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Spin texture as a bulk indicator of fragile topology
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We study the relationship between momentum-space spin textures projected onto the occupied bands and
Wilson loop winding, proving a map between band topology and spin topology in certain restricted symmetry
settings relevant to fragile topology. Our results suggest that, in specific scenarios, the spin gap may act as a
smoking gun bulk indicator for fragile topology.
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I. INTRODUCTION

The concept of spin has played a perpetually significant
role in physics. With the rise of topological materials this
role was reinforced as paradigmatic time reversal (TRS) pro-
tected topological insulators [1,2] thrive on having spinful
TRS. Similarly, winding numbers associated with real space
spin textures, such as skyrmions [3], have garnered signif-
icant attention over the years, as have Rashba/Dresselhaus
spin-orbit coupling (SOC) terms in momentum space, which
display (pseudo)spin momentum locking [4]. These terms
usually arise in a two-band k · p description in presence of
strong SOC, describing a twofold degeneracy at a certain mo-
mentum. Generally, however, the topology of a gapped band
structure is not captured by a purely local analysis, but instead
requires comparing multiple momentum space points or paths
(e.g., Wilson loops [5–7]), leading to the consideration of spin
textures across Brillouin zones (BZ).

Whilst spin is a fundamental parameter in band topology,
the specific role of spin textures are yet to be fully explored
[8]. Such relations can however be motivated by specific ex-
amples. In a quantum spin Hall (QSH) phase preserving TRS,
for example, the relevant topological invariant quantifying the
winding of the spin sector is the spin Chern number. This spin
Chern number was shown to be robust as long as the spin gap
(defined below) does not close [9] and is in close correspon-
dence with the Kane-Mele band-topological invariant [10].
In addition, spin plays an important role in the irreducible
representations (IRREPs) that determine the gluing conditions
[11], which in turn fix the momentum space configurations
considered in recent symmetry-based schemes such as topo-
logical quantum chemistry [12] or symmetry indicators [13].
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Recently, unified relations between band topology and spin
textures have received reinvigorated interest as reflected in
work on describing spin-textures around higher degeneracies
[14], as well as moving away from local in momentum space
(e.g., k · p) descriptions, to a global description taking into
account space-group symmetries [15] and spin textures at
various points in the BZ [16–18]. Similarly, we note that in
Refs. [5,19] a relation between certain fragile topologies and
spin-locking processes has been previously reported. Given
these appealing indications, we here discuss a symmetry
setting where, rather than coexisting, there is a direct map-
ping between fragile topological phases and spin topology. In
essence we are, inspired by the above-mentioned symmetry
based classifications schemes, concerned with the question if
there are connectivity rules amongst spin bands and whether
they impact band topology. Encouragingly, we are able to
identify spin textures, and in particular the spin gap, as a bulk
signature of fragile topological phases [20,21]. This is useful,
as fragile phases are generically difficult to diagnose [22–27].
Concretely we find the following.

(1) In the presence of C2T symmetry, with [C2T ]2 = 1,
we can define a Z2 spin invariant, distinct from the spin Chern
number, that relates to a superconducting symmetry class and
characterizes (the vanishing of) the spin gap over the BZ.

(2) This invariant relates to the electronic band structure in
two-band subspaces corresponding to a fragile split elemen-
tary band representation (EBR) [5,12,20,28] within specific
symmetry settings, giving a bulk topological classification
perspective of fragile electronic band topology. We find that
whenever this Z2 spin invariant is trivial we necessarily have
a phase with winding Wilson loop.

(3) We discuss possible realistic experimental schemes to
measure the spin gap and thus the Z2 spin invariant.

II. (PSEUDO)SPIN CONNECTIVITY
AND PARALLEL TRANSPORT

We begin by defining spin textures in 2D systems with
SOC that lack inversion symmetry. In such systems, spin is
not a good quantum number across the BZ, and we cannot
straightforwardly associate a spin degree of freedom (DOF)
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to the bands. Even in the presence of SOC, however, there
are n-fold degeneracies in the band structure to which we
can associate an n−1

2 pseudospin DOF [14]. If such a de-
generacy occurs at a high-symmetry point (HSP) k0, whose
little-group contains a rotation axis perpendicular to the sys-
tem’s basal plane, then this gives a natural spin-up/spin-down
quantization axis for the pseudospin. Concretely, there exists
a canonical gauge choice at the degeneracy, consisting of the
pseudospin eigenstates that diagonalize the rotation symmetry
representation. We will focus on twofold degeneracies which
are spanned by a pseudospin 1

2 DOF. In this setting, the above
gauge fixing reduces the gauge freedom at the degeneracy
from U(2) to U(1)×U(1). The presence of (nonsymmorphic)
time reversal symmetry (TRS), see below, is then used to
further reduce the gauge freedom to U(1) by imposing that
the pseudospins be the image of each-other under TRS, i.e.,
T (χ↑, χ↓) ∝ (χ↑, χ↓)σyK, where K is complex conjugation.

To explore the relationship between the (pseudo)spin states
at the degenerate points and topology, we need to consis-
tently compare (pseudo)spins at various points in the BZ in
a gauge-controlled fashion. To attain gauge-consistent bands
associated with (pseudo)spin, (|χ↑, k〉, |χ↓, k〉), we start from
(pseudo)spin eigenstates at a degenerate HSP k0 written in the
above canonical gauge. At k0, we fix the remaining gauge
phase factor of the eigenstates, and parallel transport these
states from the degeneracy at k0 to some other k.1 We will
see that this construction is related to how the eigenvalues of
the projected spin operator are used to disentangle degenerate
bands in the QSH [9]. We note that these parallel-transported
states are eigenstates of the Wilson loop, and are therefore
not generically eigenstates of the Hamiltonian away from the
degeneracy (though they span the same Hilbert space).

If k∗ is another HSP whose point-group contains the same
rotation axis as k0 then, if no gap closings with external bands
occur, the parallel-transported states will again be eigenstates
of the Hamiltonian at k∗. We find numerically, in all models
considered, that the resulting states are also rotation eigen-
states at k∗, although a general proof of this property is still of
active interest [5]. We conclude that the (pseudo)spin eigen-
values, i.e., spin-up or spin-down, are good quantum numbers
at both degeneracies. It is then meaningful to compare the
(pseudo)spin eigenvalue of the parallel-transported states at
the HSPs k∗ and k0 and consider whether it is preserved, i.e.,
indicating a parallel spin configuration, or reversed, i.e., in-
dicating a spin-flip configuration. This method of connecting
(pseudo)spin eigenvalues at distinct HSP across the Brillouin
zone gives a characterization of the parallel-transported bands
which is reminiscent of the above-mentioned symmetry-based
classification methods [11–13,29–34] for Bloch bands. We
stress however that the characterization in terms of the con-
nectivity of pseudospin eigenvalues at degeneracies in the BZ
is a priori independent of these methods as we are concerned
with how these (pseudo)spin eigenvalues connect for a fixed

1Explicitly making such a construction across the entire BZ whilst
preserving symmetries may be challenging, though it is possible for
some symmetry classes as discussed in Ref. [47] We will only be
interested in the states along specific lines in the BZ, however, where
such a construction can easily be performed.

set of irreducible representations (IRREPs) at the degenera-
cies, and this spin-connectivity can generically change even
when the IRREPs remain fixed.

III. SPIN BANDS

In what follows, we assume that we are dealing with
twofold degeneracies at which the spin-up and spin-down
DOF are good quantum numbers. It turns out, moreover, that
the Bloch eigenstates of the systems we consider realize the
bare electron spin at these degeneracies. To compare the spins,
we could naively define the spin operator in the Bloch eigen-
frame {|un, k〉}n (i.e., the Bloch energy eigenvectors) as [15]

Ŝs(k)n = 〈un, k|Ŝ|un, k〉, (1)

where Ŝ = n · σ̂ is the spin operator along n in the basis of the
Hamiltonian (e.g. tracing over orbital DOFs). This is the op-
erator relevant for spin-ARPES measurements. However, this
operator is not invariant under mixing of the Bloch eigenvec-
tors of the occupied bands, as required by the parallel transport
gauge. We therefore consider a multiband generalization of
Eq. (1):

Sr
P(k)nm = 〈un, k|Ŝ|um, k〉 = [U (k)†ŜU (k)]nm, (2)

considered in Refs. [9,18], where U (k) = (|u1, k〉, |u2, k〉,
. . . , |uNocc , k〉) is the rectangular matrix of the occupied Bloch
eigenvectors (we assume Nocc = 2 in what follows). Fol-
lowing [18], we refer to this as the reduced spin operator.
Diagonalizing this operator allows us to define spin bands
across the BZ. We define the spin gap, �s to be the min-
imum separation between positive and negative eigenvalues
of this operator at a fixed k. When there is no SOC, Ŝ has
eigenvalues ± 1

2 across the BZ, and thus �s = 1. We note
that Sr

P(k) is gauge-covariant with respect to mixing of the
occupied eigenvectors, so that the spin bands and the spin gap
are gauge-invariant and form the spin texture projected onto
the occupied bands (see Appendix A). At the twofold degen-
eracies this operator has quantized eigenvalues ± 1

2 . When the
two spin bands are gapped, there exists a continuous frame
with the same spin eigenvalue at � and K, which we show
later indicates a winding (energy-)band Wilson loop. When
the spin gap closes instead, it indicates an exchange of spin
eigenvalues across the Brillouin zone. Furthermore, when the
spin spectrum is gapped, there is a correspondence between
the winding of the Wilson loop of the occupied bands and
the spin Chern number [9,18], which we consider later. We
conclude that the parallel transported frame and the spectral
decomposition of the projected spin operator are complemen-
tary ways to relate the spin texture to electronic band topology.

IV. SYMMETRY OF THE SPIN OPERATOR

The existence of topological phases crucially depend on
symmetries. We are here primarily interested in 2D systems
with (symmorphic or nonsymmorphic [19]) time-reversal
symmetry (TRS) T and out-of plane twofold rotation symme-
try C2z with their product satisfying [C2zT ]2 = +1 (satisfied
for both examples considered below), which we note has
direct consequences for defining multigap invariants such
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as Euler class [5,21,23,24,35–40]. The out-of plane rotation
gives a natural spin quantization axis, and in what follows we
focus mostly on the Ŝz operator. The operators T and C2z acts
on the spin operator Ŝ as

Ŝ
T−→ −Ŝ, (3)

{Ŝx, Ŝy, Ŝz} C2z−→ {−Ŝx,−Ŝy, Ŝz}. (4)

Combining these, and noting that C2zT is local in momentum,
we see that the single spin operator Ŝs,z(k)n = 0 away from
degeneracy, suggesting that in this symmetry setting, spin-
ARPES will be unable to detect the spin texture. Let us note
the symmetry action of C2zT on the Bloch eigenvectors

ÛC2zT U (k)∗ = U (k)W̆C2zT (k), (5)

where ÛC2zT K is the representation of C2zT in the orbital basis
(K is complex conjugation). Working now with the reduced
spin operator in the z direction, Eq. (2), we find the symmetry
action (see Appendix A)

Ŝr
P,z(k) = −W̆C2zT (k)Ŝr

P,z(k)∗W̆C2zT (k)†. (6)

We show in Appendix A that because we require that
[C2zT ]2 = +1, there exists a basis choice that globally trans-
forms W̆C2zT (k) to the identity matrix (which can be found
using an Autonne-Takagi decomposition, see Refs. [23,25]).
In this basis,

Ŝr
P,z(k) = −Ŝr

P,z(k)∗, (7)

i.e., Ŝr
P,z is purely imaginary and off-diagonal. Thus, in the

presence of C2zT , the reduced spin operator has particle-
hole symmetry which is local in k and squares to +1. This
places this operator in the superconducting AZ + I (Altland-
Zirnbauer + inversion) class D, characterized by the zeroth
homotopy group π0 = Z2 [41].

V. TOPOLOGY OF THE SPIN OPERATORS

To understand the meaning of this homotopy charge, we
first discuss how to compute it. In the real basis where the
reduced spin operator is purely off-diagonal, the homotopy
charge is given by [41]

zs
2,red(k) = sign

(
Pf

[
iŜr

P,z(k)
])

, (8)

where Pf is the Pfaffian. Because the reduced spin operator is
gauge-covariant, we have to perform our calculations in the
parallel-transport gauge defined above (see Appendix A). In
this gauge, crucially, zs

2,red can only change when the spin gap
closes, which should happen along a spin nodal ring in the BZ.
In the case of a two-band parallel-transported frame discussed
above, a change in zs

2,red between two different HSPs indicates
that the spin eigenvalues (which, importantly, are gauge in-
variant) cross zero an odd number of times between the HSPs.
This Z2-valued homotopy charge, evaluated in a parallel-
transport gauge between two HSPs, therefore captures the spin
connectivity between HSPs discussed above. We can therefore
define a Z2 spin invariant between two HSPs k1 and k2 as
zs

2,red|k2
k1

, computed in a parallel-transport gauge. We next show
that the spin connectivity is in direct correspondence with the
fragile topology of the electronic bands.

TABLE I. Relationship between the spin eigenvalues
(↑ for +1/2, ↓ for −1/2) at � and K/M of the parallel-transported
pseudospin eigenframe and Wilson loop winding for a
hexagonal/tetragonal system in the specific symmetry setting
described in Refs. [5,19]. In particular, the 3Z classification of
the two-band Wilson loop winding only holds for the two-band
subspace containing the doubly degenerate IRREP at K, i.e., the
occupied subspace of Figs. 1(a) and 1(e) [5]. This reflects the fact
that the Wilson loop winding below and above the energy-gap can
differ, a situation we call “imbalanced Euler phase” [42].

Wilson loop winding W

� K/M C6v + T C4 + T {E |[a1 + a2]/2}
{↑,↓} {↑,↓} ±1 + 3Z 1 + 2Z
{↑,↓} {↓,↑} 3Z 2Z

VI. PSEUDOSPIN AND BAND TOPOLOGY

A standard way to diagnose band topology is by using
the Wilson loop operator W (k) [5–7]. We have previously
established an analytic relationship between the Wilson loop
winding and the (pseudo)spin structure in two specific sym-
metry settings. Namely, in Ref. [5], we studied the four-band
EBR of the honeycomb lattice, assuming the hexagonal space
group P6mm1′, i.e., with the point group C6v and TRS. We
showed that when the EBR is split into two occupied and two
unoccupied bands, the two-band subspace that hosts twofold
degeneracies at � and K exhibits a rigid relationship between
the winding of Wilson loop W and its spin structure. More
precisely, we found that all phases with SOC that are adiabat-
ically connected to gapped phases with inversion symmetry
(i.e., with zero Rashba SOC) only admit spin textures with
aligned spins at � and K and exhibit a Wilson loop winding
W ∈ ±1 + 3Z. Moreover, we found phases with a spin-flip
configuration, from � to K , that are not adiabatically con-
nected to inversion-symmetric phases and only admit a Wilson
loop winding W ∈ 3Z (in practice, we only found models of
such phases with W = 0). We recall that an odd Wilson loop
winding in this system implies a nontrivial Z2 QSH phase,
while all other phases are fragile topological. In addition, in
Ref. [19], we found similar results in a tetragonal, antifer-
romagnetic space group PC4, i.e., with point group C4 and
nonsymmorphic TRS T {E |[a1 + a2]/2}. Specifically, we find
the relationships shown in Table I.

Combining this result with the results for the reduced spin
operator obtained in this work, we find that the two-band
subspaces with zero Wilson loop winding, i.e., necessarily
hosting a spin-flip configuration between � and K/M, pre-
cisely exhibit a change in the zs

2,red invariant, Eq. (8), so that
we obtain in the hexagonal case:

zs
2,red

∣∣K

�
= 0 mod 2 ⇐⇒ W ∈ ±1 + 3Z,

zs
2,red

∣∣K

�
= 1 mod 2 ⇐⇒ W = 0 + 3Z. (9)

A similar result can be verified for the tetragonal case. The
Z2 spin invariant in the hexagonal space-group is then zs

2,red|K� ,
evaluated in a parallel-transport gauge. We see that the Z2 spin
invariant acts as a complement to the electronic topology: the
two-band subspace of a split EBR with trivial Wilson-loop
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(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 1. Relevant figures for the P6mm1′ symmetric case. In (a)–(d), we show the case where the Wilson loop of both band subspaces
winds, whereas (e)–(h) shows the case where the Wilson loop of the lower two-band subspace does not wind, whereas the Wilson loop of the
upper two-band subspace winds. In (a) and (e), we show the band structures, with IRREPs of P6mm1′ indicated. In (b) and (f), we show the
eigenvalues of the reduced spin operator along high-symmetry paths of the BZ. Note that spin is not a good quantum number at M, but is a good
quantum number at � and K. In (c) and (g), we show the Pfaffian and Wilson loop of the occupied bands over the BZ, with �′ = � + b1 + b2.
Comparing the plots, we see that a nontrivial Wilson loop corresponds to a trivial Pfaffian invariant and vice versa. Finally, in (d) and (h), we
show the spin expectation value over the BZ of the lowest spin band [as shown along high-symmetry lines in (b) and (f)]. This shows that the
case where the occupied bands have trivial Wilson loop winding has spin nodal lines. For more details on the models, see Appendix B and
Ref. [5].

winding in this specific symmetry setting is only allowed
when there is a nontrivial Z2 spin invariant, implying a stable
spin-spectrum nodal ring. Conversely, a trivial Z2 spin invari-
ant implies nonzero Wilson loop winding. This constitutes a
main finding of this paper and we illustrate these results for
two phases with different Wilson-loop windings in the hexag-
onal case in Fig. 1. Similar results for the antiferromagnetic
tetragonal counterpart are detailed in Appendix C.

VII. RELATIONSHIP TO ELEMENTARY
BAND REPRESENTATIONS

Within the framework of topological quantum chemistry
[12,33], the lower two-band subspace in Figs. 1(a) and 1(e)
would be classified as “atomic obstructed,” whereas the upper
two-band subspace would be classified as “fragile.” This clas-
sification has been referred to as “IRREP-equivalent” [43]. As
we have shown here, and in Refs. [5,19], these labels do not
directly correlate to the topology (as probed by the Wilson
loop). In particular, in Fig. 1, we show an “atomic obstructed”
occupied subspace with Wilson loop winding 2 [lower panel
of Fig. 1(c)] and an atomic obstructed occupied subspace with
Wilson loop winding 0 [lower panel of Fig. 1(g)]. Importantly,
the unoccupied two-band subspace does exhibit a Wilson loop
winding in both cases, namely, 2 in Fig. 1(a) and 4 in Fig. 1(e).
As such, we refer to the entire split EBR as fragile, first in
the sense that it is incompatible with an atomic limit (since it
contains at least one subspace with a Wilson loop winding),

and second in the sense that the Wilson loop winding of a
two-band subspace can be gapped through the coupling with
trivial bands, as shown in Appendix D.

We emphasize that while the Wilson loop winding 2 is the
same in both occupied and unoccupied subspaces in Fig. 1(a),
the Wilson loop winding above (4) and below (0) the gap are
not the same in Fig. 1(e) This latter case is in close analogy to
the imbalanced Euler phases recently discussed in Ref. [42].
We show an example of an IRREP-equivalent fragile two-
band subspace whose Wilson loop winding (mod 2) is directly
indicated by the spin spectrum in Appendix C.

VIII. EXPERIMENTAL DETECTION OF SPIN OPERATOR

As discussed above, spin-ARPES is generically not capa-
ble of resolving the multiband spin texture. However, if the
Z3 spin invariant is nontrivial, then the spin gap necessarily
vanishes somewhere along the relevant high-symmetry line.
Conversely, this implies that whenever the reduced spin op-
erator is gapped across the entire BZ, we necessarily have a
nontrivial winding of the Wilson loop within the split EBR
context and symmetry settings we are considering. In general,
the spin gap can close at points away from the high-symmetry
line, or it can close twice along the line, without changing
the spin invariant and therefore the Wilson loop quantization.
Thus, when the reduced spin operator is gapless, we may still
be in a phase with trivial Z2 invariant, where the Wilson loop
winds (note, however, that Ref. [18] showed that the spin gap
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is perturbatively stable). However, when the spin spectrum is
gapped, we are necessarily in a phase where the Wilson loop
winds.

We can therefore detect topology by measuring the gap in
the projected spin texture. As pointed out in Ref. [18], the spin
gap provides a bound on the excitation spectrum of a system
when quenching with a z-directed Zeeman field. Similarly, we
also expect this gap to show up in the spin structure factor
of neutron scattering experiments. For the Zeeman quenched
case, the density of excited states is (as shown in Ref. [18])

�ex =
∑

k∈BZ

Tr[P(k)Ŝz[1 − P(k)]ŜzP(k)]. (10)

Where P(k) is the projector onto the occupied bands at k. We
find that �ex is an order of magnitude larger in the case where
the spin spectrum is gapless.

IX. RELATION TO SPIN CHERN NUMBER

When the gap in the reduced spin operator is open across
the BZ, one can compute the Wilson loop of the spin bands.
This corresponds to the spin-Chern number [9]. We define
the Chern number of the upper/lower spin bands as C±, and
define the spin-Chern number as Cs = C+ − C−. As discussed
in Appendix D, we find in the nonmagnetic hexagonal case
that Cs = 4, whereas in the magnetic tetragonal case, Cs = 2.
In nonmagnetic systems, the spin Chern number is related to
the Kane-Mele Z2 invariant as νKM = (1/2)(Cs mod 4). Thus
the hexagonal case does not have a strong invariant associated
with the electronic band structure for even winding of the
Wilson loop, in agreement with “fragile” topology (in fact,
Ref. [5] showed that the fragile topology with W ∈ ±4 + 12Z
can be trivialized by coupling to trivial bands, see also Fig. 3
in Appendix D). In the magnetic case, this corresponds to
having a QSH phase without TRS, which has also been in-
vestigated in Refs. [44,45], where it was found that the QSH
edge states can be generically gapped when TRS is broken.
We showed in Ref. [46] that the surface spectrum in the
tetragonal magnetic case agrees with that expected of a fragile
topological insulator, and the IRREP content is also consistent
with fragile topology, justifying the label of fragile topological
phase.

X. OUTLOOK

An interesting remaining question concerns the more gen-
eral relationship between the spin-invariant and the band
topology, beyond two-band degeneracies. Note, in particular,
that the Z2 spin invariant is defined for any even number
of bands in the occupied space, in any system with C2zT
symmetry. However, the pseudospin connectivities, and their
relationship to Wilson loop were specifically derived in a two-
band subspace. The connection with higher degeneracies, or
additional subspaces, comprise an interesting future pursuit.
Furthermore, it would be interesting to note that we uncov-
ered a similar relationship between Wilson loop windings and
pseudospin orderings in two very different space groups. This
points to a more generic structure. As Wilson loops are diffi-
cult to measure, such a relationships to an observable would
be of particular interest. We finally note that our methodology

can be applied to any physical operator that can be associated
with degeneracies in the BZ. We therefore expect our results
to also be generalizable beyond C2zT -symmetric systems.
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APPENDIX A: SYMMETRY OF SPIN
OPERATORS UNDER C2zT

1. Defining the spin operators

We define the Bloch orbital basis in which the Bloch
Hamiltonian is defined

|ϕα, k〉 = 1√
N

∑

k

eik·(Rm+rα )|wα, Rm + rα〉, (A1)

with the atomic Wannier function 〈r|wα, Rm + rα〉 = wα (r −
Rm − rα ) for the αth atomic orbital. The Bloch eigenstates are
then defined through

|ψn, k〉 = |ϕ, k〉[Ut (k)]n, (A2)

with Ut (k) the matrix of column Bloch eigenvectors
[Ut (k)]n = |un, k〉, i.e.,

Ut (k) = (|u1, k〉, |u2, k〉, . . . , |uN , k〉), (A3)

where N is the total number of bands, which we assume to
be even. We begin by considering the projected spin operator,
considered in Refs. [9,18]:

ŜP(k) = P(k)ŜP(k) =
∑

n,m∈occ

〈un, k|Ŝ|umk〉|un, k〉〈um, k|,

(A4)

where Ŝ is the spin operator when tracing over all orbital
DOFs and P(k) is the projector onto the occupied bands at
k. This differs from the reduced spin operator, considered in
the main text, by the presence of zero modes, associated with
the unoccupied bands. To see how this operator behaves under
a gauge transformation, we note that we can write a multiband
gauge transformation of the occupied bands as

|ũn, k〉 = U (k)G(k) =
∑

m∈occ

Gmn(k)|um, k〉 (A5)

with G(k) ∈ U(Nocc), and where U (k) is the rectangular ma-
trix of occupied Bloch eigenvectors

U (k) = (|u1, k〉, |u2, k〉, . . . , |uNocc , k〉), (A6)

which satisfies

UU† = P,

U†U = 1Nocc×1Nocc . (A7)

We find that the projector, P(k), is gauge-invariant, so that the
projected spin operator ŜP is also gauge-invariant. We are also
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interested in the reduced spin operator, considered in the main
text:

Ŝ
r
P(k)nm = 〈un, k|Ŝ|um, k〉 = (U†ŜPU )nm. (A8)

This operator is gauge covariant, as under a gauge-
transformation G(k) ∈ U(Nocc):

Ŝ
r
P(k) → ˜̂Sr

P(k) = G(k)†Ŝ
r
P(k)G(k). (A9)

So that the spin eigenvalues are gauge-invariant. We now
wish to understand how these operators behave under C2zT
symmetry.

2. Action of C2zT
Letting ÛT , ÛC2z be the unitary actions of time-reversal

and C2z respectively, we define ÛC2zT = ÛC2zÛT . We require
that (C2zT )2 = +1, which gives that ÛC2zT U †

C2zT = 1 and

ÛC2zT Û ∗
C2zT = 1, so that ÛC2zT = [ÛC2zT ]T . We now derive

the symmetry properties of the projected and reduced spin
operator. We first give the action of the C2zT symmetry on
the occupied Bloch eigenstate basis,

C2zT |ψn, k〉 = C2zT |ϕ, k〉[U (k)]n

= |ψm, k〉[U (k)†]mÛC2zT [U (k)∗]nK
= |ψm, k〉[W̆C2zT (k)]mnK, (A10)

where W̆C2zT (k) is a Nocc×Nocc unitary matrix that represents
the C2zT symmetry on the occupied-band eigensubspace un-
der consideration (we assume that we can isolate the occupied
subspace from the other bands). For later reference, it is also
useful to rewrite it as an action on the occupied Bloch eigen-
frame

ÛC2zT U (k)∗ = U (k)W̆C2zT (k). (A11)

The action of C2zT on the two-band projector is then

P(k) → ÛC2zT P(k)∗Û †
C2zT , (A12)

Now note that

Û †
C2zT ŜxÛC2zT = Ŝx,

Û †
C2zT ŜyÛC2zT = Ŝy,

Û †
C2zT ŜzÛC2zT = −Ŝz. (A13)

For example, in the orbital basis, C2zT flips the z component
of spin whilst leaving the others unchanged. Thus the action
on the projected spin-z operator is

ŜP,z(k) → ÛC2zT P(k)∗(Û †
C2zT ŜzÛC2zT )P(k)∗Û †

C2zT

= −ÛC2zT P(k)∗ŜzP(k)∗Û †
C2zT

= −ÛC2zT Ŝ∗
P,zÛ

†
C2zT . (A14)

The C2zT symmetry then requires

ŜP,z(k) = −ÛC2zT Ŝ∗
P,zÛ

†
C2zT . (A15)

This implies that the z component of the projected spin op-
erator has a local in k, antiunitary, antisymmetry, squaring to
+1. Following Ref. [41], this puts this operator in AZ + I

symmetry class D, characterized by π0 = Z2 and spectral
symmetry around sz = 0.

To find an explicit expression for this Z2 topological invari-
ant associated with the spin spectrum, we note that, due the
properties of ÛC2zT discussed previously, there exists a basis
transformation (given by an Autonne-Takagi decomposition
[23]), such that ÛC2zT = 1. In this basis, ŜP,z(k) is a purely
imaginary, skew-antisymmetric matrix at all k, from which
it follows that Pf(iŜP,z) is well-defined. Then, in a smooth
gauge, the Pfaffian evolves continuously, and only switches
sign through a spin gap closing. It follows that sign[Pf(iŜP,z )],
evaluated at two different points, gives the required invariant.
Note, however, that Pf(A)2 = Det(A) and Det(ŜP,z ) = 0 be-
cause ŜP,z always has N − Nocc zero eigenvalues, associated
with the eigenstates of Q = 1 − P (physically: the conduction
bands). Thus the Z2 invariant is always ill-defined for ŜP,z.

To circumvent this issue, we instead look at the reduced
spin operator, Eq. (2) in the main text, where the zero eigen-
values are projected out. Rewriting the projected spin operator
as

ŜP,z(k) = U (k)Ŝr
P,z(k)U (k)†, (A16)

we find from Eqs. (A15) and (A11)

ŜP,z(k) → −ÛC2zT P(k)∗ŜzP(k)∗Û †
C2zT

= ÛC2zT U (k)∗[−U (k)†ŜzU (k)]∗P(k)∗

= −U (k)W̆C2zT (k)Ŝr
P,z(k)∗W̆C2zT (k)†U (k)†. (A17)

Since C2zT symmetry requires that the last line must equal
ŜP,z(k) in the form of Eq. (A16), we finally get

Ŝr
P,z(k) = −W̆C2zT (k)Ŝr

P,z(k)∗W̆C2zT (k)†. (A18)

Which is very similar to the particle-hole symmetry in
Eq. (A15), except that the symmetry operator now depends
on k, as a consequence of projecting out the zero eigenvalues.
Note that:

W̆C2zT (k)[W̆C2zT (k)]∗ = W̆C2zT (k)[W̆C2zT (k)]† = 1. (A19)

Because ÛC2zT = [ÛC2zT ]T . It is therefore possible to per-
form an Autonne-Takagi basis change at each k to make
Ŝr

P,z(k) antisymmetric and off-diagonal. This decomposition
will however amount to a local rotation of the basis, rather
than a global rotation. This may induce additional topologi-
cal structure. We now show that this does not happen when
working in the basis that makes the Hamiltonian real.

To show this, we now perform the Autonne-Takagi trans-
formation [23]. Because ÛC2zT = [ÛC2zT ]T , we can write
ÛC2zT = VC2zT D[VC2zT ]T for a unitary VC2zT and a diagonal D.
Defining VR = √

D∗V †
C2zT , the Hamiltonian is made real by the

basis change:

HR(k) = VRH (k)V †
R . (A20)

The eigenstates of the Hamiltonian in this basis can be chosen
to be real, as we numerically verified, and are related to the
eigenstates in the original basis by |uR

n , k〉 = eiϕVR|un, k〉, for
some arbitrary gauge phase ϕ. Under C2zT ,

H (k) = V †
RHR(k)VR = ÛC2zT H∗(k)Û †

C2zT

= ÛC2zT V T
R HR(k)V ∗

RÛ †
C2zT , (A21)
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and thus

HR(k) = VRÛC2zT V T
R HR(k)V ∗

RÛ †
C2zT V †

R . (A22)

Defining ÛC2zT ,R = VRÛC2zT V T
R , we note that ÛC2zT ,R =√

D∗D
√

D∗ = 1, so that C2zT acts diagonally in the real basis.
We can similarly define the projected spin operator in occu-
pied bands of the real basis:

ŜP,R =
∑

n,m∈occ

〈uR
n , k|ŜR|uR

m, k〉|uR
n , k〉〈uR

m, k| = VRŜPV †
R ,

(A23)
with

ŜR = VRŜV †
R . (A24)

Being the spin operator in the real basis. Specializing to the z
direction, this spin operator enjoys particle-hole symmetry:

ŜP,z,R = −Ŝ∗
P,z,R. (A25)

By virtue of ÛC2zT ,R acting diagonally. We can similarly define
the reduced spin operator in this basis:

Ŝr
P,z,R = U†

RŜP,z,RUR, (A26)

where UR(k) = (|uR
1 , k〉, |uR

2 , k〉, . . . |uR
Nocc

, k〉). This operator
will also satisfy Ŝr

P,z,R = −Ŝr∗
P,z,R, due to the diagonal action of

ÛC2zT ,R and the reality of the eigenstates because

W̆C2zT ,R = U†
RÛC2zT ,RU∗

R = UT
RUR = 1. (A27)

Thus Ŝr
P,z,R is an antisymmetric matrix related to the reduced

spin operator in the original band basis by
[
Ŝr

P,z,R

]
nm = e−i(ϕn−ϕm )[Ŝr

P,z

]
nm, (A28)

where ϕn are phases such that

|uR
n , k〉 = eiϕn (k)VR|un, k〉. (A29)

This is again a local (not global) unitary equivalence, but in a
smooth gauge we expect them to not add additional topologi-
cal structure. Thus, by choosing a smooth gauge |ũR

1 〉, we can
get a well-defined Pfaffian invariant.

We can fix the gauge at � by recognizing that H and
Ŝz commute at � in our two-band subspace, so that we can
choose simultaneous eigenstates of H and Ŝz, which defines
the rotation-symmetric state. Similarly, we can choose simul-
taneous eigenstates of HR and Ŝz,R, which will be real as
both matrices are real. Starting from this basis, we can then
perform a local band mixing by taking the SVD of the overlap
matrices, to get a gauge transformation U . This will maintain
the chiral symmetry, as long as U is purely real, which it will
be if we start from real eigenstates. This follows from gauge
covariance:

U †Sr
P,z,RU = −U †Sr∗

P,z,RU = −(
U †Sr

P,z,RU
)∗

. (A30)

Note that this does not quite correspond to choosing a smooth
gauge, as we have not ironed out the discontinuity at the end
of the loop, arising from the nontrivial Berry phase [47]. Such
an ironing out procedure would break the reality condition.
Luckily, this is not necessary for the Wilson loop quantiza-
tion argument, which only relies on the Wilson loop being
diagonal.

In this basis, finally, the Pfaffian will be a smooth function
of k which changes sign across a nodal line. When Nocc = 2
the Pfaffian is exactly equal to the spin eigenvalue of one
band, tracked smoothly through any degeneracies. However,
the Pfaffian also explains the topological protection of the
nodal line more generally.

We note finally, that we find numerically that there exists
an alternative choice of gauge, without going through the real
basis, where Ŝr

P,z has a global particle-hole symmetry, at least
in the tetragonal magnetic case. At �, we can choose states
such that the rotation operator is diagonal and so that ϕ1 =
ϕ2. In this case, C2zT is represented by −σx at �. Parallel-
transporting these states, we find that C2zT is given by −σx

along the entire path � to M.

APPENDIX B: FURTHER INFORMATION
ON THE MODELS

1. Hexagonal system

The models for the sixfold nonmagnetic case were first
considered in Ref. [5]. They were constructed using a gener-
alization of the Dresselhaus method to construct tight-binding
models for a specific crystallographic space group [4]. Specif-
ically, they are constructed by starting with layer group 77
(corresponding to the z = 0 plane of P6mm1′), placing a pz

orbital with both spin components at Wyckoff position 2b,
and then expanding the Hamiltonian, including all symmetry-
allowed terms. This gives four bands, with twofold Kramers
degeneracies at the TRIMs � and M. We focus on gapped
phases, where there are two occupied and two unoccupied
bands.

When we only consider nearest-neighbor hoppings, we
find a phase whose IRREP content is compatible with a fragile
phase [5,20]. This is confirmed numerically in Ref. [5] and
Fig. 4 by showing that the Wilson loop of both the occu-
pied and the unoccupied subspace winds, but that they can
be unwound when embedded in a higher-dimensional space.
By contrast, when going up to tenth-order neighbors in the
hoppings, Ref. [5] finds a phase that is still gapped over the
BZ but now the IRREPs at � have inverted. This phase only
displays winding in the upper subspace. We note that in either
case, a simple IRREP analysis would suggest that one of the
band subspaces corresponds to an obstructed atomic limit,
whereas the other one corresponds to a fragile limit, though
whether the occupied or unocupied subspace is fragile/atomic
obstructed is interchanged between the two phases. These
phases are depicted in Fig. 1 in the main text.

In the phase with few hoppings, Ref. [5] finds that the
Wilson loop winds by 2 over the BZ in both subspaces. By
contrast, in the phase with long-range hoppings, the Wilson
loop does not wind in the lower subspace, but winds by 4
in the upper subspace. This difference is not captured in an
IRREP analysis, but can be detected from the spin texture. In
particular we find that the spin texture is trivial for both sub-
spaces in the phase with Wilson loop windings of 2, whereas
it is nodal for both subspaces in the phase with Wilson loop
windings of 0 and 4. Note that the Wilson loop winding of
4 for the upper subspace seems to contradict the results in
Table I. However, those results assume that there is a twofold
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(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 2. Relevant figures for the PC4 symmetric case (similar to Fig. 1 in the main text). In (a)–(d) we show the case where the Wilson
loop of both subspaces winds, whereas (e)–(h) shows the case where only the unoccupied subspace has a winding Wilson loop. In (a) and
(e), we show the band structure, with IRREPs of PC4 indicated. In (b) and (f), we show the eigenvalues of the reduced spin operator along
high-symmetry paths of the BZ. In (c) and (g), we show the Pfaffian and Wilson loop over the BZ of the occupied bands, where �′ = � + b1.
The Wilson loop winds in (c) but not in (g) (see comment in Appendix C). Finally, in (d) and (h), we show the spin expectation value over the
BZ of the lowest spin band [as shown along high-symmetry lines in (b) and (f)]. This illustrates that when the Wilson loop winding is even
(including 0) the system displays spin nodal lines. For more details on the models, see Appendix B and Ref. [19].

degeneracy at � and K, which is only satisfied for the lower
subspaces in Fig. 1 in the main text. Thus the upper subspace
has a nodal spin texture, but this is not captured by our link to
connectivities between degeneracies.

2. Tetragonal system

The tetragonal system with winding Wilson loop was first
introduced in Ref. [19]. Starting from magnetic space group
PC4, (No. 75.5 in the BNS convention), we place an s orbital
with both spin components at Wyckoff position 2b, again
giving four bands. There are twofold Kramers degeneracies
at � and M, but not at X due to the magnetic structure of
the space group. Thus the lowest possible connectivity is 2.
We again construct a model using a generalized Dresselhaus
procedure, though here we also use MAGNETICTB [48] for
easier construction of higher-order hopping models.

We again focus on the case where there are two occupied
and two unoccupied bands that are gapped across the BZ (for
a discussion of other phases, see Refs. [19,46]). For nearest-
neighbor hoppings, we find a phase with Wilson loop winding
1 both subspaces. Going up to the tenth order hoppings, we
find a phase where the IRREPs at X have inverted and the
occupied subspace has Wilson loop winding 0, whereas the
unoccupied subspace has Wilson loop winding 2. Similar to
the hexagonal case, a pure IRREP analysis would suggest that
in either case there is one fragile subspace and one atomic
obstructed subspace, though they again interchange.

In the case where the Wilson loop winding is 1 in either
subspace, the spin texture is trivial across the BZ. However,
when the windings are 0 in the occupied and 2 in the unoc-
cupied, we find a nodal-line spin structure in both subspaces,
as shown in Fig. 2 (though see the comment about the Wilson
loop winding of 0 in Appendix C).

(a) (b)

FIG. 3. Wilson loop winding for the occupied band-subspace of the models with weak SOC projected onto spin space, with colors
indicating the component of spin responsible for the winding. (a) Shows the hexagonal case, whereas (b) shows the tetragonal case. In (a), we
have a spin Chern number of 4, whereas in (b), we have a spin-Chern number of 2.
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(a)

(b)

(c)

(d)

(e)

(f)

FIG. 4. Band topology of hexagonal system when coupled to two trivial DOFs (for details of this coupling, see Ref. [5]). This is for the
case where, originally, both the occupied and the unoccupied space have a winding of 4. We consider the topology of the four top bands. We
check that the energy gap to the lower two bands, and the spin gap of the four-dimensional band subspace, is open across the BZ. In (a)–(c), we
show a case where the trivial bands are not coupled to the winding bands. We show the band structure in (a), with bands with trivial winding
in the middle. In (b), we show the Wilson loop spectrum for the top four bands, which is decoupled in this limit. In (c), we show the spin
Wilson loop, for the two top/bottom spin bands in red/blue respectively, with a total spin-Chern number of 8. In (d)–(f), we show the same
results when coupling the bands with trivial and nontrivial winding. We see that the Wilson loop gap, as expected in fragile topology. However,
the spin-Wilson loop does not gap, suggesting that the spin-Chern number is preserved. Note, however, that it maps to a trivial Kane-Mele
invariant in either case [10].

APPENDIX C: RESULTS FOR THE FOURFOLD
MAGNETIC CASE

We show the results for the fourfold magnetic case in
Fig. 2, in complete analog to Fig. 1 in the main text. Note
that it is difficult to tell the winding of the lower subspace
[Fig. 2(g)], as it is not clear whether the Wilson bands form an
avoided crossing. We can check this by choosing a different
Wilson loop geometry. We therefore look at the winding as
we deform our base path in a C4 symmetric manner, starting
from the path �M�′ with �′ = � + b1 and smoothly deform-
ing it to the path �X�′. This covers a quarter of the BZ,
and should therefore correspond to 1/4 of the total wind-
ing (we considered the same construction in [19]). In doing
so, we find the expected result: the Wilson loop does not

wind in Fig. 2(g), so that the Wilson bands form an avoided
crossing.

APPENDIX D: SPIN WILSON LOOPS

Whenever the spin spectrum is gapped (as happens in our
models when the pseudospin connectivities are trivial and the
electronic band topology is nontrivial), we can compute spin-
resolved Wilson loops. Following Ref. [18], we compute the
Wilson loops projected into the upper and lower spin bands
respectively. We present the results in Fig. 3 for the lower
electronic subspace only, though we find the same results
for the upper electronic subspace. For completeness, we also
show the spin Wilson loops for a case where we directly
unwind the Wilson loop in Fig. 4.
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