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Unification of quantum Zeno–anti Zeno effects and parity-time symmetry breaking transitions
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The decay of an unstable quantum state can be inhibited or enhanced by tailored measurements, known as
quantum Zeno effect (QZE) or anti Zeno effect (QAZE). QZE(QAZE) has been intensively explored in terms
of the cases of various system-environment couplings, where the time evolution can be affected either by the
projective measurements, or through the dissipative couplings to the environment. A general relation between
QZE(QAZE) and the dissipation, for arbitrary dissipation strength and periodicity, is yet to be developed. In this
paper, we show a framework to unify the QZE(QAZE) and the parity-time (PT ) symmetry breaking transition,
where the pure dissipative Hamiltonian is mapped onto a PT symmetric non-Hermitian Hamiltonian. This
method uses the PT symmetry transitions to distinguish QZE and QAZE, and can be applied to analyze the
crossover behavior between these two effects. Using a heuristic example of a two-level system which is coupled
to environment by periodical dissipation, we show the relation diagram between the QZE(QAZE) and the PT
symmetry breaking transition, in which the QZE appears at an exceptional point that separates the PT symmetric
(PTS) phase and the PT symmetry broken (PTSB) phase, and ends at the resonance point of the maximum PT
symmetry breaking; after that, QAZE exists at the rest of the PTSB phase and remains in the next PTS phase. This
interesting finding reveals a hidden relation between the QZE–QAZE and PTS-PTSB phases in a non-Hermitian
quantum system.
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I. INTRODUCTION

The quantum Zeno (anti Zeno) effect is an interesting fea-
ture of an open quantum system, initially interpreted as the
fact that the evolution of the system can be suppressed (en-
hanced) by measuring it frequently enough in its initial state
[1–10]. Over the years, these effects have been extensively
used to control and manipulate quantum systems, including
changing the decay rate of an unstable state [3,11–13], pro-
tecting quantum information [14], suppressing decoherence
[8,15], extending the lifetime of ultracold molecules [16], and
suppressing the tunneling in an optical lattice [11,17,18].

The implication of the term quantum Zeno effect–quantum
anti Zeno effect [QZE(QAZE)] has since expanded, where
the time evolution can be suppressed (enhanced) not only by
projective measurements, but also by a variety of dissipative
processes. Usually, a non-Hermitian term of dissipation −iγ
is inserted into the Hermitian Hamiltonian to play the role of
the measurement [19,20]. Such non-Hermitian Hamiltonians
are equivalent to those in a multimode Jaynes-Cummings
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model, enabling a unified theory to describe QZE (QAZE) for
both repetitive and continuous observations.

However, it is still an open question whether there is a sim-
ple criterion to justify the deceleration (QZE) and acceleration
(QAZE) of the evolution of a quantum system, not only in
terms of projective measurements but also for the dissipation
process. In Ref. [21], such criterion had been established
for the case of frequently projective measurement, where
the modified decay rate could be determined by the overlap
between the reservoir’s coupling spectrum and the spectrum
of the state that is frequently measured. However, a general
criterion, which could be extended to the dissipation with
an arbitrary small strength, is still lacking. As explained in
Ref. [21], such an extension is not trivial, because the effects
of projective measurements can be treated as the phase ran-
domization, and then induce level broadening consequently.
But for small dissipations, we need to deal with partial deco-
herence which could induce the nontrival broadening of the
quantum level described by a stochastic, nonlinear Liouville
equation [22]. It is quite interesting to find out the relation
between the QZE (QAZE) and the small dissipation with ar-
bitrary strength and frequency, where the modified dynamics
of the evolution usually do not behave as expected as the ideal
projective measurements.

Recently, studies of passive PT symmetric quantum sys-
tems indicate the appearance of a slow decay mode associated
with the PT symmetry broken (PTSB) phase [23–26]. Based
on these findings, in this paper, we unify QZE (QAZE) and
PT symmetry breaking transitions in terms of non-Hermitian
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quantum mechanics. We find that PT symmetry breaking
transitions play a general role in determining the appearance
of QZE (QAZE). This treatment enables us to search for the
QZE (QAZE) behaviors by analyzing the phase diagram of
a PT symmetric non-Hermitian Hamiltonian. We show that
the PT symmetry transitions hidden in a pure lossy two-level
system could be used to precisely characterize QZE (QAZE)
for dissipations with arbitrary strength and frequency.

II. GENERAL RELATIONS BETWEEN QZE (QAZE) AND
PARITY-TIME SYMMETRY BREAKING TRANSITIONS

The relation between QZE (QAZE) and PT symmetry
breaking transitions is described as follows: First, the projec-
tive measurement associated to QZE (QAZE) is considered as
a strong dissipation that couples the system to environment.
Then, by decreasing the dissipation strength, QZE (QAZE) is
studied in the weak dissipation regime. This non-Hermitian
Hamiltonian is given by

H = ν0|↑〉〈↑|+(ν − 2iγ )a†a + a†�|↓〉〈↑|+a�∗|↑〉〈↓|,
(1)

which describes a non-Hermitian system in which an atom in
the excited state |↑〉 of the energy ν0 emits a single photon
with frequency ν, and decays to the ground state |↓〉 of zero
energy. a (a†) is the annihilation (creation) operator for the
photon mode, and � (�∗) is the coupling amplitude of the
two atomic states. The action of the measurement is modeled
by considering the photon mode is leakage with a dissipative
rate γ [19].

Second, this dissipative Hamiltonian is mapped into a bal-
anced gain-loss Hamiltonian with PT symmetry. Defining
νa = (ν0 + ν)/2 and � = (ν0 − ν)/2, we have H = H0 +
Hint , where H0 = (−iγ + νa)1 + �σz with 1 is the unit matrix
and σz the Pauli matrix, and we have

Hint =
(+iγ �∗

� −iγ

)
. (2)

Hint = PT HintPT is a balanced gain-loss Hamiltonian which
remains invariant under the PT operation. Here the parity
operator is given by P = σx and the time-reversal operator
is given by T iT = −i. This PT symmetric Hamiltonian al-
lows symmetry breaking phase transitions in its eigenvalue
spectrum, where the eigenvalues evolve from purely real
numbers to complex-conjugate pairs. Known as passive PT
symmetry transitions, the transitions of a no-gain system with
mode-selective losses have been observed in various systems
[23,24,26–39].

Third, the frequency-dependent analysis is applied to deter-
mine the QZE (QAZE) [40–43]. In the frequency-dependent
picture, QZE(QAZE) is defined in a way that the effective
decay rate � decreases (increases) as the measurement (dis-
sipation) frequency ω increases. This definition provides a
clear physical picture: the rapidly repeated measurements
suppressed (enhanced) the relaxation process of the unstable
state, leading to the QZE (QAZE).

For a static dissipation γ0, it is well known that � increases
as γ0 increases in the PT symmetric (PTS) phase, but �

decreases when increasing γ0 in the PTSB phase. Here we

FIG. 1. The concept picture indicating the relation between QZE
(QAZE) and PT symmetry breaking transitions. Black solid line: the
dependence of the imaginary part of the quaienergy −Im(ε) of a pas-
sive PT symmetry Hamiltonian on ω. Red solid line: The effective
lifetime τ of an unstable system. QZE (QAZE) represents quantum
Zeno (anti Zeno) effect. PTS (PTSB) represents PT symmetric (PT
symmetry broken) phase. LEP (HEP) is the exceptional point of PT
symmetry breaking transitions with PTS at the low (high) frequency
side. RP is the resonant point of the PTSB phase.

analyze how � depends on the magnitude and frequency of
the time-periodically modulated dissipation γ (t ), where there
exist rich phases separated by multiple PTS and PTSB phases
[23,44]. In the PTS phase, � always increases as ω gets larger.
While in the PTSB phase, the eigenvalues are split into two
branches. One is called the “slow mode” with less imaginary
(loss) components than the other “fast mode.” The fast mode
decays quickly, but the slow mode survives in the longer time
and dominates the time evolution.

It is natural to ask whether a PTSB phase corresponds to
the QZE while a PTS phase corresponds to the QAZE. The
fact is that such simple one-to-one correspondence is invalid.
Instead, we find a general relation, shown in Fig. 1, by analyz-
ing the dependence of the imaginary part of the quasienergy
Im(ε) on ω. In the PTS phase, −Im(ε) increases as ω becomes
larger, resulting in the QAZE. When ω is larger than the lower
exceptional point (LEP), the slow mode appears and the imag-
inary part of the slow mode decreases as ω increases. In the
PTB regime, � is dominated by the slow mode that inhibits the
decay, exhibiting the QZE until ω increases to the resonance
point (RP). Above the RP, the imaginary part of the slow mode
increases as ω increases, and the system shows the QAZE.
The QAZE exists in the rest of the PTSB phase above the RP,
and remains in the PTS phase above the higher exceptional
point (HEP). This analysis uses the frequency response of
a decay system to define the QZE (QAZE), only relying on
the eigenmode behavior of a passive PT symmetric system.
These arguments are rather general and do not depend on the
details of the Hamiltonian, so we believe it could be a univer-
sal relation to unify parity-time symmetry breaking transitions
and the QZE (QAZE) in open quantum systems.

III. MODEL AND RESULTS

To make the physics clear in a simple context, we illustrate
the above relation using a two-level dissipative Rabi system
driven by a resonant photon mode HL(t ) = −J (t )(|↑〉〈↓| +
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|↓〉〈↑|) − 2iγ (t )|↓〉〈↓|, in which the coupling rate J (t ) and
the dissipation rate γ (t ) of the |↓〉 level are both time
dependent. As shown in Eq. (2), this Hamiltonian can
be written as HL(t ) = −iγ (t )1 + HPT (t ), where HPT (t ) =
−J (t )(|↑〉〈↓| + |↓〉〈↑|) + iγ (t )|↑〉〈↑| − iγ (t )|↓〉〈↓| is a PT
symmetric Hamiltonian.

We assume a constant coupling rate J0, and a square-wave
modulation of the dissipation γ (t ) with the pulse width τ1 and
period T ,

γ (t ) =
{

γ0, 0 � t < τ1

0, τ1 � t < T,
(3)

where T = 2π/ω is the period of the Hamiltonian,
i.e., HL(t + T ) = HL(t ). The PTS (PTSB) phase is de-
fined via the quasienergies ε±

F of the effective Flo-
quet Hamiltonian, which are obtained from the nonuni-
tary time evolution operator for one period G′(T ) (see
Appendix A). Here G′(T ) = e−iHL (t�τ1 )(T −τ1 )e−iHL (t<τ1 )τ1 =
e−γ0τ1 G(T ), with G(T ) = e−iHPT (t�τ1 )(T −τ1 )e−iHPT (t<τ1 )τ1 of the
time evolution operator of balanced gain and loss. ε±

F is then
given by

ε±
F = −iγ0τ1/T + i ln(�±

F )/T (4)

with �±
F of the eigenvalue of G(T ), and

�±
F = c1c2 − J0

ε0
s1s2

±
√(

γ0

ε0
s1

)2

−
(

c1s2 + J0

ε0
s1c2

)2

. (5)

The parameters are defined as c1 ≡ cosh(ε0τ1), c2 ≡
cos[J0(T − τ1)], s1 ≡ sinh(ε0τ1), s2 ≡ sin[J0(T − τ1)], and
ε0 ≡

√
γ 2

0 − J2
0 .

The imaginary parts of the quasienergies ε±
F (γ0, ω, τ1) de-

termine the decay rates �±
F = −2 Imε±

F . In the PTS phase,
�±

F are complex conjugates and have the same magnitude.
Therefore, the real parts of ln �±

F are the same, and so are the
imaginary parts of ε±

F . Thus �±
F are equal and increase when

γ0 increases. In the PTSB phase, both �±
F become purely

real, leading to the imaginary parts of ε±
F being different

and the emergence of two different decay rates, named as
slow mode and fast mode. Two modes arise at the excep-
tional point of the PT symmetry breaking transition. The
degree of symmetry breaking is described by a dimensionless
parameter μ(γ0, ω) = ||e−iε+

F T | − |e−iε−
F T ||. As an example,

Fig. 2(a) shows μ(γ0, ω) for the dissipation with the pulse
parameter J0τ1 = 0.01, and Fig. 2(b) shows �F along the red-
dashed line in Fig 2(a). The coincidence between the lifetime
of the unstable state and the decay rates of the eigenmodes
have been confirmed from large to small dissipation strength
(Appendix C).

We could extend this result to the whole PT phase dia-
gram as shown in Fig. 2. There are multiple PTS and PTSB
blocks with the resonant frequencies of PTSB ωn/J0 = 2/n,
where n = 1, 2, 3 . . . (see Appendix B). In one of the PTS
blocks (marked as ①) shown in Fig. 2, �±

F decreases with the
decrease of ω, which indicates QAZE. As ω decreases, the
system experiences a phase transitions from PTS to PTSB.
After crossing the exceptional point, in one of the PTSB

FIG. 2. The decay rates of a two-level system with a time-
dependent dissipation modeled by a PT symmetric Hamiltonian.
(a) The phase diagram of PT symmetry breaking, in which the color
presents μ(γ0, ω). The vertical axis is the normalized dissipation
amplitude γ0/J0, and the horizontal axis is normalized modulation
frequency ω/J0. Note that the phase diagram is obtained by fixing
τ1 = 0.01/J0 and varying T . Although the widths of the PTS phases
(deep-blue color) and the PTSB phases (all other colors) depend on
τ1, the structure of the phase diagram as well as the location of the
resonance peaks (one of them represented by the black-dashed line)
does not depend on τ1. (b) The comparison of the decay rates �F and
the lifetime τ along the red-dashed line in Fig. 2(a) with γ0 = 200J0.
The red dot is the numerical simulation of the lifetime of the unstable
state. ① (②) presents one of the PTS (PTSB) regimes.

blocks (marked as ②), the decay rate of the slow mode is
not monotonous. Below the PTSB resonance, �−

F decreases
with the increase of ω, but has the reverse behavior above the
resonance. So the transition from the QAZE to the QZE is at
the point of ωn.

IV. DISCUSSION AND CONCLUSIONS

This framework leads to the unification of the PT sym-
metry breaking transition and the QZE (QAZE). But is this
picture also supported by the results of the case of the pro-
jective measurements and the case of continuous observation
(static dissipation)? The answer is yes. In the following, we
confirm the universality of this unification for both cases.

First, we discuss the projective measurements by con-
sidering the limit of the large and frequent dissipation
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FIG. 3. The decay rates of continuous observation as a function
of the static dissipation. The black (blue) line represents the eigen-
mode �+

0 (�−
0 ) in the PTSB phase, respectively (the two eigenmodes

overlap in the PTS phase). The dashed lines represent the decay rates
at the limit of γ0 
 J0.

with γ0/J0 
 1 and ω/J0 
 1. The decay rate of the
states �±

F is simplified as �±
F = (J2

0 /γ0)(τ1/T ) + 2 ln[c2 ±√
1 − s2

2)/2]/T . With ω/J0 
 1, cos(J0τ2) → e−(J0τ2 )2/2, we
got

�+
F = J2

0

γ0

τ1

T
+ J2

0
τ 2

2

T
. (6)

On the other hand, the QZE appears in a two-level system
in which the projective measurements are applied to the final
state [8]. In this system, the two-level system is driven with
the Rabi frequency ωR and the initial population is in the |↑〉
level, while the final state |↓〉 couples to the third state with a
dissipative rate γc. When the N rapid projective measurements
with the time intervals of δt = t/N are applied to the final
state, the survival probability of the initial state after N times
measurements is pN (t ) = p(δt )N � [1 − (ωRδt/2)2]N . When
δt  π/ωR, the decay rate of pN (t ) is 1/τQZE = ω2

Rδt/4,
showing that the projective measurements slow down the de-
cay of the state. In the real experiments, the measurement
time is finite, and both the measurement pulse duration tp

and the time interval between the two consecutive pulses
δt are required to be calculated, giving the decay rate (see
Appendix A)

1

τ
= ω2

R

γc

tp

tp + δt
+ ω2

R

4

δt2

tp + δt
. (7)

It is obvious that Eqs. (6) and (7) are equivalent, which indi-
cates that QZE (QAZE) can be well understood in terms of the
picture of PT symmetry breaking transition. The blue-dashed
line in Fig. 2(b) is plotted in Eq. (7), showing that the two
decay rates are in good agreement with each other.

Second, we consider the continuous observation (static
dissipation). In the static case, the eigenvalues are given by
λ± = −iγ0 ±

√
J2

0 − γ 2
0 where J0, γ0 are the static parame-

ters. The decay rates �±
0 as a function of γ0/J0 are shown in

Fig. 3. When γ0 � J0 with the J0 as the LEP, the system is
in the PTS phase and the decay rates of the two eigenmodes
are equal, �±

0 = 2γ0. In this phase, the decay rate increases as

γ0 increases. When γ0 > J0, the system is in the PTSB phase,
leading to the emergence of two modes given by

�−
0 = 2

(
γ0 −

√
γ 2

0 − J2
0

) →
γ0
J0

J2
0

γ0
,

�+
0 = 2

(
γ0 +

√
γ 2

0 − J2
0

) →
γ0
J0

4γ0. (8)

In the limit γ0 
 J0, the decay rate for the fast mode doubles,
�+

0 → 4γ0, whereas that for the slow mode vanishes, �−
0 →

J2
0 /γ0. These values coincide with the continuous QZE case

with the theory in Ref. [19] and experiment in Ref. [8]. The
populations of up and down level decays are given by 1/τ|↑〉 =
ω2

R/γc and 1/τ|↓〉 = γc from the picture of quantum measure-
ment. It is clear that the two approaches are equivalent pro-
vided ωR = 2J0 and γc = 4γ0. In the strong-dissipation limit
γ0 
 J0, the slowly decaying eigenmode has a near-unity
overlap with the |↑〉, while the rapidly decaying eigenmode
is mostly aligned with |↓〉. Thus, the PTSB phase provides
a suitable generalization of the continuous QZE when the
dissipation strength is moderate, γ0 � J0. On the other hand,
when γ0 � J0, the two decay rates �±

0 = 2γ0 increase with
increasing dissipation, which is consistent with the QAZE.

We formulate a general picture of QZE(QAZE) in the two-
level dissipative Rabi system based on the phase diagram of
PT symmetry. QZE is always observed in the strong dissipa-
tive regime γ0/J0 
 1 above a certain modulation frequency
ω. But, even deep in the strong-dissipation regime, the QAZE
could also exist in the regime near the EP points. On the other
hand, in the weak-dissipation regime, the QAZE is observed at
most of the modulation frequencies. Conversely, although the
QZE survives down to vanishingly small dissipation strengths,
i.e., γ0/J0  1, it only exists with the modulation frequencies
in the range between the LEP and the RP of the PTSB phase.

In conclusion, we unify the symmetry transitions associ-
ated to the PT symmetric non-Hermitian Hamiltonians with
the quantum measurement effect of QZE (QAZE). Using a
dissipation term, instead of projective measurement, the in-
teraction between the unstable system and the environment
can be tuned from strong to weak, enabling a systematic
study of tunable dissipation, in which QZE(QAZE) is not
as manifested as in the projective measurement case. We
find that PT symmetry breaking transitions exist with the
appearance of the QZE(QAZE), regardless of strong or weak
dissipations [45], or periodical or static ones. A recent ex-
perimental work with a momentum lattice of cold atoms has
partially confirmed our predictions [46]. Our findings help
to explore QZE(QAZE) physics in complex setups, such as
systems beyond Markovian approximation [40,47] and with
many-body interactions [48,49]. With a simple and quantita-
tive criterion, our method could lead to a deep understanding
of the relations between the quantum measurement effects and
the non-Hermitian quantum dynamics.

The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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APPENDIX A: THE DECAY RATE OF A DISSIPATIVE
TWO-LEVEL SYSTEM WITH A PT SYMMETRIC

HAMILTONIAN

The PTS (PTSB) phases of the passive PT symmetric
Hamiltonian HL are defined via quasienergies ε±

F , which are

obtained from the eigenvalues of the nonunitary time evolu-
tion operator of one period G′(T ) [23–26]:

G′(T ) = e−γ0τ1 G(T ). (A1)

The quasienergies ε±
F of G′(T ) are related to the time evolu-

tion operator G(T ) of a balanced gain-loss Hamiltonian HPT ,
given by

ε±
F = −iγ0τ1/T + (i/T ) ln(�±

F ), (A2)

where �±
F are eigenvalues of G(T ).

The time evolution operator for one period of the PT
system with the square-wave dissipative term is given by

G(T ) = Gu(τ2)GPT (τ1) = eiJσxτ2 e−iHPT τ1 =
(

c2 is2

is2 c2

)(
c1 + γ0

ε0
s1

iJ0
ε0

s1

iJ0
ε0

s1 c1 − γ0

ε0
s1

)

=
⎛
⎝

(
c1c2 − J0

ε0
s1s2

) + γ0

ε0
s1c2 i

(
c1s2 + J0

ε0
s1c2

) − i γ0

ε0
s1s2

i
(
c1s2 + J0

ε0
s1c2

) + i γ0

ε0
s1s2

(
c1c2 − J0

ε0
s1s2

) − γ0

ε0
s1c2

⎞
⎠

=
(

c1c2 − J0

ε0
s1s2

)
1 + γ0

ε0
s1c2σz + γ0

ε0
s1s2σy + i

(
c1s2 + J0

ε0
s1c2

)
σx. (A3)

Here, τ2 ≡ T − τ1, and the eigenvalues of G(T ) are

�±
F = c1c2 − J0

ε0
s1s2 ±

√(
γ0

ε0
s1

)2

−
(

c1s2 + J0

ε0
s1c2

)2

, (A4)

where c1 ≡ cosh(ε0τ1), c2 ≡ cos(J0τ2), s1 ≡ sinh(ε0τ1), s2 ≡ sin(J0τ2), and ε0 ≡
√

γ 2
0 − J2

0 . �±
F are rewritten as

�±
F = 1

2
eε0τ1

{
(1 + e−2ε0τ1 )c2 − J0

ε0
(1 − e−2ε0τ1 )s2 ±

√[
γ0

ε0
(1 − e−2ε0τ1 )

]2

−
[

(1 + e−2ε0τ1 )s2 + J0

ε0
(1 − e−2ε0τ1 )c2

]2
}

. (A5)

In the limit of strong dissipation J0/γ0 → 0, we have

ε0 = γ0

√
1 −

(
J0

γ0

)2

→ γ0 − J2
0

2γ0
,

J0

ε0
= J0

γ0

√
1 −

(
J0
γ0

)2
→ 0,

γ0

ε0
= 1√

1 −
(

J0
γ0

)2
→ 1,

e−2ε0τ1 = e−2(γ0/J0 )
√

1−(J0/γ0 )2J0τ1 → 0. (A6)

Therefore, �±
F can be simplified into

�±
F = 1

2
e[γ0−(J2

0 /2γ0 )]τ1
(
c2 ±

√
1 − s2

2

)
. (A7)

Then the decay rates of the states �±
F become

�±
F = J2

0

γ0

τ1

T
− 2

T
ln

[
1

2

(
c2 ±

√
1 − s2

2

)]
. (A8)

If the system is in the strong-dissipation limit as well as
in the high-frequency limit ω/J0 
 1, J0τ2 → 0, c2 → 1 −
(J0τ2)2/2 → e−(J0τ2 )2/2. Then �+

F is further simplified as

�+
F = J2

0

γ0

τ1

T
+ J2

0
τ 2

2

T
. (A9)

This result coincides with the formula obtained from
the formula of QZE induced by the projective frequent
measurement [8].

Here, we present the details about the derivation of Eq. (7)
(in the main text). We define �p as the decay rate for the
pulse duration tp, which is ω2

R/γc. Here, γc/2 = 2γ0 equals
the decay rate of the | ↓〉. We also define �c as the decay rate
for the separation duration δt of the pulses, which is ω2

Rδt/4.
Thus, the survival probability of the stable system after N
measurement cycles is

P(t ) = (e−�ptpe−�cδt )N = e−�pNtpe−�cNδt = e−�eN (tp+δt ),

(A10)

where �e is the equivalent lifetime. So,

−�cNδt − �pNtp = −�eN (tp + δt ),

�e = �p
tp

tp + δt
+ �c

δt

tp + δt
,
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FIG. 4. The decay rates of a two-level system with different dissipation strengths. Axis and labels are the same as Fig. 2 in the main paper.
(a) The phase diagram of PT symmetry breaking. White-dash lines present the LEPs and HEPs. Black-dash lines are the RPs of the PTB
phases. (b), (c), (d) The comparison of the decay rates �F of the eigenmodes and the lifetime of the unstable state, along the red-dashed lines
in (a) with γ0=1000J0, 100J0, and 10J0, respectively.

1/τ = �e = ω2
R

γc

tp

tp + δt
+ ω2

R

4

δt2

tp + δt
. (A11)

Note that the same equation can be also found in Eq. (5) of
Ref. [8].

APPENDIX B: THE PARAMETERS OF THE PTS
AND PTSB PHASES

The exceptional lines. The PTS (PTSB) phases are deter-
mined by the properties of �±

F [23,44], given by

P(y) =
[
γ0

ε0
(1 − e−2ε0τ1 )

]2

−
[

(1 + e−2ε0τ1 ) sin y + J0

ε0
(1 − e−2ε0τ1 ) cos y

]2

,

(B1)

where y = J0τ2 = J0(2π/ω − τ1). When P(y) = 0, the LEP
ωLn and the HEP ωHn are solved as

ωHn

J0
= 2π

arccos
( − J0

γ0
− ε2

0

J0γ0+γ 2
0 c1

) + J0τ1 + nπ
,

ωLn

J0
= 2π

arccos
( J0

γ0
+ ε2

0

J0γ0+γ 2
0 c1

) + J0τ1 + nπ
, (B2)

where n = 0, 1, 2 . . . is the transition index from higher to
lower frequency. Note that the index n of the two exceptional
lines of a PTSB phase are different by one.

The resonant point of PTSB. In the weak-dissipation limit
of γ0/J0 → 0, there are some PTSB regimes.

ε0 = J0

√(γ0

J0

)2 − 1 → iJ,

J0

ε0
= 1√(

γ0

J0

)2 − 1
→ −i,

023204-6
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γ0

ε0
= γ0

J0

√(
γ0

J0

)2
− 1

→ 0,

c1 = cos
(√

J2
0 − γ 2

0 τ1
) → cos(J0τ1),

s1 = i sin
(√

J2
0 − γ 2

0 τ1
) → i sin(J0τ1). (B3)

�±
F are simplified into

�±
F = cos(J0T ) ± i

√
sin2(J0T ). (B4)

Only when J0T = nπ, n = 1, 2, 3 . . ., �±
F are purely real,

indicating the resonant points

ωn

J0
= 2

n
, n = 1, 2, 3 . . . . (B5)

The resonant points of the PTSB are shown by the dark-
dashed lines in Fig. 4(a).

APPENDIX C: THE DECAY RATES
OF THE UNSTABLE STATES

Based on the unified picture of QZE(QAZE) and PT sym-
metry transition, the lifetime of the unstable state and the
decay rates of the eigenmodes should coincide. We confirm
this by numerically calculating the population number occu-
pied in the unstable state and then fitting the lifetime, and use
this result to compare the calculation of eigenmodes shown in
Figs. 4(b)–4(d).
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