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Instabilities of interacting matter waves in optical lattices with Floquet driving
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We experimentally investigate the stability of a quantum gas with repulsive interactions in an optical one-
dimensional lattice subjected to periodic driving. Excitations of the gas in the lowest lattice band are analyzed
across the complete stability diagram, from slow to fast driving frequencies and from weak to strong driving
strengths. To interpret our results, we expand the established analysis based on parametric instabilities to include
modulational instabilities. Extending the concept of modulational instabilities from static to periodically driven
systems provides a convenient mapping of the stability in a static system to the cases of slow and fast driving. At
intermediate driving frequencies, we observe an interesting competition between modulational and parametric
instabilities. We experimentally confirm the existence of both types of instabilities in driven systems and probe
their properties. Our results allow us to predict stable and unstable parameter regions for the minimization of
heating in future applications of Floquet driving.
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I. INTRODUCTION

Ultracold quantum gases in optical lattices have emerged
as a powerful experimental platform for investigating novel
quantum phenomena [1,2]. In particular the combination
of optical lattices with periodically modulated driving
forces provides precise control over the tunneling and
band structures to create tailored lattice potentials [3]. For
example, recent experiments demonstrated a dynamically
driven quantum phase transition between a bosonic Mott
insulator and a superfluid [4], the generation of kinetic
frustration on a triangular lattice [5], the realization of
artificial magnetic fields [6–11], and the creation of topo-
logical band structures [12–14]. Such periodically driven
systems are commonly described using the Floquet formal-
ism, which maps periodic driving to a time-independent
Hamiltonian [3,15].

Simulating quantum many-body physics in Floquet-driven
lattice potentials is challenging for interacting particles. Inter-
actions can create instabilities and heating on short timescales,
which are comparable to the modulation period and which
quickly destroy the coherence of the system [16]. To prevent
this, it is crucial to develop an understanding of excitation
mechanisms and to find an optimal window for the driv-
ing frequency [17]. A concept recently proposed to explain
excitations in driven atomic quantum gases in lattices is para-
metric instability [18,19]. Parametric instabilities occur when
the driving frequency matches an excitation energy in the
system [20], leading to an exponential growth of excitations
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and the destruction of the original quantum state. Recent
experimental studies have applied this concept to analyze one-
dimensional (1D) [21,22] and two-dimensional [23] bosonic
quantum gases.

The aim of this article is to investigate the impact of
interactions on the stability of a driven quantum gas in a one-
dimensional lattice potential. For a Bose-Einstein condensate
of cesium atoms, we experimentally study excitation modes
in the lowest lattice band and determine the system’s stability
across the full parameter regime of driving periods, TD, and
normalized driving strengths, K . We found it challenging to
explain our measured (TD, K) stability diagram using only
parametric instabilities. Instead, we applied the concept of
modulational instabilities, which was previously studied for
quantum gases with attractive interactions or negative ef-
fective mass [24–29], and extended it to periodically driven
systems. Combining both types of instabilities allowed us to
develop a model that explains our measurement results and
accurately predicts the system’s behavior in the limits of slow
and fast driving.

The article is divided into three main parts. Section II
describes our experimental setup and the measurement of the
system’s stability diagram. For its interpretation, theoretical
models of excitation modes with parametric and modulational
instabilities are introduced in Sec. III. We include a brief
summary of excitations in static systems to provide a com-
prehensive understanding, before extending the description to
periodic driving. Section IV contains a sequence of experi-
ments that confirm the existence of both types of instabilities
and their properties. Similar to the theory section, we begin
by studying growth rates and seeding mechanisms of mod-
ulational instabilities in the static system before adding the
driving force. Finally, in Sec. V, we combine our findings in
the previous sections to explain our measurement results for
the stability diagram.
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FIG. 1. Experimental setup and absorption images. (a) Sketch
of the experimental setup. (b) Absorption images showing the real
momentum distribution after release from the lattice (average of eight
repetitions, images are compressed horizontally by factor 0.55). Red
and blue patches indicate atoms in the carrier and in excited modes of
the wave packet, respectively. (c) Integrated density profile to count
the atoms in regions A and B.

II. EXPERIMENTAL MEASUREMENT
OF THE STABILITY DIAGRAM

Our experimental setup is illustrated in Fig. 1(a). We
started with a small Bose-Einstein condensate (BEC) of ap-
proximately 40 000 cesium (Cs) atoms in a vertical optical
lattice, L1 [30]. The BEC was confined by an additional
crossed-beam optical dipole trap with trapping frequencies
ωx,y,z = 2π × (18, 21, 10) Hz, and it was levitated by a mag-
netic field gradient [31]. Lattice L1 was formed by two
counterpropagating laser beams with wavelength λ = 1064
nm, lattice spacing dL = λ/2, momentum kL = π/dL, and
depth V = 8.8Er , where Er is the recoil energy. A broad mag-
netic Feshbach resonance with a zero crossing at 17 G [32]
was used to set the s-wave scattering length, as, before adi-
abatically loading the atoms into the lattice potential in 150
ms. We adjusted as for different measurements to tune the
interaction strength and provide experimentally convenient
timescales for the growth of excitation modes. For the mea-
surement of the stability diagram, a scattering length of 104a0

was chosen to simplify the comparison with other experiments
using 87Rb atoms.

The driving force, F (t ), was applied by periodically shift-
ing the position of the sites in the lattice L1. Its laser beams
are independently controlled by two acousto-optical modula-
tors with a frequency difference �ν(t ) between them [33].
This frequency difference moves the lattice sites with velocity
�ν(t )dL and creates an inertial force in the reference frame
of the lattice. To preserve a well-defined initial momentum
k0 of the wave packet, we switched the force rapidly on,
F (t ) = F0 cos(ωDt ), and modulated the wave packet for a
duration t .

For detection, we used absorption imaging to measure
the momentum distribution of the wave packets after rapid
switch-off of the lattice potential and after a levitated ex-
pansion time of approximately 70 ms [Fig. 1(b)]. The time
evolution was analyzed stroboscopically at times t that were
multiples of TD = 2π/ωD. The resulting distribution of the
gas in real momentum space shows the carrier wave at k0 and
peaks of the excitation modes at k0 ± q, both with repetitions
at ±2kL [Fig. 1(b)]. The red and blue regions indicate atoms
in the main carrier wave and in excitation modes, respectively.
We calculated the atom number NA in regions A that enclose

FIG. 2. Measured stability diagram for a driven BEC in a 1D
lattice potential. The number of atoms, NA, close to the initial
quasimomentum of the quantum gas is measured after driving for
approximately 30 ms with strength K and driving period TD. Colors
from yellow to blue indicate stable to unstable regions. Left and right
panels indicate different initial states with k0 = 0 and k0 = kL for
positive and negative values of Jeff.

the carrier wave in the momentum distribution and scaled NA

to the total atom number, Ntot, for each image.
The initial wave packets for the (TD, K) stability diagram

were prepared in the ground states of the time-averaged po-
tentials, which are centered at k0 = 0 for driving strengths
K = 0–2.4 and at k0 = kL for K = 2.4–5.5 (see left and right
panels in Fig. 2 and in Fig. S1 of the Supplemental Mate-
rial [34]). The ratio of atoms in the carrier wave and the total
atom number, NA/Ntot, was determined after a driving duration
close to 30 ms. The exact duration was always adjusted to
a multiple of TD, and it was sufficiently short to reduce the
effects of transverse [21,35] and longitudinal excitations [36].

The system’s stability is indicated by NA/Ntot in Fig. 2.
Instabilities typically spread the wave packet in momentum
space and, as a result, cause a rapid reduction of NA/Ntot. The
measurement shows areas of high and low stability (yellow
and blue) with clear boundaries in between. For example, the
system is stable for small driving strength K and for large
driving frequencies [regions (i) and (ii) in Fig. 2], but it is
unstable for K values close to 2.5 [region (iii)]. Large driving
strengths with K ≈ 4.4 increase the system’s stability again
[region (iv)]. For very fast driving, TD < 0.6 ms [region (v)],
instabilities are caused by the coupling to higher bands [37]
and will not be considered here.

The observed regions (i)–(iv) do not match well to pre-
dictions based on parametric instabilities [18,20]. To provide
a comprehensive understanding for our measurement results,
we first introduce the theoretical background for modulational
and parametric instabilities in Sec. III and provide experimen-
tal evidence for each mechanism in Sec. IV. We combine our
findings in Sec. V for a detailed analysis of our measurement
results in Fig. 2.

III. THEORETICAL MODELS
FOR INSTABILITIES IN LATTICES

We provide a brief summary of the description of exci-
tation modes within Bogoliubov theories before introducing
periodic driving into the system. An excited BEC can be
described by a carrier wave with quasimomentum h̄k and a
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FIG. 3. Excitation energy of phonon modes. (a) Real part of the
energy for the phonon (solid lines) and antiphonon (dashed lines)
modes for k = 0 (dark blue) and k = 0.3kL (light blue) in Eq. (3). All
imaginary components are zero (red line) for parameters V = 9Er ,
U/J = 1. (b) Phonon and antiphonon modes for k = 0.9kL . The
energy’s imaginary component is nonzero when real energies of
phonon and antiphonon modes match.

weak perturbation δφk (z, t ) [25],

ψ (z, t ) = e−iμkt/h̄eikz[φk (z) + δφk (z, t )]. (1)

Here, μk is the chemical potential and φk is the solution of
the stationary Gross-Pitaevskii equation. We write the pertur-
bation as a superposition of Bogoliubov excitations each with
quasimomentum h̄q, amplitudes ukq, vkq, and energy h̄ωq(k):

δφk (z, t ) =
∑

q

ukq(z)ei(qz−ωq (k)t ) + v∗
kq(z)e−i(qz−ωq (k)t ). (2)

In a lattice potential without driving, an analytical approxi-
mation for the energy of an excitation can be derived using the
tight-binding ansatz and the discrete nonlinear Schrödinger
equation [26,38]:

h̄ωq(k) = 2J sin(kdL ) sin(qdL ) ± 2

×
√

4J2 cos2(kdL ) sin4

(
qdL

2

)
+ 2JU cos(kdL ) sin2

(
qdL

2

)
.

(3)

Here, J is the tunneling matrix element, and U is an interac-
tion coefficient that depends on the number of atoms, Nj , and
the two-particle interaction energy at a lattice site j. Dipole
traps in our experimental setup create a harmonic potential
with a position-dependent Nj along the lattice direction. For
simplicity, we describe the system by its properties near the
trap center where Nj is largest. The lattice potential is defined
by the lattice spacing dL, lattice momentum kL = π/dL, and
a lattice depth V measured in recoil energies, Er . Figure 3
illustrates the energies of phonons and antiphonons given by
the plus and minus signs in Eq. (3) [25]. For a stationary
carrier medium with k = 0, the energies are symmetric with
respect to q [dark blue lines in Fig. 3(a)] and the system is
energetically stable for q = 0. Landau instabilities can occur
when the carrier wave moves above a critical velocity [light
blue lines in Fig. 3(a)] and excitations, which move in the
same direction, have an increased energy, while the energy is
reduced for excitations with a negative q. The timescale for the
creation of those Landau instabilities is often large and usually
does not limit the stability of periodically driven BECs [38].

Modulational instabilities (MIs) appear when the argu-
ment of the root in Eq. (3) is negative and the energy h̄ωq

becomes complex. As a result, excitations grow exponentially
in strength with exp(
t ), where the growth rate 
 is given
by Im(ωq). Such modulational instabilities have been stud-
ied in detail for quantum gases in lattices without periodic
driving [24–26]. They occur when the root’s second term is
negative and dominates the first, which happens either for
attractive interactions or for a carrier wave with negative effec-
tive mass, cos(kdL ) < 0. As a result, MIs appear for repulsive
interactions and negative effective mass when [26]

2J cos2(kdL ) sin2
(q

2
dL

)
< −U cos(kdL ). (4)

For weak interactions with U � 2J , this condition is only
fulfilled for small values of |q| [red line in Fig. 3(b)]. For
increasing interaction strength, this region of q values with
complex energy grows until it covers the entire Brillouin
zone (U = 2J) and instabilities reach maximal growth rates
at q = ±kL for U � 4J .

Periodic driving with a force F (t ) = F0 cos(ωDt ) acceler-
ates the wave packet to a periodic micromotion k(t ) = k0 +
(K/dL ) sin(ωDt ) through the first Brillouin zone. Here, h̄k(t )
is the quasimomentum of the carrier wave, K = F0dL/(h̄ωD)
is the dimensionless driving strength [39], and ωD = 2π/TD

the driving frequency. Note that the shape of the micromotion
depends only on the initial quasimomentum h̄k0 and on K ,
which is independent of ωD when we provide the driving force
by lattice shaking [33]. For increasing values of K , the wave
packet samples larger regions of the Brillouin zone, crossing
into regions with a negative effective mass for K = π/2, until
it reaches the edge of the Brillouin zone at K = π . For even
larger values of K , Bragg scattering occurs at the band edge
and folds the micromotion back into the first Brillouin zone.
To simplify the description, we refer in the article to weak and
strong driving strengths for K below and above π/2.

The time evolution of an excitation mode can be described
by the Bogoliubov–de Gennes equations for periodic driv-
ing [40]. Without interactions, the components u and v evolve
with energy ε±(q, t ), while the interaction energy U couples
the evolution with

i∂t

(
uq

vq

)
=

(
ε+(q, t ) + U U

−U −ε−(q, t ) − U

)(
uq

vq

)
, (5)

where

ε±(q, t ) = 4J sin
(q

2
dL

)
sin

(q

2
dL ± k0dL ∓ K sin(ωDt )

)
.

The index k is omitted for (uq, vq) by assuming that the
momentum of the carrier wave is k without driving and that
we probe the system at multiples of the driving period with
k = k0 for K > 0.

The Bogoliubov–de Gennes equations can be simplified for
slow and fast driving frequencies. As a reference, we use the
largest energy that an excitation mode acquires due to the mi-
cromotion of the carrier wave, h̄ωmax = 2

√
4J2 + 2JU . This

energy provides an upper limit for the oscillation frequencies
of the u, v components during one driving period. For faster
frequencies, ωD � ωmax, the response of the system is too
slow to follow the drive, and ε±(q, t ) can be replaced by
time-averaged values [40]. Diagonalizing the resulting matrix
in Eq. (5) provides the energy of phonon and antiphonon
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modes in the fast-driving limit

h̄ω f
q (k0, K ) = 2Jeff sin(k0dL ) sin(qdL ) ±

√
4Jeff sin2

(
qdL

2

)

×
√(

4Jeff cos2(k0dL ) sin2

(
qdL

2

)
+ 2U cos(k0dL )

)
(6)

where Jeff = JJ0(K ) is the renormalized tunneling matrix ele-
ment and J0 is the zero-order Bessel function.

Equation (6) is similar to the effective Bogoliubov disper-
sion relation in [18,20,40], but extended by the parameter k0.
This extension allows us to use the same representation for
the effective dispersion relation in a driven system as in a
nondriven system; i.e., Eq. (3) maps directly to Eq. (6) for
fast driving and a stroboscopic description, by replacing J
with Jeff, and k with the initial momentum k0. This result
implies that the concept of MIs and their properties can be
well extended to systems with fast driving. As in the static
case, MIs appear in the time-averaged system when ω

f
q (k0, K )

has complex components; i.e., the system is unstable for

2J2
eff cos2(k0dL ) sin2

(
qdL

2

)
< −JeffU cos(k0dL ), (7)

which can be fulfilled if one of the parameters Jeff, cos(k0dL ),
or U , is negative. For example, the initial evolution of a BEC
after quenching the sign of Jeff [41] can be interpreted as the
growth of modulational instabilities.

Slow driving with ωD � ωmax requires the opposite ap-
proach. The oscillations of the u, v components and the
system’s response are fast compared to TD and the excitation
energies are given by Eq. (3) for each moment in time. Large
growth rates with 
 � ωD limit the application of the model
as excitation modes can grow quickly and break the pertur-
bative ansatz in Eq. (5) before even a single driving cycle is
completed. However, we find it helpful to define the average
energy of an existing excitation as the system cycles through
one micromotion,

h̄ωs
q(k0, K ) = 1

TD

∫ TD

0
h̄ωq(k(t ))dt, (8)

where k(t ) depends on k0 and K . The values of ωs
q and ω

f
q are

closely matched for weak driving strengths but deviate when
the micromotion crosses into regions with negative effective
mass and ωs

q(k0, K ) acquires imaginary components. Both

parameters, ωs
q and ω

f
q , have limitations when describing the

interesting regime of intermediate driving frequencies with
comparable values for ωD and ωmax.

Parametric instabilities (PIs) occur in this intermediate
frequency regime when ωD resonantly matches excitation en-
ergies in the system [18,20]. We illustrate this condition in
Fig. 4(a) by comparing ωD to ω

f
q . Parametric resonances occur

at quasimomenta for which ω
f
q is equal to integer multiples

of ωD [blue arrows in Fig. 4(a)]. This concept works well
to explain the numerically calculated growth rate for weak
driving. We propagate Eq. (5) for u and v over one period,
diagonalize the resulting matrix, and use its eigenvalues to
determine 
q(K, TD) [40]. The regions with large values of

q [green to yellow in Fig. 4(b)] match well to the red lines

FIG. 4. Parametric resonances. (a) Calculated excitation energy
h̄ω f

q of modes with momentum q (V = 8Er , U = 4J , K = 1.4).
Resonances occur when integer multiples of the driving frequency
ωD match ω f

q . (b) Calculated growth rate 
 for excitation modes
with momentum q and driving frequency ωD. Red lines indicate the
frequency-matching condition ω f

q = nωD.

that indicate the resonance condition ω
f
q = nωD with integer

n. Similar fractional excitation spectra occur in a tilted lat-
tice [42] and for interband excitations [43].

We further investigate the cause of the instabilities
by studying the time evolution of the excitation mode
(u = 1, v = 0) over a few oscillation periods using Eq. (5).
In the case of fast driving and weak driving strength, the real
and imaginary components of u(t ) oscillate with frequency
ω

f
q [blue lines in Fig. 5(a)] and |u|2 oscillates with frequency

2ω
f
q [red line in Fig. 5(a)]. Parametric instabilities arise when

the driving frequency approaches ω
f
q , causing |u|2 to diverge

FIG. 5. Calculated time evolution of an excitation mode
(u = 1, v = 0). (a) Components of u(t ) oscillate with the mode’s in-
trinsic frequency ω f

q in the fast-driving limit. Dotted, dashed, and red
lines show Im[u(t )], Re[u(t )], and |u(t )|2, for parameters ωD = 4ω f

q ,
K = 1.4, q = kL , and U = 10J . (b) A parametric instability appears
when ωD matches this intrinsic frequency and the excitation mode
grows exponentially. (c) Modulational instabilities require the mi-
cromotion (black line, top panel) to cross into regions with negative
effective mass (red patches). The system is modulationally unstable
for TD = 11.3 ms (solid red line), but stable for TD = 8.3 ms (dashed
red line) with parameters K = 2.2, k0 = 0, and U = 10J . (d) Sketch
of the oscillation of |u|2 (red line) and its derivative (blue line). The
system is stable when the effective mass turns negative (arrows) in
intervals with alternating slope of |u|2.
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FIG. 6. Calculated growth rate for strong driving strength.
(a) Imaginary component of time-averaged phonon energy h̄ωs

q (top)
and the growth rate (bottom) for strong interactions U = 10J (K =
2.2, V = 8Er). Black and white lines indicate integer and half-integer
multiples of T s

q . (b) Same panels for weak interactions with U =
0.5J . The red lines and black lines indicate multiples of 2π/ω f

q

and T s
q .

exponentially [Fig. 5(b)]. In contrast, MIs only occur for
strong driving strength with K > π/2 when the micromotion
crosses into regions of the Brillouin zone with negative effec-
tive mass. For instance, Fig. 5(c) illustrates the micromotion
and critical regions with negative effective mass with a black
line and red patches, respectively. The excitation mode grows
whenever the micromotion crosses through such critical re-
gions (solid red line). It would seem reasonable to expect that
interacting systems are always unstable for strong driving.
However, we also observe narrow intervals of ωD with large
yet stable oscillations (dashed red line).

To understand the cause of those narrow stable intervals,
we analyze the growth of excitations for strong interactions
and K close to 2.4 [Fig. 6(a)]. The parameter regime is chosen
because the time-averaged excitation energy h̄ωs

q provides a
good approximation for the oscillation of u(t ) with period
T s

q = Re[2π/ωs
q] and growth Im[ωs

q]. We observe a large
growth rate for all values of q (top panel), suggesting that the
system is always unstable due to MIs. However, our numerical
calculations using Eq. (5) reveal the presence of stable regions
(blue in bottom panel). Stability is achieved for TD = nT s

q /2
(white lines), where n is an odd integer, and for TD < T s

q /2 in
the fast-driving limit.

Those stable intervals in the driving frequency are caused
by an interplay between the periodic growth of MIs and the
oscillation of |u|2 with period T s

q /2. Crossings into critical
regions with negative effective mass cause the system to be
periodically unstable. Surprisingly, this can reduce the os-
cillation amplitude of the mode, when the crossing occurs
on a downward slope of |u|2. The stability of the system
depends on the number of crossings into critical regions of
the Brillouin zone per interval T s

q . It is unstable for two cross-
ings [black arrows in Fig. 5(d)], but stable for at least four
crossings (dark blue arrows) when the growth during upward
and downward slopes of |u|2 cancels out. This is the origin of
the fast-driving limit. The stability at the white lines occurs
when the micromotion crosses into critical regions at alter-

nating slopes of the |u|2 oscillation, such as at TD = 3T s
q /2

(light blue arrows). A similar analysis is challenging for weak
interactions with U ≈ J as neither ωs

q nor ω
f
q is well suited to

describe relevant timescales in the system [black and red lines
in Fig. 6(b)]. The growth of MIs is stronger for small q values
than for large (top panel), which results in a complicated
competition between MIs and PIs (bottom panel). MIs control
the growth of excitations in the center of the Brillouin zone,
whereas PIs dominate for large q values, with a complicated
pattern of stable and unstable regions in between.

Comparing PIs and MIs. Modulational instabilities are well
suited to describe the behavior of excitation modes in the fast-
and slow-driving limits. They are caused by intrinsic proper-
ties of the medium, e.g., attractive interactions or a negative
effective mass in the Brillouin zone, which already make the
nondriven system unstable. Driving and the resulting micro-
motion just switch instabilities periodically on and off. For
the fast-driving limit, time averaging over the micromotion
provides an intuitive description of phonon energies, stability
criteria, and growth rates that is formally identical to the
nondriven system.

Parametric instabilities arise when the driving frequency
resonantly couples with an excitation mode, causing a stable
system to become unstable. As a result, PIs can exist only for
intermediate driving frequencies with comparable excitation
energies. This regime of intermediate driving frequencies is
most interesting because PIs and MIs can exist simultane-
ously. Parametric instabilities make a mostly stable system
unstable for resonant driving frequencies [Fig. 4(b)], while
systems with MIs are mostly unstable but show narrow fre-
quency intervals with stable modes [Fig. 6(a)].

IV. EXPERIMENTAL CHARACTERIZATION
OF MIs AND PIs

This section provides a sequence of experimental mea-
surements that demonstrate the existence of both types of
instabilities and study their properties. We found it helpful
to probe the properties of excitation modes separately for
nondriven and driven systems, and for MIs and PIs, before
combining our results for the analysis of the main stability
measurement in Sec. V. For nondriven systems, we demon-
strated the growth of excitation modes when the carrier wave
has a negative effective mass (Sec. IV A 2), and we observed
the decay of modes in stable regions of the Brillouin zone
(Sec. IV A 3). Combining both concepts allowed us to an-
alyze the observed evolution of excitation modes in driven
systems when the micromotion cycles through the Brillouin
zone (Sec. IV B 1). Demonstrating the existence of PIs was
challenging, as we never observed the formation and growth
of excitations in parameter regimes which allow for PIs but
not for MIs. Instead, we created excitation modes directly with
the help of Bragg scattering pulses and measured the modes’
reduced decay due to PIs (Sec. IV B 2).

A. Modulational instabilities without periodic driving

Without periodic driving, modulational instabilities were
experimentally studied in detail during the 2000s [27–29,44].
For example, MIs can grow in homogeneous superfluids with
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FIG. 7. Momentum distribution of MIs without driving. (a) Ex-
ample images of MIs for different lattice depths V and k = kL after
approximately 10 ms (as = 6a0, N = 3 × 104). We observe images
with matching pairs of excitation modes (V = 3.8Er–12.5Er), but
also images with multiple modes (V = 12.5Er , right). (b) Histogram
of peak positions for increasing lattice depths and U/J = 0.5, 1.2,
2.5, and 6.5 (top to bottom). Red lines indicate 
 = Im(ωq ). (c) The
measured peak positions of the histograms match well to the pre-
dicted positions in Eq. (9) (red line).

attractive interactions, leading to the formation of soliton
trains [45], and they can occur for repulsive interactions in
lattice potentials with quasimomenta that have a negative
effective mass [27,28]. In this section, we experimentally
measure properties of MIs with relevance to the driven system,
such as the momentum distribution, growth rate, and time
evolution.

1. Momentum distribution

We first studied the momentum distribution of excitation
modes that develop due to MIs for carrier momentum h̄kL.
We accelerated the wave packet with a magnetic field gradient
to the carrier momentum, waited for approximately 10 ms,
and measured its quasimomentum distribution. The resulting
momentum profiles [Fig. 7(a)] show the carrier wave at kL and
two peaks, which are caused by pairs of excitation modes with
opposite quasimomenta (+h̄q,−h̄q) [46].

The momentum of the most unstable mode, h̄qmum, can be
calculated using Eq. (3):

cos

(
qmumdL

2

)

=
{

−
√

1 − U
4J| cos(kdL )| if U � 4J| cos(kdL )|

0 if U > 4J| cos(kdL )|.
(9)

Depending on the ratio U/J , the value of qmum shifts from the
center of the Brillouin zone (U � J) to its edge when U is
equal to the band width 4J . Note that the quasimomentum h̄q
of an excitation mode is defined in the reference frame of the
carrier wave. As a result, excitation modes have a momentum
h̄k ± h̄q in the lattice frame, and they appear in the images at

the edge of the Brillouin zone for q = 0 and at the center for
q = kL.

In addition to the expected peaks at momentum ±h̄qmum,
we observed images with more than two modes and shot-
to-shot fluctuations of their momenta [see second example
image for V = 12.5Er in Fig. 7(a)]. To account for these
fluctuations, we used a statistical analysis of the MIs. We took
100–150 images, applied a peak-finding algorithm to detect
excitation modes, and calculated histograms of their positions
[Fig. 7(b)]. The shapes of the histograms match well with the
predicted growth rates 
q = Im(ωq) for increasing interaction
strengths U/J [solid lines in Fig. 7(b)]. The absolute values of
the growth rates will be discussed in Sec. IV A 2.

For the measurement of qmum, we determined the two peaks
with the most likely quasimomentum for positive and negative
values of q [Fig. 7(c)]. Connected pairs of data points indicate
the momenta of the two peaks per histogram. Histograms
with U/J > 4 have a single peak at q = 0. Our data match
well to the predicted values for qmum in Eq. (9), and we
expect that the observed U/J dependence of qmum can be ex-
tended to driven systems. However, there is a discrepancy with
the models used in previous studies of dynamically unstable
systems [18,21,23]. In our measurements, the most unstable
mode does not dominate the system’s time evolution, but it
is merely the most likely mode in a distribution. Whereas in
a scenario of infinite carrier medium and infinite observation
time the most unstable mode would outgrow all others, such
conditions do not exist in our system.

2. Growth rates

The growth rate 
q of excitations is difficult to measure
directly due to their random occurrence. To illustrate this
challenge, we used a magnetic field gradient that accelerated
the wave packet to momentum h̄k, waited for a variable hold
time, and evaluated the momentum profile using absorption
imaging. We observed that excitation modes grow predom-
inantly near the center of the Brillouin zone [region B in
Fig. 8(a)], resulting in an increase in atom number NB in that
region. Instead of exhibiting exponential growth as expected,
the increase in NB shows a logarithmic-like curvature. This
curvature results from the simultaneous or sequential growth
of multiple excitation modes. Similar logarithmic-like growth
of excitation modes was also reported for a driven system
in [23], and for nondriven systems when using atom loss as
an indicator [28].

To enhance the predictability of MIs, we seeded the modes
directly using Bragg pulses generated by lattice L2 [Fig. 1(a)].
The pulse intensity and duration were adjusted to create a seed
with 5–8 % of the atoms in the carrier wave. The absorption
images of the time evolution show an initial increase in the
excited modes for 4 ms, followed by coupling to higher-
order modes at ±2q [Fig. 8(b)]. To evaluate the growth, we
measured the relative atom numbers NB/Ntot in the excita-
tion modes [Fig. 8(c)]. Initially, the seeded modes experience
exponential growth that is followed by saturation or even a
decrease, which is due to the finite number of atoms and the
growth of higher-order excitations. To account for the limit
of our theoretical model to small perturbations, we determine
the exponential growth rate over only the first 1.5 ms [28]. The
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FIG. 8. Growth rate of MIs without driving. (a) Time evolution
of excitations with NB atoms at the center of the Brillouin zone
(red circles, red patches) and total atom number, Ntot (blue squares),
k = 0.95kL , V = 10Er , as = 90a0. Lines are added to guide the eye.
(b) Absorption images of the time evolution after seeding excitations
at q = ±0.46 (k = kL , V = 10Er , as = 14a0, Ntot ≈ 41 000, U/J =
8.9, five repetitions). (c) Relative atom number in seeded excitation
modes for V = 10Er (blue squares) and V = 6.3Er (red circles).
The lines are exponential fits to the data points with t < 1.5 ms.
(d) Measured growth rate 
q (red circles) and range of expected rates
Im(ωq ) assuming lattice site occupations between 60% and 100% of
the peak value (red patch).

measured values of 
q are significantly smaller than Im(ωq),
which are the values suggested by Eq. (3) [Fig. 8(d)]. This
difference between the measured and expected growth rates
increases further when we consider that the measurement
probes the density of the excitation modes, which should show
twice the growth rate [23].

We speculate that this discrepancy between predicted and
measured growth rates is caused by different initial states of
the excitation modes. Im(ωq) is calculated for the eigenstates
(uq, vq ) of the matrix in Eq. (3). However, these states may not
match the modes created by Bragg scattering or by random
seeding, leading to initial oscillations [red line in Fig. 5(a)]
and an inaccurate measurement of exponential growth. In
addition, the calculated growth rates also become unreliable
for longer hold times, as the perturbative ansatz in Eq. (1) is
no longer applicable for large excitation modes.

3. Decay rates

Before discussing driven systems in the next section, it
is instructive to study the evolution of existing excitation
modes in a stable region of the Brillouin zone. Compared
to Sec. IV A 2, we used stronger Bragg pulses that excited
approximately 40% of the carrier wave to momentum ±q
and prepared the carrier wave at k = 0. The resulting time

FIG. 9. Decay of excitations in stable regions without driving.
(a) Absorption images of the time evolution of excitation modes
k = 0 (as = 31a0, V = 10Er , q = 0.47kL). The excitation modes are
created by a Bragg pulse which excites approximately 40% of the
atoms. Images are centered to the q = 0 peak and averaged over eight
repetitions. (b) Fraction of atomss NB/Ntots in excited mode for data
in (a). We determine the time at the minimum Th by locally fitting
a second-order polynomial. (c) Th for various scattering lengths (red
circles) and period 2π/ωq in Eq. (3) (blue squares). The inset shows
a sketch of two density profiles (red and blue) for a pair of excitation
modes with ±q.

evolution [Figs. 9(a) and 9(b)] shows a fast oscillation and
a slow decay of the number of atoms in the excitation modes,
NB. The first minimum of NB is at Th ≈ 3 ms, the maximum
at 6 ms, and exponential decay times are approximately 15
ms. We find that Th depends on lattice depth and interaction
strength, but not on the initial occupation strength of the
excitation mode. Measured values of Th show a similar trend
for varying scattering lengths as 2π/ωq [red circles and blue
squares in Fig. 9(c)].

We speculate that the time evolution of NB in Fig. 9 is
caused by an oscillation between two configurations of a den-
sity wave. After the Bragg pulse, the initial state consists of a
carrier wave and two excitation modes of similar strength and
quasimomentum ±q. Interfering these modes creates a density
modulation of the carrier wave with wavelength λq = 2π/q
[sketch in Fig. 9(c)]. This density wave grows due to MIs
for |k| > kL/2 (Sec. IV A 2), but it decays for a stable system
with |k| < kL/2. For those stable carrier momenta, repulsive
interactions cause the wave to spread and to regenerate at a
shifted position λq/2. As a result, the time evolution of NA

shows an oscillation with period 2π/ωq between these two
configurations of the density wave.

The damping of the oscillations can be attributed to our
trapping potential and the finite system size. In our experi-
mental setup, the trapping potential breaks the translational
symmetry and lifts the energy degeneracy for the two configu-
rations of the density wave, which results in the dephasing and
decay of the oscillations. However, the measured timescale
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FIG. 10. Excitation growth due to MIs with driving. (a) Time
evolution of a seeded excitation mode without driving (blue squares)
and with driving (red circles), q = 0.48kL , V = 6.3Er , as = 105a0,
TD = 3.3 ms. Top: Micromotion for K = 1.8, k0 = 0. Critical regions
of the Brillouin zone are indicated by red patches and time intervals
of k(t ) in those critical regions by gray patches. The lines next to data
sets are smoothing splines to guide the eye. (b) Averaged absorption
images for the driven system. We observe no significant heating
during the initial evolution time.

of 10 to 20 ms for damping is shorter than expected for our
trap periods of approximately 100 ms, and we did not observe
dephasing or heating in the momentum profiles in Fig. 9(a).

B. MIs and PIs with periodic driving

We separately examine in this section both types of in-
stabilities at intermediate driving frequencies. For MIs, we
demonstrate the impact of micromotion on excitation modes
by observing a complex pattern of growth and decay as the
carrier wave cycles through the Brillouin zone (Sec. IV B 1).
For PIs, we provide evidence of their existence in a parameter
regime where MIs are not possible (Sec. IV B 2).

1. Modulational instabilities

In driven systems, MIs occur when the carrier wave pe-
riodically passes through regions of the Brillouin zone with
positive and negative effective mass. As we demonstrated in
Secs. IV A 2 and IV A 3, MIs grow in unstable regions but
oscillate and decay in stable regions of the Brillouin zone. In
this section, we show that, for periodic driving, both effects
combine to create a complex oscillation of the excitation
modes.

In a first step, we applied a Bragg pulse that generated
a pair of excitation modes with 15% of the carrier wave.
Without driving, the resulting density wave was unstable for
k = 0 and exhibited damped oscillations of the mode occu-
pation with a first minimum at Th ≈ 1.1 ms [blue squares in
Fig. 10(a)]. In a second step, we added a driving force with
period TD and observed its impact on the mode occupation
[red circles in Fig. 10(a)]. For a driving strength K = 1.8 and
TD ≈ 3Th, the micromotion crossed briefly into regions with
negative effective mass whenever the nondriven oscillation of
the excitation mode was close to a maximum or minimum.

Red and gray patches in Fig. 10(a) indicate intervals in quasi-
momentum space and time with negative effective mass.

The first crossing of the micromotion into an unstable
region of the Brillouin zone [marked by (i) in Fig. 10(a)]
has little effect on the excitation mode, as the mode’s oc-
cupation is small and decreasing. The driving force even
reduces the mode occupation between 1 and 2 ms compared
to the nondriven system. However, when the occupation of
the nondriven mode is at a maximum at the second crossing
(ii), the driven excitation mode grows strongly by almost a
factor of 3. At the third crossing (iii), as the mode occupation
begins to decrease, the oscillation amplitude is reduced again.
We found that the mode’s oscillation amplitude continued to
fluctuate with a complex interplay between micromotion and
mode occupation.

We did not observe a significant increase of the number
of thermal atoms during the first 5 ms [Fig. 10(b)], which
suggests that the process was mostly coherent. For MIs, ex-
citation modes must occur in pairs with opposite momenta
(+h̄q,−h̄q) to conserve the total momentum. Also the energy
is conserved due to the symmetry of Eq. (3) for which the
real parts of ω+q and ω−q have opposite signs [interval with
overlapping blue lines in Fig. 3(b)]. As a result, pairs of exci-
tation modes can grow for |k| > 0.5kL without changing the
system’s energy [e.g., Fig. 8(b)]. However, we expect that the
observed oscillations result in a slow heating of the system as
the micromotion drags existing modes through the Brillouin
zone. Further studies are needed to evaluate this mechanism
on longer timescales. The mechanism is different for PIs that
can be created at |k| < 0.5kL when the total energy of the
modes is positive.

2. Parametric instabilities

Weak driving strengths seem to be ideally suited for the
search of PIs. For K < π/2, the micromotion does not cross
into regions of the Brillouin zone with negative effective mass
and MIs are not possible. However, we did not detect the
growth of excitation modes in this region in our measurements
for the stability diagram (see Sec. V). Instead, we employed
a different approach by demonstrating the reduced decay of
existing modes due to PIs. Using a Bragg pulse, we created
excitations at q = 0.46kL and monitored their decay.

For most driving periods, those excitation modes were
no longer visible in the momentum profiles after 30 ms
[Fig. 11(a)]. However, some weak excitations persisted for
TD ≈ 5 ms [region (i)] and TD ≈ 10 ms [region (ii)]. We
determined the number of atoms in the ground state, NA, from
Gaussian fits to the peaks at 0,±2h̄kL, and calculated the
relative number of excited atoms as NĀ = 1 − NA/Ntot. The
two peaks of NĀ in Fig. 11(b) match well to the observed exci-
tation modes in the absorption images. Figure 11(d) compares
the measured resonance positions with the calculated growth
rates. The initially excited mode at q = 0.46kL is indicated by
the dashed red line. We measured the two resonance positions
for varying lattice depth and compared them to the calcu-
lated growth rates [Fig. 11(c)]. We observed good agreement
between the measurements and the predictions, except for
the large strength of the second resonance at TD ≈ 10 ms. The
width and height of its peak in Fig. 11(b) are likely due to the
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FIG. 11. Measurement of parametric instabilities. (a) Absorption
images with momentum distribution after driving for approximately
30 ms (as = 73a0, K = 1.3, V = 9Er , Ntot = 3.4 × 104). An initial
Bragg pulse seeds excitation modes at q = 0.46h̄kL . (b) Number
of atoms that are not in the ground state, NĀ, for the data in (a).
(c) Measured driving periods of the first (blue squares) and second
(red circles) peaks of NĀ for varying lattice depths. Solid lines show
calculated peak positions. (d) Numerically calculated growth rates
using Eq. (5) and parameters in (a). The dashed line indicates the
quasimomentum of the exited excitation mode.

coupling with other excitation modes at smaller q, which can
also be seen in the absorption images at region (iii).

This measurement demonstrates the existence of PIs, but
their growth rates seem too small to excite the system within
30 ms by random seeding. We find for the parameters in
Fig. 11(a) that the maximum calculated growth rate for weak
driving (only PIs) is a factor of 3 smaller than the growth rate
for stronger driving with π/2 < K < 2.4 (PIs and MIs). This
variation in growth rates may be due to the different coupling
mechanisms between the carrier and excitation modes for PIs
and MIs. PIs require an oscillating driving force to excite
the carrier wave and add energy, whereas MIs are achieved
by periodically switching the instability on and off without
adding energy.

V. INTERPRETATION OF THE STABILITY DIAGRAM

Finally, we bring together our findings from earlier sec-
tions to interpret the measurement of the stability diagram
in Fig. 2. We compare our measured results to numerically
calculated growth rates 
q(K, TD) which are determined using
Eq. (5) [40] (Fig. 12). The randomness of the excitations’
quasimomentum (see Sec. IV A 1) and the fast coupling be-
tween excitation modes make it challenging to determine q for
the initial excitation. Instead of using the most unstable mode,
we account for this spread of quasimomenta by averaging
the growth rate over the Brillouin zone, 
 = 〈
q(K, TD)〉q.

The parameter 
 is no longer a growth rate but provides an
indicator for the system’s stability. Yellow in Fig. 12 corre-
sponds to a stable system with low values of 
, while blue
indicates large 
 and low stability. The structure of 
 along
the TD axis results from higher-order resonances (see Fig. 4).

FIG. 12. Stability diagram. Numerically calculated stability us-
ing 
(K, TD ) (V = 8.8Er , U/J = 22). Solid red and black lines show
2π/ω f

q and 2π/ωs
q for q = h̄kL; dashed lines show half of the corre-

sponding values. The gray vertical line at K = π/2 separates weak-
from strong-driving regimes. Solid and dashed horizontal blue lines
provide 2π/ωmax and h/8J , respectively. Regions indicated by roman
numerals are discussed in the text.

Roman numerals in Fig. 12 indicate the same character-
istic regions as in Fig. 2. We did not observe any excitation
modes in the weak-driving regime [region (i)] as discussed
in Sec. IV B 2, although numerical calculations predict the
creation of PIs. We speculate that the PIs’ growth rates are
insufficient for our observation times and for random seeding.
The system starts to become unstable when we cross into the
region of strong driving strength at K = π/2 (vertical gray
line in Fig. 12). In addition, the measurement shows that the
system is stable for small values of TD at all driving strengths
[region (ii)], which corresponds to the fast-driving regime.
The energy threshold h̄ωmax (Sec. III) predicts the fast-driving
limit correctly (solid blue line); however, the condition is strict
and not useful to describe the transition line between stable
and unstable driving periods. As a reference, we also provide
the timescale h/8J of twice the width of the lattice band (blue
dashed line).

The calculated parameter 
 provides a good qualitative
estimate for the observed regions of stability. The system
is least stable for K ≈ 2.5 in region (iii), and the transition
line increases to larger values of TD at point (iv). Even the
small cusp in the transition line at K ≈ 2.4 matches between
prediction and experiment. However, the agreement is only
qualitative and values of TD for the transition line are smaller
in the calculation than in our measurement. For example,
the transition from stable to unstable occurs at K = 2.4 for
TD ≈ 6 ms in the experiment and for 3 ms in the calculation.
In general, the system is more stable in our experimental
measurement than predicted by the calculation, which might
be due to the short observation time. Using longer driving
durations would improve our measurement sensitivity, but
requires the consideration of additional timescales, such as
trapping periods.

We provide several analytical solutions from [18,20] for
comparison (lines in Fig. 12). For weak driving strengths,
the resonance condition for PIs is well approximated by
ωD = ω

f
q=kL

(solid red line) with a boundary ωD = ω
f
kL

±
4JJ2(K )U/(h̄2ω

f
kL

), where J2 is the second-order Bessel func-
tion (dotted lines) [18]. For strong driving strength and
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FIG. 13. Comparison of MIs and PIs. (a) Calculated growth
rate for mode q = h̄kL with the same parameters as in Fig. 12.
(b) Calculated growth rate with interactions switched off whenever
the micromotion passes through a region with negative effective
mass. Circles indicate values of (K, TD ) for lines with matching
colors in (c) and (d). (c) Time evolution |u(t )| for an initial state
(u = 1, v = 0) and K = 1.572 with switched interactions (dashed
red line) and without (blue line). (d) Time evolution for K = 2.1 with
(red line) and without (blue line) switched interactions, and in the
slow-driving regime with TD = 30.6 ms (green line).

K ≈ 2.4, ωD = Re ωs
kL

provides a good approximation for the
maximum growth (solid black line) and ωD = 2Re ωs

kL
indi-

cates the boundary between the unstable zone and the stable
fast-driving regime (dashed black line). The boundary initially
suggested in [20], ωD = 2ω

f
kL

, is indicated by a dashed red
line.

Distinguishing between MIs and PIs in Fig. 12 is challeng-
ing for intermediate driving frequencies because both types
of instabilities can occur simultaneously. To identify the con-
tributions of both mechanisms, we calculated the growth rate

q=kL (K, TD) as before using Eq. (5). However, we switched
off interactions with U = 0 whenever the micromotion passes
through a region with negative effective mass. This approach
allowed us to compare the growth caused by both instabilities
[Fig. 13(a)] to the growth caused only by PIs [Fig. 13(b)].
While the separation of MIs and PIs is not perfect, as the
method reduces the energy of excitation modes and induces
a shift of resonance frequencies towards larger values of TD in
Fig. 13(b), it still provides a good indication of the significant
increase of 
 due to MIs.

We compare the time evolution of |u(t )| for an initial
state (u = 1, v = 0) with and without switched interactions
[red and blue lines in Figs. 13(c) and 13(d)]. We find that
PIs dominate the time evolution when crossing just into
the strong-driving regime [K = 1.572, Fig. 13(c)] and the
growth is mostly independent of the negative effective mass
regions (red patches). For a stronger driving strength [K =
2.1, Fig. 13(d)], PIs still contribute to the growth (red line),
but most of the growth is caused by MIs (blue line). As we
approach the slow-driving limit (green line, TD = 30.6 ms),
the influence of PIs can be neglected, and the system is stable
except for those time intervals when the micromotion passes
through regions with a negative effective mass.

VI. CONCLUSIONS

In conclusion, we studied the stability of driven matter
waves with repulsive interactions in a 1D lattice. By mea-
suring the momentum distribution of the matter waves after
a fixed hold time, we identified stable and unstable regions
based on the driving period TD and strength K . Our results em-
phasize the importance of making a clear distinction between
modulational and parametric instabilities in driven systems.
Parametric instabilities arise when the drive resonantly cou-
ples to excitation modes, while modulational instabilities stem
from inherent properties of the medium, such as attractive
interactions or a negative effective mass. Our key findings are
summarized as follows.

Modulational instabilities are well suited for describing
intraband excitations in the limits of fast and slow driving
frequencies. We demonstrated for the fast-driving limit that
phonon energies and stability criteria map directly to the non-
driven system. This enables the use of established concepts
for the stability analysis of interacting many-body states in
Floquet-driven systems. The description is applicable for the
initial growth of excitation modes while perturbation theories
remain valid.

Of particular interest is the regime of intermediate driving
frequencies, where both modulational and parametric instabil-
ities are present. The micromotion of the driven wave packet
periodically crosses into regions of the Brillouin zone that
are unstable due to modulational instabilities, resulting in
a complex growth and decay of excitation modes. Directly
demonstrating parametric instabilities was challenging due to
their low growth rates. As an alternative, we demonstrated
a reduced decay of existing excitation modes at the driving
parameters where only parametric instabilities are expected.

We compared the measured stability diagram with pre-
dictions for the growth of excitation modes based on the
Bogoliubov–de Gennes equations. There is a good qualitative
agreement of stable and unstable zones; however, our experi-
mental system was more stable than predicted and the stable
fast-driving regime extended to larger driving periods. We
found that the time-averaged energies h̄ω

f
q and h̄ωs

q provide
good estimates for the position of resonances and boundaries
at weak driving strength and for K ≈ 2.4.

Our results have important implications for experiments
using Floquet-engineered potentials, particularly for appli-
cations that require minimal excitations and heating. By
identifying stable and unstable parameter regions, we can
predict which experimental conditions will lead to unwanted
excitations. Energy transfer and excitation mechanisms are
different for modulational and parametric instabilities, and a
clear distinction between these two types of instabilities will
be instrumental to study the system over longer timescales as
required, e.g., for the creation of discrete time crystals [47] or
dynamical gauge fields [48].

The data used in this publication are openly available at the
University of Strathclyde KnowledgeBase [49].
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