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Geometry-induced dynamics of confined chiral active matter
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Controlling the motion of active matter is a central issue that has recently garnered significant attention
in fields ranging from nonequilibrium physics to chemical engineering and biology. Distinct methods for
controlling active matter have been developed, and physical confinement to limited space and active matter with
broken rotational symmetry (chirality) are two prominent mechanisms. However, the interplay between pattern
formation due to physical constraints and the ordering by chiral motion needs to be better understood. In this
study, we conduct numerical simulations of chiral self-propelled particles under circular boundary confinement.
The collective motion of confined self-propelled particles can take drastically different forms depending on their
chirality. The balance of orientation changes between particle interaction and the boundary wall is essential for
generating ordered collective motion. Our results clarify the role of the steric boundary effect in controlling
chiral active matter.
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I. INTRODUCTION

Active matter encompasses a broad range of systems with
many constituent elements that consume energy for motion or
exerting forces [1–3]. These are inherently far from equilib-
rium systems, which, thanks to the interactions between the
individual components, can show collective motion and are
found across the spatiotemporal scale; molecular motor pro-
teins [4–6], bacterial turbulence [7], epithelial cell migration
[8], schools of fish [9], flocks of birds [10], and crowds of
people [11] are typical examples of active matter. In addition
to being a highly fascinating field in and of itself, active matter
has numerous potential applications as well [12,13], mainly
due to its ability to form self-sustained ordered structures and
to fully realize that potential, control over its dynamics is
essential.

Since local orientation interactions drive the collective
motion of active matter, developing methods to manipulate
the orientation of each particle is fundamental to tailoring
their collectively ordered patterns. In particular, confinement
of active matter has the ability to drastically alter its dy-
namics, such as the autonomous circulation of active fluids
[14], and over the years, physical geometric confinement has
been shown to be a promising control mechanism for driv-
ing its organization. Numerical simulations of active fluids
confined inside channels have been found to show channel
width-dependent behavior, including boundary flows, vortex
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formation, and turbulent flow [15–19]. Confining active mat-
ter with polar orientation interactions to a circular space can,
depending on the length scales of the confined elements and
the confinement, transform active turbulent flows into an or-
dered global vortex state for bacterial suspensions [15,20–25],
self-gliding microtubules [26–28], and epithelial cells [29].
The boundary shape aligns the orientation of a group of active
matter, enabling control over the pattern of collective motion.
Not only for active polar fluids, there is also the possibility of
the formation of dynamic topological defects [30–32] in dense
active matter with nematic interaction, and if such systems
are confined, the defects can drive the contractile or extensile
flows [33,34]. However, even though the shape of individual
bacteria or cells can affect collective dynamics, the motion of
active matter in these models is often simplified as a particle
moving straight ahead.

One such microscopic nature of how active matter affects
collective motion is chirality [35]. The individual elements
in chiral active matter systems tend to move along a circular
trajectory. Chirality (ω) is thus the measure of the angular fre-
quency of the circular motion. In a more general sense, there is
a microscopic symmetry breaking of the handedness of these
systems, which leads to a preferred direction of motion in their
macroscopic dynamics [36–38]. Experimental realizations of
chiral active matter can be in the form of particles having a
chiral structure, such as chiral microswimmers [39], or pear-
shaped colloidal rollers [40]. Self-propelled, self-spinning
robots are also a kind of chiral active matter [41–43], as are
circle swimming bacteria [22,25]. Microtubules can also be
prepared in a way to show density-dependent chirality in in
vitro systems [44]. Studies about the chiral active matter, both
numerical and experimental, show the variety in the dynamics
of such systems, which is significantly different from achiral
systems: In simulations of an unconfined, single-frequency
chiral system, large rotating droplets or small flocks can form,
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FIG. 1. Schematic of the simulation system: Chiral active par-
ticles, moving with a constant speed v0 and having an inherent
chirality ω are bound by a circular boundary. There is soft repulsion
between the particles and between the particles and the wall. The
particles have a polar interaction with each other (γp), and they try to
align their orientation to the average orientation within the radius of
interaction (ε). Particles also interact nematically with the boundary
(γw) and try to align to the tangential direction on collision with the
boundary. Particle color denotes the orientation.

depending on chirality and system density [45], while similar
systems with multiple frequencies can show chirality depen-
dent self-sorting and synchronization [46,47]. As additional
phases such as vortices [48–50] and bands [49,50] have also
been found, there is a growing understanding of the new role
of chirality in controlling orientation interactions of active
systems.

However, most of the current studies on the chiral active
matter focus on the dynamics in bulk, and the effects of
confinement on the chiral collective behavior remain little
understood. One study that considered self-propelled robots
with and without chirality, confined to a circular area, showed
that chirality suppresses cluster formation at the boundary
[51]. Self-spinning confined rotors have been shown to exhibit
boundary flows [42,43]. Additionally, while the mixture of op-
posite rotating confined robots has been shown to phase sep-
arate [41], the orientation interactions between particles with
chirality and the changes in collective motion induced by their
interactions with the wall have not been fully explored. To ad-
dress this question in the present study, we investigate whether
the chiral active matter can be further controlled through
physical confinement and how the dynamics of such confined
systems change with the different system parameters.

II. METHODS

In this paper, we do numerical simulations of chiral active
matter confined to a limited circular space by extending a
model of our previous study [25] (Fig. 1). Our system consists
of N particles, each moving with a constant speed v0, inside
a circular boundary of radius R. The particles have a polar
interaction with each other, meaning every particle wants its
orientation to be equal to the mean orientation of its nearest
neighbors; the strength of the polar interaction is given by γp

[Fig. 1(I)]. However, the random noise in the system, given
by η(t ), prevents perfect alignment between particles. The
particles also interact nematically with the boundary, aligning
parallel to it after a collision; the strength of the nematic
interaction is given by γw [Fig. 1(II)]. There is a soft repul-
sion between two particles and between the particles and the
boundary, the coefficients of which are presented by κ and
κb, respectively [25]. Note that we utilize a soft repulsive
boundary to prevent confined particles from overlapping at a
boundary.

The dynamics of the system is described by a modified ver-
sion of the Vicsek model [25,52]. The position of particle m at
time t is rm(t ) = (xm(t ), ym(t )), in polar coordinates, which
becomes rm(t ) = rm(cos ϕm, sin ϕm), and the orientation of
the particle is d(θm) = (cos θm, sin θm). Each particle has a
chirality in motion, which is the inherent tendency to rotate
in one direction, denoted by ω [Fig. 1(III)]. The equation of
motion for the time evolution of the particle position is

ṙm = v(θm(t )) + 2κ

l2

∑
rmn<ε

(rm − rn) exp

[
−

(
rmn

l

)2]

− κbr̂m	(rm − R), (1)

where l is the length scale of the soft repulsive interaction,
rmn is the distance between particles m and n, ε is the radius of
polar interaction, and 	 is the Heaviside step function, defined
as 	(x) = {1, x > 0; 0, x � 0}. The equation of motion for
the time evolution of the particle orientations is

θ̇m = ω − γp

∑
rmn<ε

sin(θm − θn)

− γw sin 2

(
θm − ϕm − π

2

)
	(rm − R) + ηm, (2)

where the random noise ηm is related to diffusion coefficient
in angle as 〈ηm(t )ηn(t ′)〉 = 2Dδmnδ(t − t ′) (see Appendix for
implementation details). In dimensionless units, the constant
simulation parameters are as follows: R = 12, v0 = 1, κ =
3, κb = 20, l = 0.3, ε = 1, D = 0.02, which are compara-
ble with data of swimming bacteria in the previous study [25].
Simulations were done for a total of at least 105 time steps,
each time step being equal to dt = 0.01; the differential equa-
tions for the particle position and orientation were integrated
using the Heun’s method. Longer simulations were performed
in conditions where relaxation took longer to confirm whether
a steady state had been reached or not. Lastly, the initial
positions of the particles are randomly distributed, while the
initial orientations are isotropic, with all the particles pointing
radially outwards, in order to minimize any initial accidental
rotation bias and to investigate the influence of pure chirality
on pattern formation.

III. RESULTS

A. Achiral active matter (ω = 0)

This study focuses on the collective motion exhibited by
active matter through its interaction with the boundary and its
pattern formation. For this aim, we investigate the emergent
patterns created by both achiral and chiral confined parti-
cles to compare them and clarify the role of chirality and

023196-2



GEOMETRY-INDUCED DYNAMICS OF CONFINED CHIRAL … PHYSICAL REVIEW RESEARCH 5, 023196 (2023)

FIG. 2. Time evolution of high density (N = 3000) achiral active matter systems confined to a circular boundary. Depending on the strength
of polar (γp) and nematic (γw) interactions, achiral systems show one of three possible steady states: (a) boundary flow (γp = 0.1, γw = 2),
(b) ordered cluster (γp = 0.4, γw = 2), or (c) disordered cluster (γp = 0.2, γw = 2). Particle color denotes the orientation, arrows denote
the velocity vector; for clarity, velocity vectors of 10 percent of total particles shown. (d) Phase diagram for this system; for high density,
steady-state behavior depends mostly on γp. (e) Summary of phase transitions in achiral systems with γp.

confinement. Firstly, we analyze the collective motion of a
group of active matter without chirality and the effect of
confinement boundaries. If ω is set to 0 in Eq. (2), the system
simplifies to the case of the Vicsek model with excluded vol-
ume effects. When such achiral particles are confined within a
circular boundary, the system can go to self-organized steady
phases depending on the strength of the polar interactions

between the particles (γp) and the nematic interactions with
the wall (γw) (Fig. 2).

Under conditions of weak polar interactions between par-
ticles (γp = 0.1 and γw = 2), boundary flows are created
in which particles move collectively along the boundary,
Fig. 2(a) and Video S1 within the Supplemental Material
(SM) [55]. Particles trapped within the circular boundary are

023196-3



NEGI, BEPPU, AND MAEDA PHYSICAL REVIEW RESEARCH 5, 023196 (2023)

FIG. 3. Time evolution of high [(a)–(c) N = 2000] and moderate [(d) N = 1000] density chiral active matter systems confined to a
circular boundary, with γp = 0.1, γw = 1. Steady-state changes depending on the strength of chirality (ω) and particle density (N): (a) edge
currents (ω = 0.05), (b) multiple flocks (ω = 0.1), (c) single flock (ω = 0.3), or (d) ordered oscillations (ω = 0.5). Particle color denotes the
orientation, arrows denote the velocity vector; for clarity, velocity vectors of 10 percent of total particles shown. Representative trajectories of
individual particles in each ordered phase shown in Fig. S2 within SM [55].

oriented tangentially to the boundary and collectively move
along the curved wall. Since there is no inherent bias in the
motion of the particles (absence of chirality in motion) and
no preferred direction after a collision with the boundary,
clockwise and counterclockwise boundary flows occur with
equal probability.

By increasing the polar interaction without changing the
strength of the interaction with the wall, we examine how
the strength of the interaction between the particles changes
the nature of the collective motion under a confined space.
For γp = 0.4 and γw = 2, particles accumulate in one place,
forming a cap-like ordered cluster, which moves very slowly,
Fig. 2(b) and Video S2 within SM [55]. When the orientation
interaction between particles becomes stronger, particles are
oriented and move toward each other away from the bound-
ary. Particles accumulate into either a single large, ordered
cluster or multiple smaller (typically noninteracting) clusters
without being trapped by the boundary because the interaction
between particles is stronger than the interaction between
particles and the wall. Similar behavior has been observed in
previous numerical studies of achiral active matter, in which
the particles were found to aggregate at the confining wall
[53,54].

Moreover, in the intermediate polar interaction strength
(γp = 0.2 and γw = 2) between boundary flow (γp = 0.1) and
ordered cluster (γp = 0.4), a mixed state appears where the
cluster structure becomes asymmetric, Fig. 2(c) and Video S3
within SM [55]. This fast-moving asymmetric cluster can be
thought of as a transition phase between the two other phases,
which does not decompose into either of them, even after a

long time. Thus, the polar interaction among particles is an
essential factor that controls the structure of collective motion
in a confined space.

Furthermore, we tested the effect of the nematic interac-
tion with the wall, γw and drew a phase diagram for those
collective motions in γp − γw [Fig. 2(d)]. The steady-state
phase is dependent mostly on just γp; below a threshold value
of γp = 0.3, we observe the boundary flow phase [Fig. 2(d),
blue circle] and above it we observe the ordered cluster phase
[Fig. 2(d), lime circle], while the dynamic, mixed state occurs
near the threshold γp = 0.3. The mixed state occurs on the
side where γp is smaller than threshold for small γw [Fig. 2(d),
yellow circle]. This suggests that the interaction γp between
particles must be strong enough to release the interaction with
the boundary in order to change the flow along the boundary
into a cluster state.

B. Chiral active matter, low γp, γw regime

Next, we focus on the low polar and low nematic inter-
actions regime (γp = 0.1, γw = 1) and figure out how the
particle density and chirality change the confined collective
motion. Since the speed of the particles is constant, the mag-
nitude of ω essentially represents the radius of the circular
motion (counterclockwise) of an isolated, unconfined particle,
and that affects the collective dynamics of chiral particles.

In high-density systems (N � 1500) at low chirality
(0.05 � ω < 0.1), particles start by moving outwards, to-
wards the boundary, and then they are moving along the
circular boundary, Fig. 3(a) and Video S4 within SM [55]. The
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reorientation at the boundary can be in either counterclock-
wise or clockwise direction, depending on the initial angle
of approach of the particles. However, there is an inherent
counterclockwise bias to the motion of the particles provided
by the chirality, and as the nematic interaction with the wall is
weak, reorientation in the clockwise direction is not possible
and we only observe these edge currents in the counterclock-
wise direction.

By raising the magnitude of chirality (0.1 � ω � 0.5), par-
ticles can form either multiple or a single flock, while the
effect of chirality can be seen at the onset of each flocking
phase. At the moderate chirality, when ω = 0.1, particles ini-
tially move outward towards the boundary and then create an
edge current state, but this collective motion later breaks down
and forms multiple flocks of particles, Fig. 3(b) and Video
S5 within SM [55]. By further increasing the chirality bias
at (0.1 < ω � 0.5), particles initially move outwards towards
the boundary and then back towards the center, forming a
spiraling structure, Fig. 3(c) and Video S6 within SM [55].
However, this spiral flocking state is not stable and only
formed transiently, and the group of chiral particles collapses
later, leaving the particles to settle down in a flocking steady
state. Thus, chirality affects the formation process of ordered
phases, and these rotational motions would be important for
symmetry breaking.

In addition, because the effect of particle interaction varies
with the number density in a confined space, we reduced
the number of particles so that the rotational motion of each
particle could occur over a wide range and examined how the
chiral collective motion changes. Although there is no qualita-
tive difference in the pattern of collective motion that appears
when the number of particles is sufficiently large, moderate
density systems (200 < N < 1500) show an additional phase.
In particular, for the system at the high chirality (ω � 0.38 for
N = 1000), particles initially move outwards, but quickly turn
back, moving towards the center again like an ordered oscilla-
tion, Fig. 3(d) and Video S7 within SM [55]. The oscillatory
state can be found at lower density conditions because the
reduced number density allows the particles to be affected by
the boundary wall and the polar interaction with neighboring
particles. Although the group of particles is trapped in the
vicinity of the wall as a boundary flow, the particles can leave
the wall due to chiral rotational motion. The particles then
gather toward the center, but since the clustered particles at the
center rotate according to the chirality, the particles approach
the boundary wall again and re-organize into a boundary flow.
This oscillatory motion continues for a long time as a periodic
change of two states of a flocking and a boundary flow. It is
important to note that these ordered oscillations are stabilized
by confinement; under periodic boundary conditions without
steric constraint, the system initially exhibits oscillatory be-
havior, but eventually converges to a flocking phase (Fig. S1
within SM [55]).

1. Quantitative analysis

In a confined region, an ordered pattern, such as a rotating
vortex motion along the circular boundary appears in a steady
state. On the other hand, a transition from stationary bound-
ary flow to periodic oscillations can be found as the chiral

rotation ω increases. To demonstrate the difference between
the distinct steady states, we performed quantitative analysis
extracting characteristics of various ordered phases in this low
γp, γw regime.

The degree of global rotational order can be determined by
using the vortex order parameter (VOP, �vop) [15,22]. At any
time t , VOP is defined as

�vop = 1

1 − 2/π

(∑
i |vi · T i|∑

i ||vi|| − 2

π

)
, (3)

where i runs over all the particles, vi is the velocity of particle
i, and T i is the unit tangent vector at the position of parti-
cle i. �vop = 1 when the particles move in a perfect vortex,
�vop = 0 when the motion is disordered, and �vop < 0 when
the motion is radial. We calculate the mean VOP 〈�vop〉 by
taking the average of the �vop values for the last 104 time
steps, where the particles have settled into a steady state.
Figure 4(a) shows the time evolution of �vop for moderate
(N = 1000) density systems, and Fig. 4(b) shows how 〈�vop〉
varies with ω. Higher density systems show the same trends,
except that the ordered oscillation phase is absent (Fig. S21
within SM [55]).

We found that the edge current phase has a practically
constant �vop; for ω = 0.05, 〈�vop〉 = 0.99 [Fig. 4(b), blue],
indicating a highly ordered vortex phase. In addition, the
multiple flocks phase also has an almost constant �vop, its
magnitude being slightly less than 1; for ω = 0.1, 〈�vop〉 =
0.83 [Fig. 4(b), orange]. The slightly lower value in this phase
compared to the edge current phase reflects that the entire
system of particles does not move along the boundary but is
oriented radially due to the distorted shape of the multiple
flocks. A similar pattern occurs in the single flock phase,
where 0 < �vop < 0.6; for ω = 0.3, 〈�vop〉 = 0.20 [Fig. 4(b),
green], and 〈�vop〉 decreases as ω increases. A transition from
stationary edge current to periodic oscillations can be found
as the chiral rotation ω increases for moderate density sys-
tems. For the ordered oscillation phase, �vop shows periodic
oscillation between 1 and –1.3; for ω = 0.5, 〈�vop〉 = 0.09
[Fig. 4(b), red]. In this phase, particles obtain a radial velocity
between the wall side and the center of confined space, and
the periodic repetition of this radial motion and the motion
along the wall gives oscillatory change of �vop over time.
Furthermore, since �vop goes from its maxima to its minima
twice for each oscillation of the system, the angular frequency
(ω�vop ) of the oscillating �vop is approximately twice the
chirality (ω), indicating that the global motion of the sys-
tem corresponds to the individual motion of the particles; for
ω = 0.5, ω�vop = 1.01. The angular frequency obtained from
considering the periodic motion of the particles, however,
is roughly equal to the chirality (Fig. S3 within SM [55]).
Moreover, the ordered oscillations state can occur for other
initial orientations, as long as the particles do not get aligned
into a flock (Fig. S4 within SM [55]).

On the other hand, the highly ordered motion of the
flocking phase can be quantified through the swarm order
parameter (SOP, ψsop) [56], which is defined as

ψsop = 1

N

∑
i

cos(θi − θ̄ ), (4)
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FIG. 4. For the system with N = 1000, γp = 0.1, γw = 1, (a) time evolution of the vortex order parameter (last 104 time steps) at different
steady states: edge currents (blue), multiple flocks (orange), single flock (green), ordered oscillations (red). (b) Time averaged vortex order
parameter (〈�vop〉) vs chirality (ω).

where i runs over all the particles, N is the total number of
particles, θi is the orientation of particle i, and θ̄ is the mean
orientation angle of all the particles obtained by calculating
θ̄ = tan−1(

∑
i sin θi∑
i cos θi

) [56]. When all the particles are aligned in
the same direction, ψsop = 1, whereas if their orientations are
in different directions, ψsop = 0. The mean SOP 〈ψsop〉 is also
calculated in the same manner as 〈�vop〉. For moderate (N =
1000) density systems, the time evolution of ψsop is shown in
Fig. 5(a), and the dependence of 〈ψsop〉 on ω in Fig. 5(b).

As expected, ψsop remains close to 0 for the edge current
and the ordered oscillation phases, in which the particles
are oriented in all directions; 〈ψsop〉 = 0.02 for ω = 0.05
[Fig. 5(b), blue], and 〈ψsop〉 = 0.06 for ω = 0.5 [Fig. 5(b),
red]. For the multiple flocks phase, ψsop stays slightly lower
than 1 whereas for the single flock phase, it becomes very
close to 1; 〈ψsop〉 = 0.80 for ω = 0.1 [Fig. 5(b), orange], and
〈ψsop〉 = 0.96 for ω = 0.3 [Fig. 5(b), green]. Note that, for the
single flock phase, 〈ψsop〉 increases as γp increases, but 〈ψsop〉
stays almost constant with γw (Fig. S5 within SM [55]).

By using �vop and ψsop, we can quantitatively define all
the dynamic steady states, as described in the Appendix.
Furthermore, we can use other order parameters such as the
dynamics of the center of mass (Fig. S6 within SM [55]),
mean radius (Fig. S7), variance of radius (Fig. S8), and
mean tangential velocity (Fig. S9) to obtain more information

about the spatial distribution and dynamics of the different
phases.

2. Phase diagram

To summarize the transitions with chirality and number
density, we plot a phase diagram for this low γp, γw regime
[Fig. 6(a)], with the chirality (ω) on the x axis and the number
of particles (N) on the y axis.

For low ω, irrespective of the particle density, we observe
an edge current phase, where the particles move along the
circular boundary. Due to the inherent bias provided by the
chirality, only counterclockwise edge currents are observed
in this regime. The systems start transitioning from the edge
current phase at ω = v0/R = 1/12 � 0.08 irrespective of the
density. As chirality is increased to moderate ω values, all the
systems are in a single flock phase. The transition from the
edge current phase to the single flock phase always happens
through an intermediate multiple flocks phase.

On the other hand, for high ω, systems with moderate
density (200 < N < 1500) show an ordered oscillation phase.
However, the minimum ω required to induce this phase de-
pends on the particle density. For N = 500, the minimum ω is
0.25, and this minimum required ω increases for systems with
N < 500 as well as N > 500, and hence this transition shows
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FIG. 5. For the system with N = 1000, γp = 0.1, γw = 1, (a) time evolution of the swarm order parameter (last 104 time steps) at different
steady states: edge currents (blue), multiple flocks (orange), single flock (green), ordered oscillations (red). (b) Time averaged swarm order
parameter (〈ψsop〉) vs chirality (ω).

a nonlinear dependence on N and ω. The phase dependence
on ω and N is summarized in Fig. 6(b).

We note that below a minimum threshold particle den-
sity (N � 200), the particle distribution can be too sparse to
show any sort of collective motion, and their dynamics does
not change from a disordered state. In contrast, high density
(N � 1500) systems do not show the ordered oscillation phase
at all and show flocking even for high ω. This is because if
the density is too large, the inter-particle interaction becomes
dominant and the effective interaction with the wall is rela-
tively weakened.

C. Chiral active matter, high γp, γw regime

Till now, we have been focusing on the low γp, γw regime.
In the absence of chirality, this regime favors the boundary
flow phase [Fig. 2(a)], while the high γp, γw regime favors
clustering [Fig. 2(b)]. In following sections, we examine how
chirality affects this clustering regime.

We perform the simulations with the same parameters as
given in earlier sections, except that the polar interparticle
interactions and nematic interactions at the boundary are
stronger, γp = 0.5, γw = 10 respectively. In this regime, col-
lective motion previously unseen are observed at high particle
density [Figs. 7(a)–7(e), N = 2500; Fig. 7(f), N = 2000].

In this regime, clockwise edge currents are possible at
low chiralities, Fig. 7(a) and Video S8 within SM [55],
ω = 0.05. Particles start by moving towards the boundary,
and as the nematic interaction with the boundary is strong,
if the reorientation is in the clockwise direction, the strong
alignment along the boundary can dominate over the polar
particle interaction (t = 0 − 500). We observed a group of
particles with clockwise alignment at the boundary along with
the counterclockwise aligned particles, and thus a disordered
cluster formed (t = 3000). However, this transient state im-
mediately decomposes into a clockwise edge current phase
(t = 7000 − 10000). The particles not directly in contact with
the boundary can also move in the clockwise direction (t =
20000) because the relatively higher polar interaction between
the particles is able to propagate the clockwise alignment
at the boundary inwards, which is able to dominate over
the comparatively small chirality. Such clockwise edge cur-
rents were absent in the low γp, γw regime, and demonstrate
that nematic interactions with the boundary are capable of
overpowering the inherent chirality of the particles. For low
chirality, the system can go to the clockwise edge current
steady state, irrespective of confinement size (Fig. S11 within
SM [55]) and initial orientations (Fig. S12). It may also go to
a counterclockwise edge current or a disordered cluster; how-
ever, the probability of the states does depend on the initial
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FIG. 6. (a) Phase diagram in the low polar and nematic interactions regime (γp = 0.1, γw = 1). Above a minimum threshold particle
density, for low ω, we observe counterclockwise edge currents; by increasing ω, the systems phase transitions to flocking, and for moderate
density systems, further increasing ω leads to the ordered oscillation phase. Phase boundaries are manually drawn and are just a guide for the
eye. (b) Summary of how the phase changes with chirality (ω).

conditions (Figs. S13 and S14). For the system with radially
outward initial orientations shown in Fig. 7(a), at very low
chiralities the disordered cluster is slightly more probable, but
as ω increases, we primarily observe counterclockwise edge
currents. Interestingly, the speed of the clockwise edge current
phase is significantly less than that of the counterclockwise
one (Fig. S15). This happens because the counterclockwise
chirality opposes clockwise motion due to the strong nematic
interaction.

By increasing chirality, the sustained spiral pattern was
observed, Fig. 7(b) and Video S9 within SM [55], ω = 0.15.
Particles first move towards the boundary (t = 500), then back
towards the center, forming a symmetric spiral structure cov-
ering the whole confinement area (t = 10000 − 20000). The
spiral continues for a while but no longer stays symmetric and
forms a spiraling droplet that itself moves along the circular
boundary in a steady state (t = 50000). At one of the points of
intersection of the spiral with the boundary, we can find that
the particles on one side are aligned in the clockwise direction,
and on the other side, they are aligned in the counterclockwise

direction, and the continuous interaction of these particles acts
as a feedback loop and is the reason we observe this sustained
spiral.

For moderate chirality, collective motion of particles form
counterrotating currents, Fig. 7(c) and Video S10 within
SM [55], ω = 0.25. The particles initially form a spiralling
droplet (t = 500 − 1500), and when the particles move out-
wards to the boundary again, the outermost particles get
aligned tangent to the boundary in the clockwise direc-
tion, and due to the strong nematic interaction with the
wall (t = 2500 − 3500), they are able to keep that align-
ment and hence clockwise currents appear near the boundary.
However, the particles far from the boundary are mostly
dependent on the polar interaction between the particles to
propagate the clockwise alignment inwards from the bound-
ary (t = 5000). In this moderate chirality regime, the polar
interaction between the particles cannot dominate over the
chirality. The particles away from the boundary move in
the counterclockwise direction, thus forming counterrotating
currents.
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FIG. 7. Time evolution of chiral active matter systems confined to a circular boundary at high density [(a)–(e) N = 2500, (f) N = 2000],
with γp = 0.5, γw = 10. In this regime, different steady states from before are observed: (a) clockwise edge currents (ω = 0.05), (b) sustained
spiral (ω = 0.15), (c) counterrotating currents (ω = 0.25), (d) counterrotating currents with flocking (ω = 0.35), (e) counterrotating currents
with oscillation, and (f) traveling bands (ω = 0.5). Particle color denotes the orientation, arrows denote the velocity vector; for clarity, velocity
vectors of 10 percent of total particles shown. Representative trajectories of individual particles in each ordered phase shown in Fig. S10 within
SM [55].

By raising the chirality a little higher, the counterrotating
current with flocking phase was observed, Fig. 7(d) and Video
S11 within SM [55], ω = 0.35. The system initially has the
same behavior as the counterrotating currents (t = 0 − 2500),
but since ω is higher, the radius of the particles’ circular
motion is smaller, and thus the particles further away from
the boundary break away from the counterrotating currents

(t = 6500) and perform flocking around the center of the
boundary (t = 10000).

In contrast, for high chirality, counterrotating currents
started to show oscillation, Fig. 7(e) and Video S12 within SM
[55], ω = 0.45. The particles initially have a similar behavior
as the counterrotating currents, but as the chirality is very
high, a spiral forms near the center of the circle (t = 3500).
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FIG. 8. For the N = 2500, γp = 0.5, γw = 10 system, (a) time evolution of the vortex order parameter (last 104 time steps) for edge cur-
rents (blue), sustained spiral (orange), counterrotating currents (green), counterrotations with flocking (red), counterrotations with oscillation
(purple). (b) Time averaged vortex order parameter (〈�vop〉) vs chirality (ω).

Similar to the ordered oscillation phase in the low γp, γw

regime, this spiral also shows oscillatory formation and de-
formation (t = 4500 − 6500).

We note that a traveling band pattern was observed for high
chirality but at slightly lower densities, Fig. 7(f) and Video
S13 within SM [55], N = 2000, ω = 0.5. Since the chirality
is high, the system initially seems to be in the counterrotating
currents with oscillations (t = 1500), but the oscillations in
this case soon become unstable and the phase collapses (t =
15000) in such a way that some of the particles form a flock
that circles around in the inside of the confinement and some
of the particles form a disordered cluster at the boundary (t =
30000). When the flock encounters the cluster, chiral particles
form traveling bands (t = 51000).

We also note that, similar to ordered oscillations in the
low γp, γw regime, the sustained spiral, the traveling waves
and all of the counterrotating currents are stabilized due to
the confinement, without which these systems form a flocking
steady state instead (see Fig. S1 within SM [55]).

1. Quantitative analysis

We do quantitative analysis for the high density systems
in this high γp, γw regime. We consider again the VOP and

SOP, as defined earlier [Eqs. (3) and (4)]. Figure 8(a) shows
the time evolution of �vop different chiralities and Fig. 8(b)
shows 〈�vop〉 versus ω for N = 2500.

Same as before, �vop in the edge current phase is nearly
constant and almost equal to 1; for ω = 0.05, 〈�vop〉 =
0.99 [Fig. 8(b), blue]. Comparatively, �vop becomes small
for the sustained spiral phase; for ω = 0.15, 〈�vop〉 = 0.18
[Fig. 8(b), orange]. For the counterrotating currents phase,
�vop is just marginally smaller than the edge currents phase;
for ω = 0.25, 〈�vop〉 = 0.98 [Fig. 8(b), green]. This is be-
cause some particles between the clockwise rotating boundary
layer and the counterclockwise rotating innermost layer are
aligned in the radially outward direction, and hence do not
contribute to the average. �vop decreases further in the coun-
terrotation with flocking phase, it being 0.6 < �vop < 0.9;
for ω = 0.35, 〈�vop〉 = 0.66 [Fig. 8(b), red]. The flocking
reduces the rotational order, and similar to the low γp, γw

regime, as ω increases, 〈�vop〉 decreases. For the counterro-
tation with oscillation phase, similar to the ordered oscillation
phase in the low γp, γw regime, �vop shows periodic os-
cillation between 0.7 and 1; for ω = 0.45; 〈�vop〉 = 0.84
[Fig. 8(b), purple]. The angular frequency (ω�vop ) of the os-
cillating �vop in this phase is also approximately two times
the chirality (ω); for ω = 0.45, ω�vop = 0.88.
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FIG. 9. For the N = 2500, γp = 0.5, γw = 10 system, (a) time evolution of the swarm order parameter (last 104 time steps) for edge cur-
rents (blue), sustained spiral (orange), counterrotating currents (green), counterrotations with flocking (red), counterrotations with oscillation
(purple). (b) Time averaged swarm order parameter (〈ψsop〉) vs chirality (ω). We note that the swarm order parameter is evaluated by only
considering particles that are within a distance of 9 from the center of mass (rm) of the particles.

To get a better picture of the flocking behavior in this
regime, ψsop is calculated in a limited area around the center
of mass (rm) of the particles (within a distance of 9 from
rm). For the N = 2500 system, the time evolution of ψsop

is shown in Fig. 9(a), and the dependence of 〈ψsop〉 on ω

in Fig. 9(b). Just like the low γp, γw regime, ψsop remains
close to 0 for the edge current, the counterrotating currents
and the counterrotation with oscillation phases; 〈ψsop〉 = 0.02
for ω = 0.05 [Fig. 9(b), blue], 〈ψsop〉 = 0.03 for ω = 0.25
[Fig. 9(b), green] and 〈ψsop〉 = 0.04 for ω = 0.45 [Fig. 9(b),
purple]. The sustained spiral and the counterrotation with
flocking phases show intermediate values of ψsop, between 0.2
and 0.6; 〈ψsop〉 = 0.3 for ω = 0.15 [Fig. 9(b), orange], and
〈ψsop〉 = 0.5 for ω = 0.35 [Fig. 9(b), red]. The quantitative
definition of every state using the order parameters is given in
the Appendix. Also, same as the low γp, γw regime, the center
of mass dynamics (Fig. S16 within SM [55]), mean radius
(Fig. S17), variance of radius (Fig. S18), and mean tangential
velocity (Fig. S19) provide us with more information about
the spatial distribution and dynamics of the different phases
in this regime as well. Quantitative analysis for the traveling
bands and the disordered cluster phases are also given in
Fig. S20.

2. Phase diagram

Finally, we summarize all the simulation data in the high
γp, γw regime in a phase diagram [Fig. 10(a)], with the chi-
rality (ω) and number of particles (N) on the x and y axes
respectively. Same as the low γp, γw regime, below a mini-
mum threshold particle density (N � 200), we can observe a
disordered state without any collective motion. Moreover, the
edge current phase exists for low chirality across all particle
densities. However, owing to the strong nematic interaction
with the boundary, if a significant number of particles get
aligned in the clockwise direction, it is possible for clockwise
edge currents to appear as well. Furthermore, likely due to
the higher polar interactions between the particles, in systems
with moderate and high densities (N � 1000), the edge cur-
rent phase is also observed for slightly higher chiralities (ω =
0.1, 0.12) compared to the low γp, γw systems, replacing the
multiple flocks phase.

A few systems with high density/low chirality and
moderate density/moderate chirality settle down in to the
disordered cluster phase. The achiral (ω = 0) systems with
γp = 0.5, γw = 10, are either in the ordered or disordered
cluster phase. When a few particles are aligned in the clock-
wise direction, they compete with the clockwise motion due to
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FIG. 10. (a) Phase diagram in the high polar and nematic interactions regime (γp = 0.5, γw = 10). Compared to the low γp, γw regime,
the high density systems show much more complex steady states. Points with different colors on left and right halves of the circle represent
different simulation runs with the same initial conditions can give either one of the states. Some of the counterrotating currents with oscillation
systems show the oscillations for some time, but then oscillations collapse to flocking; these are represented by points with different colors on
top and bottom halves of the circle. Phase boundaries are manually drawn and are just a guide for the eye. (b) Summary of the phase changes
with chirality (ω) and schematic diagrams for the steady states.

chirality to determine the global motion of the system, and if
neither is able to completely overcome the other, we observe
the disordered cluster phase.

In contrast, for very low chirality, the system may either
have a counterclockwise edge current, clockwise edge current
or a disordered cluster steady state, depending on whether the
chirality, the nematic interaction or neither dominates, and
that might be different from one simulation run to another,
even if none of the parameters are changed. Thus, we observe
multiple steady states for the low chirality systems.

It is in the high density and moderate to high chirality
region of the phase diagram that we observe novel and inter-
esting phases, in stark contrast to the low γp, γw regime, which

had just flocking for that region. The sustained spiral phase
is a peculiar state that occurs for a small and specific range
of parameters: N � 2000 and around ω = 0.15; transient spi-
ralling droplets are observed for a wide range of parameters
(the single flock phase has an intermediate spiraling droplet
state, in both low and high γp, γw regimes), but within this
small subset of parameters, the conditions are just right to
observe long-lasting spiralling droplets.

On the other hand, increasing the chirality beyond the
sustained spiral phase leads us to the counterrotation phases,
in which the particles close to the boundary move in the
clockwise direction (due to strong nematic interaction with
the wall), while the particles further away from the boundary
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move in the counterclockwise direction (due to the higher
chirality). On the higher end of ω, the counterrotations are also
accompanied with either flocking or an oscillatory spiralling
motion of particles at the center of the circular bound-
ary. The phase dependence on ω and N in this regime, is
summarized in Fig. 10(b), along with the schematics for the
steady states.

IV. DISCUSSION

In this study, we numerically studied the pattern formation
due to the collective motion of chiral active matter confined
in a circular boundary space. Our simulations show that intro-
ducing chirality into a confined achiral active matter system
can drastically change its dynamics; while the achiral systems
show one of the three simple states of boundary flow, ordered
cluster or a mixed state, the chiral systems, depending on the
particle number (N ), chirality (ω), polar (γp), and nematic
(γw ) interactions show a wide variety of steady states. For
chiral systems in the low γp, γw regime, we observe chiral
edge currents, flocking, and ordered oscillations, whereas in
the high γp, γw regime we observe additional phases that
are much more dynamic: counterrotations (with its variants),
sustained spirals, and traveling bands.

The particles interact with a boundary wall as they move
in a curved trajectory with a preferential direction. Under
conditions where the interaction with the boundary wall and
the polar orientation interaction between particles are weak,
a boundary flow along the wall emerges at lower chirality,
and as the chirality is increased, the chiral collective motion
transforms into a global oscillation that reverses the direction
in the radial direction within the confined space. Such ordered
collective motion suggests the presence of an effective attrac-
tive interaction through the chiral motion of particles near
the boundary. Furthermore, as the strength of the interaction
between the particles and the wall becomes stronger, various
order formations, such as counterrotations, are stabilized ac-
cording to the balance of interparticle alignment and steric
effect at the boundary. Thus, symmetry breaking of the self-
propelled particles, which could be coupled with the steric
boundary condition, is a critical parameter controlling the
macroscopic collective dynamics.

The emergence of different states when achiral systems
are transformed to chiral system has been shown in previous
studies in both the bulk [45] and confined space [36–38,42],
and our simulations exhibit the same trend in confined sys-
tems. More recently, a paper by Lei et al. [56] also studied
the phase dependence of chiral active particles confined to
a circular boundary. They assumed anisotropic interactions
between the particles, instead of polar interactions considered
in this study, and the interaction with the confinement wall
in their case was completely repulsive in nature, and did
not affect particle alignment. Strikingly, however, they also
observed phases analogous to edge currents, flocking, and
ordered oscillations found in this study, indicating that these
phases are independent of interactions present in the system
and the direct consequence of chirality.

One of the more notable observations in our simulations is
that in the low γp, γw regime, the phase transition from edge
currents to the flocking phase occurs at the same chirality,

regardless of the particle number; in future work, by deriving
a continuum hydrodynamic theory for this system, this phase
transition behavior may be explained through a stability anal-
ysis. Furthermore, in a continuum model of chiral active fluid,
viscous stress that does not result in dissipation (odd viscosity)
but due to the reciprocal symmetry breaking is also involved in
collective dynamics in bulk [57–59]. How such odd viscosity
changes under boundary geometry remains a subject for future
investigation.

Even when the compartment inside living cells is symmet-
rical, there is often chirality in the cytoskeletal proteins and
molecular motor proteins that show self-organized structures
with active force generation [44]. Conversely, cytoskele-
tons beneath the cell membrane are also subject to precise
regulation through protein interactions, resulting in context-
dependent structures from a single set of proteins such as
ring-like contractile gel and active retrograde flow [60]. In
circular cells, the interplay between the confining boundary
and the chirality of the actin cytoskeleton can give rise to
various patterns [61]. This is also true at the multicellular
scale for mammalian cells [62], and seen in edge currents for
bacteria [25] and cell monolayers [63]. Thus, manipulating
the interaction between the inherent asymmetry of molecules
such as chirality and boundary geometry may provide a deeper
understanding of biological systems that generate emergent
collective dynamics such as hydrodynamic bound states in
swimming algae [64] and diverse ordered structures like living
crystal forms [65,66].
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APPENDIX

1. Quantitative definitions of the dynamical phases

All the phases observed in this study show features of
boundary flow, flocking, oscillation, or a combination thereof.
As such, it is possible to quantitatively define the dynamic
steady states by utilizing multiple order parameters: vortex
order parameter (VOP, �vop) and swarm order parameter
(SOP, ψsop), as defined earlier and mean normalized tangential
velocity (vT ) as defined in SM [55].

The phases in which all the particles move near the bound-
ary, namely edge currents (counterclockwise and clockwise),
and counterrotating currents, have a virtually constant �vop,
nearly equal to 1; therefore, the steady states with 〈�vop〉 >

0.9 are either edge currents or counterrotating currents. To dif-
ferentiate between these states, we use vT ; counterclockwise
edge currents have 0.9 < 〈vT 〉 � 1, clockwise edge currents
have −1 � 〈vT 〉 < −0.9 and counterrotating currents have
−0.5 < 〈vT 〉 < 0. Note that for these phases, 〈ψsop〉 � 0.
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The flocking phases can be easily defined by considering
ψsop; for the single flock phase, 〈ψsop〉 > 0.9 and for the
multiple flocks phase, 0.6 � 〈ψsop〉 � 0.9.

The ordered oscillation and the counterrotation with oscil-
lation phases can be characterized by the periodic oscillation
of their VOP; the angular frequency of this oscillating
�vop, for both the phases is approximately twice the chi-
rality, ω�vop = 2 × ω, but for the ordered oscillation phase,
〈�vop〉 < 0.2 whereas for the counterrotation with oscillation
phase, 0.8 < 〈�vop〉 < 0.9.

For defining the counterroatation with flocking, sustained
spiral, traveling bands, and disordered cluster phases, just
a single parameter is not enough. In the counterroatation
with flocking phase, 0.6 < 〈�vop〉 < 0.9, and 0.3 < 〈ψsop〉 <

0.6. For the sustained spiral phase, 0.1 < 〈�vop〉 < 0.6, and
0.2 < 〈ψsop〉 < 0.4 and for the traveling bands phase, 0.3 <

〈�vop〉 < 0.6, and 0.2 < 〈ψsop〉 < 0.3 (see SM [55]). To

differentiate between the sustained spiral and the traveling
bands phases, we again use vT ; for the sustained spiral phase,
while 〈vT 〉 can take either positive or negative values, its
has a significant magnitude, compared to the traveling bands
phase, for which 〈vT 〉 � 0. For the disordered cluster phase,
〈�vop〉 > 0.9, and 0.2 < 〈ψsop〉 < 0.4 (see SM [55]).

With this, we have the quantitative definitions for all the
ordered phases found in this study.

2. Implementation of the random noise

We have, 〈ηm(t )ηn(t ′)〉 = 2Dδmnδ(t − t ′). From this, we
obtain the noise as ηm = √

2Ddt × ξ , where ξ is a pseudoran-
dom number, drawn from a Gaussian distribution with mean
0 and standard deviation 1. The NumPy package of Python is
used to generate the pseudorandom numbers, which utilizes
the Mersenne Twister algorithm for this purpose [67].
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