 6(a)], digitally extracted from
Ref. [40], and the experimentally extracted DQD T -(S/k)
diagram [Fig. 6(b)]; see Fig. 4. The water-steam T -S diagram
shows a phase change envelope marked by the black dashed
bell curve in Fig. 6(a), where both liquid and vapor phases are
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FIG. 7. (a) T -S diagram schematic for experimental phase
transitions in a many-particle pyrochloric antiferromagnetic and
paramagnetic material at different magnetic field strengths H (results
are digitally extracted from Ref. [35]). The Landauer limit scaled by
the molar gas constant R ln 2 is marked by the black dashed line.
(b) Experimentally extracted T -(S/k) diagram for the DQD transistor
described in Fig. 4. The Landauer limit is marked by the black dashed
line.

present. A similar envelope is marked in Fig. 6(b) for the DQD
T -(S/k) phase diagram, where two possible electron config-
urations, or states, can coexist. Furthermore, in both systems,
an external variable is controlled to define each T -(S/k) curve.
For the water-steam case it is pressure, while for the DQD it
is applied gate voltage Vgs.

B. Comparison with antiferromagnetic-paramagnetic
T -S diagram

We also compare the experimentally extracted T -S di-
agram for many-particle pyrochloric antiferromagnetic and
paramagnetic materials [Fig. 7(a)] with our experimentally
extracted DQD T -(S/k) diagram [Fig. 7(b)]. Here we find
remarkably similar T -S curve characteristics between the two
systems. In the magnetic case, the T -S curve per mole in Er3+

has a nonzero slope, similar to those in the DQD T -S plot.
Furthermore, the pressure and gate applied bias equivalent for
the magnetic system is the strength of the magnetic field H .
For higher magnetic fields, e.g., the red curve in Fig. 7(a),

H = 9 T, the system is more stable and less affected by
temperature. This curve is identical to being at the center of
a hexagon in the DQD entropy-stability diagram, e.g., the yel-
low curves in Fig. 7(b). In addition, weaker magnetic fields,
e.g., the dark blue curve in Fig. 7(a), H = 1 T, produce a
strong effect when a small change in temperature occurs. This
behavior is similar to being at the boundary in our DQD dia-
gram, e.g., the dark blue curves in Fig. 7(b). Both systems also
show the Landauer limit [black dashed line in both Fig. 7(a)
and Fig. 7(b)]. In Fig. 7(a) this limit is scaled to the molar
gas constant R ln 2, while this scaling factor is not present in
Fig. 7(b). The phase transitions for the magnetic system are a
result of spin alignment in the magnetic fields. The similarity
arises from order found within the electronic configuration in
both systems.

V. SUMMARY

Summarizing, we extract single particle entropy and ther-
modynamic state changes, and predict T -S diagrams, for
single and double QD transistors as a function of applied
bias. A numerical method, applying single electron master
equation simulations, is used to calculate S vs transistor bias
voltages. This defines a framework to extract entropy-stability
diagrams where thermodynamic states are separated by the
single electron charging energy. For points in the stability
diagram where � states meet, S/k = ln �, Boltzmann’s en-
tropy formulation. We show S/k = ln 1, ln 2 (Landauer’s 1-bit
limit), and ln 3 at different points in the phase diagrams.
The T -S diagram vs gate voltage shows thermodynamic state
transitions and enables the definition of heat cycles. The re-
sults thereby provide a single particle analog to macroscopic
T -S diagrams in magnetic, liquid-vapor, and superconducting
systems.
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