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Demon driven by geometric phase
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We theoretically study the entropy production and the work extracted from a system connected to two
reservoirs by periodic modulations of the electrochemical potentials of the reservoirs and the parameter of a
system Hamiltonian under isothermal conditions. We find that the modulation of the parameters can drive a
geometric state, which is away from a nonequilibrium steady state (NESS). Using this property, we construct a
demon in which the entropy production during the first one-cycle is negative such that we can extract the work
if we start from the NESS without parameter modulations. We use the Anderson model to implement the demon
in a realistic situation.
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I. INTRODUCTION

The second law of thermodynamics is one of the most
fundamental laws of physics, specifying the upper limit of the
available work that can be extracted from reservoirs. Maxwell
[1] proposed an ideal setup to violate the second law in which
a demon quickly opens and closes the gate, allowing only
fast-moving molecules to pass through in one direction. This
leads to a decrease in entropy without any work being done
and violates the second law of thermodynamics. A simplified
version of Maxwell’s demon was proposed by Szilard [2]. It
was shown that Maxwell’s demon can be used to implement
the Szilard engine, while Maxwell’s original demon makes
the temperature gradient act like a refrigerator. Since then, the
demon problem has attracted much attention from physicists
[3–8]. Modern experiments use photonic devices to realize
Maxwell’s demon [9–11]. A comprehensive historical review
of Maxwell’s demon is given in Ref. [12].

Since Maxwell’s original idea was based on the mea-
surement of molecules, it is natural to combine the phys-
ical science with information thermodynamics to realize
Maxwell’s demon [3–9,13–18]. However, the cost of imple-
menting Maxwell’s informational demon is high, although the
theoretical formulation ignores this cost. Instead, we propose
a geometric demon using Berry’s phase [19] in a geometric
engine as an extension of the Thouless pumping [20–22].
We consider a small system sandwiched between two ther-
mal reservoirs. If two parameters in the reservoirs and one

*ryoshii@rs.socu.ac.jp
†hisao@yukawa.kyoto-u.ac.jp

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

parameter in the system Hamiltonian are controlled by an
external agent, we can extract the work from the system. This
is a natural application of the Thouless pumping [20–36] and
geometric thermodynamics [37–44].

It is well known that the Kullback-Leibler (KL) divergence
is nonnegative, being zero only when the system is in a
nonequilibrium steady state (NESS) [43–51]. It is also known
that the KL divergence cannot increase for all completely
positive and trace-preserving (CPTP) processes [45–50]. As
a consequence, the KL divergence decreases monotonically
toward zero in the relaxation process. This monotonicity of
the KL divergence corresponds to the second law of ther-
modynamics or the H theorem. Nevertheless, we must be
careful in choosing the correct KL divergence in the presence
of modulations. Indeed, we show that the correct choice of
KL divergence under a periodic modulation is not the relative
entropy between the time-evolving density matrix and that in
a steady state but between the matrix and that in a geomet-
ric state because of the generation of a geometric term (see
Fig. 1).

We can therefore extract the work done by this geometric
engine by means of an increase in the relative entropy corre-
sponding to a negative entropy production. Let us call such an
engine a geometric demon. The advantage of the geometric
demon is that we do not need any costs for the feedback
control, but we do need nonadiabatic control of the system.

The organization of this paper is as follows. In Sec. II,
we explain the setup and the geometric state under the pa-
rameter modulation. We also present the corresponding KL
divergences associated including the geometric contribution.
In Sec. III, we discuss the work, the heat, and the efficiency
in the present setup. In Sec. IV, we apply our formulation
to the Anderson model to demonstrate the protocol for re-
alizing the geometric demon. In Sec. V, we summarize our
results and give their physical interpretations. We also give
future perspectives. In Appendix A, we describe the derivation
of the time evolution of the state including the geometric
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FIG. 1. A schematic of the process used for the implementa-
tion of the geometric demon. At θ = 0, we start modulating the
parameters. Although the modulation is slow enough to prevent the
system from being excited, the geometric term is suddenly added
to the state vector. The state relaxes to the geometric state as time
goes. The discrepancy between the steady state in the absence of
the parameter modulation |ρ̂SS〉 and the geometric state |ρ̂GS〉 can be
used to determine the work.

contribution. We also give a detailed expression for the Berry-
Sinitsyn-Nemenman (BSN) curvature. In Appendix B, we
explain the differences between this paper and the previous
studies. In Appendix C, we present the detailed properties
of the Anderson model. In Appendix D, we present some
detailed properties of the density matrix, the von Neumann
entropy, and the heat flow from the comparison of the results
of the Born-like approximation used in this paper with those
obtained by the numerical solution.

II. GEOMETRIC PHASE AND ENTROPY PRODUCTION

In this paper, we focus on a system connected to two
reservoirs depicted in Fig. 2. The left and right reservoirs are
characterized by electrochemical potentials (μL and μR) and
temperature T , respectively.

The electrochemical potentials are modulated as

μL = μ(1 + rL sin θ ), μR = μ[1 + rR sin(θ + δ)], (1)

where μ := 1
2π

∫ 2π

0 dθμα (θ ) is the one-cycle average of the
electrochemical potential μα in a reservoir α(= L or R). We
assume that μα depends only on the modulation phase θ :=
ωt , where ω and t are the modulation angular frequency and
time, respectively. We also assume that the system Hamilto-
nian Ĥ [λ(θ )] is perfectly periodic in this paper, i. e.,

Ĥ [λ(θ )] = Ĥ [λ(θ + 2π )], (2)

through a control parameter λ(θ ), where λ(θ ) := 1 +
rH cos θ . In this paper, we consider only the case of r := rL =
rR = rH to reduce the number of parameters for simplicity. To
maintain the positivity of the parameters, we assume |r| < 1.
Thus, our system is characterized by a set of fixed parameters,
such as T and μ, and two control parameters, r and δ. To

FIG. 2. A schematic of the model considered in this paper. The
system is connected to two reservoirs characterized by chemical
potentials and temperatures.

μL μR

λ

FIG. 3. A schematic of control parameters for r = 1 and δ = π/4.

express a set of control parameters, we introduce

�(θ, δ) :=
[
λ(θ ),

μL(θ )

μ
,
μR(θ, δ)

μ

]
, (3)

using 	μ as one of its components. Figure 3 shows a
schematic of the control parameters for r = 1 and δ = π/4.

We consider the master equation for the density matrix
ρ̂(θ, δ):

d

dθ
|ρ̂(θ, δ)〉 = ε−1K̂ (θ, δ)|ρ̂(θ, δ)〉, (4)

where K̂ (θ, δ) is the evolution operator. We use the vector
notation |ρ̂(θ, δ)〉 in Eq. (4), where the components of the
density matrix ρ̂(θ, δ) are aligned. We introduce the dimen-
sionless parameter ε in Eq. (4) as ε := 2πω/�, where �

characterizes the hopping rate of the electrons from the reser-
voirs into the system. Introducing the eigenvalue εi with the
subscript i for K̂ , the corresponding left and right eigenstates
〈i| and |ri〉 satisfy the orthonormal relation 〈i|r j〉 = δi j , if
the eigenvalues are nondegenerate. We assume that there ex-
ists a nondegenerate largest eigenvalue ε0 := 0 corresponding
to a stationary state. Probability conservation leads to the left
zero eigenvector 〈0|, which is defined as 〈0|K̂ = 0, whose
diagonal components are 1 in the matrix form and 0 otherwise.
The right zero eigenstate |r0〉 satisfying K̂|r0〉 = 0 is also
expressed as |ρ̂SS〉 to specify the NESS.

In the absence of the modulations, the physical state is
relaxed to |ρ̂SS〉 since all eigenvalues except for ε0 = 0 are
negative. This suggests that the natural choice of the initial
state would be |ρ̂SS〉. Therefore, we analyze the case where
the initial state is the steady state |ρ̂(0, δ)〉 = |r0〉 = |ρ̂SS〉.

As soon as we start the modulation, the state relaxes to the
other state, which we call the geometric state. In the presence
of modulation, the state vector |ρ̂〉 contains the contribution
of a geometric phase. As shown in Appendix A 1, the approx-
imate expression for |ρ̂〉 is given by

|ρ̂(θ, δ)〉 � |ρ̂SS(θ, δ)〉 +
n∑

i �=0

Ci(θ, δ)|ri(θ, δ)〉, (5)
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where

Ci(θ, δ) = −
∫ θ

0
dφ exp

(
ε−1

∫ θ

φ

dzεi(z, δ)

)

×〈i(φ, δ)| d

dφ
|r0(φ, δ)〉. (6)

The second term on the right-hand side (RHS) of Eq. (5) is
the BSN connection [21,22]. A similar expression is derived
in Ref. [36] (see Appendix B for details of the relationship
between our analysis and that in Ref. [36]). Note that Eqs. (5)
and (6) describe the evolution process from the initial steady
state |ρ̂SS〉, but the expression can be used if we are interested
in the long-time (θ � ε) behavior, where the choice of the
initial condition is not important. We also present the expres-
sion for |ρ̂(θ, δ)〉 starting from a general initial condition in
Appendix A 1 as well as the relaxation to Eqs. (5) and (6) for
θ � ε.

The state described by Eqs. (5) and (6) relaxes to the
geometric state:

|ρ̂GS(θ, δ)〉 := lim
n→∞ T exp

(∫ θ+2nπ

0
dφK̂ (φ, δ)

)
|r0(0, δ)〉,

(7)

where we have introduced the time-ordering operator T de-
fined as T [Â(t2)B̂(t1) · · · Ẑ (tn)] := Ẑ (tn) · · · Â(t2)B̂(t1), with
t1 < t2 < · · · < tn. Since this relaxation process is fast, we can
use the approximate expression for the geometric state as

|ρ̂GS(θ, δ)〉 � T exp

(∫ θ+2π

0
dφK̂ (φ, δ)

)
|r0(0, δ)〉. (8)

Note that the trace preservation is always satisfied for an
arbitrary θ from 〈0|ri〉 = δ0i and 〈0|K̂ = 0 in the dynamics
described by Eq. (4). In this paper, we restrict our interest to
quasiadiabatic processes. There is an analogy between Eq. (5)
and the path integral with the Born approximation in the
quantum theory. The phase factor exp(ε−1

∫ θ

φ
dzεi(z, δ)) in

Eq. (6) can be interpreted as free relaxation instead of free
propagation. If the modulation is not slow, i.e., ε is larger than
|εi �=0|, it would not be adequate to ignore the higher-order
processes. The expressions in Eqs. (5) and (6) are compat-
ible with the slow-modulation approximation employed in
Ref. [44]. The leading contribution of the modulation to the
entropy production is indicated by the second term on the
RHS of Eq. (5).

As shown in Appendix A 2, the deviation from the ini-
tial state after a modulation cycle satisfying |ri(2π, δ)〉 =
|ri(0, δ)〉 is written as

�|ρ̂〉 := |ρ̂(2π, δ)〉 − |ρ̂(0, δ)〉 =
∑
i �=0

Ci(δ)|ri(0, δ)〉, (9)

with

Ci(δ) :=
∫ 2π

0
dφ exp

(
ε−1

∫ 2π

φ

dzεi(z, δ)

)
Aμ

i

∂	μ

∂φ
, (10)

where we have introduced the BSN connection Aμ
i as

Aμ
i (φ, δ) := −〈i[	(φ, δ)]| ∂

∂	μ

|r0[	(φ, δ)]〉. (11)

According to Aμ
i , we define the BSN curvature as

Fμν
i (θ, δ) :=

(
∂Aν

i

∂	μ

)
θ

−
(

∂Aμ
i

∂	ν

)
θ

. (12)

Due to the damping factor in Eq. (10), the contribution of the
BSN curvature is localized in θ .

Now let us consider the KL divergence. The proper
KL divergence is not DKL(ρ̂(θ, δ)||ρ̂SS(θ, δ)) but
DKL(ρ̂(θ, δ)||ρ̂GS(θ, δ)), where we have defined the KL
divergence [43–50] as

DKL(ρ̂||σ̂ ) := Tr[ρ̂(ln ρ̂ − ln σ̂ )]. (13)

Since we expect |ρ̂(θ, δ)〉 to quickly relax to |ρ̂GS(θ, δ)〉, the
KL divergence approximately satisfies

DKL(ρ̂(θ, δ)||ρ̂GS(θ, δ)) � 0, (14)

for θ � 2π . The initially positive DKL(ρ̂(θ, δ)||ρ̂GS(θ, δ)) de-
creases monotonically as θ approaches zero. This is the H
theorem.

The production of the total entropy associated with the KL
divergence should be

��(θ, δ) := DKL(ρ̂(0, δ)||ρ̂GS(0, δ))

−DKL(ρ̂(θ, δ)||ρ̂GS(θ, δ)). (15)

This ��(θ, δ) which is always nonnegative could play an
important role.

On the other hand, we can consider the entropy production
during the one-cycle modulation starting from the NESS at
θ = 0 as

�S(δ) := DKL(ρ̂(0, δ)||ρ̂SS(0, δ))

−DKL(ρ̂(2π, δ)||ρ̂SS(0, δ))

= −DKL(ρ̂(2π, δ)||ρ̂SS(0, δ)). (16)

This �S(δ) is always nonpositive due to the nonnegativity of
the KL divergence. We could expect �S(δ) � 0 since the KL
divergence is expected to decrease with θ [45–50] as

�S(δ) = −
∫ 2π

0
dθ

∂

∂θ
DKL(ρ̂(θ, δ)||ρ̂SS(θ, δ)) � 0. (17)

However, the compatible value of �S(δ) in Eq. (17) with
the nonnegative KL divergence is zero under the periodic
modulation. Nevertheless, �S(δ) can be negative for most δ,
as will be shown, because |ρ̂(θ, δ)〉 for θ �= 0 is not described
by |ρ̂SS(0, δ)〉 but by Eqs. (5) and (6). This implies that
DKL(ρ̂(θ, δ)||ρ̂SS(θ, δ)) is not proper KL divergence. In fact,
as will be shown, DKL(ρ̂(θ, δ)||ρ̂SS(θ, δ)) is not monotonic
with θ but oscillates with θ . Thus, we can extract the work
from the negative entropy production �S(δ) < 0.

III. WORK AND EFFICIENCY

A. First law of thermocynamics

Now we discuss the thermodynamic relations to construct
the geometric demon. First, we consider the first law of
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thermodynamics [51–53]. The internal energy is given by

E (θ, δ) = Tr{Ĥ[λ(θ )]ρ̂(θ, δ)}. (18)

The rate of change of internal energy is given by

∂E

∂θ
(θ, δ) = Tr

{
∂Ĥ[λ(θ )]

∂θ
ρ̂(θ, δ)

}

+Tr

{
Ĥ[λ(θ )]

∂ρ̂(θ, δ)

∂θ

}
. (19)

Here, the first term on the RHS of Eq. (19) corresponds to the
power, which can be rewritten as

P (θ, δ) := Tr

{
ρ̂(θ, δ)

∂Ĥ[λ(θ )]

∂λ(θ )

}
λ̇(θ ), (20)

where λ̇(θ ) := d
dθ

λ(θ ). Thus, the work generated from the
initial state to θ becomes

W (θ, δ) :=
∫ θ

0
dφP (φ, δ). (21)

By definition, the relation Ẇ (θ, δ) = P (θ, δ) holds. The
work W (δ) during the one cycle is defined as

W (δ) := W (2π, δ). (22)

The work W (δ) and power P (θ, δ) can be positive or negative
depending on the situation. A positive P (θ, δ) is interpreted
as a power input from the external agent, while a negative
P (θ, δ) can be interpreted as a power loss. The second term
on the RHS of Eq. (19) corresponds to the heat flow:

Q̇(θ, δ) := Tr

{
∂ρ̂(θ, δ)

∂θ
Ĥ [λ(θ )]

}
. (23)

Thus, the heat generated from the initial state to θ becomes

Q(θ, δ) :=
∫ θ

0
dφQ̇(φ, δ). (24)

The heat generated during one cycle is defined as

Q(δ) := Q(2π, δ). (25)

Thus, we can rewrite Eq. (19) in the well-known form of
the first law of thermodynamics as

∂

∂θ
E (θ, δ) = ∂

∂θ
W (θ, δ) + ∂

∂θ
Q(θ, δ). (26)

The power P (θ, δ), the work W (δ), the heat flow Q(θ, δ),
and the heat Q(δ) can be calculated once we know the density
matrix ρ̂(θ, δ) as in Eqs. (5) and (6).

B. Second law of thermodynamics

Because the KL divergence satisfies the second law
of thermodynamics or the H theorem expressed as
DKL(ρ̂(θ, δ)||ρ̂GS(θ, δ)) � 0 and its monotonicity, we can
construct the thermodynamics for the driven system by con-
sidering the system entropy and the heat between the system
and the reservoirs. As will be shown, the system entropy
differs from the von Neumann entropy due to the contribution
of the driven terms.

The production of the total entropy introduced in Eq. (15)
satisfies the relation ��(θ, δ) = �Ssys(θ, δ) + �Sr (θ, δ),
where �Ssys and �Sr express the changes of the system en-
tropy and the reservoir, respectively. Because �Sr is expressed
as �Sr = −βQ, we obtain [51]

��(θ, δ) = �Ssys(θ, δ) − βQ(θ, δ), (27)

where �Ssys(θ, δ) := Ssys(θ, δ) + Tr[ρ̂(0, δ) ln ρ̂(0, δ)], β :=
1
T , with

Ssys(θ, δ) := SvN(θ, δ) + βQ(θ, δ) + βQ̃(θ, δ), (28)

where we have introduced von Neumann entropy:

SvN(θ, δ) := −Tr[ρ̂(θ, δ) ln ρ̂(θ, δ)], (29)

and

βQ̃(θ, δ) := Tr[ρ̂(θ, δ) ln ρ̂GS(θ, δ)]

−Tr[ρ̂(0, δ) ln ρ̂GS(0, δ)]. (30)

This Ssys(θ, δ) is the system entropy which is deviated from
von Neumann entropy SvN(θ, δ). Note that Ssys(θ, δ) is re-
duced to SvN(θ, δ) when the parameter in the Hamiltonian
is not modulated and the system is relaxed to an equilib-
rium state. Since ρ̂GS(θ, δ) is reduced to be ρ̂eq(θ, δ) ∝
e−βĤ in such a situation, the RHS of Eq. (30) becomes∫ θ

0 dφ d
dφ

[−βĤρ] = −β
∫ θ

0 dφ[Ĥ ρ̇] = −βQ(θ, δ). Since we
have already obtained the expression of ρ̂(θ, δ) as in Eqs. (5)
and (6), one can obtain the heat Q(θ, δ).

C. Absorbing heat, work, and efficiency

Because Q̇(θ, δ) can be negative, the heat Q(θ, δ) can be
negative. We can decompose Q(θ, δ) into the absorbing heat
and the releasing heat as

QA(δ) :=
∫ 2π

0
dθQ̇(θ, δ)�[Q̇(θ, δ)], (31)

QR(δ) := Q(δ) − QA(δ), (32)

where �(x) is the Heaviside step function that satisfies
�(x) = 1 if x � 0 and �(x) = 0 otherwise. If we consider a
slow modulation process, we expect the deviation of the state
from the steady state ρ̂SS to be small, and the time evolution
will be nearly periodic. Thus, �E (δ) := E (2π, δ) − E (0, δ)
would be much smaller than the other variables such as W (δ)
and Q(δ). (Namely, we expect |W (δ)|, |Q(δ)| � |�E (δ)|.)
This implies that QA(δ) � |Q(δ)| � |W (δ)| � W (δ) holds
due to the first law of thermodynamics. We can prove this re-
lation by considering a slow modulation process ε 
 1 under
the rotational wave approximation [54,55]. If the work W (δ)
is negative, the system can be regarded as an engine in which
the work done by the system is larger than the work done by
the reservoirs.

Thus, to construct a geometric demon, we require that
W (δ) < 0 to use the negative entropy production �S(δ) < 0.
We cannot determine the sign of W (δ) in general. Therefore,
we use the Anderson model to show that W (δ) can be nega-
tive.
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Using the absorbed energy, the work and the efficiency can
be introduced as

η(δ) := − W (δ)

QA(δ)
. (33)

When the work becomes positive, the efficiency becomes ill
defined.

IV. APPLICATION TO THE ANDERSON MODEL

Let us apply the general framework to the Anderson model
for a quantum dot (QD), where a single dot is coupled to two
electron reservoirs [56]. The total Hamiltonian Ĥ tot can be
written as

Ĥ tot := Ĥ + Ĥ r + Ĥ int, (34)

where Ĥ , the reservoir Hamiltonian Ĥ r , and the interaction
Hamiltonian Ĥ int are, respectively, given by

Ĥ =
∑

σ

ε0d̂†
σ d̂σ + U (θ )n̂↑n̂↓, (35)

Ĥ r =
∑
α,k,σ

εkâ†
α,k,σ

âα,k,σ , (36)

Ĥ int =
∑
α,k,σ

Vα d̂†
σ âα,k,σ + H.c., (37)

where â†
α,k,σ

and âα,k,σ are the creation and annihilation oper-
ators, respectively, for the electrons in the reservoirs α(= L
or R) with the wave number k, energy εk , and spin σ (=↑
or ↓). Furthermore, d̂†

σ and d̂σ are those in the QD, and
n̂σ = d̂†

σ d̂σ . Here, U (θ ) := U0λ(θ ) and Vα are, respectively,
the time-dependent electron-electron interaction in the QD
and the transfer energy between the QD and the reservoir α.
We adopt a model in the wide-band limit for the reservoirs.
We denote the line width in this paper as � = π�(V 2

L + V 2
R ),

where � is the density of states in the reservoirs. For simplic-
ity, we set VL = VR.

The Anderson model for the QD has four states: doubly
occupied, singly occupied with an up spin, singly occupied
with a down spin, and empty. Therefore, the density matrix is
expressed as a 4 × 4 matrix. However, as shown in Ref. [44],
ρ̂(θ, δ) of the Anderson model under the wide-band approx-
imation is reduced to a diagonal matrix, where the diagonal
elements correspond to the probability of finding the states
in the empty state ρe, the down-spin state ρ↓, the up-spin
state ρ↑, and the doubly occupied state ρd , respectively. This
implies that the model is quasiclassical.

The trace-preserving condition Trρ̂ = ρe + ρ↑ + ρ↓ +
ρd = 1 reduces to the probability-preserving condition. The
explicit forms of the evolution matrix K̂ and the corresponding
eigenstates 〈i| and |ri〉 are summarized in Ref. [44]. The
explicit forms of the BSN connection in Eq. (10) are presented
in Appendix C.

Figure 4 shows the time evolution of the elements ρe, ρ↓,
ρ↑, and ρd of ρ̂(θ ) (see also Appendix C). This figure clearly
supports the positivity of all elements; therefore, the evolution
dynamics satisfies CPTP properties. As shown in Appendix D,
the approximate expression of the density matrix in Eqs. (5)
and (6) is very precise, where the deviation between the nu-
merical solution of Eq. (4) and the approximate expression in
Eqs. (5) and (6) is almost invisible,

6543210
θ

0.28

0.26

0.24

0.22

0.21

ρe
ρd

ρ↑, ρ↓

FIG. 4. Scaled time (θ ) evolutions of the elements of the density
matrix. The parameters are set to be βμ̄ = 0.1, βU0 = 0.1, and
βε0 = 0.1.

In the following, we set ε = 0.1 to get some ex-
plicit results for the Anderson model. Converting |ρ̂(θ )〉
to the matrix form ρ̂(θ, δ) and inserting it into Eq. (16),
we get DKL(ρ̂(θ, δ)||ρ̂GS(θ, δ)). The time evolution of
DKL(ρ̂(θ, 0)||ρ̂GS(θ, 0)) is shown in Fig. 5 for r = 0.9, and
βU0 = 0.1. This figure clearly supports the H theorem, where
the KL divergence decreases monotonically as an exponen-
tial function of θ to approach zero. Thus, we can evaluate
QKL(δ) introduced in Eq. (15). We have also confirmed ρ̂(θ =
2π, δ) = ρ̂(4π, δ) within the numerical accuracy. This justi-
fies the practical treatment of Eq. (8). As a result, the trivial
relation DKL(ρ̂(θ, δ)||ρ̂GS(θ, δ)) = 0 holds for θ � 2π .

Figure 6(a) shows the contour of the integral given in
Eq. (10) in the parameter space [βμL(θ ), βμR(θ, δ), θ ]. For
the explicit calculation, we use Eqs. (5) and (6) with θ = 2π

for Figs. 6(b) and 6(c). As can be seen, the BSN curvature is
always present for θ > 0, although its magnitude decreases
with θ . The BSN curvatures at specific θ ’s are plotted in
Figs. 6(b) and 6(c), where the peak and the dip of FμLμR

1
are approximately located at βμR = −βμL ≈ 10 and βμR =
−βμL ≈ −10, respectively, while the peak and the dip of
FμLμR

3 are approximately located at βμL ≈ ±10, βμR = 0
and βμR ≈ ±10, βμL = 0, respectively. Integrating by parts,
we can verify that C2(θ, δ) = 0 and FμLμR

2 = 0 because 〈2|
is independent of θ .

Figure 7 plots DKL(ρ̂(θ, 0)||ρ̂SS(θ, 0)) vs θ . This il-
lustrates the rapid relaxation near θ = 0 and the periodic

FIG. 5. Plot of DKL(ρ̂(θ, 0)||ρ̂GS(θ, 0)) against θ for βU0 = 0.1
and r = 0.9. The inset is the semilog plot of DKL(ρ̂(θ, δ)||ρ̂GS(θ, δ))
against θ .
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FIG. 6. (a) Schematics of a contour of the integral of C1, where
the black solid line is the trajectory of the parameters. The color
scale at a value of θ expresses FμLμR

1 . (b) and (c) The Berry-
Sinitsyn-Nemenman (BSN) curvatures FμLμR

1 and FμLμR
3 at θ = 2π

are plotted. The parameters are set to be βμ̄ = 0.1, βU0 = 0.1, and
βε0 = 0.1 for all figures.

oscillation of θ . This nonmonotonic behavior means that
DKL(ρ̂(θ, 0)||ρ̂SS(θ, 0)) is not the proper KL divergence.

Figure 8 plots �S(δ) vs δ for various βU0 for r = 0.9. As
can be seen in Eq. (16) and Fig. 7, the main contribution of
�S(δ) comes from the drastic change near θ = 0, where the
mismatch between the geometric state and the initial steady
state exists. We also note that �S(δ) approaches zero in
the limit βU0 → 0. This implies that the modulation of the
Hamiltonian generates �S(δ). Although the periodic control
of the Hamiltonian generates an electric current and the cor-
responding Joule heat even though the two reservoirs have
no chemical potential difference, we have verified that their
contribution is small. Note that the expression of �S(δ) does
not have room to include such contributions.

We also plot the system entropy Ssys(θ, 0) against θ in
Fig. 9. As can be seen, Ssys(θ, 0) takes the maximum value
at θ � π . We also note that the behavior of SvN(θ, 0) is

FIG. 7. Plots of DKL(ρ(θ, 0)||ρ̂SS(θ, 0)) vs θ for r = 0.9 and
βU0 = 0.3.

FIG. 8. Plots of �S(δ) vs δ for βU0 = 0.3 (solid line), 0.5 (dotted
line), and 0.7 (dashed line) with fixing r = 0.9.

presented in Appendix D, which is qualitatively different from
DKL(ρ̂(θ, 0)||ρ̂GS(θ, 0)), Ssys(θ, 0), and Q(θ, 0).

We have confirmed that the work W (δ) introduced in
Eq. (22) becomes negative except for the small parameter
region around δ = π (i.e., 2.824 � δ � 3.569), as shown in
Fig. 10(a). This indicates that we can extract the work by
cyclic modulations of the parameters in the Anderson model
without fine-tuning in a wide range of parameters. The change
of the energy in the first cycle �E (δ) is shown in Fig. 10(b).
We have verified the relationship |�E (δ)| 
 |W (δ)|, and
thus, we have |W (δ)| � |Q(δ)| in this set of parameters.
The heat absorbed during a modulation cycle is shown in
Fig. 10(c). Figure 10(d) shows the efficiency η(δ), defined
in Eq. (33), for one modulation cycle. The efficiency is not
defined for 2.824 � δ � 3.569 because the work becomes
positive in this region. The negative work and efficiency are
the result of �S(δ) < 0. Thus, our engine is suitable for call-
ing the geometric demon.

V. CONCLUDING REMARKS

We have implemented a geometric demon by modulating
the electrochemical potentials in the two reservoirs and the
repulsive U (θ ) in the system Hamiltonian under isothermal
conditions. We found that the state tends to relax toward the
geometric state instead of the steady state when the parameter
is kept modulated. The discrepancy between the steady state
and the geometric state under a nonadiabatic modulation leads
to the negative production of relative entropy. We can auto-
matically extract the work from this engine with an increase
in relative entropy if we start from the NESS.

FIG. 9. Plot of Ssys(θ, 0) as a function of θ for βU0 = 0.1 and
r = 0.9.
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FIG. 10. Plots of the work, the change of the internal energy,
the absorbing heat, and the efficiency against δ for βU0 = 0.1 and
r = 0.9. (a) Plot of βW against δ (solid line). The region where the
geometric demon is not achieved is shown as the dashed line. (b) Plot
of β�E (δ) against δ (solid line). (c) Plot of βQA against δ (solid
line). (d) Plot of η against δ (solid line). The region 2.824 � δ �
3.569 is kept blank since the work becomes positive in the region.

We have verified that the work becomes negative in the
wide range of the parameters for the Anderson model, and
thus, the geometric demon can be implemented. Our geomet-
ric demon does not require any observation of states to reduce
entropy. In this sense, our geometric demon can be easily
implemented in realistic situations; therefore, we expect wide
applications of this demon. Note that efficiency is unchanged
even if we consider the second cycle. Indeed, we can stop the
modulation after the first cycle and wait for the realization of
the steady state, and we restart the modulation.

Our future tasks are as follows. (i) Since the present method
of the argument is restricted to the case of ε 
 1, we will need
to extend the analysis to the regime of larger ε, as done in
Ref. [36]. (ii) Although we have analyzed a pure quantum sys-
tem to clarify entanglement or coherence effects [41,57,58],
our treatment remains quasiclassical.
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APPENDIX A: TIME EVOLUTION OF THE
DENSITY MATRIX

This section consists of two subsections. In the first part,
Appendix A 1, we derive the time evolution of ρ̂(θ, δ) from
the general initial condition to demonstrate the universality of
Eqs. (5) and (6) for θ � ε. In the second part, Appendix A 2,
we present the detailed derivations of the BSN connection and
BSN curvature.

1. Derivation of the time-dependent expression of the density
matrix starting from the general initial condition

a. Time evolution and geometrical state

The purpose of this section is to derive Eqs. (5) and (6). Al-
though we assume in the main text that the initial state is given
by ρ̂SS(θ = 0, δ), we can still derive these equations even if
we start with the generalized initial condition:

|ρ̂ini〉 =
∑

i

ai|ri(0, δ)〉, (A1)

where ai is given by

ai := 〈i|ρ̂ini〉. (A2)

The normalization of the density matrix leads to the condition:

Trρ̂ini = 〈0|ρ̂ini〉 =
∑

i

ai〈0|ri(0, δ)〉 = a0 = 1. (A3)

The time evolution of |ρ(θ, δ)〉 under Eq. (4) is given
formally as

|ρ̂(θ, δ)〉 = T exp

(∫ θ

0
dφK̂ (φ, δ)

)
|ρ̂ini〉. (A4)

As shown in the main text, the formal expression Eq. (A4)
quickly approaches the geometric state |ρ̂GS(θ, δ)〉. Although
the geometric state is defined in the limit θ → ∞ in the strict
sense, the difference between Eq. (A4) and the geometric state
|ρ̂GS(θ, δ)〉 decreases exponentially as θ increases. We note
that Eq. (A4) satisfies the normalization condition:

Trρ̂(θ, δ) = 〈0|ρ̂(θ, δ)〉 = 〈0|ρ̂ini〉 = 1, (A5)

because 〈0| is the left zero eigenstate of K̂ (φ, δ). Before
entering the detailed calculation, we briefly explain the late
time behavior of Eq. (A4). As we will see below, except for
i = 0, the term in Eq. (A1) is exponentially damped, and since
a0 = 1, the late time behavior hardly depends on the choice of
the initial state.

b. Path-integral representation of the state

Let us use the pass-integral-like expression for |ρ̂(θ, δ)〉 as

|ρ̂(θ + �θ, δ)〉 = exp(ε−1K̂ (θ )�θ )|ρ̂(θ, δ)〉

= exp(ε−1K̂ (θ )�θ )

[∑
m

|rm(θ, δ)〉〈m(θ, δ)|
]
|ρ̂(θ, δ)〉

=
∑

m

|rm(θ, δ)〉 exp

(
εm(θ )

�θ

ε

)
〈m(θ, δ)|ρ̂(θ, δ)〉. (A6)

033014-7



RYOSUKE YOSHII AND HISAO HAYAKAWA PHYSICAL REVIEW RESEARCH 5, 033014 (2023)

Repeating Eq. (A6), we can rewrite |ρ̂(θ + �θ, δ)〉 as

|ρ̂(θ + �θ, δ)〉 =
∑
m,n

|rm(θ, δ)〉 exp

(
εm(θ )

�θ

ε

)
〈m(θ, δ)|rm(θ − �θ, δ)〉

× exp

(
εn(θ − �θ )

�θ

ε

)
〈m(θ − �θ, δ)|ρ̂(θ − �θ, δ)〉. (A7)

Thus, the recursive calculation yields

|ρ̂(θ + �θ, δ)〉 =
∑

i, j,k,··· ,l
|ri(θ, δ)〉 exp

(
εi(θ, δ)

�θ

ε

)
〈i(θ, δ)|r j (θ − �θ, δ)〉 exp

(
ε j (θ − �θ, δ)

�θ

ε

)

×〈 j (θ − �θ, δ)|rk (θ − 2�θ, δ)〉 · · · exp

(
εl (�θ )

�θ

ε

)
〈l (�θ, δ)|ρ̂(0, δ)〉

=
∑

i, j,k,··· ,l,m
an|ri(θ, δ)〉 exp

(
εi(θ, δ)

�θ

ε

)
〈i(θ, δ)|r j (θ − �θ, δ)〉 exp

(
ε j (θ − �θ, δ)

�θ

ε

)

×〈 j (θ − �θ, δ)|rk (θ − 2�θ, δ)〉 · · · exp

(
εl (�θ )

�θ

ε

)
〈l (�θ, δ)|rn(0, δ)〉, (A8)

where we have adopted the general initial condition |ρ̂(0, δ)〉 = |ρ̂ini〉 = ∑
n an|rn(0, δ)〉.

Next, we evaluate the connection (transfer matrix) 〈i(θ, δ)|r j (θ − �θ, δ)〉 that connects the states in the different θ ’s. The
connection can be calculated as follows up to the first order of �θ :

〈i(θ, δ)|r j (θ − �θ, δ)〉 = 〈i(θ, δ)|
[
|r j (θ, δ)〉 − �θ

d

dθ
|r j (θ, δ)〉

]

= δi j − �θ〈i(θ, δ)| d

dθ
|r j (θ, δ)〉. (A9)

The two terms in the last expression of Eq. (A9) have a natural
interpretation, the first describing the second free propagation
and the second describing the jump process from the state j to
the state i. If we substitute Eq. (A9) into Eq. (A8), we obtain
the expression:

|ρ̂(θ, δ)〉 = |ρ̂(θ, δ)〉0 + |ρ̂(θ, δ)〉1 + |ρ̂(θ, δ)〉2 + · · · .

(A10)
The first term on the RHS of Eq. (A10) is the free relaxation:

|ρ̂(θ, δ)〉0 =
∑

n

an|rn(θ, δ)〉Kn(θ, 0), (A11)

where we have introduced Kn(b, a) as

Kn(b, a) := exp

(∫ b

a
εn(φ, δ)

dφ

ε

)
. (A12)

The second term on the RHS of Eq. (A10) contains a jump
process:

|ρ̂(θ, δ)〉1 =
∑
m,n

Cmn(θ, δ)an|rm(θ, δ)〉, (A13)

where the coefficient Cmn is given by

Cmn(θ, δ) :=
∫ θ

0
dφKm(θ, φ)Jmn(φ)Kn(φ, 0), (A14)

with the jump operator

Jmn(φ) := −〈m(φ, δ)| d

dφ
|rn(φ, δ)〉. (A15)

The first and second terms on the RHS of Eq. (A10) can
be understood by the diagrams shown in Figs. 11(a)(I) and
11(a)(II), where the straight line represents the free relaxation
and the cross mark represents the jump process. The first term
on the RHS of Eq. (A10) represents the free relaxation without
any jump process. The second term on the RHS of Eq. (A10),
the initial state

∑
n an|rn(0)〉 evolves with θ by Kn(φ, 0), then

the state |rn〉 jumps to the state |rm〉 at φ, and then it evolves
with θ by Km(θ, φ). Using Fig. 11(a)(III), we can write the
third term on the RHS of Eq. (A10):

|ρ̂(θ, δ)〉2 =
∑
m,n,k

Ckmn(θ )an|rk (θ, δ)〉, (A16)

FIG. 11. Diagrammatic expressions of the Born-type expansion.
(a) shows the (I) zeroth-order, (II) first-order, and (III) second-order
processes. The state evolves with θ by the free relaxation process
(straight line) until the scattering process (represented by the cross
mark) takes place in (b).
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where

Ckmn(θ, δ) =
∫ θ

0
dφ

∫ θ

φ

dφ′Kk (θ, φ′)Jkm(φ′)Km(φ′, φ)Jmn(φ)Kn(φ, 0). (A17)

c. Born-like approximation and further simplification

In the following, we assume that the modulation speed is slow enough to ignore higher-order jump processes. Thus, we
consider only the first and second terms on the RHS of Eq. (A10). This approximation is analogous to the Born approximation in
the scattering theory. As emphasized in the main text, the state vector quickly approaches the geometric state with the Born-like
approximation which is independent of the initial condition but depends on the BSN connection term.

In the Born-like approximation, the resulting state is

|ρ̂(θ, δ)〉0 + |ρ̂(θ, δ)〉1 =
∑

m

am exp

(∫ θ

0
εm(φ, δ)

dφ

ε

)
|rm(θ, δ)〉 +

∑
m,n

Cmnan|rm(θ, δ)〉. (A18)

The phase factor in the first term on the RHS of Eq. (A18) is the dynamical phase, while the second term on the RHS is the term
generated by the geometric phase.

Since a0 = 1 and ε0 = 0, we can write Eq. (A18) as

|ρ̂(θ, δ)〉0 + |ρ̂(θ, δ)〉1 = |r0(θ, δ)〉 +
∑
m �=0

am exp

(∫ θ

0
εm(φ, δ)

dφ

ε

)
|rm(θ, δ)〉 +

∑
m

Cm0|rm(θ, δ)〉 +
∑

m �=0,n �=0

Cmnan|rm(θ, δ)〉

+
∑

n

C0nan|rm(θ, δ)〉. (A19)

The coefficient in the last term on the RHS of Eq. (A19) is zero, as

C0n = −
∫ θ

0
dφ exp

(∫ φ

0
εn(ζ , δ)

dζ

ε

)
〈0(φ, δ)| d

dφ
|rn(φ, δ)〉

= − exp

(∫ φ

0
εn(ζ , δ)

dζ

ε

)
[〈0|rn(θ, δ)〉 − 〈0|rn(0, δ)〉] +

∫ θ

0
dφ

d

dφ

{
exp

(∫ φ

0
εn(ζ , δ)

dζ

ε

)
〈0|

}
|rn(φ, δ)〉

= δ0n

∫ θ

0
dφ

d

dφ

{
exp

(∫ φ

0
εn(ζ , δ)

dζ

ε

)}
= 0, (A20)

where we have used that 〈0(φ, δ)| is independent of φ and δ, and thus, d
dφ

〈0(φ, δ)| = 0. We have also used the orthonormal

relation 〈m|rn〉 = δmn. The last equality in Eq. (A25) holds since δ0n = 0 for n �= 0, and d
dφ

{exp(
∫ φ

0 εn(ζ , δ) dζ

ε
)} = 0 for n = 0.

Thus, Eq. (A19) becomes

|ρ̂(θ, δ)〉0 + |ρ̂(θ, δ)〉1 = |r0(θ, δ)〉 +
∑
m �=0

{
am exp

(∫ θ

0
εm(φ, δ)

dφ

ε

)
+ Cm0

}
|rm(θ, δ)〉 +

∑
m �=0,n �=0

Cmnan|rm(θ, δ)〉. (A21)

Note that the coefficient Cm0 is equivalent to Cm in the main text. We also note that we can directly obtain the relation
〈0|ρ̂(θ, δ)〉n�1 = 0 from trace preservation.

d. Late time behavior

Now let us consider the behavior for θ/ε � 1. It is obvious that the second term on the RHS of Eq. (A21) is negligible
because of the exponential damping factor that appears for m �= 0. We also note that the sum of the first and third terms on the
RHS is equivalent to |ρ̂(θ, δ)〉 used in Eq. (5). Thus, Eq. (A21) is reduced to

|ρ̂(θ, δ)〉0 + |ρ̂(θ, δ)〉1 = |ρ̂GS(θ, δ)〉 +
∑
m,n

Cmn(θ, δ)an|rm(θ, δ)〉, (A22)

for θ/ε � 1. It is straightforward to evaluate Cmn(θ, δ) for n �= 0 as

|Cmn(θ )| =
∣∣∣∣∣
∫ θ

0
dφ exp

(∫ θ

φ

εm(ξ )
dξ

ε

)
exp

(∫ φ

0
εn(ζ )

dζ

ε

)
〈m(φ)| d

dφ
|rn(φ)〉

∣∣∣∣∣
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�
∫ θ

0
dφ exp

(∫ θ

φ

εm(ξ )
dξ

ε

)
exp

(∫ φ

0
εn(ζ )

dζ

ε

)∣∣∣∣〈m(φ)| d

dφ
|rn(φ)〉

∣∣∣∣
�

∫ θ

0
dφ exp

(∫ θ

0
max(εm, εn)(ξ )

dξ

ε

)∣∣∣∣〈m(φ)| d

dφ
|rn(φ)〉

∣∣∣∣, (A23)

where we have omitted the δ dependence in Eq. (A23). Thus, Cmn with n �= 0 is much smaller than Cm0 because of the existence
of the exponential factor in Eq. (A23). It can be shown that this late time behavior does not depend on the initial state since the
coefficient Cm0(θ, δ) depends only on the steady state |r0(φ, δ)〉 and the states |rm(φ, δ)〉 for |φ − θ | 
 θ0, where θ0 is the largest
relaxation time of the states |rm(φ, δ)〉. It is easy to show that the higher Born corrections are also independent of the initial state.
Thus, the geometric state can be approximated as

|ρ̂GS(θ, δ)〉 � |ρ̂SS(θ, δ)〉 +
∑

m

Cm0(θ, δ)|rm(θ, δ)〉, (θ � θ0), (A24)

where the equality holds up to the negligibly small deviation as in the case of Eq. (8). Here, we note that Eq. (A24) hardly
depends on the choice of the initial state since

Cm0 = −
∫ θ

0
dφ exp

(∫ θ

φ

εm(ζ , δ)
dζ

ε

)
〈m(φ, δ)| d

dφ
|r0(φ, δ)〉

� −
∫ θ

θ0

dφ exp

(∫ θ

φ

εm(ζ , δ)
dζ

ε

)
〈m(φ, δ)| d

dφ
|r0(φ, δ)〉, (A25)

where the difference between the RHS of the first line and that of the second line is negligibly small due to the exponential
damping factor.

2. Derivation of BSN connection and BSN curvature

For the cyclic modulation |ri(2π, δ)〉 = |ri(0, δ)〉, the time
evolution from the general initial state becomes

�|ρ̂〉 =
∑
i �=0

ai

{
exp

(∫ 2π

0
εi(φ, δ)

dφ

ε

)
− 1

}
|ri(0, δ)〉

+
∑
i, j

Ci ja j exp

(∫ 2π

0
εi(φ, δ)

dφ

ε

)
|ri(0, δ)〉,

(A26)

where

Ci j := δi j

∮
∂�

dφ
εi(φ, δ)

ε
−

∮
∂�

d	μAμ
i j (A27)

with the introduction of the BSN connection Aμ
i j :

Aμ
i j := 〈̃i(φ, δ)| ∂

∂	μ

|r̃ j (φ, δ)〉, (A28)

where we have introduced the gauged vectors:

〈̃i(φ, δ)| := 〈i(φ, δ)| exp

(
−ε−1

∫ φ

0
εi(ζ , δ)

dζ

ε

)
, (A29)

|r̃ j (φ, δ)〉 := exp

(∫ φ

0
εm(ζ , δ)

dζ

ε

)
|r̃ j (φ, δ)〉. (A30)

Here, the sum of the first term on the RHS of Eq. (A26)
is taken except for i = 0 because ε0(φ, δ) = 0 always gives
exp(

∫ θ

0 ε0(φ, δ) dφ

ε
) = 1. Using the Stokes theorem, we can

rewrite Eq. (A27) as

Ci j = δi j

∮
∂�

dφ
εi(φ, δ)

ε
−

∫
�

dSμνFμν
i j , (A31)

where � is the area enclosed by the closed trajectory ∂�,
Sμν = 1

2 d	μ ∧ d	ν , and Fμν
i j represents the BSN curvatures

defined as

Fμν
i j := ∂〈̃i|

∂	ν

∂|r̃ j〉
∂	μ

− ∂〈̃i|
∂	μ

∂|r̃ j〉
∂	ν

. (A32)

It is also possible to rewrite Eq. (A31) as

Ci j = δi j

∮
∂�

dφ
εi(φ, δ)

ε
+ 1

2

∫
�

d〈̃i| ∧ d|r̃ j〉. (A33)

APPENDIX B: DIFFERENCES BETWEEN THIS PAPER
AND THE PREVIOUS STUDIES

This section is devoted to explaining the difference be-
tween this paper and the previous studies. In the first part,
we show the consistency between the results in Ref. [36]
and those in this paper. In the second part, we present the
difference between the setup in this paper and the previous
study [44].

1. The relationship of this paper with Ref. [36]

Here, we briefly comment on the superficial differences
between this paper and Ref. [36]. In the present analysis,
we have fixed the gauge degrees of freedom to fix the over-
all scale of states. It is known that {|rm(θ )〉, 〈m(θ )|} and
{exp(− fm(θ ))|rm(θ )〉, exp( fm(θ ))〈m(θ )|} yield the same re-
sults. The gauge freedom can be fixed if we choose the
scaling, e.g., 〈0| = (1, 1, 1, 1) for the Anderson model. We
also note that the zeroth-order Born approximation in this
paper is called the adiabatic approximation in Ref. [36].
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In Ref. [36], the gauge degrees of freedom for the left
eigenstates (〈φn|) and the right eigenstates (|φm〉) are fixed by
[59]

|φ̃m(θ )〉 = exp

(
−

∫ θ

0
dη〈φm(η)| d

dη
|φm(η)〉

)
|φm(θ )〉, (B1)

〈φ̃m(θ )| = exp

(∫ θ

0
dη〈φm(η)| d

dη
|φm(η)〉

)
〈φm(θ )|. (B2)

Since both states |φm〉, 〈φm| and |rm〉, 〈m| are left and right
eigenstates of K̂ with eigenvalue εm, those are identical up to
the scaling factor as

|φm(θ )〉 = eg(θ )|rm(θ )〉, (B3)

〈φm(θ )| = e−g(θ )〈m(θ )|. (B4)

Substituting Eqs. (B3) and (B4) into Eqs. (B1) and (B2), we
obtain the relation between {|φ̃m(θ )〉, 〈φ̃m(θ )} in Ref. [36] and
{|rm(θ )〉, 〈m(θ )} in this paper as

|φ̃m(θ )〉 = exp

(
g(0) +

∫ θ

0
dη〈m(η)| d

dη
|rm(η)〉

)
|rm(θ )〉,

(B5)

〈φ̃m(θ )| = exp

(
−g(0) −

∫ θ

0
〈m(η)| d

dη
|rm(η)〉

)
〈m(θ )|.

(B6)

By using
∫ θ

0 dη〈0(η)| d
dη

|r0(η)〉 = [〈0(η)|r0(η)〉]θ0 −∫ θ

0
d〈0(η)|

dη
|r0(η)〉 = 0, one can show that the lowest eigenstate

in Ref. [36] is identical to |r0〉, 〈0|.
We note that, if we ignore the last term on the RHS of

Eq. (A21), our expression is reduced to eq. (5) in Ref. [36],
where they assume that the time evolution does not make
transitions to different eigenstates, which corresponds to the
Born-type approximation in our approach. The other assump-
tion is made in Ref. [36] which corresponds to setting Cmn = 0
with n �= 0 in Eq. (A21). This approximation is also justified
in our approach and will be explained in the next subsec-
tion. With these approximations, we can directly show the
consistency between our results and those in Ref. [36] by
substituting Eqs. (B5) and (B6) into Eq. (A21). In the main
part of this paper, since we start from the steady state (a0 =
1, am �=0), Cmn with n �= 0 does not appear, and thus, the latter
assumption is not necessary,

2. Difference between Ref. [44] and this paper

A major difference between this paper and Ref. [44] is the
setup. We mainly discuss the relaxation process from NESS
in this paper, but Ref. [44] discussed the behavior after the
system reaches a quasiperiodic state, in which the geometric
term can be ignored. Thus, the authors of the previous study
did not consider the initial relaxation and treated the steady
state ρSS.

It is obvious that ρ̂GS(θ, δ) is different from ρ̂SS(θ, δ) due
to the existence of the BSN connection term, as shown in
Eqs. (5) and (6). Moreover, as shown in the main text, the
mismatch between ρ̂SS(0, δ) and ρ̂GS(θ, δ) for small θ plays

a significant role. Thus, if we are interested in the initial
relaxation process from ρ̂SS(δ) to ρ̂GS(θ, δ), we cannot use
the ε perturbation around ρ̂SS(θ, δ) used in Ref. [44].

APPENDIX C: PROPERTIES OF THE ANDERSON MODEL

This section summarizes the properties of the Anderson
model in more detail, which consists of three subsections.
The first subsection summarizes the evolution matrix. In the
second subsection, we provide the explicit forms of the BSN
connection and BSN curvature as well as the expansion co-
efficients. In the third subsection, we present some detailed
calculations for the Anderson model. For simplicity, we do
not write the δ dependence of the variables explicitly in this
section.

1. Evolution matrix and eigenstates in the Anderson model

In this subsection, we summarize the evolution matrix and
eigenstates in the Anderson model. A similar discussion can
be found in Ref. [44].

Since ρ̂ is a diagonal matrix, |ρ̂〉 also has only four compo-
nents, and the transition matrix K̂ in Eq. (4) in the wideband
approximation is given by the 4 × 4 matrix:

K̂ = −

⎡
⎢⎢⎢⎢⎢⎣

2 f (1)
− − f (1)

+ − f (1)
+ 0

− f (1)
− f (0)

− + f (1)
+ 0 − f (0)

+
− f (1)

− 0 f (0)
− + f (1)

+ − f (0)
+

0 − f (0)
− − f (0)

− 2 f (0)
+

⎤
⎥⎥⎥⎥⎥⎦, (C1)

where we have introduced

f ( j)
+ := f ( j)

L + f ( j)
R , f ( j)

− := 2 − f ( j)
+ , (C2)

with the Fermi distribution

f ( j)
α [μα (θ ),U (θ )] := 1

1 + exp(β[ε0 + jU (θ ) − μα (θ )])
(C3)

in the lead α(= L or R) for the single occupancy j = 0 and
double occupancy j = 1. The eigenvalues and eigenvectors
corresponding to the evolution matrix K̂ (θ, δ) in Eq. (C1) are
presented in Ref. [44].

2. BSN connection for Anderson model

In this subsection, we present an explicit form of the BSN
connection for the Anderson model. Note that the calculation
presented here is derived directly from the detailed expres-
sions of the eigenfunctions and eigenvalues of Eq. (4) (see
Ref. [44] for details).

For the explicit calculation of the BSN connection, we use
Eqs. (5) and (6) with θ = 2π . Integrating by parts, we get∫ 2π

0
exp

(∫ 2π

φ

ε2(ξ )
dξ

ε

)
〈2(φ)| d

dφ
|r0(φ)〉

=
∫ 2π

0
exp

(∫ 2π

φ

ε2(ξ )
dξ

ε

)[
d

dφ
〈2(φ)|r0(φ)〉

− d〈2(φ)|
dφ

|r0(φ)〉
]

= 0, (C4)
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where 〈2(φ)| is independent of φ. Thus, the summation of i in Eq. (5) is reduced to the summation with i = 1 and 3. The
differentiation of |r0(φ)〉 with respect to φ becomes

d

dφ
|r0(φ)〉 =

{
d

dφ

1

2[ f (0)
+ + f (1)

− ]

}
⎡
⎢⎢⎢⎢⎢⎣

f (0)
+ f (1)

+
f (0)
+ f (1)

−
f (0)
+ f (1)

−
f (0)
− f (1)

−

⎤
⎥⎥⎥⎥⎥⎦ + 1

2[ f (0)
+ + f (1)

− ]

d

dφ

⎡
⎢⎢⎢⎢⎢⎣

f (0)
+ f (1)

+
f (0)
+ f (1)

−
f (0)
+ f (1)

−
f (0)
− f (1)

−

⎤
⎥⎥⎥⎥⎥⎦

= α(	)|r0〉 + 1

2[ f (0)
+ + f (1)

− ]

d

dφ

⎡
⎢⎢⎢⎢⎢⎣

f (0)
+ f (1)

+
f (0)
+ f (1)

−
f (0)
+ f (1)

−
f (0)
− f (1)

−

⎤
⎥⎥⎥⎥⎥⎦, (C5)

where α(	) is an unimportant factor because we are only interested in 〈i(φ)| d
dφ

|r0(φ)〉 when i �= 0 and 〈i(φ)|r0(φ)〉 = 0 for
i �= 0.

Substituting Eq. (C5) into Eq. (5) with θ = 2π results in

|ρ̂(2π )〉 � |r0(2π )〉 +
∑
1,3

Ci|ri(2π )〉, (C6)

Ci = −
∫ 2π

0
dφ

〈̃i(φ)|
2[ f (0)

+ + f (1)
− ]

d

dφ

⎡
⎢⎢⎢⎢⎢⎣

f (0)
+ f (1)

+
f (0)
+ f (1)

−
f (0)
+ f (1)

−
f (0)
− f (1)

−

⎤
⎥⎥⎥⎥⎥⎦. (C7)

By using d
dθ

[ f ( j)
+ + f ( j)

− ] = 0, Ci becomes

Ci = −
∫ 2π

0
dφ

〈̃i(φ)|
2[ f (0)

+ + f (1)
− ]

df (0)
+

dφ

⎡
⎢⎢⎢⎢⎢⎣

f (1)
+

f (1)
−

f (1)
−

− f (1)
−

⎤
⎥⎥⎥⎥⎥⎦ −

∫ 2π

0
dφ

〈̃i(φ)|
2[ f (0)

+ + f (1)
− ]

df (1)
+

dφ

⎡
⎢⎢⎢⎢⎢⎣

f (0)
+

− f (0)
+

− f (0)
+

− f (0)
−

⎤
⎥⎥⎥⎥⎥⎦. (C8)

Substituting the expression of 〈1| [44] into Eq. (C8), we obtain

C1 = −
∫ 2π

0
dφ exp

(∫ 2π

φ

ε1(ξ )
dξ

ε

)
2 f (1)

−
f (0)
+ + f (1)

−

df (0)
+

dφ
−

∫ 2π

0
dφ exp

(∫ 2π

φ

ε1(ξ )
dξ

ε

)
2 f (0)

+
f (0)
+ + f (1)

−

df (1)
+

dφ
. (C9)

Similarly, we obtain

C3 =
∫ 2π

0
dφ exp

(∫ 2π

φ

ε3(ξ )
dξ

ε

)
f (1)
+ f (1)

−
f (0)
+ + f (1)

−

df (0)
+

dφ
−

∫ 2π

0
dφ exp

(∫ 2π

φ

ε3(ξ )
dξ

ε

)
f (0)
+ f (0)

−
f (0)
+ + f (1)

−

df (1)
+

dφ

=
∫ 2π

0
dφ exp(4ε−1(φ − 2π ))

f (1)
+ f (1)

−
f (0)
+ + f (1)

−

df (0)
+

dφ
−

∫ 2π

0
dφ exp(4ε−1(φ − 2π ))

f (0)
+ f (0)

−
f (0)
+ + f (1)

−

df (1)
+

dφ
. (C10)

As shown by Eq. (C10), the factor exp(4ε−1(φ − 2π )) in the integrand plays an important role. Because of this factor, it is
not necessary to consider long-term memory in the dynamics. In the case of C3, the scaling factor does not depend on the choice
of the trajectory but only depends on θ . Thus, one can estimate the BSN curvature at φ.

For ε 
 1, the exponential factor exp(4ε−1(φ − 2π )) behaves as a cutoff function, and thus,

C3 ≈
∫ 2π

2π−ε

dφ

[
f (1)
+ f (1)

−
f (0)
+ + f (1)

−

df (0)
+

dφ
− f (0)

+ f (0)
−

f (0)
+ + f (1)

−

df (1)
+

dφ

]
∼ ε

[
f (1)
+ f (1)

−
f (0)
+ + f (1)

−

df (0)
+

dφ
− f (0)

+ f (0)
−

f (0)
+ + f (1)

−

df (1)
+

dφ

]
φ=2π

. (C11)

Similarly, we can write

C1 ∼ ε

{
2 exp(ε1(2π ))

f (0)
+ + f (1)

−

[
f (1)
−

df (0)
+

dφ
− f (0)

+
df (1)

+
dφ

]}
φ=2π

. (C12)
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FIG. 12. Plots of (a) C1 and (b) C3 vs δ for r = 0.5, 0.7, 0.9 with
βU0 = 0.1.

From the above estimates, the leading-order contribution of
the geometric phase is the order O(ε).

Let us show that C3 reduces to zero in the noninteracting
case βU0 = 0. In this case, f (0)

± = f (1)
± ≡ g± and g+ + g− =

2; thus, C3 becomes

lim
βU0→0

C3 = 0. (C13)

In the opposite limit βU0 → ∞ with f (1)
+ = 0, f (1)

− = 2C3

also becomes zero because

lim
βU0→∞

C3 = 0. (C14)

FIG. 13. Plots of (a) C1 and (b) C3 vs δ for βU0 = 0.3, 0.5, 0.7
with r = 0.9.

FIG. 14. Plots of the time evolution of the density matrix element
based on the Born-like approximation (red dashed line) and the
numerical solutions of the master equation (black solid line). The
parameters are set to be βμ̄ = 0.1, βU0 = 0.1, and βε0 = 0.1.

3. Some detailed results for the Anderson model

In this subsection, we present some detailed results beyond
the main text as well as a figure showing the control parame-
ters in the parameter space.

In Fig. 12, we plot C1(δ) (left figure) and C3(δ) (right
figure) vs δ for various r and βU0 = 0.1. As shown, the
coefficients increase with increasing r. The coefficients C1 and
C3 become zero at δ = π .

Figure 13 shows the coefficients C1(δ) (left figure) and
C3(δ) (right figure) vs δ for various βU0 and r = 0.9. As
shown in Fig. 13, |Ci| with i = 1 and 3 increases with βU0.

APPENDIX D: SOME DETAILED PROPERTIES OF THE
DENSITY MATRIX, VON NEUMANN ENTROPY, AND

HEAT FLOW

In this section, we present the detailed results on the den-
sity matrix, the von Neumann entropy, and the heat flow.

First, we verify the validity of the Born-like approximation
by comparing its solution with that obtained by the numerical
solution of Eq. (4). In Fig. 14, we plot the time dependence
of the diagonal elements of the density matrix computed by
the Born-like approximation and the numerical solutions. This
shows that the Born-like approximation gives us sufficiently
accurate expressions since the deviation between the numer-
ical solutions and the expressions based on the Born-like
approximation is invisible.

FIG. 15. Plot of von Neumann entropy as a function of θ . The
results obtained by the Born-like approximation (red dashed line) and
the numerical calculation of the master equation (black solid line) are
plotted.
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FIG. 16. Plot of the heat Q(θ, 0) vs θ for βU0 = 0.1 and r = 0.9.

Next, we plot SvN(θ, 0) against θ in Fig. 15. This fig-
ure contains the comparison of SvN(θ, 0) obtained by the
Born-like approximation as in Eqs. (5) and (6) with that
obtained by the numerical integration of Eq. (4). As can be
seen, the difference between the two results is invisible. The
behavior of SvN(θ, 0) is neither nonmonotonic nor quasiperi-
odic.

Third, we also compute the heat flow Q(θ, δ). In Fig. 16,
we plot Q(θ, 0) as a function of θ . Since the left-hand side of
Eq. (27) is much smaller than Ssys(θ, δ) and Q(θ, δ), Q(θ, 0)
is almost the same as Ssys(θ, 0) shown in Fig. 9. The deviation
between the solution of Eq. (4) and the result of the Born-like
approximation is invisible.
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i[Ĥiiρ̂
GS
ii − Ĥiiρ̂
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