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By combining inelastic neutron scattering and numerical simulations, we study the quasi-one-dimensional
Ising-like quantum antiferromagnet BaCo2V2O8 in a longitudinal magnetic field applied along the Ising
anisotropy, which is also the chain direction. The external field closes the excitation gap due to the magnetic
anisotropy, inducing a transition from the Néel ordered state to an incommensurate longitudinal spin density
wave phase. If the field is increased further, another transition into a transverse antiferromagnetic phase takes
place at 9 T due to the competition between longitudinal and transverse correlations. We numerically and
experimentally show that the model of XXZ chains connected by a weak interchain interaction well reproduces
this transition. We also calculate the dynamical susceptibility and demonstrate that it agrees quantitatively with
inelastic neutron scattering measurements. In contrast to the abrupt change of magnetic ordering, the spectra
do not change much at the transition at 9 T, and the spin dynamics can be described as a Tomonaga-Luttinger
liquid. We also refine the modeling of BaCo2V2O8 by including a four-site periodic term arising from the crystal
structure which enables one to account for an anomaly of the magnetic susceptibility appearing at 19.5 T, as well
as for the anticrossing observed in the inelastic neutron scattering spectra.
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I. INTRODUCTION

Low-dimensional correlated systems have attracted wide
interest in modern condensed matter physics due to a variety
of phenomena arising from both the strong quantum fluctu-
ations and interactions. In particular, one-dimensional (1D)
systems are an ideal playground to study many kinds of quan-
tum phases and transitions between them [1]. Since there are a
lot of powerful analytical and numerical methods to study 1D
systems, we can deeply understand the properties of strongly
correlated quantum systems by using them. For example, ef-
fective field theory obtained from bosonization, Bethe ansatz,
numerics by means of matrix product states such as density
matrix renormalization group (DMRG) [2], and time-evolving
block decimation (TEBD) [3] are quite useful for their inves-
tigation. Hence, the experimental realization of 1D systems
is important to verify the prediction from theories and clar-

*Corresponding author: takayoshi@konan-u.ac.jp
†Corresponding author: grenier@ill.fr

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

ify their applicability. The compound BaCo2V2O8 is one of
such examples. It is well described as a quasi-1D system,
specifically antiferromagnetic (AF) XXZ spin chains con-
nected by a weak interchain interaction. Due to the easy-axis
anisotropy, the ground state has an AF long-range order (Néel
order) and a spin excitation gap below the Néel temperature
TN = 5.6 K. In contrast to the deconfined excitations, called
spinons, and their multiple continuum observed in canonical
XXZ chains [4,5], the interchain interaction in BaCo2V2O8

causes the confinement of spinons, which is detected as a
discrete sequence of dispersions in inelastic neutron scattering
spectra [6,7].

The application of a magnetic field along the crystal c axis
enriches the emergent phenomena [8–11]. In the case of a pure
1D XXZ chain, when the applied field is increased, the gap
closes, inducing a Pokrovsky-Talapov-type transition into the
Tomonaga-Luttinger liquid (TLL) phase [12–14], which then
continues up to the magnetization saturation. This magneti-
zation process can be described by a bosonized field theory.
In BaCo2V2O8, with the presence of interchain interaction, a
three-dimensional (3D) long-range order is stabilized [15,16],
which corresponds to dominant spin-spin correlations along
the XXZ chain. An incommensurate longitudinal order ap-
pears in the low-field regime and a commensurate transverse
one in the high-field one. Although most of the features in
BaCo2V2O8 can be explained in terms of the XXZ model and a
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weak interchain coupling, there is additional complexity stem-
ming from the crystal structure. The spin chains consist of
magnetic Co2+ ions that wind to form a screw along the c axis.
Since the cobalt oxide octahedra are slightly tilted from the c
axis, additional perturbation terms appear in the Hamiltonian
[8,17]. Thus, to make a solid connection between the material
and the model to describe it, more detailed research both on
the theoretical and experimental sides is necessary.

In this paper, we study the phase diagram, phase transition,
and spin dynamics of BaCo2V2O8 in a longitudinal magnetic
field (applied along the anisotropy axis, which is the c axis).
In particular, we elucidate the mechanism of the transition
between the incommensurate longitudinal phase and the com-
mensurate transverse one. Our precise numerical simulations,
based on an effective 1D model treating the interchain inter-
action by a mean-field theory, demonstrate that the quantum
phase transition is caused by the competition between the
longitudinal and transverse correlations within a chain. This
conclusion is supported by the very good agreement ob-
tained when comparing the inelastic neutron scattering spectra
calculated and measured for different values of the applied
magnetic field. In contrast to the abrupt change in the mag-
netic ordering, the spin dynamics does not vary much across
the transition, and can be described as a TLL. These results
indicate that the quasi-1D model of XXZ spin chains con-
nected by a weak interchain coupling describes BaCo2V2O8

appropriately. This simple XXZ Hamiltonian, however, cannot
capture the anomaly reported in the magnetic susceptibility
at a field where the magnetization takes half of the saturated
value. To solve this issue, the model was refined by adding
four-site periodic perturbations arising from the crystal struc-
ture of BaCo2V2O8. We find that the refined model reproduces
not only this anomaly, but also the anticrossing of excitation
dispersions observed in inelastic neutron scattering spectra.

This paper is organized as follows. In Sec. II, we sum-
marize the experimental results including the phase diagram
of BaCo2V2O8. Section III introduces the quasi-1D model
to describe BaCo2V2O8. We also evaluate the interchain
coupling from the numerics with a mean-field approxima-
tion. Section IV discusses the evolution of spin dynamics in
BaCo2V2O8 under an applied longitudinal magnetic field, on
the basis of numerical calculations combined with inelastic
neutron scattering measurements. In Sec. V, we refine the
model for BaCo2V2O8 to give a better description beyond
the simple TLL theory. We summarize our results and discuss
future problems in Sec. VI. Technical details are given in the
Appendixes.

II. EXPERIMENTAL RESULTS

A. Phase diagram

At low temperature, as the applied longitudinal magnetic
field (H ‖ c) is increased, BaCo2V2O8 displays a succes-
sion of different magnetic phases through quantum phase
transitions. The critical fields of these transitions and the
phase diagram [see Fig. 1(a)] in the parameter space of the
longitudinal magnetic field and temperature have been inves-
tigated by magnetization and specific heat [18,19], neutron
scattering [15,16,18,20], electron spin resonance (ESR) [8],

FIG. 1. (a) Phase diagram of BaCo2V2O8 in the parameter space
of the longitudinal magnetic field and temperature determined from
neutron diffraction, specific heat, and NMR measurements. The
phases correspond to longitudinal antiferromagnetic (LAF), longi-
tudinal spin density wave (LSDW), and transverse antiferromagnetic
(TAF) orderings as determined by neutron diffraction [15,18], while
the phase labeled “?” was inferred to be another incommensurate
phase from NMR [10]. (b)–(d) Schematic pictures for the spin ar-
rangement in the magnetic phases LAF, LSDW, and TAF appearing
in the field region below the field H1/2 corresponding to half of
the saturated magnetization. These sketched components should be
added to a ferromagnetic component, i.e., uniform magnetization,
which increases with the field above Hc [see Fig. 2(a), right axis].

and nuclear magnetic resonance (NMR) [10]. Neutron diffrac-
tion measurements up to 12 T have additionally allowed one
to identify the spin arrangements in each phase, as sketched
in Figs. 1(b)–1(d) [15,18]. At μ0Hc � 3.9 T, the excitation
gap due to the Ising anisotropy closes and the system enters
a longitudinal spin density wave (LSDW) phase below 1.8 K,
under the influence of the interchain couplings. In this phase,
while the ordered magnetic moments are still oriented along
c, the wave vector of the spin density is incommensurate and
varies with the amplitude of the field. At μ0H∗ � 9 T, another
quantum phase transition occurs below 0.7 K toward a phase
characterized by a commensurate AF ordering with magnetic
moments lying in the (a, b) plane, i.e., perpendicular to the
magnetic field, on top of a uniform component parallel to the
field. We call it the transverse antiferromagnetic (TAF) phase.
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FIG. 2. (a) Field dependence of the component along c∗ of the magnetic reflection determined by neutron diffraction (open symbols, left
axis) [18]. It scales with the calculated field-induced ferromagnetic component, i.e., uniform magnetization, Mz (black solid stars, right axis)
[see Fig. 3(b) and main text]. The arrows show the l positions for the incommensurate modulation δ in reciprocal lattice units (r.l.u.), which
is probed by neutron diffraction up to 9.3 T, then is extrapolated above for magnetic fields corresponding to the IN5 measurements presented
in (b), which shows l-cuts around the (3, 2, 0) position at zero energy, T = 50 mK, and different magnetic fields. The neutron intensity is
given in arbitrary units (a.u.). (c)–(e) Intensity maps at constant energy equal to 0.0 ± 0.1 meV in the (h, k, 0) and (h, k, δ) scattering planes,
at 50 mK for different magnetic fields: (c) 0 T, (d) 8 T where δ = 0.26 was previously determined in the LSDW phase, and (e) 10 T where
one would expect incommensurate magnetic Bragg peaks with δ = 0.35 if the system would still be in the LSDW phase. The blue dotted
circles highlight the nuclear Bragg peaks and the purple solid circles highlight the magnetic Bragg peaks corresponding either to the (1, 0, 0)
or (1, 0, δ) propagation vector.

Furthermore, an anomaly in the magnetic susceptibility is re-
ported around μ0H1/2 = 19.5 T [8,10], which is hypothesized
as a transition to another magnetic phase, before the magne-
tization reaches the saturation field around μ0Hs = 22.7 T.
Note that the uniform magnetization along the field is just
half of its saturation value at μ0H1/2 [8]. This anomaly at
μ0H1/2 = 19.5 T is further discussed in Sec. V.

Other experimental techniques have contributed to the in-
vestigation of the spin dynamics, especially inelastic neutron
scattering [6,16,21] in the ordered longitudinal antiferromag-
netic (LAF) and LSDW phases up to 6.8 T and ESR [8] in
the LAF and paramagnetic phases up to 25.6 T. The phase
diagram, magnetic order, and spin excitations of the sister
compound SrCo2V2O8, which presents very similar proper-
ties, were also investigated by THz spectroscopy and neutron
scattering [22,23].

B. Determination of magnetically ordered phases

Before discussing the spin dynamics, we experimentally
check the magnetic ordering stabilized at T = 50 mK for
various fields μ0H = 0, 6, 8, 9.5, and 10 T. The magnetic
Bragg peaks are clearly identified in the IN5 neutron data
(see Appendix D for the experimental setup), both in l-cuts

around the (3, 2, 0) position at zero energy [Fig. 2(b)] and
in the zero-energy neutron intensity maps on (hkl ) planes
with fixed l [Figs. 2(c)–2(e)]. At H = 0, nuclear Bragg peaks
associated to h + k + l = (even) and magnetic Bragg peaks
corresponding to h + k + l = (odd) are visible at l = 0 in
Fig. 2(c). This is consistent with the (1,0,0) propagation vector
of the LAF phase previously determined. The magnetic Bragg
peaks disappear above TN , as expected.

At 6 and 8 T, above Hc, the magnetic Bragg peaks are no
longer visible at l = 0 and appear instead at the incommensu-
rate positions l = ±δ, as shown in Fig. 2(a). These correspond
to a (1, 0, δ) propagation vector with the incommensurate
modulation δ, which increases as the field increases.

Finally, at 9.5 and 10 T, above H∗, the magnetic signal
is back to the l = 0 slice and associated again to the (1,0,0)
propagation vector, which is compatible with the TAF phase.
Note that very weak additional hk0 peaks are seen where both
h and k are odd, which correspond to forbidden nuclear peaks
due to the presence of glide planes perpendicular to c in the
I41/acd space group of BaCo2V2O8, some of them varying
slightly with the field [24]. These forbidden peaks may be
of magnetoelastic origin since they appear when the mag-
netic ordering is modified, i.e., absent at H = 0 but present
at μ0H = 8 T > μ0Hc. To conclude, the elastic cuts confirm
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our previous identification of the successive magnetic ordered
phases at very low temperature in BaCo2V2O8 [15,18], LAF
phase up to μ0Hc ≈ 3.9 T, followed by the LSDW order up to
the spin-flop transition at μ0H∗ ≈ 9 T, above which the TAF
phase is stabilized.

III. SYSTEM AND MODEL

A. Model

The properties of BaCo2V2O8 explained in Sec. II A can be
well described by a quasi-1D model based on the Hamiltonian

H = Hintra + Hinter, (1)

where

Hintra = J
∑
n,μ

[
ε
(
Sx

n,μSx
n+1,μ + Sy

n,μSy
n+1,μ

) + Sz
n,μSz

n+1,μ

]

− gzzμBμ0H
∑
n,μ

Sz
n,μ, (2)

Hinter = J ′ ∑
n

∑
〈μ,ν〉

Sn,μ · Sn,ν (3)

represent the intrachain and interchain parts of the coupling,
respectively. Sn,μ is a spin-1/2 operator, n is the site index
along the chain, μ and ν label different chains, gzz is the Landé
factor, and μB is the Bohr magneton. We employ the values
of the intrachain interaction J = 5.8 meV and anisotropy pa-
rameter ε = 0.53 already used in previous works [7,16,25],
and the axes x, y, and z correspond to the a, b, and c direc-
tions, respectively. If there is no interchain interaction, Eq. (2)
is merely an XXZ model under a longitudinal field, which
can be well understood in terms of a bosonized field theory.
For details, see Appendix B. With an easy-axis anisotropy,
however, there is an excitation gap at zero field. When the
field is increased, the gap closes and the transition to the
TLL phase occurs. Without any interchain interaction, there
is no phase transition until the magnetization is saturated. In
the TLL phase, the transverse and longitudinal correlation
functions decay as power laws, whose respective exponents
depend on the Luttinger parameter K . K is found to increase
monotonically with the field from 1/4 to 1. Since the leading
order of the transverse and longitudinal correlation functions
are r− 1

2K and r−2K , respectively (r is the distance between
spins), the longitudinal (transverse) correlations are dominant
in the 1/4 < K < 1/2 (1/2 < K < 1) regime.

When the interchain interaction is introduced, long-range
ordered magnetic phases appear. The LSDW phase is stabi-
lized for the regime of dominant longitudinal correlations,
while the TAF phase is stabilized for the regime of dominant
transverse correlations [10]. Therefore, we can state that the
transition at μ0H∗ � 9 T in BaCo2V2O8 stems from the com-
petition between the longitudinal and transverse correlations.

B. Phase diagram from numerics

We further investigate the model given by Eq. (1) treating
the interchain interaction in terms of a mean-field theory.
Using this approximation, we derive the following effective

FIG. 3. (a) Calculated staggered transverse magnetization Mx vs
the magnetic field for two different interchain interactions J ′. The
spin-flop transition is obtained at 9 T for J ′ = 0.17 meV. (b) Mx

and uniform magnetization Mz vs the magnetic field calculated up
to saturation for J ′ = 0.17 meV.

1D XXZ model:

Heff = J
∑

n

[
ε
(
Sx

nSx
n+1 + Sy

nSy
n+1

) + Sz
nSz

n+1

]

− gzzμBμ0H
∑

n

Sz
n + J ′ ∑

n

〈Sn〉 · Sn, (4)

where 〈Sn〉 is calculated iteratively and determined self-
consistently from numerical DMRG calculation.

As explained above, the pure 1D XXZ spin chain in an
external longitudinal field is described as a TLL, thus with-
out long-range order. The interchain interaction is therefore
necessary to obtain the spin-flop transition between the two
ordered phases: LSDW and TAF. In the mean-field theory,
the transverse staggered magnetic order in the TAF phase is
stabilized due to an alternating transverse field effectively in-
troduced by the interchain interaction in a self-consistent way.
Since the TAF phase becomes more stable as the interchain
interaction is larger, the critical field of the spin-flop transition
decreases as J ′ is increased [see Fig. 3(a)]. The interchain
interaction J ′ = 0.17 meV well reproduces the critical field
H∗ measured experimentally. This value of J ′ is the same
as the one determined in a similar mean-field approach to
reproduce the inelastic neutron scattering spectra measured in
BaCo2V2O8 under the application of a transverse magnetic
field [7]. Note that in our previous investigation of the effect
of the longitudinal field [16], the value of J ′ which best re-
produces the spectra was J ′ = 0. This may be due to the fact
that the mean-field approach on the interchain interaction is
not a good approximation in the vicinity of the LAF-LSDW
transition at μ0Hc = 3.9 T. We use the value J ′ = 0.17 meV
throughout the present paper, which also well reproduces the
spectra above 5 T, far enough away from μ0Hc = 3.9 T, as we
shall see below.

We calculate the uniform longitudinal magnetization Mz

and staggered transverse magnetization Mx for the effective
model of Eq. (4) numerically by DMRG in a self-consistent
way. The result is shown in Fig. 3(b). It is clear that Mx

behaves as an order parameter for the TAF phase. Further-
more, the transition to the fully polarized state is calculated to
occur around 25 T, which is rather close to the experimentally
obtained value of 22.7 T [8] and which further validates the
model. However, we should point out that the existence of
an additional phase transition at μ0H1/2 = 19.5 T reported in
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NMR measurements [10] is not observed within the present
model given by Eq. (4). Hence, additional ingredients are
likely to be necessary to understand this part of the phase
diagram. We will come back to this point in Sec. V.

IV. SPIN DYNAMICS

A. Numerical simulations

In order to investigate the spin dynamics of BaCo2V2O8

in a longitudinal magnetic field, we numerically calculate the
dynamical susceptibility for the effective 1D model of Eq. (4)
and compare it to inelastic neutron scattering spectra. The
ground state of the system is obtained by DMRG and the
retarded correlation function is computed by TEBD. The dy-
namical susceptibility can be derived as the Fourier transform
of this correlation function. The Fourier transform is per-
formed by considering the crystal structure of BaCo2V2O8, as
done in Ref. [26]. The dynamical susceptibility is calculated
for each component, specifically the component that is parallel
S‖ and perpendicular S⊥ to the magnetic field. The inelastic
neutron scattering spectra Stot observed experimentally can
be represented as a linear combination of S‖ and S⊥ (see
Appendix C for details).

In Fig. 4, we show the dynamical spin susceptibility
components S‖ and S⊥, as well as the total Stot , to be
compared with the inelastic neutron scattering spectra. Cal-
culations are performed at various values of magnetic field
from 6 T up to 20.75 T, and the slice on the momen-
tum plane (2, 3, l ) (−2 � l � 2) in the energy regime up
to 10.6 meV is shown. The spectra look complex, but
they are well described by the TLL physics. In the longi-
tudinal component S‖ of the dynamical susceptibility, the
dispersion is expected to become gapless at the wave vec-
tors q = 0 (l = ±2) and incommensurate q = π (1 ± mz )
(l = ±2mz), where mz ≡ Mz/Msat

z is the uniform magne-
tization normalized by the saturated value. The 1D spin
systems can be transformed to fermionic systems through
Jordan-Wigner transformation. In the fermion language, gap-
less excitations are generated at the Fermi surface, and the
magnetic field corresponds to chemical potential. Hence, the
Fermi surface is modulated due to the change of chemical po-
tential, and the wave number of the gapless excitation is also
varied to an incommensurate value related to the Fermi wave
vector kF. For more details, see Appendix A. Our calculations
agree with this picture with an additional folding into four
replicas due to the crystal structure of BaCo2V2O8 (which
has a four-site periodic spiral form in the c direction). In fact,
we observe that most of the spectral weight is concentrated
in the low-energy arch-shaped dispersion that bridges the ex-
citation minima at the incommensurate wave vectors around
each reciprocal lattice point. As the external magnetic field is
increased, the spectral weight of the longitudinal component
decreases continuously and the interval between the gapless
points on the arch-shaped dispersion expands.

The transverse components S+− and S−+, whose sum is
shown in the S⊥ column of Fig. 4, also yield a rather complex
spectrum. It is seen that S+− is shifted to the high-energy side
and S−+ to the low-energy side as the magnetic field is in-
creased [13]. In addition to these spinon continua (blue shaded

area seen in the energy regime below 6 meV in Fig. 4), multi-
magnon excitations are visible at higher energies (dispersion
seen in the energy regime 4–8 meV for 10 T and 8–10 meV for
14 T in Fig. 4), which are attributed to two-string excitations
[22,23,27]. They are pushed to higher energy as the field in-
creases. From the TLL theory, the spinon dispersion appearing
in transverse dynamical susceptibility is predicted to become
gapless at q = π (l = 0) and q = ±πmz [l = ±(2 − 2mz )].
The spectral weight is concentrated at the commensurate po-
sitions corresponding to each of the reciprocal lattice points of
q = π in the folded spectrum. It indicates that the alternating
correlation is dominant in the transverse component. For two-
string excitations, the intensity is strongest around the energy
minimum of their dispersion.

The spin dynamics evolves continuously with increasing
the magnetic field up to saturation. No abrupt change of the
excitation structure is seen at the critical fields H∗ and H1/2. In
addition, despite the existence of long-range magnetic order,
the dynamical susceptibility still shows the 1D-like behavior
dictated by the TLL theory. The spectral weight at low energy
is progressively transferred from the longitudinal to the trans-
verse channel, and the latter becomes dominant at high field.
Specifically, the low-energy intensity at incommensurate posi-
tions in S‖ fades away and is replaced by a strong contribution
at the integer l positions in S⊥. This result is consistent with
the TLL picture, in which the leading order of the correlation
function is cos[π (1 + mz )r] r−2K in the longitudinal direction
and cos(πr) r− 1

2K in the transverse direction, where K is the
Luttinger parameter and r is the distance (see Appendix B).

B. Comparison between the theory and the experimental results

We then investigate the spin dynamics in the different
magnetically ordered phases using inelastic neutron scatter-
ing and compare the measured results with the theory (see
Appendix D for the details of the experimental setup).

In Figs. 5(a)–5(f), we show the longitudinal magnetic field
evolution of the excitation spectrum measured on IN5 along
the c∗ direction on each side of the (3,2,0) position [equivalent
to (2,3,0)]. A comparison with the results presented in Fig. 4
shows that the calculations agree well with the measurements
at 6, 8, and 10 T. In addition, we can identify the properties
of excitations by comparing the measured spectra with the
numerical results on the dynamical susceptibility of longitu-
dinal and transverse components, which are separately shown
in Fig. 4.

At H = 0 in the LAF phase, a discrete sequence of exci-
tations, with an energy minimum at reciprocal vector (3,2,0),
is observed and is attributed to spinon pairs confined by the
interchain interaction [6]. Above Hc, this spectrum drasti-
cally changes. The spectral weight now concentrates in a
low-energy archlike excitation that bridges the incommensu-
rate magnetic satellites of the LSDW order at l = ±δ. This
matches very well with the expected spin dynamics in the
TLL picture. This incommensurability varies with the field as
δ = 2mz, with mz the uniform magnetization normalized by
the saturated value. The wave vectors q = π (1 ± mz ) where
the dispersion reaches its minimum go further away from the
antiferromagnetic wave number q = π as the field and mz

increases, which indicates that the period of the spatial modu-
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FIG. 4. Inelastic neutron scattering spectra (dynamical susceptibility) calculated numerically for the model given by Eq. (4) at various
magnetic fields ranging from 6 up to 20.75 T. The total (left), transverse (middle), and longitudinal (right) components are shown. The
spin-flop transition μ0H∗ detected by neutron diffraction and the transition at half the saturated magnetization μ0H1/2 detected by NMR are
indicated by dashed lines.
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FIG. 5. Inelastic neutron scattering intensity maps measured on IN5 at 50 mK, showing the dispersion of the excitations around Q =
(3, 2, 0) along the c∗ direction, at (a) 0 T, (b) 6 T, (c) 8 T, and (d)–(f) 10 T. The incident wavelength is 3.4 Å for (a)–(c) and (e), 4.8 Å for
(d), and 2.3 Å for (f), which allows one to explore the different energy ranges. The blue arrows indicate the two-string signal in (e) and (f).
(g) The total dynamical susceptibility, calculated numerically for the model given by Eq. (4) at 10 T, to be compared to the inelastic neutron
scattering spectrum from (d). (h) An energy cut at Q = (2, 2, δ) with δ = 0.35, measured at 10 T and λ = 4.8 Å (blue circles with line), where
the dispersion along the c∗ direction takes an energy minimum [see the blue arrow in (d)]. Note that the excitation gap is slightly larger and
thus more visible for the cut (h, 2, δ) with h = 2 than h = 3; hence, we adopt the value h = 2 in (h). The result of numerical calculation (red
line) is compared with the measured data in (h). (i) Energy cuts at Q = (3, 2, 0) for all measured magnetic fields at 3.4 Å. These cuts agree
well with the calculated results presented in (j).
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lation in the longitudinal spin component becomes longer. The
width of this arch shape of excitation dispersion expands and
the incommensurate positions get further apart from the recip-
rocal vector position l = 0 as the field increases. Furthermore,
most of the spectral weight comes from longitudinal fluctua-
tions in the LSDW phase, which is the same behavior as in the
previous measurements up to 6 T [16]. Quite remarkably, we
do not observe any abrupt change at the flop transition point:
the spin excitation spectra change smoothly and continuously
through the transition with a further expansion of the archlike
excitation. The energy minima of the dispersion remain at
the incommensurate positions predicted by the TLL theory,
and thus do not coincide with the TAF Bragg peaks. The
continuous increase of the maximum in the archlike structure
at (3,2,0) is seen in the energy cut of the spectrum shown in
Fig. 5(i) from 6 to 10 T. The experimental data in Fig. 5(i)
agree well with the calculated result presented in Fig. 5(j),
in particular for the main excitation located in the range 0.8–
1.2 meV for 6 T, but the calculations overestimate the intensity
of the two other weaker modes located at lower and higher
energy.

At 10 T, above the spin-flop transition, the spin excita-
tions were measured with three different incident wavelengths
in order to capture features in different energy ranges
[Figs. 5(d)–5(f)]. At λ = 4.8 Å, the energy resolution is good
enough to observe a small energy gap at the incommensu-
rate position (2, 2, δ) (δ = 0.35), which is of the order of
≈0.2 meV [Fig. 5(h)]. This is similar, within the error bars, to
the value reported at 6 T [16]. Note that this gap, which is not
expected in the perfect TLL picture, stems from the interchain
coupling and has a dispersion in the a∗ (and equivalent b∗)
directions. The spectrum at (2, 2, δ) is compared with the
numerical calculation (red line) in Fig. 5(h), which shows a
good agreement between the experiment and the theory. For
the calculation, we employ the parameter δ = 0.30, where
the dispersion takes the energy minimum. The peak width is
broader in the theory since the calculation is performed for a
finite time interval 0 � t � 60J−1.

The color maps of the measured spectra of inelastic neu-
tron scattering [Figs. 5(a)–5(f)] agree well with the numerical
calculations (Fig. 4). The numerically obtained spectra at
H = 10 T scaled in the same way as Fig. 5(d) is shown in
Fig. 5(g). From the comparison between Figs. 5(d) and 5(g),
we see their good agreement. The above results demonstrate
that the TLL theory appropriately describes the low-energy
excitation structure of BaCo2V2O8. In Ref. [10], it is reported
in the TAF phase that NMR spectra show the incommensurate
behavior as well as the AF nature. This feature may be due to
the coexistence of the incommensurate dynamics observed in
these measurements and described as TLL, and the long-range
AF order determined by neutron diffraction.

At 2.3 Å, still at 10 T, the spin excitations were measured
up to 10 meV. Additional features are observed at the energies
4 and 8 meV and at the wave vector (3,2,0). Since these
are high-energy excitations, they are beyond the scope of
the low-energy effective TLL theory, but can be captured by
numerical calculations as seen in Fig. 4. In Ref. [28], these
excitations were described within the algebraic Bethe ansatz
formalism as two-magnon bound states called two-string ex-
citations. The maximum and minimum of their dispersion are

observed at the same reciprocal space position due to the fold-
ing of the spectra stemming from the fourfold screw chain of
BaCo2V2O8 [27]. These features and the whole description of
the spectrum in terms of the Bethe ansatz formalism were also
reported in the paramagnetic state of SrCo2V2O8 [23]. We
also checked the spin excitations of BaCo2V2O8 in a magnetic
field of 10 T at T = 1.1 K above the Néel temperature. No
significant change is visible in the excitation structure when
comparing the spectra above and below the magnetic order-
ing temperature. This result confirms that the spin dynamics
of BaCo2V2O8 is well described by the TLL theory at low
energy, and the behavior is rather unaltered by the long-range
order stabilized by the small interchain interaction.

V. REFINEMENT OF THE MODEL

As we have seen above, the model described by Eq. (1)
explains most of the features of BaCo2V2O8 in a longitu-
dinal magnetic field. However, there are still some points
to be solved. One of them is an anomalous behavior at the
field μ0H1/2 = 19.5 T in the susceptibility [8] and NMR [10]
measurements. Another point is that the dispersion of the low-
energy excitations, measured by inelastic neutron scattering,
shows an anticrossing. Thus, a refinement of the model of
Eq. (1) is necessary, taking into account additional terms in
the Hamiltonian.

In BaCo2V2O8, the oxygen octahedra around the Co2+ ions
along a chain are actually buckled, in a manner that naturally
introduces a four-site periodicity (consequence of the fourfold
screw axes 41 and 43 running along the chains). In Ref. [17],
the effects of such a four-site periodic tilting of spin axes
due to the crystalline structure were envisaged. This four-site
periodic perturbation was thus added to the mean-field model
of Eq. (4), leading to the effective Hamiltonian

HK = Heff + Hπ + Hπ/2, (5)

where

Hπ = Jπ

∑
n

(−1)n(S+
n S+

n+1 + S−
n S−

n+1)

= 2Jπ

∑
n

(−1)n
(
Sx

nSx
n+1 − Sy

nSy
n+1

)
, (6)

Hπ/2 = Jπ/2

∑
n

[
cos(nπ/2)

(
Sx

nSz
n+1 + Sz

nSx
n+1

)

+ sin(nπ/2)
(
Sy

nSz
n+1 + Sz

nSy
n+1

)]
. (7)

Figure 6 shows our calculation of the magnetization
curve obtained for Eq. (5), along with the susceptibility
dMz/dH and staggered magnetization Mx, as a function of
mz = Mz/Msat

z . Using Jπ/2 = Jπ = 0.61 meV, the susceptibil-
ity shows an anomaly at Mz/Msat

z = 1/2, which reproduces
the experimental result of Ref. [8]. In addition, in Fig. 7, we
show the calculated dynamical susceptibility, to be compared
with inelastic neutron scattering spectra measured along the
chain direction in zero field [6]. We find that the low-energy
bands have an anticrossing at the wave-vector component l =
(half-odd integer), which corresponds to q = (2n + 1)π/4 (n:
integer). This indicates that the band folding takes place at
q = nπ/2. The four-site periodic perturbation is essential to
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FIG. 6. (a) Magnetic susceptibility dMz/dH and (b) transverse
staggered magnetization Mx calculated numerically for the model of
Eq. (5) as a function of Mz normalized by its saturated value Msat

z . The
three green arrows locate the corresponding field values at which the
various anomalies occur. These values are in good agreement with
the experimental ones for H∗, H1/2, and Hs. The interchain coupling
J ′ = 0.17 meV and two different kinds of four-site periodic pertur-
bations, Jπ/2 = Jπ = 0.61 meV (solid purple line) and Jπ/2 = Jπ =
1.16 meV (dotted orange line), are included in the model. The value
of Jπ/2 = Jπ = 0.61 meV reproduces well the bump of dMz/dH at
half saturation, contrary to the value of Jπ/2 = Jπ = 1.16 meV used
in Ref. [17].

FIG. 7. (a) Inelastic neutron scattering spectra (dynamical sus-
ceptibility) numerically calculated at zero field H = 0 with an
interchain coupling J ′ = 0.17 meV and Jπ/2 = Jπ = 0.61 meV for
scattering vectors (2, 0, l ) (0 � l � 4). The anticrossing of the dis-
persion is seen at l = (integer + 1/2). (b) An expansion of (a) in the
2 � l � 3 interval.

realize the experimentally observed anticrossing. Actually, the
dispersion crosses if there is no such perturbation [7].

The model of Eq. (5) with Jπ/2 = Jπ = 0.61 meV can thus
simultaneously explain the anticrossing of the dispersion ob-
served by inelastic neutron scattering and the anomaly seen
in the magnetization curve. Hence, the full model, including
this four-site periodic term, with the mean-field treatment of
a simple interchain coupling J ′ = 0.17 meV fully explains
(with the possible exception of the vicinity of 19.5 T; see the
discussion below) the observed phase diagram of BaCo2V2O8

as well as fine points observed in the neutron spectra. If
additional ingredients are required to be added to this model,
they could stem from more complicated interchain couplings,
as hinted by NMR measurements [10]. This point, however,
clearly needs further studies.

We note that in Ref. [17], the parameters Jπ/2 = Jπ =
1.16 meV (Jπ/2/J = Jπ/J = 0.2) were used. With these pa-
rameters, however, a new phase characterized by the absence
of staggered magnetization (Mx = 0) intrudes into the TAF
phase in the chain mean-field theory [Fig. 6(b)], which is
not observed experimentally. We can thus conclude that these
parameters seem to be in contradiction to the experimental
results.

VI. SUMMARY AND DISCUSSION

In this work, we investigated the static and dynamical
magnetic properties of the quasi-1D Ising-like compound
BaCo2V2O8 under a magnetic field applied along the chains,
both from the theoretical and experimental sides. In this com-
pound, thanks to the moderate magnetocrystalline anisotropy,
quantum phase transitions are achieved at accessible magnetic
fields. The magnetic field leads to a very rich phase diagram
and physical properties.

Our combination of analytical and numerical techniques
allows one to determine a model which reproduces the ob-
served experimental features, with the possible exception of
those observed at 19.5 T. In particular, we reproduce the se-
quence of phases seen in Fig. 1 up to 19.5 T and the observed
neutron spectra up to 10 T. Starting from a longitudinal an-
tiferromagnet at zero magnetic field, as the longitudinal field
is increased, the anisotropy gap closes at about 4 T, and the
incommensurate LSDW phase and TAF phase successively
appear. Although the LSDW and TAF phases are magneti-
cally long-range ordered, the dynamics of the system can be
described by the TLL physics. In particular, the inversion of
the dominant spin-spin correlation between the longitudinal
incommensurate component and the transverse staggered one
could be investigated. This inversion indicates that the correla-
tion length becomes larger for the transverse component than
for the longitudinal component above the spin-flop transition,
which has a straightforward consequence on the static proper-
ties. With the weak interchain interaction, a long-range order
associated to the longer correlation length is stabilized, i.e.,
longitudinal and incommensurate below H∗, but transverse
and staggered above. A large part of the magnetic moment is
still fluctuating though because of the 1D nature of the system.
The stabilized long-range order is associated with excita-
tions on shorter-range length scales of the spin fluctuations,
as already observed in frustrated magnets [29]. Therefore,
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the spin dynamics sustains both transverse and longitudinal
fluctuations, and the magnetic order is therefore expected to
reflect the dominant one at low energy [10], which changes
from a longitudinal one at low field, as observed in the LSDW
phase [16], to a transverse one at high field, as seen in the
TAF phase. This results in drastically different magnetic 3D
long-range orderings, in contrast to the very similar 1D spin
dynamics close to H∗. Such an apparent disconnection of the
static and dynamical properties is another nice property of
the rich physics observed in the low-dimensional quantum
antiferromagnet BaCo2V2O8, which is proved to be a precious
material to test universal behaviors described by the TLL
theory.

However, BaCo2V2O8 also exhibits deviations from the
above-mentioned generic behavior in some aspects. We thus
refined the model to properly describe these observed devia-
tions by adding four-site periodic terms related to the tilting
of the octahedra along the chain axis. This allowed one to
reproduce the anticrossing observed in the neutron spectra
and the anomaly in susceptibility around μ0H1/2 = 19.5 T.
Despite this success of the present theoretical approach, some
aspects of the phenomena observed around H1/2 remain to be
understood. The data from NMR advocate for an additional
transition at this field [Fig. 1(a)], inferred from the peak of the
NMR relaxation rate 1/T1 [10]. This transition is tentatively
attributed to a strong variation of the interchain coupling due
to the incommensurability and to their sign change between
the TAF and “?” phases. The question of the interchain cou-
pling is, at that stage, largely open and is clearly an important
issue for future studies. A strong variation of the couplings
with incommensurability would a priori be surprising in view
of the fact that we can quite quantitatively describe the TAF
neutron spectra with a single and constant effective interchain
coupling between 5 and 19.5 T in our mean-field approach.
Hence, the dip of the 3D ordering temperature seen at 19.5 T
in the NMR and the question of the existence of two separate
phases remains open. One method of investigation to be done
in future studies is to determine if the more complete model
we have introduced could explain the dip of the 3D ordering
temperature. Additional experimental data around 19 T would
be needed, as well as further knowledge of the interchain
coupling.
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APPENDIX A: JORDAN-WIGNER FERMIONIZATION
AND CORRESPONDENCE TO BaCo2V2O8

The incommensurability appearing in the spin dynamics
for an AF spin-1/2 chain under a longitudinal magnetic field
can be understood in terms of spinless fermions through the

Jordan-Wigner transformation,

S+
j = c†

j

j−1∏
i=1

(1 − 2ni ), S−
j = c j

j−1∏
i=1

(1 − 2ni ),

Sz
j = n j − 1

2
, (A1)

where c j (c†
j ) is the fermion annihilation (creation) operator

and n j = c†
j c j is the number operator. The spin Sz = 1/2

(Sz = −1/2) corresponds to an electron (a hole). For simplic-
ity, we consider the XY spin chain here, which transforms into
a free electron-hole band theory. We apply this fermionization
for a spin-1/2 chain with a constant lattice spacing a (= c/4
for BaCo2V2O8) under a field along the z axis. First, we
change from the antiferromagnet to ferromagnet through the
spin rotation Sx,y

j → (−1) jSx,y
j , and the Hamiltonian becomes

H = −J

2

∑
j

(S+
j S−

j+1 + S−
j S+

j+1) − μBgzzH
∑

j

Sz
j . (A2)

Then, through the Jordan-Wigner transformation, we derive

H = −J

2

∑
j

(c†
j c j+1 + c†

j+1c j ) − μBgzzH
∑

j

n j, (A3)

where the constant is omitted. After the Fourier transform, we
obtain

H =
∑

k

E (k)c†
kck,

E (k) = −J cos(ka) − μBgzzH.

(A4)

At zero field, the fermion band is half filled, as depicted in
Fig. 8(a). The continuum of spinons is understood is terms
of the density of states of a fermion and a hole, as shown in
Fig. 8(c).

Let us now turn to the case where a magnetic field is
applied. The magnetic field lifts the degeneracy of the spin
states according to the value of

∑
j Sz

j by Zeeman splitting. In
the fermionic language of Eq. (A3), the longitudinal magnetic
field is recast to a chemical potential, which modifies the
filling of the band. Instead of considering one spinless fermion
band and shifting the chemical potential, the situation can
be understood as two bands, i.e., one for particles and one
for holes, shifting with respect to the Fermi level in opposite
directions, as represented in Fig. 8(b).

The longitudinal excitations S‖ conserving the total num-
ber of particles, i.e., intraband excitations (without a change
of magnetization from the ground state: �Sz = 0), give rise
to incommensurate fluctuations reaching zero energy at q =
π (1 ± mz ). mz = 1 − (2/π ) arccos(μBgzzH/J ) is the mag-
netization normalized by its saturation value. In addition,
commensurate fluctuations appear at q = 0 and 2π [see
Fig. 8(b)]. The transverse excitations S⊥ changing the number
of particles, i.e., interband excitations (leading to a change
of magnetization: �Sz = ±1), give rise to fluctuations reach-
ing zero energy at incommensurate wave numbers q = πmz

and π (2 − mz ) in addition to q = π (see Fig. 8(b) and also
Ref. [13]). From all possible intraband and interband ex-
citations, as in the zero-field case, one can reconstruct the
longitudinal S‖ and transverse S⊥ dispersion spectra expected

023205-10



PHASE TRANSITIONS AND SPIN DYNAMICS OF THE … PHYSICAL REVIEW RESEARCH 5, 023205 (2023)

FIG. 8. (a) Particle-hole band at zero field obtained through the Jordan-Wigner transformation. Two specific particle-hole excitations are
pointed out by the black and yellow arrows, which correspond to zero-energy and maximum-energy excitation, respectively. The Fermi level
is denoted by EF, which is set to zero. The fermions are located below EF (thick line), while the holes are located above (thin line). (b) The
applied longitudinal field H is equivalent to a chemical potential which splits the degeneracy of the electron-hole bands. The intraband and
interband zero-energy excitations, which, respectively, correspond to longitudinal S‖ and transverse S⊥ fluctuations, are pointed out by the
blue and pink arrows. The incommensurability arises from the splitting of the bands. (c) Two-spinon continuum expected for the spin-1/2 XY
chain at zero field. Black and yellow points are the excitations corresponding to the black and yellows arrows. (d),(e) Dynamical susceptibility
spectrum of the longitudinal (S‖) and transverse (S⊥) fluctuations expected for a spin-1/2 XY chain in the case of H > 0. We point out some
of the incommensurate positions where the gap closes by the blue and pink points, which are associated to the blue and pink arrows. The
evolution of excitation spectra shown in (c)–(e) looks similar even in the presence of nearest-neighbor interaction, in particular for the Ising
anisotropic system in the TLL region, Hc < H < Hsat , but the energy, which depend on the anisotropy, is then renormalized, e.g., multiplied
by π/2 for the Heisenberg case. The black dashed lines in (d) and (e) show the effect of folding from the crystal structure of BaCo2V2O8.

for a spin-1/2 chain in a magnetic field along the z axis [see
Figs. 8(d) and 8(e)].

The crystalline unit cell of BaCo2V2O8 encompasses four
chains, and each chain winds in a spiral around the c axis with
a period of four spins. As a result, the correspondence between
l and q is l = 2q/π . The incommensurability in S‖ at q/π =
(1 ± mz ) appears at l = 4n − 2 ± δ (n integer) with δ = 2mz.
In the same way, the incommensurability in S⊥ at q/π = ±mz

appears at l = 4n ± δ. However, the situation is more com-
plicated due to the details of the structure of BaCo2V2O8.
The actual positions of the Co2+ atoms light on replicas of
the main spectrum described above, shifted by �l = 0, 1, 2,

and 3. Both S‖ and S⊥ thus become visible around each l
integer, as can also be observed in the calculations shown in
Fig. 4. The spectral weight also depends on the values of h
and k due to the interchain interaction. The actual magnetic
structure gives rise to Bragg peaks at (h, k, l ) positions such
that h + k + l = 2n + 1. As a result, the spectrum is best
observed at (3,2,0) or, equivalently, (2,3,0). In this case, since
the antiferromagnetic wave number q = π corresponds to l =

4n, incommensurability in S‖ (S⊥) is observed at l = 4n ± δ

(l = 4n − 2 ± δ).

APPENDIX B: BOSONIZED FIELD THEORY

The XXZ model,

HXXZ = J
∑

j

[
ε
(
Sx

j S
x
j+1 + Sy

j S
y
j+1

) + Sz
jS

z
j+1

]
, (B1)

can be analyzed through the mapping to an effective field
theory by bosonization [1]. The spin operators are represented
by bosonic scalar fields as

Sz
j = −c/4

π
∂zφ(z) + a1(−1) j cos[2φ(z)] + · · · , (B2)

S+
j = e−iθ (z){b0(−1) j + b1 cos[2φ(z)] + · · · }, (B3)

where z = j(c/4) is the coordinate along the crystal c axis
with the lattice constant c, and a0, b0, and b1 are nonuniversal
coefficients. Using the dual bosonic fields φ(z) and θ (z), we
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can recast the Hamiltonian given by Eq. (B1) into

Hbos = v

2π

∫
dz

{
1

K
[∂zφ(z)]2 + K[∂zθ (z)]2

}

− λ

∫
dz cos[4φ(z)] + · · · ,

where v is the spinon velocity, K is the Luttinger parameter,
and λ is a nonuniversal constant. Since the scaling dimension
of the cos[4φ(z)] term is 4K , this term is relevant in the
easy-axis (ε < 1, K < 1/2) regime and works as a potential
to pin the field φ(z). Hence the system has a spin excitation
gap. When the longitudinal magnetic field is applied, the
Hamiltonian becomes

HXXZ − h
∑

j

Sz
j . (B4)

Thus, the bosonized Hamiltonian is

Hbos + h

π

∫
dz∂zφ(z). (B5)

While the cos[4φ(z)] term pins the field φ(z), the ∂zφ(z)
term tries to shift it; thus, the competition happens. When
h is increased and the spin gap closes, the ∂zφ(z) term
becomes dominant, the magnetization 〈Sz

j〉 = − 〈∂zφ(z)〉 /π

becomes nonzero, and the Pokrovsky-Talapov commensurate-
incommensurate phase transition takes place [12–14]. When
the magnetization grows, the system is gapless and can be
described as a TLL.

The longitudinal and transverse spin-spin correlation func-
tions in the magnetized system are written as

〈
Sz

jS
z
0

〉 = 〈
Sz

j

〉 〈
Sz

0

〉 + K

2π2
z−2

+ C1 cos[π (1 + mz )z] z−2K + · · · , (B6)

〈S+
j S−

0 〉 = C2 cos(πz) z− 1
2K

+ C3 cos(πmzz) z−2K− 1
2K + · · · , (B7)

where mz = 〈Sz
j〉 /Msat

z is the magnetization normalized by its
saturated value. While the magnetization increases from 0 to
the saturation value, the Luttinger parameter K increases from
1/4 to 1. In the regime of 1/4 < K < 1/2 (1/2 < K < 1),
the longitudinal (transverse) correlation is dominant and the
LSDW (TAF) phase is stabilized when the interchain interac-
tion is introduced.

APPENDIX C: DETAILS OF THE NUMERICAL
CALCULATIONS

In this Appendix, we explain the details of the numerical
methods [7,26]. We treat the interchain interaction in terms of
the mean-field approximation and we derive an effective 1D
Hamiltonian,

Heff = J
∑

n

[
ε
(
Sx

nSx
n+1 + Sy

nSy
n+1

) + Sz
nSz

n+1

]

− gzzμBμ0H
∑

n

Sz
n + J ′ ∑

n

〈Sn〉 · Sn, (C1)

where 〈Sn〉 is calculated iteratively and determined self-
consistently. We set the parameters J = 5.8 meV, ε = 0.53,
and gzz = 6.07 [16].

We calculate the dynamical susceptibility numerically.
First, the ground state is obtained by DMRG [2]; then its
time evolution is calculated by TEBD [3]. In this way, we can
evaluate the spin-spin retarded correlation function,

Cαβ

R (r, t ) = −iϑstep(t ) 〈[Sα (r, t ), Sβ (0, 0)]〉 , (C2)

for the Hamiltonian given by Eq. (C1), where ϑstep(t ) is the
step function. We take as the system’s size N = 200, the time
interval 0 � t � 60J−1, the time discretization dt = 0.05J−1,
and the bond dimension of matrix product states M = 60.
The dynamical susceptibility is obtained from the Fourier
transform of the retarded correlation function as

χαβ (Q, ω) = −Im
∫

dt
∑

r

ei(ωt−Q·r)Cαβ

R (r, t ). (C3)

For the Fourier transform in Eq. (C3), the summation is taken
over the actual positions r of the Co2+ ions.

The differential neutron scattering cross section S(Q, ω)
can be related to the dynamical susceptibility χαβ (Q, ω) as

Stot (Q, ω)

= |q′|
|q|

∑
α,β=x,y,z

(
δαβ − QαQβ

|Q|2
)

| f (Q)|2χαβ (Q, ω), (C4)

where f (Q) is the magnetic form factor and q, q′ are the in-
cident and scattered wave vectors, respectively, and Q = q −
q′. To see the longitudinal and transverse excitations indepen-
dently, we also define S‖(Q, ω) = χzz(Q, ω) and S⊥(Q, ω) =
χxx(Q, ω).

To reproduce the susceptibility anomaly at Mz/Msat
z =

1/2 and the band anticrossing at the wave number l =
(half integer), the four-site periodic perturbation given in
Ref. [17] is taken into account. Thus, we consider the Hamil-
tonian

HK = Heff + Hπ + Hπ/2, (C5)

where

Hπ = Jπ

∑
n

(−1)n(S+
n S+

n+1 + S−
n S−

n+1)

= 2Jπ

∑
n

(−1)n
(
Sx

nSx
n+1 − Sy

nSy
n+1

)
(C6)

and

Hπ/2 = Jπ/2

∑
n

[
cos(nπ/2)

(
Sx

nSz
n+1 + Sz

nSx
n+1

)

+ sin(nπ/2)
(
Sy

nSz
n+1 + Sz

nSy
n+1

)]
. (C7)

The procedure to obtain the dynamical spin susceptibility is
the same as in the case of Heff .

APPENDIX D: EXPERIMENTAL SETUP

The single crystal of BaCo2V2O8 was synthesized by the
floating zone method in an image furnace [30].

Time-of-flight experiments were performed on the IN5
spectrometer [31] at the Institut Laue Langevin in a 10 T
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vertical magnet with a dilution insert allowing to cool down to
50 mK [32]. The crystal was oriented with the c axis vertical
and the horizontal scattering plane (a∗, b∗). The large vertical
covering of the detector (±20◦) allowed one to probe a large

portion of the reciprocal space, including in the c∗ direction.
The elastic and inelastic signals could be probed in the same
experiment. Three different wavelengths, i.e., 2.3, 3.4, and
4.8 Å, were used to access different energy ranges.
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