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Anomalous flux state in higher-order topological superconductors
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We investigate the anomalous flux state of interacting higher-order topological superconductors (HOTSC)
protected by rotation symmetries. By introducing a π superconducting flux in 2D HOTSC, we demonstrate the
existence of a robust zero mode trapped at the flux center. Remarkably, the rotation symmetry and fermion parity
display projective representation inside the π flux with N = 2 supersymmetry algebra. A similar gapless flux
pattern also exists in 3D HOTSCs, the flux lines of which carry anomalous helical modes that cannot be realized
on purely one-dimensional lattice models. Notably, these exotic phenomena can be manifested in a 2D frustrated
quantum magnet whose low energy excitation characterizes emergent Majoranas with HOTSC band structure
and the Z2 flux exhibiting supersymmetries.
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I. INTRODUCTION

Higher-order topological superconductors (HOTSC) are
forms of gapped quantum matter that host gappable sur-
faces but gapless corners or hinges in-between [1,2]. Since
their initial discovery, HOTSC and their descendants have
been discussed extensively and have become an active area
of theoretical and experiential research. Recent progress has
included topological classifications [3–8], topological field
theories [8,9], and experimental realization of various classes
of HOTSC [10–19].

Despite the rapid progress in the understanding of higher-
order topological superconductors from a band structure
perspective [7,20–30], experimentally accessible fingerprints
for observing HOTSC still remain challenging in strongly
correlated systems. Notably, the observation of gapless Ma-
jorana modes at the corners or hinges does not fully guarantee
that the bulk is a higher-order topological superconductor
(HOTSC), as some of these gapless modes can potentially be
annihilated via surface gap closing, even if the bulk spectrum
remains gapped [8,29]. Alternatively, some higher-order topo-
logical superconductors (HOTSCs) can exhibit fully gappable
boundaries, including corners and hinges [29], while still ex-
hibiting a nontrivial entanglement structure that distinguishes
them from trivial superconductors. Previous works have
established that higher-order topological insulators and super-
conductors can be probed by their geometric responses, such
as the creation of lattice defects like dislocations or disclina-
tions. By creating these defects, one can observe Majorana
zero modes inside the disclination point in two dimensions or
chiral fermion modes localized at the dislocation/disclination
lines in three dimensions [9,31–37]. In contrast to these
approaches, which are primarily based on the noninteract-
ing limit, we aim to identify the universal fingerprints and
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topological responses specifically for strongly interacting
higher-order topological superconductor (HOTSC) phases.

In this work, we seek to unravel the nature of supercon-
ducting π flux and their corresponding topological response
features in 2D and 3D HOTSC. First, we begin with the 2D
HOTSC model on a square lattice proposed in Ref. [38] pro-
tected by C4 symmetry. We demonstrate that creating a π su-
perconducting flux engenders a projective symmetry between
C4 and fermion parity P, so the resultant flux state contains
a protected two-fold degeneracy. Remarkably, this projective
symmetry within the flux uniquely generates the N = 2 super-
symmetry (SUSY) algebra in quantum mechanics [39].

Motivated by these observations, we extend our horizon
into frustrated spin systems whose emergent quasiparticles
and flux excitations exactly reproduce the topological feature
of HOTSC [40]. Namely, we construct a bosonic spin- 3

2 model
whose low-energy excitations contain emergent Majoranas
coupled with a Z2 gauge field. The Majorana forms a super-
conducting band akin to the 2D HOTSC, while the Z2 gauge
flux excitation carries N = 2 SUSY structure.

In Sec. III, we examine the role of superconducting π flux
in 3D HOTSC with CT

4 symmetry. One of our main findings
is that the flux lines inside the HOTSC trap 1D helical Majo-
rana modes with an intrinsic quantum anomaly. In particular,
the gapless modes inside the flux line are anomalous in the
sense that the CT

4 symmetry will inevitably be broken if we
gauge the fermion parity inside the flux line. Under this ob-
servation, the helical Majorana modes inside the flux exhibit
global anomaly, signaling the impossibility of realizing them
on an isolated one-dimensional lattice model. Notably, such
quantum anomaly manifested by “conflict of the symmetries”
had been widely observed in the surface theory of symmetry-
protected topological phase [41,42].

Our result provides a new route to detect HOTSC in numer-
ical simulations via flux responses. The projective symmetry
in the 2D HOTSC flux state can be detected from the shift of
the entanglement spectrum upon flux insertion. Suppose one
creates a rotational symmetric cut of the ground state wave
function after π flux insertion; the entanglement spectrum
will display a robust two-fold degeneracy in all spectrum
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levels. This degeneracy persists even for small system sizes,
where finite-size effects are inevitable. More precisely, the
whole entanglement Hamiltonian develops a projective sym-
metry under rotation and fermion parity after flux insertion,
which results in a degenerate spectrum in the entanglement
Hamiltonian for both the ground state and highly excited
states. Notably, this degeneracy in the entanglement spectrum
is not a manifestation of the corner mode, but a consequence
of the projective symmetry due to the anomalous flux. Our
result suggests that the entanglement features of HOTSC also
reveal unique properties of topological flux responses, and
that the projective symmetry in the anomalous flux state can
be observed from the entanglement Hamiltonian. This paves
the way for a new promising route for exploring HOTSC in
numerical simulations.

II. PROJECTIVE SYMMETRY IN THE
SUPERCONDUCTING FLUX OF 2D HOTSC

This section investigates the topological feature of π

flux inside a 2D higher-order topological superconductor
(HOTSC) protected by C4 and fermion parity symmetry. The
motivation comes from the expectation that for a topological
quantum phase protected by symmetry G, one can detect its
topological feature by observing the anomalous symmetry
structure inside the symmetry defect (e.g., the gauge flux
for G symmetry) [41,43,44]. For instance, in a 2D p + ip
superconductor with fermion parity symmetry, the supercon-
ducting vortex contains a Majorana zero mode [45]. In 3D
T -invariant topological superconductor, the π flux line carries
a 1D chiral Majorana mode with c = 1/2 central charge [46].
For a general G symmetry-protected topological phase, once
we gauge the symmetry G, the symmetry flux either carries
a fractional quantum number of G or contains anomalous
gapless modes. This aspect provides an alternative way to
visualize the underlying quantum structure of the symmetry-
protected topological phases. In addition, exploring symmetry
flux offers a feasible way to detect topological responses via
numerical simulations or experimental measurements.

To set the stage, we begin with the 2D higher-order TSC
proposed in Ref. [38]. The model contains four Majoranas
(two complex fermions) living inside each unit cell on a
square lattice as shown schematically in Fig. 1. The four
Majoranas at the corners of the square mainly tunnel with
its nearest neighbor within the plaquette with π flux per
square. The resultant superconducting state is fully gapped
inside the bulk and on the smooth edges, while the corner
intersecting two boundaries contains a Majorana zero mode
(MZM).

Our model contains a plaquette-centered C4 rotation sym-
metry in addition to the fermion parity conservation P. The
noninteracting Hamiltonian in the Majorana basis is

H = ηT (t + cos(kx ))�3 + (t + cos(ky))�1

+ sin(kx )�4 + sin(ky)�2)η,

�1 = − σ y ⊗ τ x, �2 = σ y ⊗ τ y,

�3 = σ y ⊗ τ z, �4 = σ x ⊗ I, (1)

FIG. 1. The HOTSC on the square lattice with four Majoranas
per site. In the zero-correlation length limit, the four Majoranas on
the four corners of the square hybridize within the plaquette (solid
lines). The ground state Hamiltonian contains π flux per plaquette.
By inserting a superconducting π flux in the center, the central
plaquette becomes � = 0.

with ηT = (η1, η2, η3, η4) being the four Majoranas on each
site. t is the strength for intrasite Majorana coupling. For
|t | < 1, the system is in the HOTSC phase. When t = 0, the
model returns to the zero-correlation length limit that the four
Majoranas on the four corners of each square only hybridize
within the plaquette. The C4 rotation acts on η as

C4 :

(
0 τ z

τ x 0

)
. (2)

This model was widely explored in various works of lit-
erature for weak and strongly interacting systems [1,7,38].
The π flux inside each plaquette is essential to acquire a fully
gapped bulk spectrum and the resultant C4 symmetry has the
structure with (C4)4 = −1 due to the π flux. In particular, the
Majorana zero mode localized at the corner is robust against
any interaction provided the C4 symmetry is unbroken and the
SC bulk is gapped. It was pointed out that if one develops a
symmetry defect of the C4 symmetry, namely, a π/2 disclina-
tion by removing a quadrant and reconnecting the disclination
branch cut, there exists a Majorana zero mode localized at the
disclination core [24,34].

Now we consider the symmetry flux of the fermion parity P
by inserting an additional π flux to the center of the plaquette
as Fig. 1. As the pairing Hamiltonian already contains a π flux
in each plaquette, the additional flux insertion erases it and
makes the central plaquette flux free � = 0. In the limit t = 0
in Eq. (1), the flux insertion only changes the four Majorana
coupling at the central plaquette, leaving a two-fold degener-
acy at the center. Here and after, we will demonstrate that this
degeneracy is robust against any interaction or coupling due
to the projective symmetry.

To demonstrate, we begin with the particular case with
t = 0, but our demonstration is adaptive to more general
circumstances, as we will elaborate on later. In this zero
correlation-length limit, the four Majoranas at the corners of
the central plaquette coupled like a 1D ring with four Majo-
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ranas on four sites. The ground state containing π flux inside
the plaquette imposes an antiperiodic boundary condition for
the 1D ring. The plaquette-centered C4 rotation symmetry
performs as a “translation symmetry” that permutes between
the four Majoranas on the ring. Due to the π flux at the center,
the C4 symmetry permutes the four Majorana as

C4(π ) : γ1 → γ2, γ2 → γ3, γ3 → γ4, γ4 → −γ1, (3)

so (C4)4 = −1. If we perform this rotation to the fermion-
parity symmetry operator P = η1η2η3η4,

C4(π )PC−1
4 (π ) = −η2η3η4η1 = η1η2η3η4 = P. (4)

The fermion parity and C4 rotation commute.
However, once we insert an additional flux in the center, the

“net flux plaquette” can be viewed as a ring of four Majoranas
with periodic boundary conditions. The C4 symmetry is now
defined as

C4(0) : γ1 → γ2, γ2 → γ3, γ3 → γ4, γ4 → γ1. (5)

Inside the superconducting flux, the C4 symmetry anticom-
mutes with the fermion parity operator

C4(0)PC−1
4 (0) = η2η3η4η1 = −P. (6)

This anticommutation relation guarantees an additional zero
mode at the flux center.

To this end, we demonstrate that adding a π flux at the
rotation center engenders a projective symmetry such that
the fermion parity and C4 symmetry anticommute in the flux
center. As a result, the flux would trap two degenerate modes
with different fermion parity connected by a C4 rotation oper-
ation. We can label these degenerate modes as the even (odd)
fermion parity state |	〉a

0(|	〉b
0) that is related by C4:

C4|	〉a
0 = |	〉b

0. (7)

Our demonstration above is based on the zero-correlation
limit in the absence of interaction. Now and after, we will
extend this argument to a more general case with additional
symmetry-preserving coupling and interaction. If the correla-
tion length is finite, the four Majoranas in the central plaquette
with net flux would unavoidably be coupled with the rest of
the system. As long as there is no gap closing in the bulk,
the flux state wave function |	〉 can be connected to the
aforementioned zero-correlation length limit wave function by
a set of finite depth local unitary circuit U [47] that commutes
with the C4 symmetry and fermion parity

U |	〉a
0 = |	〉a,U |	〉b

0 = |	〉b. (8)

As the unitary operator commutes with all symmetries, the
new degenerate states |	〉a, |	〉b carrying different fermion
parity are still related by a C4 rotation. This concludes that the
C4 symmetry and fermion parity always anticommute inside
the flux regardless of the correlation length or additional inter-
action. Thus, due to the projective symmetry structure inside
the flux, there is no consistent way to hybridize or lift the
degeneracy that preserves both rotation and fermion parity.

To summarize, we elucidate that the insertion of π flux in a
higher-order topological superconductor engenders a projec-
tive symmetry between C4 and fermion parity so the resultant

flux state contains a localized zero mode. In particular, in-
serting a gauge flux is expected to engender a projective
symmetry of C2nP. Our argument can be generalized to other
2D higher-order topological superconductors with C2n sym-
metries [36].

A. Emergent supersymmetry (SUSY) inside the flux

There had been growing interest in realizing supersymme-
try in solid-state systems, which is a highly appealing concept
from particle physics, relating bosonic operators to fermionic
operators. In this section, we establish a general theorem that
all 2D HOTSC exhibit N=2 SUSY algebra inside the super-
conducting flux. As is demonstrated in Sec. II, adding a flux to
HOTSC creates a projective symmetry between fermion parity
and rotation. We will show that all flux states in HOTSC have
an underlying N = 2 supersymmetry and explicitly construct
the generator of the supersymmetry [39].

To set the stage, we first shift all the eigenvalues of the
Hamiltonian by a constant so that they are all nonnegative.
Then we define the following fermionic, non-Hermitian oper-
ator based on C4 and P,

Q =
√

H

2
C4(1 + P), Q† =

√
H

2
(1 + P)(C4)−1. (9)

Q† commutes with the HOTSC Hamiltonian [H, Q†] = 0.
Most importantly, due to the projective symmetry inside the
flux, the Q, Q† obeys the algebra:

(Q)2 = 0, (Q†)2 = 0, QQ† + Q†Q = 2H. (10)

Therefore, Q is the generator of an N = 2 supersymmetry.
Such supersymmetry naturally explains the degenerate modes
inside the flux. By adding a flux to HOTSC, all energy levels
are doubly degenerate, and the corresponding eigenstates can
be chosen as fermion parity eigenstates with different parity.
Q, Q† operators, assisted by spatial rotation, play a role of
exchanging between these fermion parity sectors. Notably,
while a wide range of emergent supersymmetry in condensed
matter typically requires fine-tuned Hamiltonians or critical
points [48–50], the N = 2 SUSY in HOTSC flux is guaranteed
by the projective symmetry of C4P, and thus robust against
perturbations.

B. Detecting flux responses from the entanglement Hamiltonian

In this section, we show that the topological flux response
in the higher-order topological superconductor can be as-
sessed using a quantum information perspective by examining
the entanglement Hamiltonian. This method not only enables
the detection of the higher-order topological superconduc-
tor numerically but also suggests that the hidden topological
structure, including the topological flux response, can be un-
derstood through an entanglement viewpoint. To begin with,
we trace out the system’s central block with a size larger than
the correlation length but still finite compared to the thermal
dynamical limit. The resultant reduced density matrix ρA =
e−βHe can be viewed as a partition function of an entanglement
Hamiltonian He that resembles a 1D “square frame” along
with the cut in Fig. 2. Such a cut contains four corners, with
each quadrant carrying an odd number of Majoranas. The C4
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FIG. 2. Tracing out the central block of the wave function arrives
at the reduced density matrix ρA that resembles a 1D Majorana chain
along the square cut. Each quadrant of ρA contains an odd number of
Majoranas.

rotation operator performs as a translation operator TL/4 on
the 1D entanglement Hamiltonian that shifts the fermion by a
quarter of the cut size. In the thermal dynamical limit, the four
Majoranas at the corners of the “square frame” generate four
Majorana zero modes in the entanglement Hamiltonian He.
However, these zero modes could be hybridized with finite-
size cuts. Suppose we choose the length of the 1D entangle-
ment Hamiltonian being L, the coupling strength between the
four corner Majoranas in the entanglement spectrum scales as
e−ξ/L so the Majorana zero-mode hybridization is inevitable
for a finite-size system. In addition, the correspondence be-
tween the ground state of the entanglement Hamiltonian and
the wave function correlation cannot be taken too literally.
Since the reduced density matrix is the partition function of
the entanglement Hamiltonian (EH) at finite temperatures, the
high energy modes in the entanglement spectrum (ES) also
contribute to the entangled features of the ground state. In
particular, the low-lying states of the ES may undergo a phase
transition while the bulk phase remains unchanged [51].

In terms of the ground state wave function, the central
block in the reduced density matrix (with an odd number of
plaquettes) contains a total π flux. The entanglement Hamilto-
nian defined on the ring with π flux inside has an antiperiodic
boundary condition. The resultant C4 symmetry operator of
the 1D entanglement Hamiltonian can be defined as

C4(π ) : γi → γN+i, γN+i → γ2N+i,

γ2N+i → γ3N+i, γ3N+i → −γi. (11)

Here, i labels the Majorana on each quadrant, with 4N being
the total number of Majoranas in the effective 1D entangle-
ment Hamiltonian He. It is not hard to check that the C4

rotation and fermion parity commute for the entanglement
Hamiltonian He. This also agrees with the fact that the en-
tanglement Hamiltonian can have a fully gapped spectrum for
a finite-size system.

To visualize the projective symmetry and zero modes
inside the π superconducting flux from the entanglement
Hamiltonian, we look into the wave function with an addi-
tional π flux in the center (so the central plaquette has net
flux) and trace out the center block to get the entanglement
Hamiltonian Hflux

e . Due to the additional flux insertion, the 1D
entanglement Hamiltonian Hflux

e has net flux inside the ring
with periodic boundary conditions. The resultant C4 symmetry

operator of the entanglement Hamiltonian can be defined as

C4(0) : γi → γN+i, γN+i → γ2N+i,

γ2N+i → γ3N+i, γ3N+i → γi, (12)

where N is an odd number since each quadrant contains an
odd number of Majoranas. After some simple algebra, we
find that C4 rotation and fermion parity anticommute C4P =
−PC4 for the entanglement Hamiltonian Hflux

e . This indicates
that these two symmetries act projectively on Hflux

e so the
full entanglement spectrum should display a robust two-fold
degeneracy for all eigenstates. It is notable for emphasizing
that this degeneracy has nothing to do with the corner zero
modes in the original Hamiltonian that can be gapped due
to the finite-size effect. The projective symmetry-enforced
degeneracy can survive even for finite-size cuts and is robust
against any interaction or perturbation. However, if any of the
higher-order topological states have a gap closing or sponta-
neous symmetry breaking with rotation driven by interaction,
the above argument will not hold.

III. 3D FLUX LINES IN HOTSC

This section extends our discussion on anomalous flux
states to interacting HOTSC in 3D. We begin with the 3D
HOTSC that supports chiral Majorana hinge modes proposed
in Refs. [1,5,38,52]:

H = ηT [(1 − m cos kz + cos(kx ))�3 + (1 − m cos kz

+ cos(ky))�1 + sin(kx )�4 + sin(ky)�2 − m sin kz�
0]η

�1 = − σ y ⊗ τ x, �2 = σ y ⊗ τ y, �3 = σ y ⊗ τ z,

�4 = σ x ⊗ I, �0 = σ z ⊗ I. (13)

For −2 < m < 0, the model is in the HOTSC phase [3]. This
model exhibits a special CT

4 symmetry that rotates the xy plane
along with the time-reversal operation. The CT

4 acts on the
Majorana field η as

K
(

0 −τ z

τ x 0

)
. (14)

Notably, if we implement a dimension-reduction view by
fixing the momentum kz, the momentum layer with kz = π

resembles the aforementioned 2D HOTSC with C4 symmetry
while the kz = 0 layer corresponds to the trivial one. (CT

4 )2 =
−1 indicates that the Hamiltonian has a π flux penetrating
each tube along the z direction illustrated in Fig. 3.

Consider inserting an additional π flux along the z direc-
tion, the corresponding center tube contains net flux. Now
and after, we will demonstrate that such flux insertion will
engender a gapless 1D mode that is anomalous and cannot be
manifested in pure lower-dimensional systems.

To warm up, recall our discussion in Sec. II about adding
π flux to 2D HOTSC give rise to a projective representation
between C4 and P. Our 3D model can be treated as lay-
ers of 2D superconductors with fixed kz momentum so that
we can treat different kz layers independently. We consider
two special momentum slices kz = 0, π which resemble the
2D trivial superconductor and higher-order topological su-
perconductor. Based on our discussion in Sec. II, it is clear
that implementing a CT

4 symmetry would change the fermion
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FIG. 3. (a) 3D HOTSC top-down view from the xy plane. An
additional π flux penetrates the central plaquette so the total flux in
the central plaquette is zero. (b) Treat the z tube as an elementary
building block; it contains up-moving/down-moving chiral Majo-
ranas living at the four hinges of the tube along the z direction.

parity number P(π ) = (−1)nπ inside the flux line that car-
ries momentum kz = π . Likewise, the fermion parity P(0) =
(−1)n0 that carries momentum kz = 0 is not affected. Based
on this argument, we conclude that the algebra between CT

4
and fermion parity inside the flux line has the form

CT
4 P(π ) = −P(π )CT

4 . (15)

Unfortunately, the above argument relies on the fact that
the fermion parity number in each momentum layer (with
fixed kz) is a well-defined quantum number. However, as our
HOTSC does not require a translation symmetry, one can add
disorder along the z direction and the corresponding kz is
no longer a good quantum number. Further, in the presence
of strong interaction, fermions with distinct momentum kz

can hybridize and interact. In this sense, nπ again becomes
illdefined when the single-particle picture breaks down.

A. Conflict of symmetry and quantum anomaly

Here we provide a more detailed and systematic study of
the flux state based on the symmetry anomaly argument. For
concreteness, we will demonstrate that the flux line inside the
HOTSC displays a quantum anomaly that can be manifested
as a “conflict of symmetry.” If the 1D flux line is invariant
under two independent symmetries G1 and G2, the theory
is anomalous if gauging G1 would break the symmetry of
G2 or vice versa [53]. Applying this “conflict of symmetry”
criteria to our case, we will demonstrate that after gauging the
fermion parity inside the flux line, one observes that a fermion
parity gauge transformation inside the flux will automatically
break the CT

4 symmetry. This conflict of symmetry alterna-
tively suggests that the symmetry assignment of CT

4 and P are
incompatible with open boundaries, so the corresponding 1D
theory does not render a lattice realization.

In the zero correlation length limit, the HOTSC model
in Eq. (13) has a coupled wire construction [52]. We can
decompose the complex fermions along each z row into two
up-moving and two down-moving chiral Majoranas. Treat the
z tube as an elementary building block; it contains four chiral
Majoranas living at the four hinges of the tube illustrated in
Fig. 3:

Htube = ηT (kz )σ 30η. (16)

We consider the general case where the four hinges along each
z tube with counter-propagating Majorana modes are coupled
in a CT

4 symmetric way. After inserting an additional π flux
to the central plaquette, the CT

4 symmetry permutes the four
components of the 1D Majorana modes in the central tube as

C4 : K
(

0 I
τ x 0

)
(17)

with (CT
4 )4 = 1, provided there is net flux inside the tube

center [54]. The possible gapping terms for each z tube as of
Eq. (16) are

m1 = σ 20, m2 = σ 21, m3 = σ 23, m4 = σ 12,

CT
4 : m1 → m2, m2 → m1, m3 → m4, m4 → −m3. (18)

The mass terms m3, m4 are also odd under C2 symmetry,
so they cannot appear as a fermion bilinear mass. To make
the theory compatible with CT

4 , we require m1 = m2 and the
resultant 1D flux line always remains gapless regardless of
the strength of m. Thus, no band mass can fully gap out the
helical modes inside the flux. This ingapable condition can be
generalized to the interacting case due to the existence of an
anomalous symmetry.

Now and after, we will demonstrate that the helical modes
in Eq. (16) are anomalous and cannot exist in pure 1D lattice
models. This further suggests that the helical modes cannot
be trivially gapped unless we break the CT

4 symmetry. We
would elaborate on this point by gauging the fermion parity
symmetry inside the flux line and examining the role of CT

4
under such gauge transformation.

Central to our discussion below is based on the bosoniza-
tion picture of helical Majoranas in Eq. (16):

	
†
L = ηL

1 + iηL
3 = eiθ+iφ+iπ/4,

	
†
R = ηR

2 + iηR
4 = e−iθ+iφ+iπ/4,

n̂ = ∂zθ

π
. (19)

Here, θ, φ are bosonic fields and the fermion charge density n̂
is only defined modulo 2. [55]. The CT

4 symmetry acts as

	
†
L → 	R, 	

†
R → −i	†

L, θ → φ, φ → −θ. (20)

The possible interactions that do not break CT
4 are cos(2θ ) +

cos(2φ) or their higher order descendants. Precisely, the CT
4

symmetry exchange the role between particle-hole channel
tunneling term cos(2θ ) and particle-particle channel pairing
term cos(2φ) by enforcing them with the same strength. These
terms cannot symmetrically gap out the helical modes, so the
resultant theory is either gapless or symmetrybreaking.

If we apply a gauge transformation of P along the string
from −∞ to z,

G(z) = ei
∫ z
−∞ dz′πn(z′ ) = eiθ (z). (21)

Such a gauge transformation can be viewed as the fermion
parity operator defined on an open string with its halfend
terminated at z. The CT

4 symmetry transforms G(z) as

CT
4 eiθ (z)(CT

4 )−1 = e−iφ(z) = −G(z)e−iθ (z)−iφ(z). (22)

Such gauge transformation, equivalent to the fermion parity
defined on an open chain, is not invariant under the CT

4 sym-
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metry. Notably, e−iθ (z)−iφ(z) is a fermion operator, so the CT
4

transformation creates additional fermion at the end of the
fermion parity string. Such conflict of symmetry indicates
that the theory cannot be placed on an open 1D chain as the
fermion parity operator on the open chain is not invariant
under CT

4 . As a result, the helical modes inside the flux line
cannot be realized in isolated 1D lattice models with the same
symmetry assignment.

It is noteworthy mentioning that the conflict of sym-
metry was widely explored as a signature of anomalous
surface states in symmetry-protected topological phases. In
Refs. [53,56], it was convinced that the conflict of the symme-
tries at the boundary of the SPT surfaces signals that the edge
theory can never be realized as a purely lower dimensional
lattice model. Our argument can be treated as a complement
theorem signaling that the flux state inside the HOTSC also
contains a gapless mode with anomalous symmetry action.

IV. EMERGENT HOTSC FROM KITAEV SPIN LIQUIDS

We conclude our discussion by extending our horizon into
frustrated spin systems whose emergent quasiparticle excita-
tions exactly reproduce the topological features of HOTSC
discussed in Sec. II. Namely, we begin with a bosonic spin
model on a honeycomb lattice. Intriguingly, the low en-
ergy excitations of such a bosonic system contain emergent
Majoranas coupling with an emergent Z2 gauge field. The Ma-
joranas form a superconductor reminiscent of the 2D HOTSC
in Sec. II while the emergent flux excitation carries N = 2
SUSY structure.

To continue, we focus on a specific solvable honeycomb
lattice model. However, it is worth mentioning that the proto-
col and strategy we developed here can be applied to a wider
class of lattice models, as we will elaborate on later. We begin
with a spin 3

2 honeycomb model with strong bond anisotropy:

H =
∑

i∈A, j∈B

[ ∑
i j∈green

(
�i

1�
j
1 − �i

4�
i
1�

j
4�

j
1

) −
∑

i j∈blue

(
�i

3�
i
4�

j
3�

j
4 + �i

5�
i
3�

j
5�

j
3

) +
∑

i j∈red

(
�i

2�
j
2 − �i

5�
i
2�

j
5�

j
2

) ]
. (23)

Here �a(a = 1, ..., 5) are the 4 × 4 Gamma matrices with
−i

∏a=5
a=1 �a = 1. At each A/B site on the hexagon lattice,

we color three directional bonds with red/green/blue as seen
in Fig. 4. Each spin only interacts with its nearest neighbor
across the red/green/blue bond, and each colored bond has
two preferred spin bilinear interactions.

Albeit the model is nonintegrable, it renders an exact
solvable solution inherited from the spirit of the original

FIG. 4. The spin 3
2 degree of freedom and its Majorana repre-

sentation on the A/B sublattice. The πi Majoranas are the itinerary
fermions that only hybridized with their nearest neighbor within
the hexagon (illustrated as the red dashed line.) The ηi Majorana
plays the role of the emergent Z2 gauge potential. The Hamiltonian
commutes with the flux operator defined on the blue hexagon.

Kitaev model [57]. In terms of parton construction, we can
fermionize the spin 3/2 operator by introducing six Majoranas
π1, π2, π3, η1, η2, η3 per site as seen in Fig. 4. We restricted
our Hilbert space with fixed onsite parity iπ1π2π3η1η2η3 = 1
so the six Majoranas with even parity generate a four-level
system per site akin to the spin 3/2 degree of freedom. The
spin Gamma matrices can be expressed as

�1 = iπ1η1, �2 = iπ1η2, �3 = iπ1η3, �4 = iπ2π1,

�5 = iπ3π1, (24)

so the Clifford algebra is automatically satisfied. We can ex-
press the spin operators in the Hamiltonian as

�1 = iπ1η1, i�4�1 = −iπ2η1, �2 = iπ1η2,

i�5�2 = −iπ3η2, i�3�4 = −iη3π2, i�5�3 = iη3π3. (25)

The model displays a special C′
6 symmetry that hybrid

hexagon-centered C6 rotation with S3 spin rotation as C′
6 =

C6 × S3. Under the Majorana representation, the spin rotation
becomes the S3 permutation between Majorana flavors

π3 → π1, π1 → π2, π2 → π3,

η3 → η2, η2 → η1, η1 → η3. (26)

It is not hard to find a locally conserved hexagon operator
illustrated in Fig. 4 that commutes with all spin interactions
in the Hamiltonian. This enables us to treat the ηi fermion
bilinear as the gauge potential on the link:

exp iπAi j∈green = iηi
1η

j
1, exp iπAi j∈red = iηi

2η
j
2,

exp iπAi j∈blue = iηi
3η

j
3. (27)

Ai j denotes the Z2 gauge potential on the link between i-j sites
[with i (j) belonging to the A (B) sublattice]. The Z2 potential
on tricolored links can be written as the Majorana fermion
bilinears iηi

aη
j
a(a = 1, 2, 3) that cross between the links. As a
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result, the total flux in each hexagon
∮ �Ad�l = � is manifested

by the product of Majorana bilinears defined in Eq. (27) across
the six links along the hexagon loop, which returns to the
hexagon operator in Fig. 4.

Our argument makes it clear that, under the Majorana
representation of spin operators, the η fermion plays a role
as the Z2 gauge potential akin to the original Kitaev model.
Likewise, the πa(a = 1, 2, 3) fermion can be treated as the
itinerary Majoranas that hop between nearest sites with min-
imal coupling to the gauge potential Ai j on the link. To
manifest, we can decompose the spin interactions as

∑
i j∈green
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π i
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i
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3 η

j
2. (28)

In the Majorana representation, it is clear that all bond inter-
actions in Eq. 23 can be treated as Majorana hopping between
nearest sites, with minimal coupling to the gauge potential
Ai j represented by the η fermion bilinears. Since the flux
operators commute with the Hamiltonian, we can fix the flux
sector � when focusing on the ground state manifold and treat
Ai j as a constant. For net flux conditions, we can simply take
Ai j = 0 and the permutation symmetry of the π Majorana
fermions will still hold. With π flux patterns, any specific
gauge choice of Ai j will break the permutation symmetry of
the η Majorana fermions.

From the Majorana construction perspective, the effective
Hamiltonian becomes a free Majorana model with three

orbitals π1, π2, π3 per site. Each orbital is only hybridized
with one of the three adjacent hexagons as seen in Fig. 4. Con-
sequently, the fermion model is decomposed of nonoverlap
clusters from all hexagons. Each hexagon contains six Majo-
ranas hybridized with their nearest neighbor that resembles
higher-order topological superconductors on the honeycomb
lattice [36]. In particular, one can easily check that the lowest
energy state requires � = π flux per plaquette and the ground
state is in the π -flux sector. The effective band structure
for the itinerary Majoranas π1, π2, π3 is reminiscent of the
higher-order topological superconductor on the honeycomb
lattice. Remarkably, such HOTSC may not exhibit protected
corner mode for sharp corners with 2π/3 angles. Nonetheless,
the topological response still holds. By creating an additional
π flux excitation in the center, the C′

6 symmetry and fermion
parity anticommute so the flux excitations display a projective
symmetry. As both the itinerary Majorana and the Z2 flux
excitation originate from spin models as fractionalized exci-
tations, the Z2 flux should be treated as an intrinsic excitation
rather than an external field that characterizes and probes the
response. In particular, the flux excitation in this spin model
contains the N=2 SUSY structure we explored in Eq. (9).

Finally, the construction we adopt here can be general-
ized to spin models on other 2D lattices. The essence relies
on the fact that for any HOTSC, we can introduce a Z2

gauge potential on the link and express them as a pair of
“auxiliary” Majorana fermion bilinears across the link. After
onsite fermion parity projection, the resultant onsite degree
of freedom becomes a hyper-spin operator, and the fermion
hopping term minimal coupling to the Z2 gauge potential can
be written in terms of spin-bilinear interactions. Following
this protocol, one can build a zoology of “Kitaev spin liquids”
whose low energy excitation can constitute Majoranas with
HOTSC band structure and emergent Z2 gauge field. The flux
excitations in these Kitaev-type models carry exotic SUSY
structures with projective symmetry between spatial rotation
and fermion parity.
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