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Modeling epithelial tissue and cell deformation dynamics using a viscoelastic
slab sculpted by surface forces
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During morphogenesis, epithelial monolayers actively alter their shape to create future body parts of the
animal; this makes the epithelium one of the most active and critical structures in early animal development.
While epithelia are often modeled as two-dimensional systems, real epithelia are not necessarily thin relative
to cell cross section, and advances in 3D imaging have shown the possibility of substantial cell deformations
in the third dimension, as well as differences in dynamics of the apical and basal surfaces indicative of three-
dimensional coupling. With the importance of the third dimension in mind, we have developed a self-sculpting,
three-dimensional model of epithelia whose dynamics are driven by active forces on its surface. We present
a first, fundamental study for a reduced version of epithelia that investigates how surface forces affect its
internal dynamics. Our model captures the 3D slab-like geometry of epithelia, viscoelasticity of tissue response,
fluid surroundings, and driving from active surface forces. We represent epithelial tissue as a thick slab, a 3D
continuum comprised of a Stokes fluid with an extra viscoelastic stress. Employing this model, we present
both analytical and numerical solutions of the system and make quantitative predictions about cell shapes, cell
dynamics, and the tissue’s response to surface force in a three-dimensional setting. In particular, we investigate
the implications of our model on the initiation of ventral furrow invagination and T1 transitions in Drosophila
embryogenesis. In the former, we demonstrate the importance of fluid and geometric surroundings to drive
invagination. In the latter, we show the limitations of surface forces alone to drive T1 transitions.

DOI: 10.1103/PhysRevResearch.5.023190

I. INTRODUCTION

Epithelial cells change shape and rearrange while stay-
ing connected in a planar geometry. While many events in
morphogenesis, such as tube formation [1] or epithelial in-
vagination [2,3], involve deforming the planar geometry of the
epithelium, many of these deformations are preceded by mor-
phological changes in which cells move merely in-plane to
the epithelium [4]. Moreover, many events in morphogenesis
do not deform the epithelial plane at all, as they consist only
of in-plane movement; examples of this include convergent
extension in both Drosophila [5–7] and vertebrates [8] and
ommatidia rotation in Drosophila [9].

Whenever epithelial cells move mostly in-plane to the ep-
ithelium, researchers often use 2D vertex models [10–14] or
particle models [15,16] to describe them. These models are
sufficient if the epithelial cells they describe are thin. How-
ever, recent developments in microscopy have revealed that
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when cells have significant height, movements become com-
plex [5], and a three-dimensional approach may be required.
To this end, 3D vertex models [17–22] and 3D finite element
models [23–25] have been used. While these models have
produced effective results to describe both cell rearrangements
and tissue deformations, they do not take into account the fluid
surroundings of the tissue, nor do they time-evolve internal
velocity fields and stresses via momentum balance equations.
Moreover, these approaches require many phenomenological
parameters to be specified and tuned. The thin viscoelastic
shell models of [26,27] treat the mechanics and activities
of the actin cortex near cell surfaces as continuum fields
and are able to describe in detail the 3D shapes of indi-
vidual cells; however, the influence of fluid surroundings on
the active layer are not modeled. Our approach restricts to
modeling phenomena in which cells move mostly in-plane
to the epithelium; however, our model epithelium is fully
three dimensional, and we consider its interaction with both
fluid/material surroundings and boundary constraints.

We present a mathematical model for epithelial tissue
in which the tissue is described by a three-dimensional
continuum viscoelastic fluid, geometrically, a flat 3D slab,
surrounded by viscous fluids. The epithelium is driven by
active surface forces, for example, due to populations of
actomyosin that exist on the apical or basal surface of cells
but not on their lateral sides [28]. One question that our
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FIG. 1. Simulated 3D cell deformations under two different ap-
plied surface forces.

model treats explicitly is how the thickness of the epithelium
plays a role in how forces alter cell shape: since forces of
contractility are specified only at the surface of the tissue,
nonzero thickness means that forces specified on the apical
(basal) side do not fully propagate to the basal (apical) side.
This would imply that the topology of cells can look different
on the apical versus basal surface due to the attenuation of
forces through the thickness of the tissue. In fact, research
showing that epithelial cells in tissues often have a scutoid
shape [29,30] indicates that, indeed, cell topology often
differs between apical and basal sides. Our mathematical
description quantitatively comments on the nature of force
transfer from one side of the epithelium to the other.

Finally, because we model the tissue as a continuum, ve-
locity fields are used to track material elements. If we assume
that cell membranes do not exert significant force, that is,
that membranes are merely carried by the flow of cytoplasm,
shown to be roughly true in the early Drosophila embryo [28],
then cell boundaries, tracked as material elements, provide
simulated data of 3D cell shape change over time. Indeed,
authors in [28] found that knocking down lateral membrane
formation does not significantly alter the 3D flow inside an
embryo, and that tracers of membranes and tracers of the fluid
behave similarly; hence ignoring forces from lateral mem-
branes is an appropriate approximation for our zeroth-order
model. Figure 1 shows the results of thus simulated 3D cell
deformations under different driving surface forces (elabo-
rated in Fig. 7 below). In this paper, we simulate both the
onset of ventral furrow invagination and convergent extension
in Drosophila. We elucidate these events using 3D solutions
to the system, accounting for the fluid environment and other
geometric constraints.

II. DEFINITION AND SOLUTION TO THE MODEL

A. Biological motivation for model geometry

Biologically and stereotypically, epithelia are flat tissues
that, on one side, are separated from a solid-like structure by
a layer of fluid, and on the other side, adjacent to a fluidic
bath. In the fly embryo, for example, the apical side of the
epithelium is located next to the perivitelline fluid layer, which
borders the vitelline membrane, while the basal side faces the
fluid at the center of the embryo [Fig. 2(a)] [2,3]. We exploit
this flat geometry of the epithelium and consider settings
where cells move mostly in-plane to the tissue. Moreover,

(a)

(b)

(c)

FIG. 2. System geometry. (a) Stereotypical epithelial geometry
of the Drosophila embryo: one side of the epithelium is adjacent
to a fluid layer (perivitelline fluid) and a hard wall (vitelline mem-
brane); the other side faces a fluid bath. The box indicates a region
of approximately flat epithelium. (b). Schematic of epithelium with
an active surface containing actomyosin adjacent to the perivitelline
fluid and vitelline membrane. (c) Diagram of model epithelium with
definitions of regions L, S, B, and the coordinate system; the two
surfaces of the slab are “top” (z = 0) and “bottom” (z = −h).

we take into full account the epithelium’s interaction in three
dimensions with the surrounding fluids and boundaries.

To describe the epithelium mathematically, as a mechanical
object, we use a viscoelastic fluid model to represent the
epithelium, as researchers [31–33] have found that cells often
respond elastically on short timescales and viscously on long
timescales. Our length scales and timescales of interest are
at the scale of embryonic cell rearrangements, between 1 and
100 microns, and 0.1 to 10 minutes, respectively. Because an
epithelium is longer in two directions and shorter in the third,
we describe it as a 3D slab that is periodic in the x and y direc-
tions with finite thickness h in the z direction. Above the slab,
we include a layer of Newtonian fluid (region L), simulating
the layer between the epithelium and a solid-like structure,
typically a vitelline membrane or extracellular matrix. The
solid-like structure itself is represented by a hard wall at z =
H . The viscoelastic slab occupies the domain −h � z � 0
(region S). Below the slab, for z < −h, we include a fluid bath
of infinite depth (region B) to simulate the admittedly finite
but large-scale fluidic bath that often exists on the other side
of the epithelium. We refer to the side of the slab adjacent to
the fluid layer at z = 0 as the “top”, and the side adjacent to the
semi-infinite fluid bath at z = −h as the “bottom”. Figure 2(c)
shows regions L, S, and B in a schematic diagram.

Active forces are applied along the surface of the slab in the
planar directions (x and y). These active forces typically arise
from populations of myosin motors moving on an actin mesh
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that exists on the surface of the tissue [Fig. 2(b)]. While the
forces themselves are two-dimensional, they create a three-
dimensional flow inside the tissue because of the internal
mechanics of the slab [Fig. 2(c)]. In this paper, we analyze
these 3D flows given the particular form of the surface force.
Assuming that cell boundaries are carried by the flow, we also
characterize cell deformations that arise from this force.

B. The Model

1. Bulk equations

Let the fields σL, σS , and σB denote the total stress tensors
in the L, S, and B regions of the system,

σL ≡ − P+1 + ηL(∇u+ + (∇u+)T ), (1)

σS ≡ − P1 + η(∇u + (∇u)T ) + σe, (2)

σB ≡ − P−1 + ηB(∇u− + (∇u−)T ), (3)

where u, u± are the velocities, P, P± are the pressures, and
η, ηL,B are the viscosities in each region. Here, σL,B indicate
linear Newtonian solvents and σe indicates an extra stress. We
model the tissue as an Oldroyd-B fluid because Oldroyd-B is
perhaps the simplest model of a viscoelastic fluid. Requiring

∇ · σL,S,B = 0, ∇ · u = ∇ · u± = 0, (4)

we obtain the Stokes or forced Stokes equations of motion for
fields u, u±, P, P±. The extra stress σe in Eq. (2) is evolved by
the equation

�
σe = D∇2σe − 1

τp
(σe − G01) (5)

where
�
σe = ∂

∂t
σe + u · ∇σe − (∇uσe + σe∇u) (6)

is the upper-convected time derivative, and D is the center-
of-mass diffusion of Oldroyd-B polymers. Further, recalling
the kinetic theory of Oldroyd-B, if we assume that Oldroyd-
B particles cannot cross the top or bottom boundaries of the
tissue (a natural way to ensure particle number conservation),
then this implies that the diffusive flux at z = 0 and z = −h
are both 0, that is,

∂

∂z
(Dσe)|z=0,−h = 0. (7)

To nondimensionalize Eqs. (1)–(5), we rescale time, length,
and force as

t = t ′τp, � = �′�0, F = F ′η
�2

0

τp
, (8)

where �0 is a yet-unspecified characteristic length scale. We
additionally rescale σe by a dimensionless stress α, σe =
σe′αη/τp where αη/τp = G0. We chose dimensional units to
depend on the material properties of the system (the solvent
viscosity η and polymer relaxation time τp), so that parameters
specifying the driving force, e.g., its amplitude and frequency,
will be free to vary. The details of nondimensionalization are
in the Supplemental Material (SM) [34].

Using the scalings in Eq. (8), the nondimensional equa-
tions of motion in the fluid layer (region L), the slab (region
S), and the fluid bath (region B) are

−∇P+ + ηL∇2u+ = 0, ∇ · u+ = 0, 0 < z < H, (9)
(10)−∇P + ∇2u + α∇ · σe = 0, ∇ · u = 0

�
σe = D∇2σe − (σe − 1)

}
− h � z �0,

(11)

−∇P− + ηB∇2u− = 0, ∇ · u− = 0, z < −h. (12)

2. Boundary conditions

We assume a no-slip condition on the wall,

u+|z=H = 0. (13)

Additionally, we assume that at z = 0 and z = −h, we have
continuity of velocity with a zero-velocity condition in the z
direction,

u+|z=0 = u|z=0 = (
V t

x ,V t
y , 0

) ≡ (Vt , 0), (14)

u|z=−h = u−|z=−h = (
V b

x ,V b
y , 0

) ≡ (Vb, 0). (15)

Here, the planar (x, y) velocity at z = 0 is denoted Vt ≡
(V t

x ,V t
y ) where the superscript denotes the “top” surface of

the slab, and the planar velocity at z = −h is denoted Vb ≡
(V b

x ,V b
y ) where the superscript denotes the “bottom” surface

of the slab. We also demand that velocities at −∞ vanish,

u−|z→−∞ = 0. (16)

Finally, we have boundary conditions reflecting the fact
that actively applied tangential forces at the top (z = 0) and
bottom (z = −h) surfaces of the slab create stress jumps
across those surfaces. Let Ft and Fb notate stresses from
active driving forces applied at the top and bottom surfaces,
respectively. Then

(σS − σL )ẑ|z=0,2D = Ft , (17)

(σB − σS )ẑ|z=−h,2D = Fb, (18)

where the notation |z=z0,2D is defined by v|z=z0,2D ≡
(vx, vy)|z=z0 for an arbitrary 3D vector v = (vx, vy, vz ). The
z-directional stress at the top and bottom surfaces are deter-
mined by the condition that w = 0 at z = 0,−h.

C. Fourier representation of solution when σe = 0:
The Stokes solution

If we assume that the slab is a simple Stokes fluid, setting
σe = 0 in Eq. (10) and eliminating Eq. (11) entirely, then the
velocity field can be determined everywhere in the system as
a nonlocal functional of the surface forces [35]. This involves
solving a Neumann-to-Dirichlet mapping from surface forces
to surface velocities. We Fourier transform the Stokes equa-
tions in x and y. Stress boundary conditions are applied to
3D velocity solutions such that the surface forces Ft and Fb

self-consistently determine the surface velocities Vt and Vb

through a Neumann-to-Dirichlet map.
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A 2D Fourier transform of an arbitrary scalar function f is
defined as

f (x) =
∑
i, j

f̃ (ki, k j, z)ei(ki,k j )·(x,y) ≡
∑

k

f̃ (k, z)eik·x (19)

where k takes on values

k ≡
(

2π i

L
,

2π j

L

)
, i, j ∈ Z. (20)

We notate ũ = (ũx, ũy, ũz ) ≡ (ṽ, w̃) so that ṽ = (ũx, ũy). Us-
ing Eq. (19) to Fourier transform all fields in the Stokes
equation 0 = −∇P + η∇2u and applying the divergence-less
condition ∇ · u = 0 leads to the 2D transformed Stokes equa-
tions and divergenceless condition

−ikP̃ + η

(
−k2 + ∂2

∂z2

)
ṽ = 0, (21)

− d

dz
P̃ + η

(
−k2 + ∂2

∂z2

)
w̃ = 0, (22)

ik · ṽ + ∂

∂z
w̃ = 0, (23)

where all fields are functions of (k, z) and k ≡ |k|. The bound-
ary conditions for v̂ and ŵ, from Eqs. (14) and (15), are

ṽ|z=0 = Ṽt , w̃|z=0 = 0, (24)

ṽ|z=−h = Ṽb, w̃|z=−h = 0. (25)

Solutions for Eqs. (21)–(23) are presented in Sec. SII A of the
SM [34].

D. Neumann-to-Dirichlet map of surface forces
to surface velocities

The full 3D velocity solutions ṽ and w̃ to the divergence-
less Stokes equations [Eqs. (21)–(23)] in the bulk of the tissue
are given in the SM [34] by Eqs. (S30) and (S26). Importantly,
since Stokes equations are boundary value problems, these
bulk velocities are determined by, and are functionals of, the
surface velocities Ṽt,b. This dependence means that tangential
shear stresses st

S and sb
S at the boundaries z = 0 and z = −h,

created by bulk velocities in region S, also depend on Ṽt,b;
similarly, the same dependence applies to tangential shear
stresses at z = 0,−h created by bulk velocities in regions L
and B. The dependence of shear stresses on boundary ve-
locities gives rise to a mathematical opportunity, in which
demanding self-consistency between active force and shear
stress differences across surfaces allows for the calculation
of surface velocities Ṽt,b as a function of the active surface
force. This Neumann-to-Dirichlet map between surface force
and surface velocity does not only provide the mathematical
solution to our posed problem, but is also interpreted as the
tissue’s velocity response to driving. To see this, consider
the following. The tangential shear stresses st

S and sb
S at the

boundaries z = 0 and z = −h from velocities in region S are
(see details in the SM [34])

σS ẑ|z=0,2D ≡ st
S = �1(k, h, η)Ṽt − �2(k, h, η)Ṽb,

σS ẑ|z=−h,2D ≡ sb
S = �2(k, h, η)Ṽt − �1(k, h, η)Ṽb,

(26)

where the matrix operators �1 and �2 (given in Eq. S49 in
the SM [34]) acting on Ṽt and Ṽb depend on the magnitude
of the wavevector k and parameters h and η (rescaled to 1

from nondimensionalization but reinstated here for clarity). A
similar calculation in the SM [34] gives, for tangential shear
stresses from regions L and B,

σL ẑ|z=0,2D ≡ sL = −�(k, H, ηL )Ṽt , (27)

σBẑ|z=−h,2D ≡ sB = β(k, ηB)Ṽb, (28)

where the matrix operators � and β are given in Eqs. (S51)
and (S52) (see SM [34]). Assuming that the stress jumps at
z = 0 and z = −h are created by active forces Ft and Fb,
respectively, we obtain

st
S − sL = F̃t , (29)

sB − sb
S = F̃b. (30)

Inverting these equations, we express Ṽt and Ṽb in terms of
F̃t and F̃b,

Ṽt = −(
�2 − �B�−1

2 �L
)−1(

F̃b + �B�−1
2 F̃t

) ≡ τF̃b + τt F̃t

(31)

Ṽb = −(
�2 − �L�−1

2 �B
)−1(

F̃t + �L�−1
2 F̃b

) ≡ τF̃t + τbF̃b

(32)

where �B ≡ �1 + β and �L ≡ �1 + �. Note that the matri-
ces �1,2,�L,B,β,�, all have the form p(k)1 + q(k)k̂k̂ where
p �= 0 and q �= −p. Hence each is invertible with its inverse of
the form 1

p (1 − q
p+q k̂k̂) where (k̂k̂)i j ≡ kik j/k2; additionally,

they all commute under multiplication. Hence, the same ma-
trix τ multiplies F̃b in Eq. (31) and F̃t in Eq. (32), meaning
that the transfer of surface forces to velocities on opposite
surfaces are identical regardless of direction of transfer. Fur-
ther, the transfer matrices τ, τt,b, like the other matrices in
this discussion, are also nonsingular rank-one perturbations of
the identity. Thus, we have determined Vt,b as functionals of
surface forces Ft,b. Finally, Eqs. (S26), (S28), (S30), (S44)–
(S46), and (S39)–(S41) (see SM [34]) give the bulk velocities
u, u± and pressures P, P± in terms of Vt,b.

E. Stokes Oldroyd-B solution

To construct the full solution to the Stokes Oldroyd-B
equation [Eq. (10)] in region S, we need to consider the source
term α∇ · σe. We first construct, numerically, a particular
solution to Eq. (10) using zero velocity boundary conditions
at z = −h, 0. We add to this a homogenous solution (as in the
previous section) that corrects the boundary conditions and so
obtain the full solution. This is detailed in Sec. SIII of the SM
[34]. The end result is that the quantities

F̃t
OB = F̃t − (σN (Pp, up, η) + ασe)ẑ|z=0,2D, (33)

F̃b
OB = F̃b + (σN (Pp, up, η) + ασe)ẑ|z=−h,2D, (34)

are substituted for F̃t and F̃b to find velocities Ṽt and
Ṽb in Eqs. (31) and (32). In the above, up and Pp in-
dicate the numerical particular solution and σN (P, u, η) ≡
−P1 + η(∇u + (∇u)T ). Explicitly, we have

Ṽt = −(
�2 − �B�−1

2 �L
)−1(

F̃b
OB + �B�−1

2 F̃t
OB

)
, (35)

Ṽb = −(
�2 − �L�−1

2 �B
)−1(

F̃t
OB + �L�−1

2 F̃b
OB

)
. (36)
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Quantities Ft
OB and Fb

OB now include active forces Ft and Fb

as well induced forces from the extra stress and the particular
solution in the slab. As before, these V̂t and V̂b are utilized
in Eqs. (S26), (S28), (S30), (S44)–(S46), and (S39)–(S41)
(see SM [34]) to obtain uh, u±, Ph, P±. These, along with
numerical solutions Pp and up give the solution for the full
system. Note that since the velocity boundary conditions for
Pp and up are 0, then Eqs. (35) and (36) indicate the entirety
of the surface velocities.

III. THE TRANSFER MATRICES

A. Dependencies on wavevector and other parameters

To understand how the geometry (parameters h and H) and
intensive material parameters (viscosities ηB,L) influence how
surface force is converted to surface velocities, we explore
how transfer matrices depend on the wavevector k, the thick-
ness of the slab h, and other parameters. Consider Eqs. (31)
and (32). Note that each of τ, τt , and τb have the form

τ(k) = a(k)1 + b(k)k̂k̂, τt,b = at,b(k)1 + bt,b(k)k̂k̂.

(37)

From Eq. (37), the eigenvalues and corresponding eigenvec-
tors of τ are e1 = a(k) + b(k), v1 = k̂ and e2 = a(k), v2 =
k̂⊥ ≡ (−ky, kx )/k. Analogous eigenvectors and eigenvalues
hold for τt,b. Using the eigenvectors of τ, we express the
action of τ on an arbitrary vector F̃ = (F̃x(k), F̃y(k)) in the
basis of vectors parallel and perpendicular to F̃, vectors F̃
and F̃⊥,

τF̃ = (a(k) + ( ˆ̃F · k̂)2b(k))F̃ + (−( ˆ̃F · k̂)( ˆ̃F · k̂⊥)b(k))F̃⊥.

(38)

Equation (38) is derived in Sec. SIV A of the SM [34]. In-
terpreting F̃ as the kth Fourier component of a driving force
profile F(x, y), Eq. (38) indicates that the action of τ on F̃,
which produces a surface velocity, is proportional to |F̃| (as it
should) and depends strongly and explicitly on the orientation
of wavevector k with respect to the orientation of the driving
force, evident from the factors ˆ̃F · k̂ and ˆ̃F · k̂⊥. We take F̃ to
be in the x direction, i.e., F̃ = (F̃x, 0), then Eq. (38) becomes

τF̃ =
[(

a(k) + k2
x

k2
b(k)

)
x̂ +

(
kxky

k2
b(k)

)
ŷ
]

F̃x

≡ (τ‖(k)x̂ + τ⊥(k)ŷ) F̃x. (39)

Here, we defined the coefficient of force in the x direction
as the “parallel transfer coefficient” τ‖ and the coefficient of
force in the y direction as the “perpendicular transfer coeffi-
cient” τ⊥. We assume the driving force ˆ̃F is aligned along x
for the rest of the paper and take kx and ky to be positive.

Transfer functions τt and τb generate similar expressions
to Eq. (39),

τt,bF̃ =
[(

at,b(k) + k2
x

k2
bt,b(k)

)
x̂ +

(
kxky

k2
bt,b(k)

)
ŷ
]

F̃x

≡ (τ t,b
‖ (k)x̂ + τ t,b

⊥ (k)ŷ) F̃x. (40)

From Eqs. (39) and (40), it is evident that the force profile
must vary in both x and y to produce a velocity perpendicular
to the force. For example, a force profile Fx(x, y) = sin(kxx)
or Fx(x, y) = sin(kyy) will produce no y velocity.

We explore how a, b and at,b, bt,b behave as k and other
physical parameters are varied, and then comment on the con-
sequences for parallel and perpendicular transfer coefficients
τ‖, τ⊥, τ t,b

‖ , τ t,b
⊥ .

Figure 3 shows a(k), at,b(k) (shades of red) and
b(k), bt,b(k) (shades of brown) as functions of k using the
dimensionless (rescaled using η and �0) base parameters ηB =
ηL = 1, H = 0.5, h = 2, L = 20. Here, each graph varies one
of the parameters h, H, ηB, or ηL higher or lower by numer-
ical factors and plots the result in a lighter or darker shade,
respectively. The range between which each of these param-
eters approaches 0 and ∞ are shaded. The base parameters
are chosen to mimic physical parameters in the fly embryo,
where, if the length scale �0, is taken as the radius of a typical
cell, then the thickness of the fluid layer H is typically 0.1�0

to 2�0, the thickness of the epithelium h is typically 0.5�0 to
10�0, and the viscosities of the fluid bath and fluid layer (ηB

and ηL) are on the order of η. Figure S1 (see SM [34]) shows
the same functions considered as functions of h using the same
base parameters as Fig. 3.

From Figs. 3 and S1 (see SM [34]) and analysis, we make
several observations about the behavior of the matrix ele-
ments a, b and at,b, bt,b of the transfer matrices τ and τt,b.
Elaborations on these points and other comments appear in
Sec. SIV B of the SM [34]. (1) We note that perpendicular
transfer coefficients τ⊥, τ t,b

⊥ are always negative; this is due
to the quantities b, bt,b being negative, see Figs. 3 and S1 and
Secs, SIV C and SIV B (see SM [34]). This means that if the
surface force is compressional (extensional) in the x direction,
then the velocity produced on any surface in the y direc-
tion will always be extensional (compressional). (2) We note
that the parallel transfer coefficients to the same surface τ t,b

‖
are positive; this is due to the sums at,b + bt,b satisfying
at,b + bt,b > 0, see Figs. S2 and S3 and Secs. SIV C and
SIV B in the SM [34]. This makes intuitive sense because it
is natural for forces to drive velocities in the same direction
when they are parallel to each other on the same surface. (3)
Finally, we note that the transfer coefficient to the opposite
surface τ‖ can be positive or negative depending on the value
of k; this is due to the sum a + b satisfying a + b < 0, see
Figs. S2 and S3 and Secs. SIV C and SIV B in the SM [34]. To
elaborate on this last point, Eq. (39) indicates that a + b < 0
is a lower bound to τ‖ since b < 0; a negative lower bound
on τ‖ with a > 0 means that the sign of τ‖ will depend on the
wavevector k. In other words, the transfer of surface force to
surface velocity on the opposite side generates velocity rever-
sal (τ‖ < 0) for some wavevectors in which a compressional
(extensional) force in the x direction on a surface can generate
an extensional (compressional) velocity in the x direction on
the opposite surface. For example, if Fx(x, y) = sin(kxx), then
τ‖ = a + b < 0 and velocities will be reversed on the opposite
surface. We discuss this in detail in the next section.

Given a driving force Fx, we show how the parallel and per-
pendicular transfer coefficients τ‖, τ⊥, τ a,b

‖ , and τ a,b
⊥ depend on

wavevector k of the force. Figure 4 plots τ‖ and τ⊥ for h = 2�0

in which the cell height and width are roughly equal (with
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(a) (b) (c) (d)

(e) (f ) (g) (h)

(i) (j) (k) (l)

FIG. 3. Matrix elements of τ, τt,b. Quantities a, at,b are graphed in red shades and quantities b, bt,b are graphed in brown shades as functions
of k. Base parameters are η = ηB = ηL = 1, H = 0.5, h = 2, L = 20. Each graph varies one of these parameters and plots the result, with the
shaded regions denoting the 0 to ∞ limits of each of these parameters. The 0 and ∞ limits are indicated by a dark or light dotted line,
respectively. (a)–(d) a(k) and b(k); (e)–(h) at (k) and bt (k); (i)–(l) ab(k) and bb

k (k).

(a) (b)

FIG. 4. Dependence of parallel and perpendicular transfer coefficients on wavevectors for h = 2.0�0. (a) Coefficients of parallel and
perpendicular transfer τ‖, τ⊥, τ t,b

‖ , and τ t,b
⊥ plotted (color scale) as functions of k ≡ 2π

L (nx, ny ). (b) Wavevectors in which |τ‖|, |τ⊥|, |τ t,b
‖ |,

and |τ t,b
⊥ | are larger than their median values are highlighted in dark orange; for τ‖, only non-negative values greater than the median are

highlighted.
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(a)

(b)

(c)

(b’)

(c’)

(d) (e) (f )

FIG. 5. Velocity matching vs velocity reversal. (a) Wavevectors that produce velocity matched (yellow) versus velocity reversed (gray)
solutions for various h. As h increases, the range of k producing velocity matched solutions becomes smaller. (b) Velocity matching when
Fx (x, y) consists mainly of modes from the upper left in k space. (b’) Schematic of velocity matching. (c) Velocity reversal when Fx (x, y)
consists mainly of modes from the lower right in k space. (c’) Schematic of velocity reversal. (d) When α = 0, with increasing h, larger f
is required for velocity matched solutions; fC is the crossover value of f . (e) Taking α > 0, the crossover fC for velocity matched versus
velocity reversed solutions is shown for different h and A. For each h, light and dark lines indicate A = 10 and A = 20, respectively; velocity
matched (reversed) solutions exist above (below) each line. F) Schematic of elongated myosin profile (interpreted as active stress profile)
during convergent extension in Drosophila.

ηL,B = 1, H = 0.5, L = 20). Figures S4 and S5 (see SM [34])
show similar results for h = 0.5, a shorter cell, and h = 8, a
taller cell most resembling the dimensions of a Drosophila
cell in the ventral furrow and convergent-extension phases.
First, we note that every perpendicular transfer is negative,
confirming that compressional (extensional) forces in x al-
ways lead to extensional (compressional) forces in y as stated
in point 1 above. Second, since τ t,b

‖ > 0 everywhere, then
Fig. 4 confirms point 2 above that there is never velocity rever-
sal in the parallel direction when forces transfer to velocities
on the same surface. And finally, considering τ‖, there exists
a region in the lower right where τ‖ < 0: this is the region of
velocity reversal. Figure 4(b) shows that large parallel transfer
coefficients are generically located in the upper left in k space,
while large perpendicular transfer coefficients are generically
located near the diagonal. Hence the modes of driving that
maximize magnitudes of parallel and perpendicular transfer
are different.

B. Velocity reversal when transferring to the opposite surface

If our biological problem is to find spatial profiles of
driving such that top and bottom surfaces move together,
then surface force modes with velocity matching (τ‖ > 0) are
preferred over those with velocity reversal (τ‖ < 0). From
Eq. (39), velocity reversal occurs whenever kx is sufficiently
close to k. Figure 5(a) shows wavevectors of the driving
force that produce velocity matching and reversal: generally,
wavevectors with small kx and large ky (the upper left in k
space) will produce velocity matched solutions; these modes
have long wavelengths in x and short wavelengths in y. If the
slab thickness is increased as in Fig. 5(a), then the range of k
that produces velocity matched solutions becomes smaller.

As an illustration of velocity reversal, consider the force
profile F(x, y) = (Fx(x, y), 0) with

Fx(x, y) = −A

√
e

f
xe− 1

2 (x/ f )2− 1
2 ( f y)2

(41)
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applied to the top surface. Here f is a numerical factor con-
trolling the profile shape. The prefactor A

√
e/ f is chosen such

that the maximum value of Fx would be A and the integral of
Fx over the half-plane x > 0 would have magnitude A

√
2πe,

both independent of f . For h = 1 (with ηL,B = 1, H = 0.5,
L = 40), Figs. 5(b) and 5(c) examine the cases f = 2 and
f = 0.5, respectively. The modal content of the first case
[ f = 2 in Fig. 5(b)] sits largely in the velocity matched region
of Fig. 5(a) (second panel) and indeed Vt and Vb [third and
fourth panels of Fig. 5(b)] both show similar surface hyper-
bolic flows. Conversely, the modal content of the second case
[ f = 0.5 in Fig. 5(c)] sits primarily in the velocity reversed
region, and in the third and fourth panels of Fig. 5(c), we see
a transition from a hyperbolic straining surface flow in Vt to
an outwards source-like surface flow in Vb near the origin.

During convergent extension of the embryonic fly epithe-
lium, labeling has revealed elongated regions enriched in
myosin (“myosin cables”) aligned in the direction of conver-
gence [6,36] [diagrammed in Fig. 5(f)]. Since these cables
likely exert force profiles similar to that in Fig. 5(b), with
modes largely in the velocity matched regions, we speculate
that the Drosophila embryo may be employing a strategy of
velocity matching. Since Drosophila tissue at this stage is very
thick (around h = 6 − 10), large shape factors f are required
to achieve velocity matching [Figs. 5(a) and 5(d)]. Indeed,
a rough estimation of f from the images of myosin cables
in Drosophila convergent extension in [5,7] yields values of
f = 3.2−5.3; this is based on estimates that the length and
width of myosin cables are in the range 10−20 microns and
0.7−1.0 microns, respectively (see details in Sec. SIV D of the
SM [34]). These f values together with Fig. 5(d) indicate that
these cells likely do not experience velocity reversal; however,
if myosin cables were shorter, for example, 5 microns, the
diameter of a single cell, then f would fall below the critical
value and velocity reversal becomes likely.

To note, specific to Drosophila convergent extension, it
is found that both top and bottom active surface forces are
needed to create full convergent extension [5]. Indeed, real
biological systems may involve other forces in convergent
extension, not exclusively driving from a single surface. How-
ever, if the tissue utilizes surface force profiles that produce
velocity matching, then this would decrease the need for addi-
tional forces. Thus it is possible that tissues (especially thick
tissues), by creating long myosin cables, could be employing
this strategy.

1. Dependence of velocity reversal on tissue thickness
and viscoelastic strength

If we consider the tissue to be purely viscous (α = 0), then
as the tissue thickness h is increased, the value of the shape
factor f from Eq. (41) needs also to be increased in order to
achieve velocity matched solutions. The crossover value fC of
f between velocity matched and velocity reversed solutions is
shown in Fig. 5(d).

We additionally examine how the crossover between ve-
locity matched and velocity reversed solutions changes when
the viscoelastic strength α, the tissue thickness h, and the
amplitude of the driving force A are changed. Figure 5(e)
shows fC as a function of α for various values of h and A.
There, values of f above (below) each line indicate force

profiles creating velocity matched (reversed) solutions. We
find that for large values of h, e.g., h > 0.5, the crossover fC
changes nonmonotonically with α, i.e., there is an optimal,
middle range of α for which the velocity matched param-
eter region is largest. The intuition is the following: As α

is increased, the tissue becomes more elastic and surfaces
tend to move together, making it easier for velocity matching;
on the other hand, increased elasticity also means that the
material is more resistant to compression, making it harder
for hyperbolic flows to appear near the origin and harder for
velocity matching. Hence, intermediate values of α provide
the largest velocity matched parameter regions.

C. Velocity response to periodic driving
with full Oldroyd-B model

The velocity response to periodic driving in the full Stokes
Oldroyd-B model is given numerically and depends on the
wavevector k of the driving as well as on the (nondimensional)
temporal driving frequency ω (units of 1/τp), proportional
to the Deborah number De ≡ ωτp/(2π ). The driving force
is applied to the top surface and has the form F(x, y, t ) =
(Fx(x, y, t ), 0) with

Fx(x, y, t ) = F0 sin(ωt ) sin(kxx) sin(kyy) (42)

where Fx(x, y, t ) = −F0 sin(ωt ) sin(kxx) if ky = 0 and
Fx(x, y, t ) = −F0 sin(ωt ) sin(kyy) if kx = 0.

The driving force is specified with a given wavevector
(kx, ky) in the direction x on the top surface. However, the
velocity response will consist, in general, of both x and y
velocities, velocities on both surfaces, and, in particular, since
α �= 0, velocities with components in modes other than the
driving mode. In Fig. 6, we consider the component of the
velocity response in the same mode as driving. In that mode,
top and bottom velocities in steady-state oscillation take the
form

Vt,b(x, y, t ) = (
V t,b

0x sin
(
ωt + δt,b

x

)
, V t,b

0y sin
(
ωt + δt,b

y

))
× sin(kxx) sin(kyy). (43)

Figure 6 shows the magnitude of velocity-force responses
|V t,b

0x /F0| and |V t,b
0y /F0| for driving wavevectors (kx, ky) =

2π
L (1, 0) [a pure compression mode, Fig. 6(a)], (kx, ky) =

2π
L (0, 1) [a pure shear mode, Fig. 6(b)], and (kx, ky) =

2π
L (1, 1) [Fig. 6(c)], simulated with ηL,B = 1, h = 2, H = 0.5,

L = 20. In the pure compression and pure shear modes, the
velocity response in the y direction is 0. When the viscoelastic
contribution α is large enough, e.g., α = 4 or higher in Fig. 6,
the velocity response on the bottom side |V b

0x/F0| and |V b
0y/F0|

exhibit a maximum at certain values of the Deborah number.
This implies that there are certain frequencies of driving for
which transfer of force to the opposite surface is optimal for
the velocity modes in the same mode as the force. The angular
responses δt,b

x and δt,b
y for the same driving forces are shown

in Fig. S6 within the SM [34].

IV. 3D CELL DEFORMATION

A useful feature of our model is the ability to track material
elements while simulating surface forces that resemble those
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(a) (b) (c)

FIG. 6. Velocity response as a function of Deborah number for the driving force in Eq. (42) with (a) (kx, ky ) = 2π

L (1, 0), (b) (kx, ky ) =
2π

L (0, 1), and (c) (kx, ky ) = 2π

L (1, 1). Color key for (b) and (c) are same as in (a).

from live experiments. If we assume that cell membranes are
not force producing objects, but merely carried by the flow
of the tissue material, a roughly valid assumption for very
early stages of the fly embryo [28], then the movement of
markers in our velocity solutions would approximate that of
cell membranes. Hence, instead of modeling membranes, we
track them as material surfaces. In the following, we show
two examples of quantifying cell deformation dynamics us-
ing tracked membranes. Additionally, by tracking cells, we
specify surface forces such that they remain localized to a
particular cell as that cell moves. We find results that are sug-
gestive in two events during Drosophila development: ventral
furrow invagination and convergent extension.

A. Quantifying cell deformations

Figure 7 shows two illustrative examples of how cell de-
formation dynamics from surface forces can be simulated,
quantified, and studied. In Figs. 7(a) and 7(b) and Movie S1 in
the SM [34], we apply an isotropic, contractile, traveling wave
force on the top surface of the tissue that moves to the right
(ηL,B = 1, h = 2, H = 0.5, L = 20). The force is given as the

divergence of the stress S(x, t ) = S0H (t )e− 1
2 ( x−V t

wx
)2− 1

2 ( y
wy

)2

1
where S0 = 20, V = 1.0, wx = 1, wy = 4 (in nondimensional
units) for Fig. 7(a), and H (t ) is a heaviside function that sets
the force to zero when it has moved close to the edge of
the simulation domain. Figure 7(b) shows the displacement
of the origin point (0,0), tracked as a function of time, for
simulations with different α (S0 = 20, V = 4.0). When α is
small, viscous response dominates, the total displacement is
larger and shows no recoil; when α is large, elasticity plays a
larger role in the response, the total displacement is smaller,
and recoil from the elasticity can be observed.

In Figs. 7(c) and 7(d) and Movie S2 in the SM [34], we
apply the oscillatory force in Eq. (42) with De = 0.5, F0 = 20,
and k = (4, 1) 2π

L and quantify cell deformations over time.
Figure 7(c) shows snapshots of deformations at the time points
of: t = 1/2 period (top) and t = 10 periods (bottom) of the
driving, simultaneous for all α values. For small values of
α, we see that the cells are easy to deform (α = 0.1, top)

but carry no memory of past deformations (α = 0.1, bottom)
since with a low density of Oldroyd-B particles, the system
is similar to a Stokes system, which is fully reversible when
forcing is reversed. Meanwhile for large α, the cells are harder
to deform (α = 32, top) but carry more memory (α = 32,
bottom). And intermediate values of α show complex combi-
nations of these limits. Figure 7(d) quantifies the change in the
area of the central cell after 10 periods of oscillation when the
net force integrated over time is 0. We show that depending on
the Deborah number of the driving force, the maximum area
deformation is achieved at different values of α.

In morphogenesis, cellular oscillations are ubiquitous; ex-
amples include cells in Drosophila prior to ventral furrow
formation and prior to dorsal closure. Oscillations in natural
systems are complex and do not result in exactly zero net
force; however, we showed a simple example of periodic, zero
net force driving as a case study. We found, in our example,
that given 10 periods of oscillations being generated in the
tissue with net zero force, there is an optimal α to create the
most deformation by the end of the driving process, and this
α increases when the driving frequency increases. Another
insight is that tissue that is “easy to deform” (small α at
t = 1/2 period) can be suboptimal to hold memory of the
deformations if the driving reverses direction, as it regularly
does in the case of stochastic forces. The two examples in
Fig. 7 indicate the interesting and important role of viscoelas-
tic strength in cell deformation dynamics and the range of cell
shape phenomena that can be studied.

B. Insight into ventral furrow formation

An important event in Drosophila development is ventral
furrow formation, occurring when a group of cells invaginate
from the surface to the inside of the embryo. The invagina-
tion is preceded by many cells undergoing “pulsatile apical
constriction” [4] meaning that the invaginating cells actively
constrict their apical (top) surfaces in a temporally periodic
manner. This process is known to be driven by myosin lo-
calized to the apical surface. After 2 to 4 cycles of apical
constriction, the epithelium starts to invaginate. We model

023190-9



XINXIN DU AND MICHAEL J. SHELLEY PHYSICAL REVIEW RESEARCH 5, 023190 (2023)

(a)

(c)

(d)(b)

FIG. 7. Cell deformations due to surfaces forces. Depiction of cell membranes are material surfaces tracked with bulk velocity solutions.
(a) Time series of cell deformations from a traveling wave contractile surface force. (b) Displacement of the origin point (0,0) tracked as a
function of time for simulations with different α. (c) Cell shapes from an oscillatory force after half a period (top) and after 10 full periods
(bottom) for different α. (d) Area deformation of central cell after 10 periods of oscillations; maximum deformation is achieved for different
values of α depending on De.

these periodically constricting cells to understand the physics
of invagination.

1. Estimating forces and tissue properties

To model apical constriction, we applied a local, conver-
gent force periodically in time to a cell centered at the origin
(Fig. 8(a) and Movie S3 in the SM [34]). The applied force
is computed as the divergence of a 2D, isotropic, radially
symmetric active stress tensor S whose slice at y = 0 is shown
in Fig. 8(a). The forces from S model contractile forces from
myosin. The tensor S is given by

S(x, y, t ) =
(

Sxx Sxy

Syx Syy

)
, (44)

Sxy = Syx = 0, (45)

Sxx(x, y, t ) = Syy(x, y, t )

= −S0Hω(t )

(
r(0)

r(t )

)2

e− 1
2 ( x

r(t ) )
2− 1

2 ( y
r(t ) )

2

. (46)

This is a simple model of force feedback since r(t )
corresponds to the radius of the central cell as it is tracked
in time. Here r(0) = �0 is the radius of the cell at time 0
(rescaled so �0 ≡ 1), and S0 is the amplitude of the stress. The
function Hω(t ) is a Heaviside function with H (ω) = 1 when
sin(ωt ) > 1 and H (ω) = 0 when sin(ωt ) < 1, simulating the
pulsatile stress being on and off at frequency ω; note that

the apical constriction stress is unidirectional, it constricts
or vanishes, but does not push outward. The form of S is
chosen such that the integrals of Sxx and Syy are constant, as∫ ∞
∞ dxdy Sxx,yy(x, y, t ) = 2πS0r(0)2. This simulates that the

total amount of myosin in a cell’s apical surface is constant in
time.

During ventral furrow formation, cells undergo approx-
imately 2.5 cycles of constriction-relaxation before the
epithelium starts moving out-of-plane [4]. Therefore, our sim-
ulations of apical constriction in flat epithelial tissue can be
compared to experiments for the first 2.5 simulated cycles of
constriction-relaxation [dotted line in Fig. 8(c)]. Experiments
in [4] estimate that cell apical areas shrink to approximately
50% their initial values during these 2.5 cycles, taking 2 to
3.5 minutes. Using that τp ≈ 1 minute [32], we simulated
apical constriction in single cells using length scales relevant
to Drosophila (h = 8�0, H = 0.5�0) with periods of forcing
between 1−2τp (corresponding to 2.5 cycles of constriction-
relaxation in 2−3.5 minutes). After simulating 2.5 cycles, we
identified parameters S0 and α for which cell areas decreased
to 30% to 70% (approximately 50%) their original values
using ηB = ηL = 1(η) [Fig. 8(b)].

Our simulations show that as the viscoelastic strength α

is increased, the amplitude of stress must also increase to
achieve the same amount of area deformation in the same time
[Fig. 8(b)]; this makes sense. Since the perivitelline fluid is
poorly understood, its viscosity ηL is highly uncertain. Au-
thors of [37] have proposed that ηL could be 0.1η or lower.
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(a)

(c) (d)

(b)

FIG. 8. Simulation of apical constriction. (a) Frames from apical constriction simulation (top); Sxx,yy(x, 0, t ) at the time points of the
frames. (b) Diagram of parameter space α and S0; pink dots indicate simulations that agree with experiments. (c) Constricting cell’s area as
a fraction of its initial area during apical constriction simulation; dotted lines indicate 2.5 cycles of constriction-relaxation and corresponding
area fraction. (d) The z-directional force Fz (y = 0 slice) on the tissue’s top and bottom surface for various thickness of the fluid layer H .
(a)–(d) parameters: α = 4, S0 = 2η�0/τp.

Hence we present parameter space estimation with ηL = 0.1
in Fig. S7 where we find that the required S0 to fit experiments
is decreased to roughly half of the ηL = 1 case.

Since dimensionless force densities are defined with units
η/τp, then, taking η as approximately 1000 times water vis-
cosity and τp = 60 s, we have that 1 on the dimensionless
force density scale is equivalent to η/τp = 1/60 Pa. Hence,
the range S0 = 1−15 η�0/τp that is appropriate for various
values of α [Fig. 8(b)] correspond to 2D stresses of 1/60 to
1/4 Pa�0, with �0 = 2−4 microns.

2. Insight into epithelial invagination

Some models for ventral furrow invagination argued
that by actively decreasing their apical areas, cells become
individually wedge shaped; this shape could only be accom-
modated by an overall invaginated shape for the epithelium,
and hence the epithelium becomes invaginated. Others argue
that invagination occurs as a result of instability: a com-
pressional force is created when cells apically constrict; the
epithelium is unstable to compression and buckles. Our model
elucidates the phenomena of invagination quantitatively in
the context of the tissue being surrounded by incompressible
fluids in three dimensions. When the active stress in Eq. (46)
is applied in simulations, we calculate the force densities in
the z direction exerted on the top (z = 0) and bottom (z = −h)

surfaces of the tissue due to both the directly applied force and
forces from its surrounding environment.

When we calculate (see Sec. SII C in the SM [34]) the
z-directional forces that are exerted on the top and bottom
surfaces of the tissue [y = 0 slices in Fig. 8(d)] for the time
point at the end of the first constriction, we find that in our
Drosophila-inspired geometry, negative z-directional forces
are indeed exerted there [Fig. 8(d) left]. However, if we as-
sume that the tissue sits in an infinite bath, that is, if we take
the limit H → ∞, then we see that the z force exerted on
the tissue’s top surface is positive, while the z force exerted
on the tissue’s bottom surface is negative [Fig. 8(d) right].
This means that if we eliminate the constraint that the tissue
remains flat, then convergent active stresses on the tissue’s
surface would act to make it locally thicker instead of causing
it to invaginate. If we consider intermediate cases where H <

∞ but is larger than its typical value in Drosophila [Fig. 8(d)
middle panels], corresponding an enlarged space for the periv-
itelline fluid, then the z forces on the top and bottom surfaces
of the tissue also achieve intermediate values, showing that
there exists a continuum of situations between tissue invagi-
nation and tissue thickening tuned by the parameters of the
surrounding fluids and boundary geometry.

Our results show that it is the presence of the hard wall
(vitelline membrane) in combination with the incompressible
fluid layer in region L (perivitelline fluid) that leads the
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system to find a 3D solution that necessarily contains a
downward force on both the tissue’s top and bottom surfaces
when H = 0.5. Intuitively, the convergent stress, because it is
applied at the interface of regions L and S, drives the material
in both the fluid layer and the tissue toward (x, y) = (0, 0).
Since these fluids are incompressible and constrained by the
wall, both fluids exert a force on the other. Thus, whether
or not the tissue invaginates is determined by which fluid
pushes more strongly into the other. Another demonstration
of this concept is in Fig. S8 (see SM [34]), in which as the
viscosity of the fluid layer ηL is decreased; e.g., for ηL < 0.1,
the fluid layer pushes less strongly into the tissue, and the
resultant z force no longer causes the tissue to invaginate. Our
explanation for invagination is different from the notion of
buckling because in our case, an explicit z-directional force is
produced by the competition between the fluid layer and the
tissue; there is no instability.

The perivitelline space parameters that influence whether
a tissue invaginates under a convergent force are the height of
the perivitelline space H and the viscosity of the perivitelline
fluid ηL; our model predicts that increasing the former
[Fig. 8(d)] and decreasing the latter (Fig. S8 in the SM
[34]) would cause the downward z-directional force on the
tissue to decrease and invagination to become hindered or
delayed. For our baseline values of H = 0.5�0 and ηL = η in
the Drosophila embryo, the convergent active stress causes
invagination when one cell constricts. In reality, multiple
ventral furrow cells constrict as precursors to ventral furrow
formation. Figure S9 in the SM [34] explores the z-directional
force when the constriction is applied to a wider area of the tis-
sue (≈6 rows of cells or 8�0). When force is applied over this
much larger region, the z-directional forces on the tissue’s top
side (apical side) point downward for a larger range of H and
ηL compared to when force is applied to a single cell. A note
is that authors [38] have estimated values of H as high as H ≈
1−1.5�0 (3 microns) and ηL as low as ηL = 0.001η (equiva-
lent to water viscosity). For these estimates, our model gives
that z forces point in the opposite direction as invagination
for both single cell as well as for a wide area of constriction.
This discrepancy could be due to other forces at play in a live
system. Researchers may further explore our notions of pre-
cursors to invagination by finding biological systems where
instead of invagination, a convergent active stress causes the
tissue to locally thicken. Perhaps there are systems in which
a barrier like the vitelline membrane could be removed to see
whether morphogenesis proceeds differently. Additionally,
one can design in vitro systems with controlled geometries and
viscosities that test whether in-plane convergent stresses cause
tissue invagination and/or thickening for various values of the
parameters.

C. Convergent extension

Recent experiments have found that cells undergoing
convergent-extension in both Drosophila [5] and vertebrates
such as Xenopus [8,39,40] and mouse [41] exert active forces
on both their apical and basal surfaces to create T1 transitions,
a cell-level movement required for convergent extension. We
simulated T1 transitions to understand whether they can be
driven exclusively by surface forces. We used nonzero Ft and

Fb that are computed as the divergence of a 2D stress tensor S
with components,

St,b
xx = S0

w(0)

w(t )
e
− 1

2

(
x

wt,b (t )

)2
− 1

2

(
y

wy

)2

, St,b
xy = St,b

yx = St,b
yy = 0.

(47)

Here, wt,b(t ) is the length of the junction executing the T1
transition (on either the top or bottom of the epithelium) as a
function of time, S0 is the amplitude of the stress, and wy is
a constant parameter that specifies a delta-like profile for the
stress in the y direction; again, this is a simple model of force
feedback.

Our simulations show that short cells (h = 0.5) are able
to execute a T1 transition (Fig. 9(a) and Movie S4 in the
SM [34]) throughout the height of the cells (other param-
eters ηL,B = 1, H = 0.5, α = 32, S0 = 5,wy = 0.2, L = 20).
However, tall cells, such as those in the fly embryo (h =
8), are not able to propagate the topological change from
a T1 transition to the interior of the tissue: while both top
and bottom surfaces of cells exchange neighbors, away from
the surface, cells remain adjacent to their original neighbors
(Fig. 9(d) and Movie S7 in the SM [34]). Even for cells that
are relatively short (h = 1, 2, Figs. 9(b) and 9(c) and Movies
S5 and S6 in the SM [34]), we see that the middle of cells
cannot come together.

Another finding from our simulations is that forces at the
length scales of cell junctions are required for T1 transitions
(Fig. 9(e) second and fourth panels): overall force applied
at the tissue-level [Fig. 9(e) third panel] cannot create T1
transitions even in very short cells (h = 0.5).

To note, authors in [5] showed that active forces from
the basal side of the epithelium extend laterally beyond the
basal surface by roughly 5−10 µm; we do not model this.
However, noting that the gap between cells in Fig. 9(d) is
very large, our prediction holds that for tall cells such as those
in the Drosophila germ band, cells would require a different
mechanism to execute a T1 transition through their full height.
Hence, while surface forces exclusively from the apical and
basal surfaces of tall epithelia are sufficient to create T1 tran-
sitions near the tissue surface, they are not sufficient to create
T1 transitions for the full height of the cell, as the penetration
depth of the surface force is too small. Additional forces
or biological mechanisms are needed to “zip” together the
remainder of the cells’ lateral sides; indeed, the scutoid shapes
of some epithelial cells may be indicative of incomplete T1
transitions [29,30]. The biology and mechanics of these other
mechanisms may involve other molecules and are not well
understood, suggesting future directions of research.

One additional point of discussion is whether membrane
elasticity (which we do not model) would aid in completing
the T1 transition through the full height of the tissue for
tall cells such as the ones in Fig. 9(d), and do these elastic
membrane forces eliminate the need for active lateral
forces. The answer will depend on the elastic properties of
the membrane and the height of the cells. From a rough
order-of-magnitude estimate, we argue that for sufficiently
tall cells, the force provided by membrane elasticity is not
sufficient to move the bulk of the two cells in a T1 toward
each other in a time that is reasonable for morphogenesis.

023190-12



MODELING EPITHELIAL TISSUE AND CELL … PHYSICAL REVIEW RESEARCH 5, 023190 (2023)

(a)

(e)

(b) (c) (d)

FIG. 9. Simulation of T1 transition. (a) Short cells are able to execute a T1 transition through the full height of the cell. [(b)–(d)] Cells
with intermediate and large height cannot execute T1 transitions through the full height of the cell. (e) Forces on the length scales of cell
junctions are required for T1 transitions. Images show apical (top surface) cell boundaries for Ft = Fb = 0 (first panel), Ft = Fb = ∇ · S
(Eq. 47) (second panel), Ft = Fb = A0(− sin( 2π

L x), sin( 2π

L y)) (third panel), and Ft = Fb = A0(− sin( 2π

L x), sin( 2π

L y)) + ∇ · S (fourth panel).

A detailed discussion is in the Sec. SVII of the SM [34], we
have an abbreviated discussion here.

Consider the situation in Fig. 9(d) in which active surface
forces have moved the apical and basal sides of the cells
together up to the penetration depth of the surface force. In this
configuration, if the cell membranes were elastic, they would
have stored energy in the form of bending energy and stretch-
ing energy that can then be deployed to do work to bring
the two cells together. This work is roughly the drag force
of the cells against the stationary fluid times the displacement
required (approximately �0/2). The reason we consider the
fluid to be stationary is because the timescale of Oldroyd-B
relaxation is approximately 1 minute while the timescale of
the T1 is around 10–30 minutes, hence the fluid could be
considered to be static at the timescale of the T1.

Balancing the stored elastic energy from the membrane and
the work of the drag force requires

Ebend + Estretch = Fdrag
�, (48)

where Ebend and Estretch are the energies stored in bending and
stretching the membrane, respectively [see the light blue cell
in Fig. 9(d) for example], Fdrag is the drag force of the cell
against the fluid, and 
� is the distance the cell would travel;
in this case, 
� ≈ �0/2 = 2 microns. Both Ebend and Estretch

depend linearly on their deformation moduli, κ and σ , respec-
tively: Ebend = ∫

dS 1
2κ 1

R2 and Estretch = ∫
dSσ . Meanwhile,

the drag force depends linearly on the velocity and the size

of the cell R minus penetration depth Rp:

Fdrag = 6πV η(R − Rp) · G(ε) · Lu. (49)

Here, R − Rp denotes the radius of the object that is being
dragged (the part of the cell that has not been moved by the
surface force). The velocity can be set to V = length to travel

time to travel =
�0/2

T with T denoting the time to travel. Viscosity is ap-
proximately η = 1 N

m2 s for cytoskeleton. The factor G(ε) is
a geometric parameter depending on the ellipticity ε that
accounts for the fact that the cell is not a sphere, this will
depend on the shape of the cell, however, it is on the order
of 1. Finally, lubrication Lu is a parameter that accounts for
the fact that we are not pushing a cell through infinite fluid,
instead, we are pushing it towards another cell, which is quite
close, meaning that the drag force is increased; the lubrication
parameter could contribute a factor of approximately 2 to 10
(see [42]). Altogether, the balance of membrane elasticity and
drag is approximately∫

dS
κ

2

1

R2
+

∫
dSσ = 6π

�0/2

T

(
1

N

m2
s

)
(R−Rp) · G(ε) · Lu.

(50)
Solving for time to travel T , we have

T = 6π�0/2
(
1 N

m2 s
)
(R − Rp) · G(ε) · Lu∫

dS κ
2

1
R2 + ∫

dSσ
. (51)
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This expression estimates the time that it would take for
membrane elasticity to move the cells closer together. For
the geometry in Fig. 9(d) with estimates of κ = 20kBT and
σ = 1.7 × 10−8 N

m from [43], we have that the time to travel
is T ≈ 156 · Lu · minutes (see Sec. SVII in the SM [34]), with
lubrication representing a factor of ≈ 2 to 10; this is too long
compared to the timescale of a typical T1 transition. Hence,
we hypothesize that active lateral forces are needed in addition
to membrane elasticity for tall cells like those in Drosophila
to complete T1 transitions.

In addition, consider how in Eq. (51), the time to travel
is decreased if parameters κ and σ are increased, and it is
also decreased if the (half-)height of the cell R is decreased.
Hence for larger values of the membrane elasticity moduli and
shorter cells (perhaps Fig. 9(b), discussed in Sec. SVII of the
SM [34]), we hypothesize that there are scenarios in which
only membrane elasticity and surface forces are required to
complete the T1 transition through the full height of the tissue,
even though active lateral forces will be required for taller
cells.

V. DISCUSSION

We addressed a need for 3D modeling in thick epithelial
tissues. In particular, 2D epithelial models cannot give insight
to morphogenetic processes in which the apical and basal
sides of cells do not move in concert. Here, we provided
a framework for modeling flat, viscoelastic tissue that takes
into account tissue thickness as an important parameter. We
presented analytical and numerical solutions to the system,
and our mathematical framework will allow us to eventually
evolve active stresses as surface populations in future exten-
sions of the model.

We analyzed how applied surfaces forces drive surface
velocities by studying transfer matrices. A key result of our
analysis is the existence of velocity matched versus velocity
reversed solutions on the side of the tissue opposite from the
force. We found that to achieve velocity matched solutions,
the modal composition of the driving force should be heavily
weighed with long wavelength wavevectors in the direction
parallel to the force (small kx) and short wavelength wavevec-
tors in the direction perpendicular to the force (large ky).
This pattern of driving is seen in the Drosophila germ band
during convergent extension where authors observe “myosin
cables” [6,36]. This result hints that the Drosophila germ
band may be employing (in addition to basal forces) a strat-
egy of velocity matching to help cells move their apical and
basal surfaces in concert as much as possible across a thick
epithelium.

Because our model of epithelial tissue is fully immersed
in a realistic fluid environment, we are able to calculate the
forces induced by other parts of the system on the epithelium
when active stresses are applied. In simulations of apical con-
striction, we showed that when an active constricting force
is applied parallel to the surface (in x and y), an orthogonal,
z-directional force is induced on the tissue surface from ad-
jacent fluids; and this is the force that ultimately will cause
invagination in our model (as we do not model other forces).

The direction and amplitude of this force depends strongly
on the presence and parameters of other fluids in the system
and on geometric constraints. Hence, our paper suggests that
future studies of morphogenesis should include analysis of
how geometric constraints and fluid surroundings influence
the shapes of tissues.

Using apical constriction simulations, we estimated the
amplitude of surface stress created by medial myosin. These
estimates are only the starting point because our simulations
assumed that viscosity and viscoelastic strength are spatially
constant throughout the tissue. Authors of [33] have shown
that cells are in fact spatially heterogeneous in viscosity and
viscoelastic strength even within the same cell. An elaboration
of our model would be to take α and η to be space-dependent
and/or to specify an evolving field φ(x, t ) corresponding to
the density of viscoelastic polymers in the tissue.

One key assumption in our model is that lateral mem-
branes are not force-generating objects. In this paper, we
took advantage of the fact that this assumption is roughly
valid in the early Drosophila embryo [28] to model events
during embryogenesis. However, since others have shown that
there are actomyosin forces localized to lateral membranes
during EMT [44], apoptosis [45], and the start of convergent-
extension in the Drosophila mesoderm [46], a future direction
will be to take into account forces from lateral membranes
that may be contributing to bulk mechanics. We here showed
that forces from lateral membranes likely play a role during
T1 transitions in tall cells such as those in Drosophila. We
showed that the transfer of surface force to velocities in the
tissue interior is so low, that without forces from the lateral
sides of cells, T1 transitions cannot propagate through the
full height of the cell, and hence additional forces, perhaps
due to molecules like cadherens, are required. This is another
direction of future work.

Finally, a promising direction of our work is to rigor-
ously evolve a population of active force generators on our
tissue surface alongside the bulk material. In our mathemat-
ical framework, we have the potential to incorporate any
2D active population into our system and ask: How can
these populations remodel the epithelium in 3D, and how
does the motion of epithelial cells couple back to the active
population? Active populations include surface actomyosin,
but also collections of bacteria, or a 2D model of active
cellular apical surfaces and elastic membranes; our frame-
work can evolve these populations consistently with how
the tissue and other fluids move in 3D. These populations
might couple to reaction-diffusion equations such as those
specifying chemical oscillations, trigger waves, or genetic
circuits. For example, calcium is a molecule that transports
into cells under mechanical tension and feeds back to cy-
toskeletal forces [47,48]: our model can simulate cellular
calcium concentrations and alter material parameters locally.
The coupling between 2D active populations and 3D tissue
will not only provide opportunities to study rich mathemat-
ical structures in these systems but also provide quantitative
model predictions to connect to experiments in a wide va-
riety of settings that involve tissues, fluid environments, and
boundaries.
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