
PHYSICAL REVIEW RESEARCH 5, 033004 (2023)

Phase transition of parallelizability in assembly systems
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We propose a phase transition on the feasibility of efficient parallel assembly. By introducing the parallel
efficiency that measures how efficiently the parallel assembly works, the parallelizable phase is defined by its
positive value. The parallelizable-unparallelizable transition is then identified by the nonanalytic change in the
parallel efficiency from a positive value to zero. We present two analyzable models to demonstrate this phase
transition in the limit of infinite system size.
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I. INTRODUCTION

In industry and applied science, there are often situations
where a large number of parts are assembled to make a com-
plex product. Typical examples are automotive assembly and
polymer synthesis. Recently, the advancement of nanotech-
nology [1] has made it possible to assemble nanoscale objects
into desired structures [2–5]. Furthermore, control of polymer
sequences [6,7] and assembly of colloidal particles [5,8–12]
have been vigorously studied.

We use the term parallelization to describe simultaneously
assembling subunits and then combining them to complete the
final product. Parallelization increases assembling efficiency.
The concept of parallelization has been studied in computer
science [13,14]. Some problems can be efficiently solved by
parallel computing, whereas others cannot [15]. Inspired by
these studies, we explore analogous concepts in physical as-
sembly work. Specifically, we aim to determine under what
conditions efficient parallel assembly is feasible.

The feasibility of parallelization qualitatively changes the
time required for assembly. When the number of parts L
becomes large, the L dependence of the number of parallel
steps d required for assembly is crucial. For example, when
assembling hundreds to thousands of parts, the assembly time
is drastically different depending on whether d = O(log L) or
d = O(Lα).

The feasibility of parallel assembly can be clarified by
introducing the parallel efficiency η. The parallel efficiency η

is defined as the ratio of the minimum number of steps log2 L
required to assemble L parts to the actual number of steps
d taken for assembly. For instance, imagine the assembly of
a 2-mer is achieved by combining two monomers, followed
by the combination of 2-mers to form 4-mers, and so on.
Under such a fully parallelized assembly, we have d = log2 L
and η = 1. Conversely, in the case of sequential assembly
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where components are added one by one, we have d = L − 1
and η = log2 L/(L − 1), which goes to zero in the limit of
L → ∞.

In this paper, we propose a phase transition called
parallelizability transition, where parallelizable and unparal-
lelizable phases are characterized by parallel efficiency. That
is, when a system parameter is continuously changed, parallel
efficiency exhibits a transition from a positive value to zero
in the limit of infinite system size. We demonstrate this phase
transition by presenting two analyzable models. In the first
model, the quenched combinability model, one-dimensional
chains are assembled in the smallest number of parallel steps.
In the second model, the ANP model, a final product is
assembled through random bonding reactions. We introduce
the parallel efficiency to measure how efficiently the parallel
assembly works. Then, we exactly show that both models
exhibit the parallelizability transition.

II. SETUP OF THE QUENCHED COMBINABILITY MODEL

Let us consider the assembly work of connecting L dif-
ferent parts to create a single chain. An external operator
tries to perform the most efficient parallel assembly possible.
However, the components do not always fit together. Which
pairs of states can be combined is predetermined and does not
change during the assembly process. The quenched combin-
ability model idealizes such a situation.

We consider the assembly of one-dimensional chains of
length L. To precisely specify the geometric structure of the
states, we use graph theory notations and terminologies. We
denote as Gi, j a path graph in which vertices from i to j are
connected in order:

Gi, j = (V, E ),

V = {i, i + 1, ..., j},
E = {(v, v + 1) | v = i, i + 1, ..., j − 1}. (1)

See Fig. 1 for the illustration of Gi, j . The final product G is a
path graph of length L, i.e.,

G = G1,L. (2)
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FIG. 1. We denote as Gi, j a path graph in which vertices from i
to j are connected in order. For simplicity, we assume that there are
edges between touching vertices and omit describing the edges

The set of possible states S is the entirety of the connected
subgraphs of G, i.e.,

S = {Gi, j | 1 � i � j � L}. (3)

The initial parts set M is the set of states with a single vertex,
i.e.,

M = {Gi,i | 1 � i � L}. (4)

The case L = 7 is shown in Fig. 2. Each state s ∈ S is either
active (filled circles in Fig. 2) or inactive (open circles in
Fig. 2). This active-inactive distinction represents the bonding
properties of the state with other states. That is, active states
can always combine with other states, while inactive–inactive
pairs can combine with probability p. Note that randomness is
introduced as a quenched disorder. We determine the set of al-
lowed bondings R̂ probabilistically according to the following
rules:

For each tuple i, j, k (1 � i � j < k � L),
(1) if either Gi, j or Gj+1,k is active, (Gi, j, Gj+1,k ) ∈ R̂ with

probability 1;
(2) if both Gi, j and Gj+1,k are inactive, (Gi, j, Gj+1,k ) ∈ R̂

with probability p.
These rules are illustrated in Fig. 3. Let us assume that

the activity is carried over to the postbonding state. That is,
the product in case 1 is active and the product in case 2 is
inactive. In addition, we suppose that only G1,1 is active in M.
From the initial condition that only G1,1 is active in M and the

FIG. 2. All elements of S in the case L = 7. The final product G
is shown at the bottom. The set of possible states S is the entirety of
the connected subgraphs of G. The initial parts set M is shown at the
top.

FIG. 3. Schematic of the decision procedure for the set of pos-
sible bondings R̂. For each pair of states (Gi, j, Gj+1,k ), (i) if either
Gi, j or Gj+1,k is active (i = 1), (Gi, j, Gj+1,k ) ∈ R̂ with probability
1; (ii) if both Gi, j and Gj+1,k are inactive (i > 1), (Gi, j, Gj+1,k ) ∈ R̂
with probability p. By making this determination for every pair
(Gi, j, Gj+1,k ) of graphs, we determine the set R̂ probabilistically.

propagation rule of the active state, we have

Gi, j =
{

active (i = 1)
inactive (i �= 1). (5)

Let us introduce the parallel efficiency to measure how
well the parallelization is working in this system. We call
diagrams like Fig. 4 assembly pathways. In the assembly
pathway shown in Fig. 4, a chain of length L = 7 is assembled
with four parallel steps. The number of parallel steps means
the maximum distance from the upmost states to the bottom
state. We denote by d (T ) the number of parallel steps of the
assembly pathway T .

Let d̂ be the least number of parallel steps required to
assemble the final product G, i.e.,

d̂ := min
T ∈ÛG

{d (T )}, (6)

where ÛG is the set of all realizable assembly pathways gener-
ating G. Note that not all assembly pathways are necessarily
realizable. For example, if (G5,5, G6,7) /∈ R̂, the assembly
pathway in Fig. 4 is unrealizable. Because the set of allowed
bondings R̂ is probabilistically determined, d̂ is also a random
variable.

FIG. 4. Example of an assembly pathway generating G1,7. In this
case, d (T ) = 4. Assembly pathways are binary trees that express the
building process of a state. The product is placed at the bottom. The
elements of M are placed at the top.
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FIG. 5. Simulation results for L = 10, 20, 50, and 100 in the
quenched combinability model. For each p, we took 100 samples
and calculated the mean and standard deviation of η. The schematic
of parallel efficiency η in the limit of infinite system size is overlaid.
The dashed line represents qualitative behavior. A rigorous analysis
shows that the analyticity of η is broken at a point pc satisfying
1/4 � pc < 3/4.

The parallel efficiency η is defined as

η := log2 L

〈d̂〉 , (7)

where L is the total number of vertices and 〈d̂〉 is the average
minimum number of parallel steps. We can use the quantity η

to measure the efficiency of parallel assembly in this system
because it satisfies the following two properties. First, η sat-
isfies the normalization condition 0 � η � 1. Second, we can
determine the feasibility of efficient parallel assembly in the
limit of infinite system size by checking whether limL→∞ η

is positive or zero. If the assembly process is sufficiently
parallelized and 〈d̂〉 ∼ log L, then limL→∞ η is positive. In
contrast, if the parallelization breaks down and 〈d̂〉 grows
faster than log L, then limL→∞ η becomes zero.

III. RESULTS FOR THE QUENCHED
COMBINABILITY MODEL

We first display the numerical results in Fig. 5. Although
the data suggest the existence of a phase transition, it is quite
difficult to perform the numerical calculation for a larger sys-
tem. Nevertheless, we have a rigorous proof for the existence
of the phase transition (see also Appendix) when L becomes
infinite. We can show

lim
L→∞

η = 0 (8)

for 0 � p < 1/4, and

lim
L→∞

η �= 0 (9)

for 3/4 � p � 1. Thus, the analyticity of η is broken at a
point pc satisfying 1/4 � pc < 3/4. This result is illustrated
in Fig. 5. The breaking of the analyticity of η allows us to
identify the parallelizable and unparallelizable phases with-
out arbitrariness. In other words, the region of p satisfying

limL→∞ η �= 0 is identified as a parallelizable phase and the
region of p satisfying limL→∞ η = 0 as an unparallelizable
phase. Here, we briefly outline the proof of Eqs. (8) and (9). A
rigorous proof is given in Appendix. The essence of the proof
of Eq. (8) which represents the unparallelizable phase is that
when p is small, it is difficult to construct large, inactive states.
The number of assembly pathways generating a state with n
vertices is given by the Catalan number, which asymptotically
increases as 4n. The realization probability of each assembly
pathway is pn−1. From the balance of these two factors, it can
be understood that when p is smaller than 1/4, there is a high
possibility that there are no ways to construct large inactive
states. Therefore, when p is smaller than 1/4, it is necessary to
connect inactive states one by one using active states, and it is
found that the assembly cannot be completed in O(logL) steps.
The obtained upper limit of the parameter of the unparalleliz-
able phase, 1/4, originated from the asymptotic behavior of
the Catalan number.

The essence of the proof of Eq. (9) which represents the
parallelizable phase is that when p is large, there is a high
possibility of the existence of relatively unbiased assembly
pathways. For example, considering an assembly pathway
with no bias such that both children of a state with n vertices
have n/2 vertices, we have d = log2 L. In contrast, consid-
ering a very biased assembly pathway such that the children
of a state with n vertices have n − 1 and 1 vertices, we have
d = L − 1. In the proof of Eq. (9), it is shown by mathematical
induction on the number of vertices that when p is greater
than 3/4, at least one relatively unbiased assembly pathway
is likely to exist. Therefore, it is found that when p is greater
than 3/4, there is a high possibility that there is at least one
assembly pathway with d = O(log L). In contrast to the case
of the parallelizable phase, the obtained lower bound, 3/4,
does not have a clear origin. It is possible to slightly improve
the lower bound by increasing the number of the base cases of
the induction.

IV. SETUP OF THE ANP MODEL

Instead of optimizing the assembly pathways, we study
typical pathways of stochastic evolution of assembly in the
second model. This model is interpreted as a mean-field ver-
sion of the first model. To simplify the analysis, inactive states
in the quenched combinability model are further classified
into neutral states and passive states in the ANP model. That
is, each component takes one of three states: active, neutral,
or passive. In the quenched combinability model, once it is
determined that two states s1 and s2 cannot combine, they will
never combine during the assembly process. The ANP model
incorporates this effect by assuming that passive states never
combine with each other.

The stochastic assembly rule is as follows. Initially, there
are one active and (L − 1) neutral components. The assembly
of the components proceeds in a repetition of the following
two steps: (i) randomly pair two components as possible [16];
(ii) for each pair, perform the following bonding reaction:
an active component can bond with any other component, a
neutral component can bond with inactive components with
probability p′, and a passive component cannot bond with
passive components. If a neutral component fails to bond, the
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FIG. 6. Schematic of the assembly of five parts in three rounds
(L = 5, d̂ ′ = 3). Initially, there are one active and (L − 1) neutral
components. A single round consists of the following two steps:
(i) Randomly pair two components as possible, (ii) For each pair,
perform the reactions shown in Eqs. (10)-(14). The quantity d̂ ′ is the
number of rounds until there is only one component.

component becomes passive. We define the set of operations
(i) and (ii) as a single round.

The ANP model is expressed symbolically by denoting
active, neutral, and passive components as A, N, and P, re-
spectively. Operation (ii) is then written as the following set
of chemical reactions:

A + N → A, (10)

A + P → A, (11)

N + N →
{

N with probability p′
P + P with probability 1 − p′, (12)

N + P →
{

N with probability p′
P + P with probability 1 − p′ (13)

P + P → P + P. (14)

This procedure is illustrated in Fig. 6. The active state is
necessary to ensure that the assembly process can always
be executed. Even if all states become passive, the assem-
bly process can be completed by the reaction represented by
Eq. (11). We measure the number of rounds d̂ ′ until all parts
are connected. The assembly of five parts in three rounds is
shown in Fig. 6. The bonding reactions occur probabilistically,
and the number of rounds required to connect all the parts
varies from trial to trial. Therefore, d̂ ′ is a random variable.

We introduce the parallel efficiency η′ to characterize the
feasibility of the efficient parallel assembly. The parallel effi-
ciency η′ is defined as

η′ := log2 L

〈d̂ ′〉 , (15)

where L is the number of parts and 〈d̂ ′〉 is the average number
of required rounds. In a way similar to the first model, η′
satisfies the following two properties. First, η′ satisfies the
normalization condition 0 � η′ � 1. Second, we can deter-
mine the feasibility of efficient parallel assembly by checking
whether η′ is positive or zero in the limit L → ∞.

FIG. 7. Simulation results for the ANP model. For each p′, we
took 100 samples and calculated the mean and standard deviation of
η′. The data points approach the line p′ = 8/9 as L increases.

V. RESULTS FOR THE ANP MODEL

The simulation results are shown in Fig. 7. These graphs
suggest that a discontinuous transition exists at a point p′

c.
Indeed, for this model, we prove that the parallel efficiency
η′ has a discontinuous transition when L becomes infinite.
Quantitatively, we show

lim
L→∞

η′ = 0 (16)

for 0 � p′ < 8/9, and

lim
L→∞

η′ �= 0 (17)

for 8/9 < p′ � 1. This implies that the parallel efficiency η′ is
discontinuous at p′

c = 8/9. The proof is the following. Let an,
bn, and cn be the population of A, N, and P in the nth round,
respectively. The total population of components is

Tn = an + bn + cn. (18)

Because the population of A does not change through the reac-
tions, an = 1 always holds. Assuming that L is large enough,
we analyze the behavior of the expected values of bn, cn, and
Tn ignoring terms of O(1). Let 〈Ŝn〉 be the expected number of
P − P pairs in the nth round. We obtain

〈Ŝn〉 
 Tn

2

(
cn

Tn

)2

, (19)

where the symbol 
 represents an approximation ignoring the
terms of O(1) [17]. For each pair described by Eq. (12) or
Eq. (13), N is generated with probability p′. Therefore, we
obtain

bn+1 =
(

Tn

2
− 〈Ŝn〉

)
p′


 Tn

2

(
1 −

(
cn

Tn

)2
)

p′. (20)

Because the number of components is halved in the reaction
that produces A or N, we obtain

Tn+1 = Tn − (an+1 + bn+1) 
 Tn − bn+1. (21)
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FIG. 8. Saddle node bifurcation exhibited by the discrete dynam-
ical system of Eq. (25). When p′ is less than 8/9, only qn = 0 is a
stable fixed point. When p′ is greater than 8/9, a new stable fixed
point and an unstable fixed point appear in 0 < qn < 1.

By setting

qn := 1 −
(

cn

Tn

)2

, (22)

we obtain

bn+1 
 Tn

2
qn p′, (23)

Tn+1 

(

1 − qn p′

2

)
Tn. (24)

Substituting Eqs. (18), (23), and (24) into Eq. (22), we obtain

qn+1 
 qn p′(1 − 3
4 qn p′)(

1 − 1
2 qn p′)2 . (25)

The discrete dynamical system given by Eq. (25) exhibits a
saddle node bifurcation as parameter p′ changes. This bifurca-
tion structure is shown in Fig. 8. When p′ is less than 8/9, only
qn = 0 is a stable fixed point. The assembly cannot be com-
pleted with d̂ ′ = O(log L) because Tn+1/Tn 
 1. As a result,
η′ becomes zero in this case. In contrast, when p′ is greater
than 8/9, a new stable fixed point appears in 0 < qn < 1. The
total number of components decreases exponentially because
0 < Tn+1/Tn < 1. As a result, d̂ ′ = O(log L) and η′ takes a
positive value in this case.

VI. DISCUSSION

The two models presented in this paper characterize in-
principle and realistic parallelizability, respectively. In the
quenched combinability model, the pathway with the least
number of parallel steps is chosen after considering all pos-
sible assembly pathways. Therefore, η characterizes whether
efficient parallel assembly is feasible, in principle. The
equivalent situation would be bottom-up manufacturing of
industrial products, where the manufacturing process is well-
designed and optimized in advance. In the ANP model, L
parts are randomly paired and combined, and the number of

rounds until all parts are connected is measured. Therefore,
η′ characterizes whether efficient parallel assembly is realis-
tically possible. The equivalent situation would be chemical
synthesis, where the molecules randomly collide.

The parallel efficiency defined in this paper is related to
the complexity of molecular structures. The minimum number
of parallel steps d̂ is essentially the same as the molecular
assembly index defined in the literature [18–20]. It may be
possible to extend this study to classify the complexity of
molecules using parallel efficiency.

The model analyzed in this paper can be considered a vari-
ation of several known models. By excluding the single active
unit, the quenched combinability model can be considered
a form of directed percolation in (1 + 1) dimensions [21].
Therefore, findings in directed percolation may be used to
estimate the transition point in this model. The ANP model
can be related to the cluster merging process described by the
Smoluchowski equation [22]. In this process, the number of
clusters exhibits exponential decay, which corresponds to the
parallelizable phase in this paper. The ANP model can also
be viewed as one special case of stochastic chemical reac-
tions or reaction-diffusion systems [23,24]. One such model is
the activated random walk, which consists of active particles
A and sleeping particles S [25]. Discussing parallelizabil-
ity in general chemical reaction systems is an important
future task.

We present possible future directions. As a practical
direction, this study can apply to actual industrial pro-
duction processes. Parallelizable-unparallelizable transition
would emerge in connection to the success rate p of each
process during the assembly of complex structures. Applying
the method of this study may make it possible to calculate the
threshold success rate of the elementary process to achieve
efficient parallel assembly.

As a theoretical direction, this paper could lead to meth-
ods of classifying chemical reaction systems using parallel
efficiency. Chemical reaction systems are classified according
to the number of steady states or the number of conserved
quantities [26]. Extending this study may make it possible
to add another axis [parallelizable or unparallelizable] to the
classification of chemical reaction systems.

The model discussed here may be realized in chemical
reaction systems. In organic synthetic chemistry, chemical
reactions such as living radical polymerization [27,28] and
multicomponent reactions [29,30] are studied. Such reaction
systems could correspond directly to the model analyzed in
this paper.

VII. CONCLUSION

In this paper, we proposed a phase transition on the fea-
sibility of efficient parallel assembly. We demonstrated the
parallelizable-unparallelizable transition through two models.
We can consider some extensions of the models. For example,
the quenched combinability model assumes that all reaction
probabilities between inactive states are p, but this could be
extended to depend on the internal composition to resemble a
real chemical reaction. It is an important future task to extend
the model to make the theory more easily comparable to real
experiments.
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FIG. 9. Example of an assembly pathway T generating a state
s = G3,7. Each vertex of T is an element of S, that is, Gi, j . The root
of T is the state s. For each vertex Gi, j of T , the children are Gi,k and
Gk+1, j (i � k � j − 1). Every leaf of T is an element of M, that is,
Gi,i. In this case, d (T ) = 3.
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APPENDIX: PROOF OF THE RESULTS

In this Appendix, we prove Eqs. (8) and (9). Before we be-
gin the proof, we define the assembly pathway more formally.

An assembly pathway T generating a state s ∈ S is a binary
tree that satisfies the following four conditions:

(1) Each vertex of T is an element of S.
(2) The root of T is the state s.
(3) For each vertex Gi, j of T , the children are Gi,k and

Gk+1, j (i � k � j − 1).
(4) Every leaf of T is an element of M.
The number of parallel steps d (T ) is the height of the tree

T [15]. An example of an assembly pathway T generating a
state s = G3,7 is shown in Fig. 9. Note that assembly pathways
are defined not only for G but also for every state s ∈ S. We
call an assembly pathway T generating an inactive state an
inactive subtree.

Let two children of a state s be C1
s and C2

s . Such vertices
C1

s and C2
s having the same parent are called siblings. We then

introduce the following terms:
(1) An assembly pathway T is realizable if all siblings

(C1
s ,C2

s ) in T are included in R̂
(2) An assembly pathway T is unrealizable if there exist

siblings (C1
s ,C2

s ) in T that are not included in R̂.

1. Unparallelizable phase

We show the proof of Eq. (8). When p = 0, limL→∞ η = 0
is trivial because 〈d̂〉 = L − 1 holds. Thus, we consider the
case 0 < p < 1/4.

a. Number of assembly pathways

Let an be the total number of assembly pathways of a path
graph with n vertices. Focusing on the last step, we obtain the
following recurrence relation:

a1 = 1,

an =
n−1∑
i=1

aian−i (n � 2). (A1)

This is the same as the recurrence relation that defines the
Catalan number. Using the general terms of Catalan numbers
[31], we obtain

an = (2(n − 1))!

n!(n − 1)!
. (A2)

This number has the following upper bound:

an � 4n−1 (n � 1). (A3)

Proof. We prove Eq. (A3) by mathematical induction.
Base case: In the case n = 1, an � 4n−1 is true because

a1 = 40 = 1.
Induction step: Assuming that an � 4n−1 holds (n =

1, 2, 3, ...), we obtain

an+1 = (2n)!

n!(n + 1)!

= 2n(2n − 1)

n(n + 1)
× an

=
(

4 − 6

n + 1

)
× an < 4 × 4n−1 = 4n. (A4)

By mathematical induction, we have proved Eq. (A3). �

b. Number of inactive subtrees

Let Tm be the set of all inactive subtrees generating inactive
states of size m. The number of the size m inactive states is
(L − m). For each of them, there are

am = (2(m − 1))!

m!(m − 1)!
(A5)

inactive subtrees (see 1 a). Thus, we obtain

|Tm| = (L − m)am. (A6)

c. Evaluation of d̂

Let AT be a stochastic event that an assembly pathway T is
realizable. Then, the following proposition holds.

Proposition 1.

L−1∧
m=n

∧
T ∈Tm

AT ⇒ d̂ � L − 1

n − 1
(2 � n � L − 1) (A7)

Proof. As shown in Fig. 10, any assembly pathway T
generating G is decomposed into the sequential bonding of
inactive subtrees to active states. Let K be the number of
inactive subtrees in T . Let mk be the size of the state generated
by the kth inactive subtree (see Fig. 10). Because the premise
of Proposition 1 means that there is no way to generate an
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FIG. 10. Any assembly pathway T generating G is decomposed
into the sequential bonding of inactive subtrees (dashed rectangles)
to active states (filled circles). This diagram shows the case K = 3
and d (T ) = 4.

inactive state with more than n vertices, mk � n − 1 holds.
Therefore, we obtain

L − 1 =
K∑

k=1

mk � (n − 1)K. (A8)

Because the distance from the root G to G1,1 is K , d (T ) � K
also holds. Therefore, we obtain

d (T ) � L − 1

n − 1
. (A9)

Because Eq. (A9) holds for any assembly pathway T , we
obtain

d̂ = min
T ∈ÛG

{d (T )} � L − 1

n − 1
. (A10)

�
Assembling an inactive state with m vertices requires (m −

1) bondings, which are independently realized with probabil-
ity p. Therefore, for any assembly pathway T ∈ Tm,

Pr(AT ) = pm−1, (A11)

where Pr(A) represents the probability that stochastic event A
occurs.

d. Evaluation of the probability

Using the above preparation, we evaluate the probability as

Pr

(
d̂ � L − 1

n − 1

)
� Pr

⎛
⎝L−1∧

m=n

∧
T ∈Tm

AT

⎞
⎠

= Pr

⎛
⎝L−1∨

m=n

∨
T ∈Tm

AT

⎞
⎠

= 1 − Pr

⎛
⎝L−1∨

m=n

∨
T ∈Tm

AT

⎞
⎠

FIG. 11. Diagram of the relationship between propositions and
sets. Pr(Q) � Pr(P) holds when P ⇒ Q holds.

� 1 −
L−1∑
m=n

∑
T ∈Tm

Pr(AT )

= 1 −
L−1∑
m=n

|Tm|pm−1. (A12)

Note that

Pr(Q) � Pr(P) (A13)

holds when

P ⇒ Q (A14)

holds (see Fig. 11). We used this relation and Proposition 1
in the first line. Furthermore, we used de Morgan’s rule in the
second line and Boole’s inequality in the fourth line. Boole’s
inequality, also known as the union bound, is an inequality
given by

Pr

(
n∨

i=1

Ei

)
�

n∑
i=1

Pr(Ei ), (A15)

where Ei (i = 1, 2, 3, ..., n) represent arbitrary events which
may not be independent. We further evaluate the sum as

L−1∑
m=n

|Tm|pm−1 =
L−1∑
m=n

(L − m)am pm−1

�
L−1∑
m=n

(L − m)(4p)m−1

<

∞∑
m=n

L(4p)m−1

= L(4p)n−1

1 − 4p
, (A16)

where we used Eq. (A3) (see Appendix 1 a) in the second line
and p < 1/4 in the fourth line.

e. Evaluation of 〈d̂〉 and η

Let us define the integer

n0 := 2 +
⌈

log4p

(
1 − 4p

L

)⌉
. (A17)
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Then, we obtain

〈d̂〉 � Pr

(
d̂ � L − 1

n0 − 1

)
× L − 1

n0 − 1

>

(
1 − L(4p)n0−1

1 − 4p

)
× L − 1

n0 − 1

� (1 − 4p) × L − 1

n0 − 1
, (A18)

where we used Markov’s inequality in the first line, Eqs. (A12)
and (A16) in the second line, and Eq. (A17) and �x
 � x in the
third line. Markov’s inequality is an inequality given by

Pr(|X̂ | � a) � 〈|X̂ |〉
a

, (A19)

where X̂ is a stochastic variable and a > 0.
Using Eq. (A18), we evaluate η as

η := log2 L

〈d̂〉
� (n0 − 1) log2 L

(1 − 4p)(L − 1)

<

[
2 + log4p

( 1−4p
L

)]
log2 L

(1 − 4p)(L − 1)
. (A20)

We thus obtain

lim
L→∞

η = 0 (A21)

for 0 � p < 1/4.

2. Parallelizable phase

We show the proof of Eq. (9).

a. A strategy that enables logarithmic height assembly

We introduce another term:
An assembly pathway T is α-splitting if, for any bonding

process si + s j → sk in T [17],

min{|si|, |s j |} � �α|sk|
, (A22)

where |s| represents the number of vertices of the state s.
Proposition 2. If T is α-splitting,

d (T ) � log L

− log(1 − α)
(A23)

holds.
Proof. From Eq. (A22) and |si| + |s j | = |sk|, we obtain

max{|si|, |s j |} � |sk| − �α|sk|
 � (1 − α)|sk|. (A24)

Using this inequality repeatedly, we obtain

1 � (1 − α)d (T )|G| = (1 − α)d (T )L, (A25)

which is equivalent to Eq. (A23). �

b. Probability that this strategy is not available

Let Bs be the stochastic event that all α-splitting assembly
pathways generating a state s are unrealizable. Let Lm be the
subgraph consisting of the leftmost m vertices of state s, and

FIG. 12. Let Lm be the subgraph consisting of the leftmost m
vertices of state s, and R|s|−m be the subgraph consisting of the
rightmost |s| − m vertices of state s.

R|s|−m be the subgraph consisting of the rightmost |s| − m
vertices of state s (see Fig. 12). Focusing on the final step,
we obtain

Bs ⇔ For all m (�α|s|
 � m � |s| − �α|s|
),

(Lm, R|s|−m) /∈ R̂ ∨
× {(Lm, R|s|−m) ∈ R̂ ∧ (BLm ∨ BR|s|−m )}. (A26)

Then, we obtain

Pr(Bs) =
|s|−�α|s|
∏
m=�α|s|


[(1 − p̃) + p̃ Pr(BLm ∨ BR|s|−m )]

�
|s|−�α|s|
∏
m=�α|s|


{(1 − p̃) + p̃[Pr(BLm ) + Pr(BR|s|−m )]},

(A27)

where we defined p̃ as

p̃ =
{

p (Lm is inactive)
1 (Lm is active). (A28)

In the second line, we used Boole’s inequality.
Let us define

Qn := max
s∈Sn

{Pr(Bs)}, (A29)

where Sn = {s ∈ S | |s| = n}. Then, we obtain the following
recursive inequalities for Qn:

Q1 = 0,

Qn �
n−�αn
∏
m=�αn


((1 − p̃) + p̃(Qm + Qn−m)) (n � 2). (A30)

Proof. Let s∗ ∈ Sn be the state for which Pr(Bs) is maxi-
mum. Applying Eq. (A27) to this s∗, we obtain

Qn = Pr(Bs∗ )

�
n−�αn
∏
m=�αn


{(1 − p̃) + p̃[Pr(BLm ) + Pr(BRn−m )]}

�
n−�αn
∏
m=�αn


[(1 − p̃) + p̃(Qm + Qn−m)], (A31)

where we used Eq. (A29) in the third line. �
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c. Evaluation of Qn

Proposition 3. If p � 3/4 and α = 1/6, Qn � 1/4 for all
n(= 1, 2, 3, ...).

Proof. We prove Proposition 3 by mathematical induction.
Base case: Because α = 1/6, �αn
 = 1 for n = 2, 3. Then,

we obtain

Q2 � (1 − p̃) + p̃ · 2Q1 = 1 − p̃

Q3 � ((1 − p̃) + p̃(Q1 + Q2))2 � (1 − p̃2)2. (A32)

Using p̃ � p � 3/4, we obtain Q2 � 1/4 and Q3 �
49/256 < 1/4. Q1 = 0 < 1/4 also holds trivially.

Induction step: Assume that Q1, Q2, ..., Qn−1 � 1/4 holds
(n = 4, 5, 6, ...). From Eq. (A30), we obtain

Qn �
n−�αn
∏
m=�αn


(
(1 − p̃) + 2 p̃ · 1

4

)

=
n−�αn
∏
m=�αn


(
1 − p̃

2

)

�
(

1 − p

2

)n−2�αn
+1

�
(

1 − p

2

)3

� 125

512
<

1

4
, (A33)

where we used the induction hypothesis in the first line, p̃ �
p in the third line, n − 2�αn
 + 1 � 3 (n � 4) in the fourth
line, and p � 3/4 in the fifth line.

By mathematical induction, we have proved
Proposition 3. �

Substituting Qn � 1/4 into Eq. (A30) and using p̃ �
p, �x
 < x + 1, we obtain the evaluation of Qn:

Qn �
(

1 − p

2

)n−2�αn
+1
<

(
1 − p

2

)(1−2α)n−1
. (A34)

d. Evaluation of 〈d̂〉 and η

We evaluate 〈d̂〉 by separately considering the following
two cases:

(1) There exists a realizable 1/6-splitting assembly path-
way of G; that is, BG is false.

(2) There exists no such assembly pathway of G; that is,
BG is true.

In the first case, we can use d � log L/(− log(1 − α))
through Proposition 2, where α is set to 1/6 to simplify the
appearance. Even in the second case, we can use the inequality
d < L, which always holds.

We then obtain

〈d̂〉 < Pr(BG)
log L

− log(1 − α)
+ Pr(BG)L

� log L

− log(1 − α)
+ QLL

<
log L

− log(1 − α)
+ L

(
1 − p

2

)(1−2α)L−1
, (A35)

where we used Pr(BG) � 1 and Eq. (A29) in the second line
and Eq. (A34) in the third line.

We then evaluate η using Eq. (A35) as

η := log2 L

〈d̂〉
>

log2 L
log L

− log(1−α) + L
(
1 − p

2

)(1−2α)L−1 , (A36)

where the right side goes to − log2(1 − α) in the limit L →
∞. Substituting α = 1/6 into the result, we obtain

lim
L→∞

η �= 0 (A37)

for 3/4 � p � 1.
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