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Improving D2p Grover’s algorithm to reach performance upper bound under phase noise
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The original Grover’s algorithm has a success probability to output a correct solution, while deterministic
Grover’s algorithms improve the success probability to 100%. However, the success probability of deterministic
Grover’s algorithm decreases in noisy environment. Here we improve the deterministic two-parameter (D2p)
Grover’s algorithm to reach the upper bound for success probability under phase noise. We prove that it is not
possible to design any deterministic Grover’s algorithm whose success probability is higher than our improved
D2p protocol’s under phase noise.
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I. INTRODUCTION

Grover’s quantum search algorithm [1,2] can effectively
solve the search problem, which has total N inputs and M
solutions. It gives a correct solution with O(

√
N/M ) oper-

ations, and its success probability is better than 50%. This
provides a quadratic speedup against classical search algo-
rithms. Grover’s algorithm can be described as the iterations
of two modules: the black box oracle, which is untunable
[3] and the reflection operator with a tunable phase β. The
original Grover’s algorithm simply chooses β = π . Very re-
cently, a novel result named as deterministic two-parameter
(D2p) Grover’s algorithm [4] is presented. This D2p protocol
can deterministically give a correct solution by choosing two
well-designed phases β1, β2 for reflection operator. There is
an important problem that noise [5–9] is inevitable for prac-
tical quantum circuit. It is meaningful to find such a robust
algorithm with success probability as high as possible. In par-
ticular, phase noise δβ is caused by implement’s imperfection
and, to our knowledge, designing a quantum error correction
code for phase noise is still an open problem. It should be clar-
ified that the phase noise δβ (coherent) appears in the logical
tunable phase β and it is different from the dephasing noise
(incoherent) for which a few quantum error correction code
exists. The effect of phase noise [10] to the original Grover’s
algorithm has been investigated. However, the optimal result
of Grover’s algorithm is unknown. Here we improve the D2p
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algorithm to reach the upper bound for success probability
under phase noise. We prove that the success probability of
our improved D2p protocol is the highest among all possible
deterministic Grover’s algorithms, which cannot be surpassed
in principle.

We shall use geometric method to study phase noise ef-
fect. Throughout this paper, we consider the standard black
box oracle without any user-tunable parameters [3,4] and do
not include the type of oracle with user-tunable parameters
[11,12].

The success probability criteria has important applica-
tion [4,11], especially in the cases such as high cost of
system initialization and quantum measurement. Another im-
portant criteria is runtime [13,14], which maybe used in other
literature.

II. THE ORIGINAL AND D2p GROVER’S ALGORITHMS

We begin with initial state |ψ0〉 = ∑N−1
x=0 |x〉, where the

dimension of Hilbert space is N = 2n and n is the number
of qubits. There are M target states, which are denoted as |t j〉,
and the others are written as |r j〉. Then the initial state can be
expressed in a two-dimension space

|ψ0〉 = √
1 − λ|R〉 +

√
λ|T 〉 :=

(√
1 − λ√

λ

)
, (1)

where

|T 〉 = 1√
M

M∑
j=1

|t j〉,

|R〉 = 1√
N − M

N−M∑
j=1

|r j〉, (2)
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and λ = M/N . The black box oracle and reflection operators
can also be written in this two-dimension space [15],

So =
(

1 0
0 −1

)
,

Sr (β ) =
(

1 − (1 − eiβ )λ (1 − eiβ )
√

λ(1 − λ)
(1 − eiβ )

√
λ(1 − λ) eiβ + (1 − eiβ )λ

)
, (3)

and their product is the Grover’s iterate operator,

G(β ) = − Sr (β )So

=
(

(1 − eiβ )λ − 1 (1 − eiβ )
√

λ(1 − λ)

−(1 − eiβ )
√

λ(1 − λ) eiβ + (1 − eiβ )λ

)
.

(4)

Both original and D2p algorithms repeatedly apply
Grover’s iterate operator G(β ) to initial state |ψ0〉 with dif-
ferent β. The original algorithm chooses β = π , then G(π )
rotates |ψ0〉 towards |T 〉 along the Bloch sphere’s geodesic
step by step as shown in Fig. 1(a). Each step rotates 2θ =
4 sin−1

√
λ, and after k0 steps the state will exactly coincide

with |T 〉, where

k0 = π

2θ
− 1

2
= π

4 sin−1
√

λ
− 1

2
. (5)

Usually k0 is not an integer. We apply kg = �k0� steps to obtain
a final state |ψ f 〉, which is closest to |T 〉. So the original
Grover’s algorithm probably outputs a correct answer with
success probability |〈ψ f |T 〉|2 = sin2[(kg + 1/2)θ ].

D2p algorithm designs two phases β1, β2 for Grover’s iter-
ate operator, then G(β1) and G(β2) rotates |ψ0〉 along a zigzag
line on Bloch sphere as shown in Fig. 1(b). In Ref. [4], it is
shown that

∀kd � �k0�, ∃β1, β2, 〈ψ f |R〉 = 0.

It means that after kd steps the final state |ψ f 〉 deterministi-
cally coincides with |T 〉. The phases β1 and β2 are given by
solving the following equations with parameter kd and λ [4]:

1+4λ(1 − 2λ) sin

(
β1

2

)
sin

(
β2

2

)
tan

( kd
2 φ

)
sin φ

= 0,

(1 − 4λ) tan

(
β1

2

)
+ tan

(
β2

2

)
= 0,

cos

(
β1 + β2

2

)
+8λ(1 − λ) sin

(
β1

2

)
sin

(
β2

2

)
− cos φ = 0.

(6)

These equations work for even integer kd . There are another
set of equations when kd is odd [4]. The simulation results [4]
for original and D2p algorithms are shown in Fig. 1(c). It is ap-
parent that one successes with probability smaller than 1 and
the other with certainty in a perfectly noiseless environment.

III. PHASE NOISE

The original Grover algorithm chooses only one phase
value β = π , and D2p protocol designs two different β

value [3,4]. In general Grover’s algorithm, each step can take
a different phase value β. Here we use geometrical property of

FIG. 1. The original Grover’s algorithm and deterministic two-
parameter (D2p) protocol. (a) On Bloch sphere, the original Grover’s
algorithm rotates initial state |ψ0〉 about y axis step by step. Each step
takes 2θ angle. At the end of path, the final state |ψ f 〉 usually cannot
coincide with target state |T 〉. (b) D2p protocol has two different
Grover’s iterate operators G(β1) and G(β2). These two operators al-
ternatively rotate initial state |ψ0〉 on Bloch sphere and draw a zigzag
line. The final state |ψ f 〉 exactly coincides with target state |T 〉.
(c) These two algorithms are simulated in noiseless environment,
and success probability |〈ψ f |T 〉|2 are plotted. Clearly, D2p has better
performance than original Grover’s algorithm.

Bloch sphere to prove that phase noise has different influence
for different β value, and noise effect reduces to minimum
when β = π .
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FIG. 2. A step of general path, which describes G(−β ) takes A1

to A2. This step can be divided into two stage. First, S0 rotates A1 to
B1 about z axis with π angle, so A1 and B1 locates on the same warp.
Then Sr (−β ) rotates B1 to A2 about |ψ0〉 with −β angle and r radius
while this curve intersects the warp at A′

2.

Theorem 1. Suppose there is a general Grover’s algorithm
with total k steps, and phase noise is independent in each step.
Then the deviation on success probability induced by phase
noise will be gradually reduced if Grover’s algorithm takes
more βs equal to π . The noise effect decreases to minimum
when Grover’s algorithm takes all βs equal to π .

Proof. Consider arbitrary step A1A2 with −β of a general
path in Fig. 2, where A1A2 is geodesic on Bloch sphere.
Rewriting Eq. (3) as

S0 = I − (1 − eiπ )|T 〉〈T |,
Sr (−β1) = e−iβ1 [I − (1 − eiβ1 )|ψ0〉〈ψ0|], (7)

we see that S0 rotates point A1 to B1 about z axis with π

angle, then Sr (−β ) rotates point B1 to A2 about |ψ0〉 with
β angle and r radius while this curve intersects the warp
at A′

2. Noticing A2A′
2 is a small arc we obtain A1A2 = A1A′

2

and A1A′
2γ = A2A′

2 = r|β − π |. So a phase noise δβ takes
a first-order deviation δγ on angle γ , i.e., O(δβ ) = O(δγ ).
Notably, the phase noise δβ discussed in this article is not the
incoherent dephasing noise that shrinks the Bloch vector so
that the vector always has unity length and lies within the two-
dimensional surface of the Bloch sphere. We are interested in
deviation on the warped path of A1A2 (this warped path is so
approximate to A1A′

2 that we do not draw it in the figure),

δ warped path of A1A2 = δ(A1A2 cos γ )

= −A1A′
2 sin γ δγ + O(δγ 2)

= −d sin γ δγ + O(δβ2), (8)

where A1A2 = A1A′
2 has been used and d is the length of A1A′

2.
Clearly, taking γ = 0 can reduce this deviation to minimum.
Since noise is independent for each step, we can directly
summarize Eq. (8) for every step i = 1, ..., k to obtain the

deviation on whole warped path,

δ whole warped path = −
k∑
i

di sin γiδγi + O
(
δβ2

i

)
. (9)

Indeed, the length of whole warped path is positively corre-
lated with success probability |〈T |ψ f 〉|2. So Eq. (9) shows that
phase noise has a first order influence on success probability.
Notably, taking γi = 0 for more steps will gradually reduce
the noise effect on success probability, and taking all γi = 0
for every step can reduce this effect to minimum. Equally,
noise effect will gradually decrease if taking more βs = π and
it will decrease to minimum if taking all βs = π for every
step. �

Taking all βs = π for every step corresponds to the original
Grover algorithm. Although the original Grover’s algorithm is
most robust, its success probability is unsatisfactory as shown
in Fig. 1(c). In contrary, the robustness of D2p algorithm is
not strongest, but it is deterministic in noiseless environment.
The next section will combine the advantages of these two
algorithm to obtain the highest success probability under
phase noise.

IV. IMPROVED D2p GROVER’S ALGORITHM

We improve D2p Grover’s algorithm by performing D2p
protocol for only two steps while applying the original
Grover’s search protocol β = π for all other steps, as shown
in Fig. 3(a). Notably, these two D2p steps can be taken at
other positions besides the end of algorithm. In Appendix A
we show that reserving at different position only makes a
negligible effect on success probability and reserving at the
end of algorithm can furthest reduce the noise effect.

The step number is k = �k0�. We first apply G(π ) for k − 2
steps, then use G(β1), G(β2) for last two steps,

|ψ f 〉 = G(β2)G(β1)G(π )k−2|ψ0〉. (10)

The product G(β2)G(β1) can be written as [4]

e− i
2 (β1+β2 )G(β2)G(β1) = cos(φ)I + i sin(φ)

∑
j=x,y,z

σ jn j,

(11)

where σx,y,z are Pauli matrices and

cos(φ) = cos

(
β1 + β2

2

)
+ 8λ(1 − λ) sin

(
β1

2

)
sin

(
β2

2

)
,

nx = 2
√

λ(1 − λ)

sin(φ)
sin

(
β1 − β2

2

)
,

ny = 4(1 − 2λ)
√

λ(1 − λ)

sin(φ)
sin

(
β1

2

)
sin

(
β2

2

)
,

nz = − (1 − 2λ)

sin(φ)
sin

(
β1 + β2

2

)
. (12)

The other product G(π )k−2 can be obtained by diagonalizing
G(π ),

G(π ) = −X�X −1, (13)
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FIG. 3. (a) Our improved D2p Grover’s algorithm. First, we fol-
low the original Grover’s algorithm to rotate initial state |ψ0〉 for
k − 2 = �k0� − 2 steps. Then we design two particular steps with
two phases given by Eq. (15). The final state |ψ f 〉 will exactly
coincide with |T 〉 as D2p in Fig. 1(b). (b) We apply the same Gaus-
sian distributed phase noise δβ = N (μ = 0, σ 2 = 0.04) to original
Grover’s algorithm, D2p protocol and our improved D2p algorithm.
Ten thousand samples are averaged for the data. (c) Same as (b) but
with the distribution N (μ = 0.05, σ 2 = 0.04).

where X = 1√
2
(iI + σx ) and

� =
(

eiφλ 0
0 e−iφλ

)
(14)

with cos(φλ) = 1 − 2λ. The product G(π )k−2 is
simply (−1)k−2X�k−2X −1. Finally the deterministic
condition 〈R|ψ f 〉 = 0 gives us equations that determine
the phase value β1, β2,

(
√

1 − λ sin(k − 2)φλ +
√

λ cos(k − 2)φλ)nx sin φ

= −(
√

1 − λ cos(k − 2)φλ −
√

λ sin(k − 2)φλ)nz sin φ,

(
√

1 − λ sin(k − 2)φλ +
√

λ cos(k − 2)φλ)ny sin φ

= −(
√

1 − λ cos(k − 2)φλ −
√

λ sin(k − 2)φλ) cos φ.

(15)

These equations always have a solution when λ � 1
4 and the

solution is unique as proved in Appendix B.
Now we present the major result of this work as Theorem

2 below. With black box (untunable) oracle, we introduce
the definition of Deterministic Grover’s algorithm: A type of
Grover’s algorithm, which achieves 100% success probability
in noiseless environment.

Theorem 2. Our improved D2p algorithm reaches the
upper bound for success probability under phase noise among
all possible deterministic Grover’s algorithms.

Proof. The success probability of deterministic Grover’s
algorithm decreases under phase noise. The success proba-
bility will reach higher bound if the phase noise is reduced
to lower bound. According to Theorem 1, this corresponds to
the amount of β = π steps reaching maximum. Now we prove
this maximum amount is k − 2.

Consider a deterministic Grover’s algorithm with k − 1
steps for β = π , and one step for β �= π . Applying G(π ) for
m steps, G(β ) for one step and G(π ) for n steps, we have

|ψ f 〉 = G(π )mG(β )G(π )n|ψ0〉, (16)

where G(β ) and G(π ) are given by Eqs. (4) and (13) respec-
tively, and m + n = k − 1. Rewriting G(β ) as the summation
of real and imaginary parts, we obtain

|ψ f 〉 = G(π )m[G1(β, λ) + i sin βG2(λ)]G(π )n|ψ0〉, (17)

where G1(β, λ) and G2(λ) are real matrices,

G1(β, λ) =
(

(1 − cos β )λ − 1 (1 − cos β )
√

λ(1 − λ)
(cos β − 1)

√
λ(1 − λ) (1 − cos β )λ + cos β

)
,

G2(λ) =
( −λ −√

λ(1 − λ)√
λ(1 − λ) 1 − λ

)
. (18)

From the imaginary part, deterministic condition 〈R|ψ f 〉 =
0 immediately gives solutions β = 0, π , since G(π ) is a real
matrix. However, β = 0 gives a trivial operation and β = π

means that we trivially apply the original Grover’s algorithm.
So 〈R|ψ f 〉 = 0 does not have a solution for β, or there does
not exist a deterministic Grover’s algorithm with k − 1 steps
for β = π , and one step for β �= π .

Now we try to construct a deterministic Grover’s algorithm
with k − 2 steps for β = π , and two steps for β �= π . Follow-
ing the procedure in Eqs. (10)–(15), we obtain the improved
D2p Grover’s algorithm. �

Numerical simulations are shown in Figs. 3–5. In Figs. 3(b)
and 3(c), we apply the Gaussian distributed phase noise
δβ = N (μ, σ 2) to the original Grover’s algorithm, D2p
protocol and our improved D2p algorithm, while the mean
value μ is different for Figs. 3(b) and 3(c). Figure 4 shows that
how variation parameter σ 2 affects the success probability
with fixed λ when we apply the Gaussian distributed phase
noise δβ = N (μ = 0.05, σ 2). In Fig. 5, we apply Poisson and
uniform distributed noise instead of Gaussian distribution.
Simulation results support that our algorithm has the best
performance in phase noise environment.

We also consider the case that phase noise comes not only
into β, but also into the oracle implementation. Explicitly,
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FIG. 4. (a) We apply the same Gaussian distributed phase noise
δβ = N (μ = 0.05, σ 2) to original Grover’s algorithm, D2p protocol
and our improved D2p algorithm with fixed value λ = 0.040. We
collect their success probability under different variation parameter
σ 2. Ten thousand samples are averaged for the data. (b) Same as
(a) but λ = 0.027.

oracle operator does not take the form in Eq. (3) but [4,11,12]

So =
(

1 0

0 ei(π+δα)

)
, (19)

FIG. 5. (a) We apply the same Poisson distributed phase noise
δβ = P (0.04) to original Grover’s algorithm, D2p protocol and our
improved D2p algorithm. We collect their success probability with
different λ. Ten thousand samples are averaged for the data. (b) The
distribution of noise is changed to uniform δβ = U (−0.1, 0.2). All
other conditions are the same as in (a).

FIG. 6. (a) We apply the Gaussian distributed noise δα into ora-
cle operator and δβ into reflection operators where δα and δβ obey
the same distributed form N (μ = 0.03, σ 2 = 0.01). The results for
original Grover’s algorithm, D2p protocol and our improved D2p
algorithm are shown in figure. Ten thousand samples are averaged
for the data. (b) Same as (a) but with the different distribution:
δα = N (μ = 0, σ 2 = 0.04) and δβ = N (μ = 0.03, σ 2 = 0.01).

where δα is the noise. Numerical simulations are shown in
Fig. 6. Results show that our algorithm still has the best
performance when taking noisy oracle implementation into
consideration.

V. CONCLUSIONS

We study geometrical properties of phase noise on Bloch
sphere. It gives a new method to study noise effect in Grover’s
algorithm. Under phase noise, we improve D2p Grover’s
algorithm to reach the upper bound for success probability.
It is a progress for Grover’s algorithm working in practical
environment.
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APPENDIX A: DIFFERENT POSITIONS
OF TWO D2p STEPS

Here we study the influence that two D2p steps are taken
at different positions of D2p algorithm. The step number is
k = �k0�. Now we first apply G(π ) for n − 1 steps, then use
G(β1), G(β2) for two steps, finally apply G(π ) for k − n − 1
steps,

|ψ f 〉 = G(π )k−n−1G(β2)G(β1)G(π )n−1|ψ0〉, (A1)
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FIG. 7. Taking two D2p steps at different position slightly influ-
ences the success probability under phase noise. (a) We set λ = 0.01
and k = �k0� = 8 from Eq. (5) and numerically solve Eq. (A2) for
each position n. The position n = 1 means that we apply two D2p
steps at the beginning of algorithm and n = 7 represents the end
of algorithm. We simulate our improved D2p algorithm for every
n under phase noise and collect their success probability. The noise
obeys Gaussian distribution δβ = N (μ = 0, σ 2 = 0.04), which is
the same as in Fig. 3(b). Fifty thousand samples are average for the
data. (b) Same as (a) but the mean value of Gaussian distribution is
changed to μ = 0.05.

where n = 1, 2, ..., k − 1. Following the same procedure as
Eqs. (10)–(15) we obtain the equations that determine the
value of β1 and β2,

[nx sin φ cos(k − n − 1)φλ + nz sin φ sin(k − n − 1)φλ]

× [
√

1 − λ sin(n − 1)φλ +
√

λ cos(n − 1)φλ]

= −[nz sin φ cos(k − n − 1)φλ−nx sin φ sin(k−n − 1)φλ]

× [
√

1 − λ cos(n − 1)φλ −
√

λ sin(n − 1)φλ],

[ny sin φ cos(k − n − 1)φλ − cos φ sin(k − n − 1)φλ]

× [
√

1 − λ sin(n − 1)φλ +
√

λ cos(n − 1)φλ]

= −[cos φ cos(k − n − 1)φλ + ny sin φ sin(k − n − 1)φλ]

× [
√

1 − λ cos(n − 1)φλ −
√

λ sin(n − 1)φλ]. (A2)

These equations are degenerate to Eq. (15) when taking
n = k − 1. Given λ and n we can numerically solve these
equations to obtain β1 and β2, then apply the improved D2p
algorithm to get an output under phase noise. Numerical simu-
lation is shown in Fig. 7. Results show that reserving two D2p
steps at different position influences the success probability
under phase noise but this influence is negligible compared
to Fig. 3. Naturally, we reserve these two steps at the end of

FIG. 8. Geometrical interpretation for our improved D2p algo-
rithm and its key equation Eq. (B2). For clarity, we do not plot the
x axis. We apply G(π ) for k − 2 steps to the initial state |ψ0〉 and
obtain the state |ψk−2〉, which is denoted by the point A1. Without
losing any generality, β1 is taken to be any value in [0, π ) in this
figure. According to the right side of Eq. (B2), So takes A1 to A2 and
Sr (β1) takes A2 to any point on the curve A2A3 where A2A3 locates on
the back of sphere. Then So takes A2A3 to A1A4 where A1A4 locates on
the front of sphere. According to the left side of Eq. (B2), we must
take β2 ∈ (−π, 0] and Sr (−β2) takes B1 to any point on the B1B2.
A1A4 uniquely intersects with B1B2 at the red point.

our improved D2p algorithm to further reduce the phase noise
effect.

APPENDIX B: UNIQUENESS OF THE
SOLUTION FOR EQ. (15)

It is hard to directly prove the uniqueness by algebraic
method since Eq. (15) is highly nonlinear. Instead, we turn this
algebraic problem to a geometrical problem on the surface of
Bloch sphere and prove that the solution for this geometrical
problem is unique. Now we present our proof with Fig. 8.

In our improved D2p algorithm, we first apply G(π ) for
k − 2 steps to the initial state |ψ0〉 and obtain |ψk−2〉. Then
apply two D2p steps with phase value β1, β2 respectively to
obtain the final state |ψ f 〉 = |T 〉 with an unphysical phase
difference,

|T 〉 = G(β2)G(β1)|ψk−2〉. (B1)

According to Eqs. (3) and (4), this is written as ]

|T 〉 = Sr (β2)SoSr (β1)So|ψk−2〉,
S†

r (β2)|T 〉 = SoSr (β1)So|ψk−2〉,
Sr (−β2)|T 〉 = SoSr (β1)So|ψk−2〉. (B2)

We should find possible phase values β1, β2 to make the state
of both sides coincide for this equation. We first consider the
right side of Eq. (B2). Without losing any generality, β1 is
taken to be any value in [0, π ). After applying So, Sr (β1)
and So, |ψk−2〉 is taken to be any position on A1A4. Then
we consider the left side of Eq. (B2). Sr (−β2) takes |T 〉 to
any point on B1B2 when β2 ∈ (−π, 0]. Clearly, there is one
and only one intersection on A1A4 and B1B2. Corresponding
phases β1, β2 on this intersection are the unique solution
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for Eqs. (B2) and (15). This solution is obtained under β1 ∈
[0, π ) and we can also get a solution for β1 ∈ [−π, 0) and

the difference between these two solutions is trivial: they are
symmetric. Now the proof is complete.
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